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ABSTRACT

The performance of Large Language Models (LLMs) hinges on carefully engi-
neered prompts. However, prevailing prompt optimization methods, ranging from
heuristic edits and reinforcement learning to evolutionary search, primarily target
point-wise accuracy. They seldom enforce paraphrase invariance or searching sta-
bility, and therefore cannot remedy this brittleness in practice. Automated prompt
search remains brittle: small, semantically preserving paraphrases often cause
large performance swings. We identify this brittleness as the textual sharpness
of the prompt landscape. In this work, we provide the first formal treatment of
textual sharpness in the discrete, semantic space of prompts, together with an oper-
ational robustness criterion over a semantic neighborhood; the design is black-box
or API-only, requiring no gradients to update the model’s parameters. Then we
introduce TARE (Textual Sharpness-Aware Evolving), a derivative-free framework
that alternates between an inner, sampling-based adversarial search that stresses
a prompt with hard paraphrases and an outer, robust selection that prefers can-
didates whose neighborhoods remain strong. We further propose ATARE, which
learns anisotropic weights to shape the semantic neighborhood and adapts its ra-
dius over time to balance exploration and fidelity. Diverse tasks evaluate our meth-
ods, whose design for minimizing textual sharpness gap leads to prompts that pre-
serve accuracy under paraphrasing, outperforming accuracy-only prompt search
while remaining computationally practical. The code is available for anonymous
access at https://anonymous.4open.science/r/ATARE_TARE/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide array of
natural language understanding and generation tasks (Brown et al., 2020; OpenAI, 2023). The effi-
cacy of these models, however, is critically dependent on the quality of their input prompts. In this
vein, prompt engineering aims at manually or automatically discovering optimal prompt structures to
guide LLMs toward desired outputs.While automated methods like EvoPrompt and APE (Guo et al.,
2023; Zhou et al., 2022) have shown promise, they often produce prompts that are highly sensitive
to minor, semantically-equivalent perturbations. This vulnerability largely stems from their primary
focus on maximizing point-wise accuracy, which often leads to overfitting on specific phrasings
while neglecting stability across the prompt’s semantic neighborhood. An optimized prompt that
performs well on a given set of inputs may fail dramatically when faced with slight paraphrasing
or rephrasing, a phenomenon we term the “sharpness” of the prompt landscape. This brittleness
severely limits the real-world reliability and robustness of LLM-based systems.

The concept of “sharpness” in optimization landscapes is well-studied in the domain of deep neural
networks. It has been shown that models converging to flat minima in the loss landscape exhibit
superior generalization performance (Hochreiter & Schmidhuber, 1997). Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2021a) and its variants have emerged as powerful techniques to ex-
plicitly search these flat minima, thereby improving model robustness and generalization. These
methods work by minimizing the loss in a “neighborhood” around the current parameters, effec-
tively smoothing the loss landscape. However, the principles of SAM have been predominantly
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applied to continuous parameter spaces, such as model weights. Their application to the discrete
and combinatorial nature of text-based prompts remains a significant and unexplored challenge.

Figure 1: Problem Illustration. We illustrate the
core challenge in prompt optimization: I) conventional
methods often find brittle, sharp minima (left), where
a slight semantic change from an optimal prompt
Prompt A to a paraphrase Prompt A’ results in a sig-
nificant loss increase. II) Our goal is to instead seek
flat, stable solutions (right), where a similar slight se-
mantic change from a robust prompt Prompt B to its
paraphrase Prompt B’ only causes the loss to remain
nearly unchanged, indicating high robustness.

Therefore, a natural research question arises:
I) How can we formally define and quantify
the concept of a “sharpness neighborhood”
within the discrete, semantic space of textual
prompts? Due to the discrete and semanti-
cally rich nature of text, traditional notions of
local perturbations (e.g., infinitesimal gradient
steps) are fundamentally inapplicable. Instead,
we must construct neighborhoods that capture
semantic similarity—accounting for paraphras-
ing and rephrasing—so that local sharpness re-
flects true linguistic and behavioral proximity
relevant to LLMs. Defining such neighbor-
hoods and associated metrics is crucial for ro-
bust optimization. Building on this, a closely
related question arises: II) How can we de-
sign a practical optimization algorithm that
navigates this discrete landscape to discover
prompts that are both effective and robust to
semantic perturbations? This requires an al-
gorithm that can efficiently explore the prompt
space while incorporating a measure of land-
scape flatness into its search process.

To address these challenges, we introduce
Textual Sharpness-Aware Evolving (TARE), a novel framework inspired by SAM that adapts its
core principles for the discrete domain of prompt engineering. Our core contribution is a textual
sharpness metric that quantifies prompt robustness by evaluating its performance over a neighbor-
hood of semantically similar variants. We then propose an evolutionary optimization algorithm that
iteratively refines prompts, selecting candidates that exhibit both high performance and low sharp-
ness. Furthermore, we introduce an adaptive version, Adaptive Textual Sharpness-Aware Evolving
(ATARE), which dynamically adjusts the neighborhood size during optimization for efficiency and
effectiveness. Our contributions are threefold:

❶ Formalizing Textual Sharpness. We introduce the first definition of sharpness tailored for the
discrete, semantic space of prompts. This is accompanied by a metric to quantify prompt robust-
ness by evaluating performance stability across a semantically coherent neighborhood, bridging
the gap between continuous optimization theory and discrete language-based optimization.

❷ Sharpness-Aware Prompt Evolution. We propose TARE, a novel algorithm designed to explicitly
navigate the discrete prompt landscape. By integrating our textual sharpness metric directly into its
fitness function, TARE effectively co-optimizes for both high task performance and low sharpness,
yielding prompts that are both effective and robust. We further enhance this with an adaptive
variant, ATARE, which dynamically adjusts the neighborhood radius for greater efficiency.

❸ Superior Robustness and Generalization. Through extensive experiments on multiple bench-
marks, we provide strong empirical evidence that our proposed methods, TARE and ATARE, con-
sistently discover prompts that are significantly more robust and generalize better to unseen data
compared to existing state-of-the-art prompt optimization techniques.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS

Large Language Models (LLMs) have rapidly advanced in scale and capability, from early few-
shot systems such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023) to general-purpose
foundation and open models including PaLM (Chowdhery et al., 2022), Llama 2 (Touvron et al.,
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2023), Llama 3 (Grattafiori et al., 2024), Mistral 7B (Jiang et al., 2023), and Mixtral (Jiang et al.,
2024). Instruction finetuning and alignment further steer model behavior toward user intents (Chung
et al., 2022; Ouyang et al., 2022; Rafailov et al., 2024; Leong & Wu, 2024). Our problem setting
assumes black-box (API-only) access to an LLM (and optionally an evaluator), and focuses on
optimizing prompts rather than modifying model parameters, making our approach complementary
to parameter-finetuning and alignment.

2.2 PROMPT OPTIMIZATION

Prompt engineering has evolved from manual design to automated optimization. Early auto-
mated approaches include gradient-free token editing and trigger search (AutoPrompt) (Shin et al.,
2020), reinforcement-learning-based optimization (RLPrompt) (Deng et al., 2022), and search-based
schemes such as APO (Pryzant et al., 2023). Recent work connects evolutionary algorithms with
LLMs or leverages LLMs as optimizers to iteratively propose and select candidates (Guo et al.,
2023; Zhou et al., 2022; Fernando et al., 2023; Oh et al., 2024); programmatic frameworks like
DSPy compile declarative pipelines into self-improving prompt graphs (Khattab et al., 2023b). In
parallel, instruction induction and self-instruction curate high-coverage supervision for prompt/task
design (Honovich et al., 2022; Wang et al., 2023b); and reasoning-oriented prompting (CoT, self-
consistency, ToT, ReAct, PoT) improves average-case reasoning performance (Wei et al., 2023b;
Wang et al., 2023a; Yao et al., 2023b;a; Chen et al., 2023). Nevertheless, most of these methods
primarily optimize point-wise metrics on static validation sets and seldom enforce robustness under
semantically preserving paraphrases. Our work explicitly targets this failure mode by formalizing
textual sharpness in semantic prompt space and optimizing worst-case performance over a neigh-
borhood.

