
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BAYESIAN INFLUENCE FUNCTIONS FOR HESSIAN-FREE
DATA ATTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Classical influence functions face significant challenges when applied to deep
neural networks, primarily due to non-invertible Hessians and high-dimensional
parameter spaces. We propose the local Bayesian influence function (BIF), an
extension of classical influence functions that replaces Hessian inversion with
loss landscape statistics that can be estimated via stochastic-gradient MCMC
sampling. This Hessian-free approach captures higher-order interactions among
parameters and scales efficiently to neural networks with billions of parameters.
We demonstrate state-of-the-art results on predicting retraining experiments.

1 INTRODUCTION

Training data attribution (TDA) studies how training data shapes the behaviors of deep neural
networks (DNNs)—a foundational question in AI interpretability and safetyA standard approach to
TDA is influence functions (IF), which measure how models respond to infinitesimal perturbations in
the training distribution (Cook, 1977; Cook & Weisberg, 1982). While elegant, influence functions
rely on calculating the inverse Hessian and, therefore, break down for modern DNNs. Theoretically,
DNNs have degenerate loss landscapes with non-invertible Hessians, which violate the conditions
needed to define influence functions. Practically, for large models, the Hessian is intractable to
compute directly. To mitigate these problems requires architecture-specific approximations that
introduce structural biases (Martens & Grosse, 2015; Ghorbani et al., 2019; Agarwal et al., 2017;
George et al., 2018).

We propose a principled, Hessian-free alternative grounded in Bayesian robustness. The key change
is to replace Hessian inversion with covariance estimation over the local posterior (Giordano et al.,
2017; Giordano & Broderick, 2024; Iba, 2025). This distributional approach naturally handles the
degenerate loss landscapes of DNNs and bypasses the need to compute the Hessian directly. For
non-singular models where the classical approach is valid, the BIF asymptotically reduces to the

Figure 1: From influence functions (IF) to Bayesian influence functions (BIF): We introduce the
local Bayesian Influence Function (BIF), which replaces the Hessian inversion of classical Influence
Functions (IF) with a covariance estimation over the local loss landscape. This approach is sensitive
to higher-order geometry and scales to models with billions of parameters.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

classical IF (Appendix A), which establishes the BIF as a natural generalization of the classical IF for
modern deep learning.

Contributions. We make the following contributions:

• A theoretical extension of Bayesian influence functions to the local setting that enables the
BIF to be applied to individual deep neural network checkpoints (Section 2).

• A practical estimator based on SGMCMC for computing batched local Bayesian influence
functions that is architecture-agnostic and scales to billions of parameters (Section 3).

• Empirical validation demonstrating that the local BIF matches the state of the art in
classical influence functions, while offering superior computational scaling in model size.
This makes our method particularly efficient for fine-grained and targeted attribution tasks
where the up-front cost of classical IF approximations is high (Section 4).

2 THEORY

We first review classical influence functions (Section 2.1), then review Bayesian influence functions
(Section 2.2), and finally propose our local extension (Section 2.3).

2.1 CLASSICAL INFLUENCE FUNCTIONS

Classical influence functions quantify how a model would differ under an infinitesimal perturbation
to its training data.

Setup. We consider a training datasetDtrain = {zi}ni=1 and a model parameterized by w ∈ W ⊂ Rd.
We define the empirical risk Ltrain(w) =

∑n
i=1 ℓi(w), where ℓi(w) = ℓ(zi;w) is the loss for sample

zi. We assume Ltrain is continuously second-differentiable and that our training procedure finds
parameters w∗ ∈ W at a local minimum, i.e.,∇wLtrain(w

∗) = 0.