2.3 SHARPNESS-AWARE MINIMIZATION

Generalization and robustness in deep learning have been linked to the geometry of the loss land-
scape, where flat minima often correlate with better generalization (Hochreiter & Schmidhuber,
1997; Keskar et al., 2017). Sharpness-Aware Minimization (SAM) biases solutions toward flatter
regions by minimizing loss under worst-case local perturbations (Foret et al., 2021a;b). Subse-
quent variants extend this idea with scale-invariant updates (ASAM) (Kwon et al., 2021), efficiency-
focused or surrogate-gap formulations (Du et al., 2022; Zhuang et al., 2022; Liu et al., 2022b), and
friendly/trustworthy adaptations (Li et al., 2024). Related techniques encourage wide valleys via
entropy or averaging (Chaudhari et al., 2017; Izmailov et al., 2019) and adversarial weight pertur-
bations (Wu et al., 2020). Unlike these methods that operate in continuous parameter space with
gradient access, we instantiate an analogous principle in discrete text: we define and measure sharp-
ness over a semantic neighborhood of prompts and develop a black-box, derivative-free algorithm
that co-optimizes task performance and local flatness.

3 PROBLEM FORMULATION

3.1 PROBLEM SETUP AND NOTATION

We consider a black-box large language model and a discrete semantic space of textual prompts.
For a supervised task with a training set, the empirical prompt risk is

LD(p) =
1

|D|
∑

(x,y)∈D

ℓ
(
M(p, x), y

)
. (1)

When the task is generative or judgment based, an evaluator maps model outputs to a numeric loss
ℓ
(
M(p, x), y

)
≡ E

(
M(p, x), y

)
. (2)

The same definitions apply for validation and test. We focus on robust optimization that accounts
for semantic neighborhoods of a prompt.

3
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3.2 SEMANTIC NEIGHBORHOODS OF PROMPTS

To make this precise, we endow the prompt space with a semantic dissimilarity measure and define
the isotropic neighborhood as

B
(
p, ρtext

)
:=

{
p′ ∈ P : dtext(p, p

′) ≤ ρtext
}
. (3)

In practice, the semantic dissimilarity dtext(p, p
′) is defined not as a scalar vector distance, but as a

semantic judgment performed by a high-capability LLM.

Anisotropic neighborhoods. To capture heterogeneous sensitivity across semantic components
of a prompt, we use an anisotropic metric

dani,Wp(p, p
′) :=

∥∥Wp ∆(p, p′)
∥∥
2
, (4)

and the corresponding ellipsoidal neighborhood
Bp

(
p, ρtext

)
:=

{
p′ ∈ P : dani,Wp(p, p

′) ≤ ρtext
}
. (5)

3.3 TEXTUAL SHARPNESS AND ROBUST RISK

Building on these neighborhoods, the textual sharpness-aware loss is defined as the local worst-case
risk over a semantic neighborhood

LS(p, ρtext) := max
p′∈B(p,ρtext)

LD(p′). (6)

The corresponding robust optimization problem is
min
p∈P

LS(p, ρtext). (7)

This mirrors the classical SAM perspective by replacing perturbations in parameter space with tex-
tual perturbations in a semantic neighborhood. In the discrete prompt setting, neighborhood explo-
ration during the inner maximization can be operationalized by treating a generator as a sampler.

4 METHODOLOGY

4.1 OVERVIEW

Motivation. Accuracy-only prompt search is brittle: small paraphrases or rephrasings can flip out-
comes, exposing sharp, non-flat regions of the prompt landscape discussed in the introduction. Our
aim is to explicitly prefer prompts that remain effective under semantically-preserving perturbations.
We operationalize the textual sharpness formalization in Sec. 3 into a robust criterion that penalizes
local fragility, so that selected prompts demonstrate stability across their semantic neighborhoods.
Equivalently, we aim to shrink the textual sharpness gap Sharpρtext

(p) defined in Sec. 3.

Design principles. (i) Black-box, derivative-free optimization compatible with LLM APIs and
evaluator oracles; (ii) semantic neighborhoods that preserve task intent while revealing local sharp-
ness; (iii) an inner worst-case search to expose adversarial neighbors; (iv) an outer robust update
that chooses candidates improving the max-risk estimate; and (v) lightweight schedules (radius and
budget) for stability under limited compute.

Building on Sec. 3, our goal is to minimize the textual sharpness-aware risk by solving
min
p∈P

max
p′∈B(p,ρtext)

L(p′), (8)

via a derivative-free, LLM-driven procedure. In this discrete, black-box setting, we rely on
sampling-based inner maximization and validation-driven outer selection. We describe TARE
(isotropic) and ATARE (anisotropic) variants that iteratively (i) search adversarial neighbors and (ii)
update the prompt to reduce the robust objective.

Alignment to research questions. The neighborhood-based objective instantiates Q1 by defin-
ing sharpness in semantic prompt space, while our two-stage, derivative-free robust evolution ad-
dresses Q2 by providing a practical algorithm that co-optimizes task accuracy and local flatness
under semantically-preserving perturbations.

4
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Figure 2: An illustration of our proposed TARE framework. (a) The top panel shows the main TARE loop, con-
sisting of an Inner Adversarial Search, Feedback Generation, and an Outer Robustness Update. (b) The bottom-
left panel details the ATARE mechanism, which uses Sensitivity Estimation to guide an efficient Anisotropic
search. (c) The bottom-right panel presents the LATO, which perceives the local sharpness to guide updates
towards a flatter semantic basin.

4.2 TARE: TEXTUAL SHARPNESS-AWARE EVOLVING

Let p0 ∈ P be an initial prompt. At iteration t = 0, 1, . . . , T − 1, with radius ρt > 0 and minibatch
Bt ⊂ D: To make our algorithm concrete, we trace a running example for a simple text-based object
counting task. Let the initial prompt p0 be:

Initial Prompt: You are a helpful counting assistant. Your task is to count the number of
objects. Think step by step and then provide only the final numerical answer.

For a given input text, the desired output is a single integer (e.g., “3”), and the loss function L is 1 if
the output deviates from this format and 0 otherwise.

Inner adversarial search. We sample a candidate set inside the isotropic neighborhood using the
generator oracle G:

CKt(pt) := { p′1, . . . , p′Kt
} ∼ Sample

(
G, pt, ρt, Kt

)
, p′k ∈ B(pt, ρt). (9)

We evaluate the empirical loss on Bt and pick the worst case
p⋆t,adv := argmax

p′∈CKt
(pt)

L̂(p′;Bt), L̂S(pt; ρt) := max
p′∈CKt

(pt)
L̂(p′;Bt). (10)

To illustrate this process, consider the isotropic generator G acting on our initial counting prompt
pt. The generator produces perturbations that are semantically preserving, ensuring all candidates
p′ remain within the defined neighborhood B(pt, ρt). The goal is to test for fragility without alter-
ing the fundamental task. For example, the set of candidates CKt(pt) might include the following
paraphrases:

❶ Candidate 1: You are a supportive counting assistant. Your job is to tally the number of
objects. Consider each step carefully and then give just the final numerical result.

❷ Candidate 2: You are a helpful assistant for counting. Your role is to determine the number
of objects. Think through each step and then offer only the final number.

❸ Candidate 3: You are a useful assistant for counting objects. Your task is to calculate how
many objects there are. Reflect on each step and then present only the final numerical answer.

5
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A close analysis reveals that while the phrasing, synonyms (“helpful” → “supportive”, “count”
→ “tally”), and sentence structure are altered, the four foundational components of the
prompt—persona, task definition, reasoning process, and output format—remain intact across all
variations. The algorithm then proceeds to evaluate these candidates to determine if any of these
seemingly innocuous rephrasings leads to a performance degradation, thereby revealing the prompt’s
local sharpness and identifying the adversarial worst-case p⋆t,adv.

Outer robustness update. Using an optimizer oracle O, we produce an improvement pool condi-
tioned on the current and adversarial prompts with a semantic budget δt > 0:

UMt(pt) := Propose
(
O, pt, p

⋆
t,adv, δt, Mt

)
= { p̃(1), . . . , p̃(Mt) }. (11)

In essence, the Propose function is the core step where the optimizer oracle O suggests Mt potential
improvements by analyzing both the current prompt pt and its worst-performing neighbor p⋆t,adv. The
semantic budget δt restricts edits to preserve task intent and local coherence. We then select the next
prompt by robust validation over the union of current and proposals:

pt+1 := argmin
p′∈{pt}∪UMt

(pt)

max
q∈C

K̃
(p′)

L̂(q;Bt) with CK̃(p′) ∼ Sample
(
G, p′, ρt, K̃

)
. (12)

This greedy selection ensures a non-increasing estimate of the robust risk L̂S(pt; ρt) across iterations
when the minimizer is attained. Equivalently, it drives down the minibatch estimate of the textual
sharpness gap. Intuition and relation to SAM: SAM perturbs weights toward the ascent direction
and then takes a descent step optimal under that perturbation. TARE mirrors this logic in discrete
text: the inner sampling-based maximization uncovers the worst paraphrase within B(pt, ρt), and
the outer selection moves p toward regions whose neighborhoods are flatter, co-optimizing task
performance and robustness.

Schedules and acceptance. Typical schedules include: (i) radius annealing ρt+1 = γ ρt with
γ ∈ (0, 1] when progress stalls; (ii) semantic budget δt constrained to preserve task intent; and (iii)
budgets (Kt,Mt, K̃) chosen to trade off compute and robustness. An iteration is accepted based on a
robust validation criterion that evaluates the generalization performance of the worst-case neighbors.
Specifically, the worst neighbors p⋆t,adv and p⋆t+1,adv are identified on the previous training batch Bt−1

and the current training batch Bt, respectively. Evaluating these worst-case neighbors on a separate
validation set is crucial to ensure that any observed robustness is a generalizable property and not
merely an artifact of a specific training minibatch. The update is therefore accepted only if the new
worst neighbor demonstrates superior performance on Dvalid:

L̂(p⋆t+1,adv;Dvalid) ≤ L̂(p⋆t,adv;Dvalid)− η, (13)

for tolerance η ≥ 0; otherwise we increase search budgets or reduce ρt.

From TARE to ATARE. Uniform (isotropic) neighborhoods treat all prompt components equally,
yet empirical sensitivity is heterogeneous across a prompt’s core constraints, methodological guid-
ance, and stylistic elements. This uniformity is inefficient; an ideal search strategy should apply
cautious, fine-grained perturbations to sensitive components where the landscape is steep, while ex-
ploring robust components more broadly where the landscape is flatter. To achieve this nuanced
exploration, we introduce an adaptive, anisotropic variant that learns component-wise weights to
shape the neighborhood accordingly, while jointly adapting the neighborhood size ρt when needed.

4.3 ATARE: ADAPTIVE TEXTUAL SHARPNESS-AWARE EVOLVING

The isotropic ball B(p, ρ) may under/over-explore sensitive components of p. ATARE adapts an
ellipsoidal neighborhood via a diagonal weight matrix Wpt

= diag(wt), where wt ∈ Rm
≥0 scores

component-wise sensitivity.

Why anisotropy? Different parts of a prompt contribute unequally to its behavior: core con-
straints, methodological guidance, and stylistic elements exhibit heterogeneous sensitivity. For in-
stance, in our counting-task example, the persona “You are a helpful...” is a stylistic element, the
instruction to “think step by step” provides methodological guidance, and the rule to “provide only
the final numerical answer” is a core constraint. An isotropic ball may overshoot sensitive tokens or
underexplore robust ones. ATARE learns component-wise weights to shape an ellipsoidal neighbor-
hood, applying finer, more constrained perturbations where the landscape is steep, while allowing for

6
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broader exploration in more stable regions. This accelerates convergence and reduces over-editing
of fragile components.

Sensitivity estimation. Formally, we define the sensitivity st,j of a prompt component j as the
worst-case performance degradation caused by its semantic perturbation. For a neighborhood of
candidate prompts, this is expressed as:

st,j := max
p′∈Ct

I(p′ modifies j) ·
[
L(p′)− L(pt)

]
+
, (14)

where I(·) indicates whether component j is modified. Crucially, empirical observation reveals that
this mathematical sensitivity maps directly to semantic roles: modifying Constraints (e.g., output
formats) typically triggers immediate task failure (high loss spike, resulting in large st,j), whereas
varying Style induces negligible performance shifts (resulting in small st,j). Leveraging this align-
ment, we efficiently approximate these sensitivity values by decomposing the prompt into three
hierarchical tiers: Constraint, Method, and Style. We then determine the anisotropic weights wt,j as
a monotonic function of sensitivity, reflecting the observed hierarchy:

wt,j ∝ st,j , where sConstraint > sMethod > sStyle. (15)

This assignment reflects the inherent sensitivity. For instance, in our object counting task, a minor
paraphrase of the output format rule (a Constraint) often leads to a high loss due to parsing fail-
ures; consequently, our framework assigns a large weight wt,j to this component to strictly limit its
perturbation radius.

Anisotropic distance and sampling. Using Wpt = diag(wt), define dani(pt, p
′;Wpt) =

∥Wpt
∆(pt, p

′)∥2 and the ellipsoid
Bpt(pt, ρt) =

{
p′ : dani(pt, p

′;Wpt) ≤ ρt
}
. (16)

Here, a high weight wt,j for a sensitive component penalizes large edits, thus requiring smaller
perturbations to stay within the neighborhood. Candidate generation is therefore biased away from
sensitive components by sampling edit indices with a probability inversely proportional to their
sensitivity:

Pr{edit component j} ∝ (1/wt,j)
β , β ≥ 1. (17)

This ensures robust components are explored broadly while fragile ones are perturbed cautiously.
The inner/outer steps then mirror TARE with B replaced by Bpt

.

This anisotropic sampling process culminates in the generation of complete, holistic prompts
where the degree of variation in each component reflects its learned sensitivity. For instance, in
our counting-task example’s candidates below, the low-sensitivity persona is creatively reimag-
ined—from a “helpful counting assistant” to a “cheerful counter”. In contrast, the high-sensitivity
constraint on the output format is meticulously preserved; although its phrasing is subtly varied (e.g.,
“give just the final number” or “present only the final digit answer”), the core directive to output
only a number remains unchanged:

❶ Candidate 1: You are a friendly counting helper. Your task is to count the objects. Work
through the process step by step and then give just the final number.

❷ Candidate 2: You are an assistant designed to count things. First reason through the count-
ing carefully, then respond with the single final numeric result.

❸ Candidate 3: As a cheerful counter, your role is to determine how many items there are. Go
through your reasoning in order, but at the end present only the final digit answer.

4.4 LANDSCAPE-AWARE TEXTUAL OPTIMIZER

The Outer robustness update step relies on an optimizer oracle O to instantiate the Propose function.
We operationalize this oracle with a potent, landscape-aware implementation, which we term the
Landscape-Aware Textual Optimizer (LATO). LATO realizes this step as a principled, landscape-
guided update, formally defining the Propose function with its full set of inputs:

Propose :=
{
O(i)

LATO

(
pt, p

⋆
t,adv, L̂(pt;Bt), L̂(p⋆t,adv;Bt),Feedback

(
L̂(p⋆t,adv;Bt)

)
, δt

)}Mt

i=1
. (18)

The update mechanism of LATO is designed to enhance robustness directly. Instead of
merely correcting errors at its current position pt, LATO analyzes the textual feedback,

7
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Table 1: Main results across different backbone engines. We report accuracy (%) and the relative improve-
ment over TextGrad. The best and second-best results are highlighted with bold and underline, respectively.