Influence on observables. We want to predict how the value of an observable ϕ(w) : W → R
would change under a perturbation to the training data. In particular, we’re interested in predicting the
response of a query sample’s loss ϕ(w) = ℓ(zj ;w)) To model perturbation, we introduce importance
weights β = (β1, . . . , βn) and define the tempered risk Ltrain,β(w) =

∑n
i=1 βiℓi(w). Assuming

the loss Hessian is invertible, the implicit function theorem guarantees a neighborhood Uw∗ ∋ w∗

such that, for all β sufficiently close to 1, there is a unique minimizer of the tempered risk in this
neighborhood w∗(β) = argminw∈Uw∗ Ltrain,β(w). Note that w∗(1) = w∗ and that the function
w∗(−) depends on the starting w∗; in this sense, the classical influence is naturally local to a choice
of parameters w∗.

The classical influence of training sample zi on the observable ϕ evaluated at the optimum is defined
as the sensitivity of ϕ(w∗(β)) to the weight βi:

IF(zi, ϕ) :=
∂ϕ(w∗(β))

∂βi

∣∣∣∣
β=1

(1)

Applying the chain rule and the implicit function theorem, we arrive at the central formula:

IF(zi, ϕ) = −∇wϕ(w∗)⊤H(w∗)−1∇wℓi(w
∗), (2)

where H(w∗) is the Hessian of Ltrain evaluated at w∗.

2.2 BAYESIAN INFLUENCE FUNCTIONS

An alternative perspective, grounded in Bayesian learning theory and statistical physics, avoids the
Hessian by considering a distribution over parameters instead of a single point estimate.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The per-token BIF captures semantic relationships in Pythia-2.8B. The posterior
correlation (negative of the normalized BIF) between tokens is maximized for relationships like
translations, alternate spellings, and synonyms.

Influence on observable expectations. We obtain the Bayesian influence BIF(zi, ϕ) of sample zi
on an observable ϕ by replacing the point estimate ϕ(w∗) in Equation (1) with an expectation value
Etrain,β[ϕ(w)]:

BIF(zi, ϕ) :=
∂Etrain,β[ϕ(w)]

∂βi

∣∣∣∣
β=1

. (3)

Here, Etrain,β[ϕ(w)] =
∫
ϕ(w)pβ(w | Dtrain) dw is an expectation over a tempered Gibbs measure

pβ(w | Dtrain) ∝ exp(−Ltrain,β(w))φ(w) with prior φ(w). This is a tempered Bayesian posterior if
the loss is a negative log-likelihood ℓi(w) = − log p(zi | w), which we assume is the case for the
rest of the paper.

A standard result from statistical physics (see Baker et al. 2025) relates the derivative of the expectation
to a covariance over the untempered (β = 1) posterior under mild regularity conditions:

BIF(zi, ϕ) = −Cov(ℓi(w), ϕ(w)). (4)

Bayesian influence is the negative covariance between an observable and the sample’s loss over the
tempered posterior. In Appendix A.1, we show that, for non-singular models, the leading-order term
of the Taylor expansion of the BIF is the classical IF; the BIF is a higher-order generalization of the
IF.

2.3 LOCAL BAYESIAN INFLUENCE FUNCTIONS

Computing expectations over the global Bayesian posterior p(w | Dtrain) is generally intractable for
DNNs. Furthermore, standard DNN training yields individual checkpoints w∗, and we are often
most interested in the influence local to this final trained model. Therefore, we adapt the BIF with a
localization mechanism.

Following Lau et al. (2025), we define a localized Bayesian posterior by replacing the prior φ(w)
with an isotropic Gaussian with precision γ centered at the parameters w∗:

pγ(w | Dtrain,w
∗) ∝ exp

(
−

n∑
i=1

ℓi(w)− γ

2
∥w −w∗∥22

)
. (5)

The local Bayesian influence function (local BIF) is defined as in Equation (4) but via a covariance
over the localized Gibbs measure, indicated by the index γ:

BIFγ(zi, ϕ) = −Covγ(ℓi(w), ϕ(w)). (6)

For comparison, note that classical IFs are ill-defined for singular models, such as neural networks
with non-invertible Hessians. A common practical remedy is to use a dampened Hessian (H(w∗) +
γI). This is equivalent to adding an ℓ2 regularizer centered at w∗ to the loss, which is the same trick
we use in defining BIFγ . In Appendix A.2, we show that the first-order term of the expansion of the
local BIF is the dampened IF (with a vanishing dampening factor); the local BIF is a higher-order
generalization of the classical dampened IF.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

Computing the local BIF requires estimating the covariance Covγ(ϕ(w), ℓi(w)) under pγ(w |
Dtrain,w

∗). Following Lau et al. (2025), in Section 3.1, we use stochastic gradient Langevin dynamics
(SGLD; Welling & Teh 2011). In Section 3.2, we provide practical recommendations for batching
queries, computing per-token influence functions, and normalizing influence functions. In Section 3.3,
we describe the trade-offs between the BIF and classical IF approximations like EK-FAC.