BACKBONE: GPT-4o BACKBONE: Claude 3.5 Sonnet
Dataset Model

COT TEXTGRAD REVOLVE TARE ATARE COT TEXTGRAD REVOLVE TARE ATARE

Object
Counting

GPT-3.5 77.9↓10.1 88.0 89.8↑1.8 90.2↑2.2 91.0↑3.0 77.9↓5.4 83.3 87.5↑4.2 90.4↑7.1 88.0↑4.7

Gemini 1.5 Flash 8B 82.0↓1.3 83.3 83.5↑0.2 84.7↑1.4 85.7↑2.4 82.0↓6.5 88.5 90.0↑1.5 94.4↑5.9 91.0↑2.5

Gemini 1.5 Pro 94.0↑0.0 94.0 94.0↑0.0 97.3↑3.3 97.3↑3.3 94.0↓3.0 97.0 97.7↑0.7 98.0↑1.0 98.3↑1.3

Llama 3.1 8B Instruct 86.0↓2.6 88.6 88.2↓0.4 91.0↑2.4 92.4↑3.8 86.0↓3.5 89.5 88.0↓1.5 90.6↑1.1 93.5↑4.0

Llama 3 8B Instruct 80.0↓5.8 85.8 86.8↑1.0 88.7↑2.9 90.3↑4.5 80.0↓2.0 82.0 84.3↑2.3 89.5↑7.5 93.6↑11.6

Temporal
Sequences

GPT-3.5 79.0↓2.0 81.0 84.0↑3.0 87.5↑6.5 88.0↑7.0 79.0↓7.7 86.7 84.4↓2.3 88.0↑1.3 89.0↑2.3

Gemini 1.5 Flash 8B 92.0↓0.5 92.5 93.0↑0.5 94.3↑1.8 95.2↑2.7 92.0↓2.0 94.0 94.7↑0.7 95.3↑1.3 95.7↑1.7

Gemini 1.5 Pro 96.0↓1.7 97.7 97.7↑0.0 98.0↑0.3 98.0↑0.3 96.0↓1.0 97.0 98.0↑1.0 98.5↑1.5 98.8↑1.8

Llama 3.1 8B Instruct 86.0↓2.3 88.3 88.3↑0.0 90.0↑1.7 91.0↑2.7 86.0↓7.0 93.0 89.6↓3.4 93.7↑0.7 94.3↑1.3

Llama 3 8B Instruct 84.0↑0.0 84.0 84.5↑0.5 85.0↑1.0 88.7↑4.7 84.0↓7.5 91.5 89.2↓2.3 94.0↑2.5 94.0↑2.5

Tracking
Shuffled Objects

GPT-3.5 62.0↓4.3 66.3 65.7↓0.6 72.0↑5.7 69.0↑2.7 62.0↓13.0 75.0 72.2↓2.8 77.0↑2.0 77.0↑2.0

Gemini 1.5 Flash 8B 82.0↓1.0 83.0 82.5↓0.5 88.6↑5.6 93.7↑10.7 82.0↓5.3 87.3 89.8↑2.5 91.3↑4.0 94.0↑6.7

Gemini 1.5 Pro 99.0↑0.0 99.0 99.0↑0.0 99.0↑0.0 99.0↑0.0 99.0↓0.0 99.0 99.0↑0.0 99.0↑0.0 99.0↑0.0

Llama 3.1 8B Instruct 82.0↓4.3 86.3 83.7↓2.6 90.0↑3.7 93.5↑7.2 82.0↑0.8 81.2 79.2↓2.0 91.2↑10.0 93.0↑11.8

Llama 3 8B Instruct 50.0↓5.5 55.5 52.7↓2.8 57.5↑2.0 67.7↑12.2 50.0↓14.5 64.5 66.8↑2.3 72.3↑7.8 78.5↑14.0

GSM8K

GPT-3.5 72.9↓8.0 80.9 82.1↑1.2 83.0↑2.1 82.3↑1.4 72.9↓8.2 81.1 80.1↓1.0 83.7↑2.6 83.7↑2.6

Gemini 1.5 Flash 8B 88.6↓1.0 89.6 89.4↓0.2 90.1↑0.5 89.7↑0.1 88.6↓0.1 88.7 88.9↑0.2 89.6↑0.9 89.7↑1.0

Gemini 1.5 Pro 92.9↓0.4 93.3 93.0↓0.3 95.5↑2.2 94.7↑1.4 92.9↓2.4 95.3 95.3↑0.0 96.1↑0.8 95.5↑0.2

Llama 3.1 8B Instruct 84.9↑0.0 84.9 84.9↑0.0 86.2↑1.3 86.4↑1.5 84.9↓1.3 86.2 86.4↑0.2 86.9↑0.7 87.7↑1.5

Llama 3 8B Instruct 81.8↑0.0 81.8 81.8↑0.0 81.8↑0.0 81.8↑0.0 81.8↑0.0 81.8 81.8↑0.0 81.8↑0.0 81.8↑0.0

Feedback
(
L̂(p⋆t,adv;Bt)

)
, which is derived from the point of highest local loss. It then applies this

insight to refine pt. This process preemptively addresses the sharpest vulnerabilities in the prompt’s
immediate semantic neighborhood. By learning from the failure modes of its neighbors, the opti-
mizer guides pt to become inherently more robust against similar types of semantic perturbations in
the future.

This approach is powerful because LATO is, by construction, landscape-aware. By processing the
two distinct prompt-loss pairs, (pt, L̂(pt;Bt)) and (p⋆t,adv, L̂(p⋆t,adv;Bt)), it directly perceives the lo-
cal sharpness of the semantic landscape. This awareness of the landscape’s geometry—the steepness
of the loss increase from pt to p⋆t,adv and this empirically found worst-case direction—allows LATO
to modulate its optimization strategy. It makes more informed decisions about both the direction
and magnitude of the required edits, steering the prompt trajectory towards a demonstrably “flatter”
and more stable semantic basin.

To illustrate this mechanism concretely, consider an object counting task. A candidate prompt
“Count the items below” might exhibit high accuracy but fail significantly when paraphrased to
other prompts, revealing a sharp, brittle peak (large loss gap). LATO detects this instability and
steers optimization away from it. In contrast, a prompt like “List the items one by one and count
them” maintains high performance across its semantic neighborhood, indicating a robust, flat basin.
Unlike standard optimizers that might greedily prefer the former for its brevity or marginal point-
wise advantage, LATO leverages this landscape information to correctly converge on the robust
solution.

Operationally, LATO is instantiated using a powerful LLM as the core of the optimizer oracle OLATO.
The update process can be expressed as the LLM generating a new prompt based on a structured
meta-prompt, ΠLATO, which contains all the landscape information:

p̃(i) := LLM
(
ΠLATO

(
pt, p

⋆
t,adv, L̂(pt;Bt), L̂(p⋆t,adv;Bt),Feedback

(
L̂(p⋆t,adv;Bt)

)
, δt

))
. (19)

Here, ΠLATO represents a meta-prompt template that synthesizes all the landscape-aware inputs from
Equation (18) into a coherent, actionable instruction. The semantic budget δt acts as a crucial
constraint, ensuring that the edits proposed by the LLM remain coherent and preserve the core
intent of the task. The LLM then executes this instruction to generate an improved candidate prompt
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p̃(i), which forms an element of the proposal set Propose, effectively acting as a reasoning engine
that performs a landscape-guided optimization step.

5 EXPERIMENTS

We comprehensively evaluate our proposed methods, TARE and ATARE, through four axes: Q1 (Su-
periority), Q2 (Effectiveness), Q3 (Resilience), and Q4 (Sensitivity). The answers of Q1-Q3 are
illustrated in Sec. 5.2-Sec. 5.4, and sensitivity analysis (Q4) can be found in the Appendix C.

5.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluate our methods on four challenging reasoning tasks: three from
the Big Bench Hard benchmark (Suzgun et al., 2022; Srivastava et al., 2023)—Object Count-
ing, Temporal Sequences, and Tracking Shuffled Objects (Five Objects)—and the GSM8K
dataset (Cobbe et al., 2021). For evaluation, our primary metric is Accuracy (Acc), measured by
a strict string-based exact match on the final numerical answer (Yuksekgonul et al., 2024). Further
details on datasets and implementation are provided in Appendix A.

LLM Backends. Our experiments are conducted on a diverse set of five LLM backends: GPT-
3.5-turbo-0125, Gemini 1.5 Flash 8B, Gemini 1.5 Pro, Llama 3.1 8B Instruct, and Llama 3 8B
Instruct. To ensure a fair and controlled comparison, the optimizer and evaluator oracles for all
methods are powered by two universal backbones: GPT-4o and Claude 3.5 Sonnet.

Counterparts. We compare our methods, TARE and ATARE, against three key baselines: Zero-shot
Chain-of-Thought (CoT) (Kojima et al., 2023; Wei et al., 2023a), TextGrad (Yuksekgonul et al.,
2024), and Revolve (Zhang et al., 2025).

5.2 SUPERIORITY

To answer Q1, we present the main prompt optimization results in Tab. 1. We summarize our key ob-
servations as follows (Obs.): Obs. ❶ Our proposed methods, TARE and ATARE, consistently achieve
state-of-the-art performance, outperforming all baselines, including TextGrad and Revolve, across
nearly all evaluated tasks and LLM backbones. This significant performance gap stems from a
fundamental difference in optimization objectives. While baselines are designed to maximize point-
wise accuracy, our framework explicitly seeks robust solutions by optimizing for the worst-case
performance within a semantic neighborhood, leading to more generalizable and effective prompts.
Obs. ❷ ATARE consistently demonstrates a performance advantage over TARE in most scenarios.
This underscores the benefit of its adaptive, anisotropic search mechanism, which intelligently per-
turbs prompt components based on their learned sensitivity. This more nuanced search strategy
consistently discovers superior solutions within the prompt landscape. Obs. ❸ The framework’s
superiority shows broad universality, with substantial performance gains observed across diverse
architectures, including proprietary models like GPT-3.5 and Gemini 1.5 Pro, as well as open-source
models like the Llama 3 Instruct series. This confirms that our sharpness-aware approach is a model-
agnostic and widely applicable solution for robust prompt optimization.

5.3 EFFECTIVENESS

Figure 3: Ablation study of the key compo-
nents: the Inner Adversarial Search, the LATO,
and the Robust Validation. For an in-depth analy-
sis, please refer to Sec. 5.3.

To address Q2, we conducted an ablation study
on the key mechanisms of our framework using
the Llama 3.1 8B Instruct model, with results
shown in Figure 3. The chart clearly shows that
the full TARE and ATARE frameworks perform
best, and removing any of their core compo-
nents leads to a significant drop in performance.
Specifically, the Inner Adversarial Search is
essential for finding challenging perturbations,
the LATO optimizer uses landscape informa-
tion to make smarter updates, and the Robust
Validation criterion ensures that improvements

9
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(a) Object Counting (b) Temporal Sequences (c) Tracking Shuffled Objects (d) GSM8K

Figure 4: Resilience analysis of TARE and ATARE under oracle degradation, where the powerful
GPT-4o oracles are replaced with a weaker Llama 3.1 8B model. For an in-depth analysis, please
refer to Sec. 5.4.

(a) TARE vs. Kt (b) TARE vs. K̃ (c) ATARE vs. Kt (d) ATARE vs. K̃

Figure 5: Sensitivity analysis of TARE and ATARE with respect to the inner adversarial search budget
(Kt) and the outer robust validation budget (K̃). For an in-depth analysis, please refer to Ap-
pendix C.
generalize well. Finally, the consistent superi-
ority of ATARE over TARE (detailed in Tab. 1)
serves as a direct ablation for the Anisotropic Search, confirming the benefits of an adaptive strat-
egy. When these components work together, the framework reaches its peak effectiveness, validating
our design choices.

5.4 RESILIENCE

To assess the resilience of our framework (Q3), we evaluate its performance under two challenging
conditions: (i) degrading its powerful GPT-4o oracles by separately replacing the Generator and
the Optimizer with a weaker Llama 3.1 8B model, and (ii) drastically reducing the search budgets
for the inner adversarial search Kt and outer robust validation K̃. The results, illustrated in Fig-
ure 4 and Figure 5, demonstrate the framework’s remarkable stability. As shown in Figure 4, even
when individual core oracles are weakened, the performance degradation is remarkably graceful.
With the exception of the Optimizer degradation on the Tracking Shuffled Objects task, the accu-
racy drop across all other conditions is consistently maintained within a 5% margin. Similarly, as
shown in our sensitivity analysis (Figure 5), when the perturbation budgets (Kt, K̃) are reduced to
a minimal value of 1 or 2, the framework’s performance remains highly stable, exhibiting only a
minor decrease relative to its performance at a budget of 3. This dual resilience proves that our
sharpness-aware approach is robust to component degradation and computationally efficient, main-
taining strong performance even under such challenging conditions.

6 CONCLUSION

Reliable prompt optimization begins with naming the right failure mode. Our work identifies and
formalizes the overlooked problem of textual sharpness—the tendency of a prompt to collapse under
semantically equivalent paraphrases—and reframes prompt optimization from chasing point-wise
accuracy to seeking neighborhood-stable solutions. We instantiate this perspective with TARE, a
black-box, derivative-free procedure that adversarially probes a semantic neighborhood and selects
candidates by their worst-case minibatch performance, and with ATARE, which learns anisotropic
weights and adaptively schedules the neighborhood radius to balance exploration and fidelity. Both
variants are API-only and gradient-free; the adaptive version adds only linear overhead in the num-
ber of semantic components while enforcing a fixed-margin decrease per accepted step. Across
diverse tasks, TARE and ATARE consistently reduce the textual sharpness gap and preserve accuracy
under paraphrasing, surpassing accuracy-only baselines while remaining computationally practical.
Looking ahead, we see opportunities to extend textual sharpness-aware evolution to multi-turn and
tool-augmented settings, to design task-aware semantic neighborhoods and edit families, and to
deepen theory connecting textual sharpness with generalization in real-world LLM systems.

10
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REPRODUCIBILITY

To facilitate the reproducibility of our findings, we will release the source code for our TARE and
ATARE framework upon publication, accessible via an anonymous GitHub link. All experimental
settings, including key hyperparameters for the optimization process, are detailed in Appendix A.3.
All prompts used to generate the experimental data are provided in Appendix E. Our experiments
were conducted on a server equipped with 8 NVIDIA GeForce RTX 3090 GPUs.

LLM USAGE

We acknowledge the use of Google’s Gemini 2.5 Pro as a writing assistant in the preparation of
this manuscript. Its role was confined to improving the clarity and readability of the text, offering
suggestions for grammatical corrections, and refining the structure of captions for figures and tables.

The model’s contributions were strictly limited to surface-level text and formatting; it was not used
for research ideation, experimental design, implementation, data analysis, or writing the core tech-
nical content. All outputs from the model were critically reviewed, edited, and approved by the
authors, who bear full responsibility for the final manuscript.

ETHICS AND SOCIETY IMPACT

The focus of this research is a new methodology for making prompts for LLMs more robust. As a
purely algorithmic study, it does not involve human participants, the collection of private data, or di-
rect deployment in sensitive, real-world scenarios. Our contributions are limited to the optimization
algorithm itself, and we do not introduce new data that could present risks related to privacy or bias.
We acknowledge that more capable language models can have a broad societal impact. However, our
work is intended for academic purposes and is demonstrated on established reasoning benchmarks,
not on applications involving potential misuse or deception. In summary, this research presents no
direct ethical risks and aligns with the principles of creating trustworthy and transparent AI.
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A EXPERIMENTAL DETAILS

A.1 DATASET DETAILS

To assess the effectiveness of our framework, we conduct experiments on four diverse and challeng-
ing reasoning tasks. Consistent with prior work (Yuksekgonul et al., 2024), the evaluation metric is
string-based exact match accuracy. A detailed description is provided below:

• BIG-Bench Hard Tasks (Suzgun et al., 2022; Srivastava et al., 2023). BIG-Bench Hard is a
suite of 23 challenging tasks from the BIG-Bench benchmark, specifically selected because prior
language models had failed to outperform the average human-rater on them. These tasks often
require multi-step reasoning, making them suitable for evaluating advanced model capabilities.
From this benchmark, we select three distinct tasks:

– Object Counting: Given a list of items and their quantities, the task is to determine the total
number of items belonging to a specific category.

– Temporal Sequences: Given a series of events and activities a person has completed, the task
is to determine a time they might have been free for another activity.