3.1 SGLD-BASED COVARIANCE ESTIMATION

SGLD approximates Langevin dynamics with a stationary distribution pγ(w | Dtrain,w
∗) by updating

with mini-batch gradients of the empirical risk Ltrain(w) and the gradient of the localizing potential
γ(w −w∗). The update rule is:

wt+1 = wt −
ϵ

2

(
nβ

m

∑
k∈Bt

∇wℓk(wt) + γ(wt −w∗)

)
+N (0, ϵ),

where Bt is a stochastic mini-batch of m samples, ϵ is the step size, and β is an inverse temperature
(which puts us in the tempered Bayes paradigm).

To improve coverage of the distribution pγ , we typically sample several independent SGLD chains.
We collect T draws {wc,t}Tt=1 after an optional burn-in in each SGLD chain 1 ≤ c ≤ C, for a total
of Ndraws = CT draws. The required covariances Covγ(ℓi, ϕ) are then estimated using the standard
sample covariance calculated from the aggregated sequences {(ℓi(wc,t), ϕ(wc,t))}1≤c≤C,1≤t≤T .
See Appendix B.1 for further details and modifications from vanilla SGLD.

3.2 PRACTICAL TRAINING DATA ATTRIBUTION

BIF between data points. We focus on the Bayesian influence between a training example zi ∈
Dtrain and the loss of a query example zj ∈ Dquery; that is, we set the observable to ϕ = ℓ(zj ;−) and
compute BIF(zi, zj) = −Covγ(ℓi(w), ℓj(w)). Given the training set Dtrain and a query set Dquery,
we compute all pairwise Bayesian influences {BIF(zi, zj) | zi ∈ Dtrain, zj ∈ Dquery} over the same
draws from independent SGLD chains. At each step of each chain, we perform forward passes over
both Dtrain and Dquery to obtain losses over both sets (ℓi(w))zi∈Dtrain∪Dquery . These forward passes are
computed separately from the loss backward pass

∑
k∈Bt

∇wℓk(wt) used in the SGLD update rule.

Batched evaluation. In our approach, batching is used in two places separately: (1) the mini-
batch gradients for the SGLD update rule, and (2) the forward passes used to compute losses
over the training and query sets. This allows for scalable computation of the full BIF matrix
B = (BIF(zi, zj))zi∈Dtrain,zj∈Dquery .

Per-token Bayesian influences. In the autoregressive language modeling setting, each example zi
is a sequence of tokens zi = (zi,1, . . . , zi,S) of length S. The loss at example zi then decomposes as

ℓi(w) = −
S∑

s=2

log p(zi,s | zi,1, . . . zi,s−1) =:

S∑
s=2

ℓi,s(w).

The BIF can be easily extended to this setting: for example, the Bayesian influence of the sth token of
sequence i on the loss at the s′th token of sequence j is BIF(zi,s, zj,s′) = −Covγ(ℓi,s(w), ℓj,s′(w)).
In our language model experiments, we compute all such pairwise per-token influences, resulting in
a S|Dtrain| × S|Dquery| BIF matrix. As we describe in Appendix B.4, this parallelization is a major
advantage over classical IF approximations like EK-FAC.