– Tracking Shuffled Objects (Five Objects): Given the initial positions of several objects and a
series of pairwise swaps, the task is to determine the final position of each object.

For the Object Counting task, we adopt the data split of 50 training, 100 validation, and 100
test samples from TextGrad (Yuksekgonul et al., 2024). For Temporal Sequences and Tracking
Shuffled Objects (Five Objects), we follow an identical splitting methodology.

• GSM8K (Cobbe et al., 2021). To further assess mathematical reasoning, we use this widely-used
benchmark consisting of grade-school math word problems that require multi-step reasoning. For
this task, we adopt the dataset splits provided by DSPy (Khattab et al., 2023a), which include 200
training, 300 validation, and 1319 test samples.

A.2 COUNTERPART DETAILS

This section provides an overview of the baseline approaches employed in our study for comparison.

• Zero-shot Chain-of-Thought (CoT) (Kojima et al., 2023; Wei et al., 2023a). A foundational
baseline that elicits multi-step reasoning by prompting the model with instructions like “Think
step-by-step” before it provides a final answer.

• TextGrad (Yuksekgonul et al., 2024). A first-order optimization method that treats natural lan-
guage feedback from an evaluator LLM as a “textual gradient” to iteratively refine variables based
on immediate, local feedback.

• Revolve (Zhang et al., 2025). An optimization method that extends first-order techniques by
tracking how system responses evolve across iterations. By incorporating this historical context,
Revolve aims for more stable optimization and to escape the local optima that can trap methods
relying on single-step feedback.

A.3 IMPLEMENTATION DETAILS

Our experiments are conducted on a diverse set of five LLM backends: GPT-3.5-turbo-0125, Gem-
ini 1.5 Flash 8B, Gemini 1.5 Pro, Llama 3.1 8B Instruct, and Llama 3 8B Instruct. To ensure a
fair and controlled comparison, our setup relies on a universal backbone engine for three key roles:
generators, optimizers, and evaluators. For these backbone roles, we employ two powerful models:
GPT-4o and Claude 3.5 Sonnet.

For all iterative methods, we follow the experimental setup in Revolve (Zhang et al., 2025), using
a batch size of 3 across 12 optimization iterations, processing a total of 36 training examples. For
our sharpness-aware methods, we set the key search budgets to Kt = 3 (inner adversarial search),
Mt = 1 (proposal pool size), and K̃ = 3 (outer robust validation). For LLM generation, our
configuration largely mirrors that of Revolve (Zhang et al., 2025): we allow a maximum of 2000
new tokens and use a top-p value of 0.99. To ensure maximum reproducibility, we set the decoding
temperature to 0 for all models.
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B COMPLEXITY AND PRACTICAL NOTES

Beyond asymptotic cost, the design rationale is that the inner loop diagnoses textual sharpness while
the outer loop enforces progress on the robust objective; radius annealing preserves semantics, and
acceptance tests prevent regressions. The framework is modular: G (candidate generators), O (opti-
mizers), and evaluators E can be swapped without changing the principle. The choice of ρt can be
guided by paraphrase detection or embedding-similarity thresholds to maintain semantic fidelity.

Each iteration evaluates Kt adversarial and (Mt + 1)K̃ robust losses on a minibatch, totaling
O
(
(Kt + (Mt + 1)K̃) |Bt|

)
calls to M and E . ATARE adds an O(m) overhead for weight updates

and negligible cost for adaptive radius updates. In practice: (i) reuse evaluations across inner/outer
loops; (ii) maintain a replay buffer of high-loss neighbors to warm-start future inner maximizations;
and (iii) set ρt to preserve semantic intent while revealing sharp regions.

C SENSITIVITY

To address Q4, we perform a sensitivity analysis on the two key search budget hyperparameters of
our framework: the inner adversarial search budget Kt and the outer robust validation budget K̃. As
illustrated in Figure 5, we evaluate the performance of TARE and ATARE on the Llama 3.1 8B model,
using GPT-4o as the backbone engine, by systematically varying one budget within the range of [1,
8] while keeping the other fixed at a moderate value of 3. The results indicate that our framework
is not highly sensitive to the precise choice of these parameters. Performance generally improves as
the budgets increase from 1 to 3 and then stabilizes, exhibiting only minor fluctuations for values up
to 8. This demonstrates that our methods can achieve strong, robust performance without requiring
extensive hyperparameter tuning, as a relatively small budget (e.g., Kt = K̃ = 3) is sufficient to
capture the benefits of our sharpness-aware approach.

D SOLUTION OPTIMIZATION

While the core of our work focuses on prompt optimization, the principles of our framework can
be extended to other complex textual domains. A critical application is Solution Optimization,
which involves the iterative refinement of multi-step reasoning chains. Unlike prompts, solutions
are highly structured and logically interlocked, presenting unique challenges that require a tailored
approach.

D.1 APPLYING ATARE TO FRAGILE REASONING CHAINS

A key characteristic of a solution is its inherent fragility. A solution is not merely a collection of
sentences; it is a delicate, logically-interlocked chain of reasoning where each step builds upon the
previous one. A minor alteration to an early, correct step can invalidate the entire downstream logic.
This fragility renders isotropic perturbation methods like TARE ineffective, as uniform paraphrasing
would inevitably disrupt the “correct reasoning backbone,” creating a noisy and uninformative loss
landscape.

This very structure—a stable, correct reasoning backbone combined with a specific, identifiable
flaw—makes the problem of solution optimization an ideal application for the ATARE framework.
ATARE is fundamentally designed to handle textual components with varying degrees of sensitivity.
The logical chain of a solution presents a natural, clear-cut case of anisotropic sensitivity, making
ATARE not just a possible tool, but a perfectly suited one.

Our approach applies the core components of the ATARE lifecycle to this problem as follows:

1. Semantic Sensitivity Analysis and Anisotropic Neighborhood Definition. The first step in
the ATARE lifecycle is sensitivity analysis. We implement this by performing a comprehensive se-
mantic diagnosis of the entire incorrect solution to identify the single, core “cognitive trap.” This
diagnosis effectively partitions the solution into two distinct regions of sensitivity:
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• Low-Sensitivity Region: The identified core logical flaw itself. This part is considered the pri-
mary target for perturbation. The rationale is that a single type of logical error can manifest in
many different, deceptive forms. All solutions that commit the same conceptual error, regardless
of phrasing, are considered to be within the same anisotropic semantic neighborhood.

• High-Sensitivity Region: The entire chain of correct reasoning that precedes the flaw. This
logical backbone is treated as immutable to maintain the solution’s structural integrity.

2. Inner Adversarial Search. With the sensitivity regions defined, we conduct an inner adver-
sarial search within this highly constrained neighborhood. To formalize this, let st be the original
incorrect solution at a given iteration t. We represent st as a composition of two parts: its high-
sensitivity correct backbone, denoted st,correct, and its low-sensitivity flaw, denoted st,flaw. The set
of candidate solutions, CKt

(st), is then generated by keeping the backbone fixed while using a gen-
erator to perturb only the flaw component. This process creates a set of Kt candidates, defined
as:

CKt(st) :=
{
st,correct ⊕ G(i)(st,flaw)

}Kt

i=1
, (20)

where the correct backbone st,correct is held fixed, Gflaw is the generator responsible for creating
variations of the flaw, the superscript (i) indexes each of the Kt unique generation events, and the
symbol ⊕ denotes the composition of the text segments. This process explores the defined semantic
neighborhood to find the variations that perform the worst on the task.

3. Outer Robustness Update. From the generated set of flaw variations, we identify the “worst-
case” neighbor s∗t,adv . The textual feedback derived from critiquing this worst-case scenario is then
used to update the original solution st. By learning from the most challenging manifestation of its
own core error, the solution is guided to patch this specific cognitive vulnerability. This directly im-
plements the outer robustness update step of ATARE, optimizing for worst-case performance within
the semantic neighborhood to guide the solution toward a flatter, more robust basin in the semantic
landscape.

D.2 EXPERIMENTS

Tasks and Datasets. We evaluate our solution optimization approach on two challenging bench-
marks where model performance has not yet saturated.

• GPQA (Rein et al., 2023): The Google-proof Question Answering benchmark consists of expert-
level multiple-choice questions in physics, biology, and chemistry. Its difficulty is highlighted by
the performance gap between experts (81% accuracy) and skilled non-experts (22%).

• MMLU (Hendrycks et al., 2021): We use the challenging College Physics subset from the Mas-
sive Multitask Language Understanding benchmark, which is designed to measure human-level
performance.

We follow the experimental setup of Revolve (Zhang et al., 2025) for iterative methods: we perform
three iterations of optimization for each question and determine the final answer by majority voting.
Consistent with prior work (Yuksekgonul et al., 2024), the evaluation metric is string-based exact
match accuracy.

LLM Backends and Counterparts. We apply all methods on three distinct LLMs: GPT-4o,
Llama 3.1 8B Instruct, and Qwen 2.5 7B Instruct. We compare our ATARE-based method
against three primary baselines: Zero-shot Chain-of-Thought (CoT) (Kojima et al., 2023),
TextGrad (Yuksekgonul et al., 2024), and Revolve (Zhang et al., 2025).

Results and Analysis. The performance of our method against the baselines is presented in Ta-
ble 2. As shown, our ATARE-based approach consistently outperforms all baselines—CoT, TextGrad,
and Revolve—across both datasets and all evaluated LLM backends. This strong and universal im-
provement validates our central hypothesis: for fragile, logically-interlocked reasoning chains, an
anisotropic optimization strategy is superior. While first-order methods like TextGrad can some-
times struggle with the delicate structure of solutions, and even advanced methods like Revolve may
not always escape local optima, our approach demonstrates a more robust path to improvement.
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Table 2: Results of solution optimization. We report accuracy (%) and the relative improvement over
Textgrad. The best and second-best results are highlighted with bold and underline, respectively.

Dataset Model COT TEXTGRAD REVOLVE ATARE

GPQA

GPT-4o 48.5↓4.0 52.5 49.5↓3.0 53.0↑0.5

Llama 3.1 8B Instruct 27.8↓3.0 30.8 30.8↑0.0 33.8↑3.0

Qwen 2.5 7B Instruct 35.9↓1.5 37.4 37.4↑0.0 39.9↑2.5

MMLU
(College Physics)

GPT-4o 91.0↓2.5 93.5 94.1↑0.6 96.1↑2.6

Llama 3.1 8B Instruct 69.6↑0.0 69.6 70.6↑1.0 72.5↑2.9

Qwen 2.5 7B Instruct 78.4↑0.0 78.4 78.4↑0.0 79.4↑1.0

By precisely targeting only the low-sensitivity “flaw region” for perturbation while preserving the
high-sensitivity correct reasoning, our approach provides a stable and effective optimization signal,
consistently guiding the solution toward a more correct state.

E PROMPT DETAILS

This section provides the detailed architecture of the core prompts that power our optimization
framework. We present the prompts for the main components of our framework—the perturba-
tion generators for TARE and ATARE, and the LATO—as well as the prompts used for the Solution
Optimization task.

E.1 TARE PERTURBATION GENERATOR PROMPT

This prompt directs the TARE perturbation generator to conduct the isotropic neighborhood search
required by our framework. It instructs a powerful LLM to create a set of minimally-altered,
semantically-equivalent variations of a given text. The key to this process is the explicit goal of
finding weaknesses; the prompt directs the generator to explore potentially worse-performing vari-
ations. This serves as the inner adversarial search, designed to identify sharp cliffs in the semantic
landscape where the system’s performance is brittle.

TARE Perturbation Generator Prompt

You are an expert in semantics and creative writing. Your task is to generate {k} slightly
different versions of the following text.
These perturbed versions must adhere to these rules:
1. Maintain Core Intent: The core intent and theme of the original text must be preserved.
2. Small Degree of Perturbation: The changes should be minor. For example, you can replace

a few non-essential words, make small adjustments to sentence structure, or add/remove a
few descriptive words.

3. Preserve Factual Correctness: Do not introduce irrelevant information or factual errors.
4. Explore Vulnerabilities: The goal is to explore closely related, but potentially worse-

performing, variations of the text.

Input Text ‘‘system prompt text’’

Output Format The output should be a Python-style list of strings, with each string being
one perturbed version.

Now, provide the {k} perturbed versions for the original text.

E.2 ATARE PERTURBATION PROMPT

The ATARE prompt architecture implements our framework’s anisotropic search. It operates as a
two-step “analyze-then-generate” chain. The first prompt performs Semantic Sensitivity Estimation,
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directing an analyst LLM to decompose a prompt into three tiers of sensitivity (Constraint, Method,
Style). The second prompt then performs Anisotropic Perturbation, using this analysis to guide a
generator LLM in applying targeted, differentiated edits to each tier.

Step 1: Sensitivity Analysis Prompt

You are a specialized Prompt Architecture Analyst. Your task is to analyze a system prompt
and decompose it into a three-tier hierarchy of components based on their sensitivity.

Definition of Tiers
• Tier 1 (Constraint Layer - High Sensitivity): Non-negotiable rules that define success or

failure. Changing these will likely break the prompt’s core function or format. (e.g., format
rules, core task definition, absolute prohibitions).

• Tier 2 (Method Layer - Medium Sensitivity): Guidelines on “how” to perform the task.
Changing these affects the quality and reasoning path, but not task completion itself. (e.g.,
“think step by step”, process instructions).

• Tier 3 (Style Layer - Low Sensitivity): Persona, tone, and other stylistic elements. Chang-
ing these affects the prompt’s personality, not its logic. (e.g., ’You are a helpful assistant’,
politeness).

Input Prompt ‘‘system prompt text’’

Output Format Your output MUST be a single, valid JSON object with three keys:
‘‘constraint layer’’, ‘‘method layer’’, and ‘‘style layer’’. Each key
must have a list of strings as its value.

Now, provide the three-tier JSON analysis for the original prompt.

Step 2: ATARE Perturbation Generator Prompt

You are an expert in semantics and creative writing. The goal is to explore closely related, but
potentially worse-performing, variations of the text.

Inputs
1. Original Prompt: ‘‘system prompt text’’

2. Three-Tier Sensitivity Analysis: {analysis text}

YOUR TASK & RULES Your generated versions MUST adhere to these rules:
1. Maintain Core Intent (Global Constraint): All perturbed versions MUST maintain the

core intent of the original prompt. The goal is to create semantically close variations to find
weaknesses, not to write a new prompt.

2. Targeted & Differentiated Perturbation: Your changes should be targeted, and their de-
gree must be based on the component’s sensitivity from the analysis:

• For Tier 1 (Constraint Layer - High Sensitivity) components, apply only MINIMAL
and SUBTLE changes (e.g., synonym swaps like “only” to “just”, slight rephrasing).
These are fragile and require careful stress-testing.

• For Tier 2 (Method Layer - Medium Sensitivity) components, you can apply MOD-
ERATE changes (e.g., rephrasing the reasoning process, altering the sequence of steps).

• For Tier 3 (Style Layer - Low Sensitivity) components, you have the most freedom.
Apply CREATIVE and DIVERSE changes (e.g., completely changing the persona,
tone, or conversational style).

3. No Invalid Information: Do not introduce irrelevant information, contradictions, or factual
errors.

Now, provide the {k} targeted, perturbed versions for the original text, strictly following all the
rules above.
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E.3 LATO OPTIMIZER PROMPT

The LATO prompt is the engine for the Outer Robustness Update step. It is composed of three main
parts: a glossary that defines the structured tags, a system prompt that outlines the optimizer’s core
task, and an instantiated user message that provides the specific context for an optimization step.

GLOSSARY

To ensure the optimizer LLM correctly interprets the structured inputs, we first provide it with a
glossary defining all the tags used in the prompt.

LATO Prompt Glossary

• <ORIGINAL VARIABLE>: The original variable that you need to improve.
• <PERTURBED VARIABLE>: A slightly perturbed version of the original variable that re-

sulted in the feedback.
• <ORIGINAL VARIABLE LOSS>: The performance of the original variable on the current

batch.
• <PERTURBED VARIABLE LOSS>: The performance of the perturbed variable on the cur-

rent batch.
• <LM SYSTEM PROMPT>: The system prompt for the language model.
• <LM INPUT>: The input to the language model.
• <LM OUTPUT>: The output of the language model.
• <FEEDBACK>: The feedback to the variable.
• <CONVERSATION>: The conversation history.
• <FOCUS>: The focus of the optimization.
• <ROLE>: The role description of the variable.

LATO SYSTEM PROMPT

The LATO system prompt is designed to make the optimizer LLM explicitly landscape-aware. By
providing a rich, contextual view of the local semantic landscape and the nature of a performance
failure, it enables a more informed update than first-order methods, steering the variable towards a
flatter, more robust semantic basin.

LATO System Prompt

You are an expert optimizer and a creative critic within an advanced AI system. You will be
asked to creatively and critically improve text-based variables (prompts, solutions, code, etc.)
to make them more effective and robust.

THE PROCESS To do this, you will be given an <ORIGINAL VARIABLE>. This variable
was perturbed into a <PERTURBED VARIABLE>, and the system’s performance using this
perturbed version resulted in critical <FEEDBACK>.

YOUR TASK & OBJECTIVES Based on all available information, your goal is to generate
a new, improved version of the ORIGINAL VARIABLE. The new version must achieve the
following objectives:

1. Address the Failure: It must resolve the specific issues pointed out in the provided
<FEEDBACK>.

2. Preserve Performance: It must maintain or improve upon the original variable’s good
performance.

3. Enhance Robustness: It must be more resilient to similar small perturbations in the
future.

GUIDING PRINCIPLES
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• Preserve Core Meaning: Whatever the edit, you must strictly preserve the core task intent
and local coherence of the original text.

• Analyze Noisy Feedback: The provided <FEEDBACK> may be noisy. Critically evaluate it
to identify what is important and correct.

• Consider Full Context: Always pay attention to the variable’s <ROLE> and the full context
in which it is used to ensure your improvements are relevant.

IMPORTANT - OUTPUT FORMAT You MUST give your response by send-
ing the improved variable between {new variable start tag}{improved
variable}{new variable end tag} tags. The text you send between the tags
will directly replace the variable. GLOSSARYTEXT

EXAMPLE OF AN INSTANTIATED LATO PROMPT

The following box shows an example of a complete prompt constructed and sent to the optimizer
LLM, combining the system prompt with the specific variables for a single optimization step.

Example of an Instantiated LATO Prompt

Here is the role of the variable you will improve: <ROLE>structured system
prompt to a language model</ROLE>.
The optimizer is provided with two key variables that define the local semantic landscape, along
with their performance (loss) on the current batch:
• The ORIGINAL variable that we are optimizing is:

<ORIGINAL_VARIABLE>
You will answer a reasoning question. Think step by step. The
last line of your response should be of the following format:
‘‘Answer: $VALUE’’ where VALUE is a numerical value.
</ORIGINAL_VARIABLE>
<ORIGINAL_VARIABLE_LOSS> 1, 1, 1 </ORIGINAL_VARIABLE_LOSS>

• When this variable was slightly perturbed into the following version:

<PERTURBED_VARIABLE>
You are to solve a reasoning question. The final line of your
response should be in the format: ‘‘Answer: $VALUE’’ where
VALUE is a numerical value.
</PERTURBED_VARIABLE>
<PERTURBED_VARIABLE_LOSS> 1, 1, 1 </PERTURBED_VARIABLE_LOSS>

The system received the following feedback based on the PERTURBED version’s perfor-
mance:
<CONTEXT>
Here is a conversation:
<CONVERSATION>
...
<LM_INPUT>
I have three oranges, a pig, a frog, a cow, three bananas,
a nectarine, and a snail. How many animals do I have?
</LM_INPUT>
<LM_OUTPUT>
To find the total number of animals, we need to identify the
animals...So, the total number of animals is 4.
Answer: 4
</LM_OUTPUT>
</CONVERSATION>
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Here is the feedback we got in the conversation:
<FEEDBACK>
To improve the adaptively perturbed prompt variable in order
to enhance the objective function, consider the following
strategies:
...
</FEEDBACK>
</CONTEXT>

Based on the feedback from the perturbed version, improve the ORIGINAL variable to
make it more robust.

E.4 SOLUTION OPTIMIZATION PROMPT DETAILS

This section details the prompt architecture for our ATARE-based solution optimization pipeline. The
process is divided into two main stages, each with a corresponding prompt.

The first stage is Flaw Diagnosis, which operationalizes the Semantic Sensitivity Analysis step. The
prompt below instructs an expert LLM to identify the core “cognitive trap” in an incorrect solution,
thereby defining the low- and high-sensitivity regions.

Flaw Diagnosis Prompt

You are a world-class expert in logic and science. The following solution is INCORRECT. Your
task is to deeply analyze its reasoning and clearly describe the core “cognitive trap” or “flawed
reasoning path” that led to the wrong conclusion.

Incorrect Solution to Diagnose (st) {solution var.value}
Please provide your detailed analysis of its flawed reasoning path.

The second stage is the Anisotropic Adversarial Search, executed by the ATARE Perturbation Gen-
erator. This prompt takes the flaw analysis from Stage 1 as input and directs the LLM to generate
diverse variations of only the identified flaw, while strictly preserving the correct reasoning back-
bone.

ATARE Perturbation Generator Prompt

You are a creative AI that can mimic different thinking styles. You will receive an incorrect
solution and an analysis of its core flaw. Your task is to generate {k} new, distinct, but equally
flawed solutions.

Guiding Principle Treat the solution as a reasoning chain. The correct reasoning before the
identified flaw is the high-sensitivity backbone that MUST be preserved. Your task is to vary
the expression of the flaw itself (the low-sensitivity target).

Rules All new solutions MUST:
1. Commit the same type of core error as described in the “Flaw Analysis”.
2. Use different phrasing, examples, or intermediate steps to express this error. The goal is to

explore different deceptive manifestations of this single cognitive trap.
3. Ensure that the final conclusion and the chosen answer letter LOGICALLY FOLLOW

from your flawed reasoning.
4. Choose your final answer from the available options in the “Problem Context”. Do not

invent new options.

Inputs
• Problem Context: {question}
• Original Incorrect Solution (st): {solution var.value}
• Flaw Analysis Report: {flaw analysis}
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Output Format The output MUST be a valid Python list of strings.

F NOTATIONS

We present a comprehensive review of the commonly used notations and their definitions in Tab. 3.

Notation Definition
M The black-box Large Language Model (LLM).
P The discrete semantic space of textual prompts.
D The dataset.
p A textual prompt.
ℓ(·, ·) The loss function (or evaluator E) mapping outputs to numeric scores.
LD(p) The empirical prompt risk on dataset D.

dtext(p, p
′) The semantic dissimilarity between prompts p and p′.

ρtext (or ρt) The radius of the semantic neighborhood.
B(p, ρtext) The isotropic semantic neighborhood of prompt p.
LS(p, ρtext) The textual sharpness-aware loss.

Wp The diagonal weight matrix for anisotropic sensitivity.
dani,Wp

(p, p′) The anisotropic semantic distance metric.
Bp(p, ρtext) The anisotropic ellipsoidal neighborhood.
st,j The sensitivity score of the j-th prompt component.
β The exponent parameter controlling sampling probability in ATARE.

G The generator oracle used for sampling paraphrases.
O The optimizer oracle used for proposing updates.
t The current iteration index.
Bt The minibatch of data at iteration t.
Kt The budget (number of samples) for the inner adversarial search.
CKt(pt) The set of candidate prompts sampled in the inner loop.
p⋆t,adv The adversarial (worst-case) prompt neighbor.
L̂ The estimated empirical loss on a specific batch.
Mt The budget (pool size) for the optimizer proposals.
δt The semantic budget constraint for the optimizer.
UMt(pt) The improvement pool generated by the optimizer.
K̃ The sampling budget for the outer robust validation.
η The tolerance threshold for accepting an update.
ΠLATO The meta-prompt template for the Landscape-Aware Textual Optimizer.

Table 3: Notation and Definitions
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