Normalized influence as correlations. Raw covariance scores can be dominated by high-variance
data points. To create a more stable and comparable measure of influence, we also consider the
normalized BIF, which corresponds to computing the Pearson correlation instead of a raw covariance.
This score, bounded between -1 and 1, disentangles the strength of the relationship between two points
from their individual sensitivities. For clarity, we use this posterior correlation for all qualitative
analyses and visualizations in Section 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: BIF and EK-FAC show convergent validity on Inception-v1. For a given query image
(left), our local BIF (center) and EK-FAC (right) identify similar or identical training images as most
influential. See Appendix D.1 for more examples.

3.3 COMPARISON TO CLASSICAL IF APPROXIMATIONS

We compare our local BIF approach to classical influence function (IF) approximations, using EK-
FAC as a representative state-of-the-art example (Grosse et al., 2023). To the best of our knowledge,
this is the highest-quality tractable approximation to the classical IF at the ≥1B-parameter scale. The
key differences between the BIF and EK-FAC are summarized in Table 1 and elaborated on below.
We provide comparisons to additional IF techniques in Appendix A.3.

Time complexity. Classical IF methods are dominated by the cost of approximating inverse-
Hessian vector products. Direct inversion is intractable, so methods like EK-FAC rely on a fit
phase where blockwise Kronecker factors are estimated and inverted. The main bottleneck is the
eigendecomposition or inversion of per-layer covariance matrices, which scales cubically with the
layer width (O(d3ℓ) per block). Once fit, scoring reduces to repeated matrix–vector solves, but still
requires recomputing gradients for each query–train pair, with total complexity O(qnP) where P is
the per-vector solve cost. Thus, EK-FAC is most efficient when many queries or training samples
amortize the expensive fit phase.

The local BIF, by contrast, has no structural fit cost. The main bottleneck is running forward passes
over the entire train and query datasets at each SGLD draw, with overall complexity scaling as
O(Ndraws(n+ q)dtotal).

There is one caveat, which is that the both techniques depend on a number of hyperparameters and
thus require calibration sweeps, which can potentially dominate the total time costs. However, we
found that EK-FAC works well with the provided defaults, and, in Appendix C.3, we show that results
for the BIF (as measured by LDS) are stable across a wide range of hyperparameter ablations.

In short:

• Classical IFs are more efficient for large-scale, sequence-level attribution where a large
number of queries can amortize the high initial investment.

• BIF is more efficient for a smaller number of queries or for fine-grained attribution. For
per-token influence, our batched approach calculates the entire token-token influence matrix

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: BIF vs. EK-FAC. Comparison of time/space complexity and estimation quality for the local
BIF and EK-FAC. Here dtotal is the number of parameters, n the training set size, q the query set size,
Ndraws the total SGLD draws, and Nfit the samples used to fit EK-FAC factors. The EK-FAC scoring
cost assumes training gradients are recomputed. See Appendix A.3 to compare the BIF against other
IF techniques.

Axis Local BIF EK-FAC

Time Complexity Score: O(Ndraws(n+ q)dtotal) Fit: O(Nfitdtotal +
∑

l(d
3
in,l + d3out,l))

(No fit phase) Score: O(nqdtotal)

Memory (extra) O(Ndraws(n+ q)) for loss traces O(
∑

l(d
2
in,l + d2out,l)) for factors

Sources of Error Finite sampling (Ndraws) Finite sampling (Nfit)
SGLD bias/hyperparameters (Ncal.) Structural bias (Kronecker, Fisher)

Architecture Any differentiable model Linear and Conv2D layers

at once, while classical methods would require a separate, sequential scoring pass for every
single token, making them impractical.

Memory complexity. Hessian-based methods often require storing structural components of the
model, such as the Kronecker factors and eigenbases in EK-FAC, with memory usage scaling with
layer dimensions (O(

∑
l(d

2
in,l + d2out,l))). For models with large hidden dimensions, this can be

substantial. The local BIF’s memory usage is dominated by storing the loss traces (O(Ndraws(n+q))).
Alternatively, it is also possible to use an online covariance estimator for BIF with memory usage
O((n+ q)2), which is more efficient when Ndraws is larger than the total number of data points.

Sources of error. Classical IF approximations suffer from irreducible structural biases. For instance,
approximating the Hessian with a Kronecker-factored decomposition introduces errors that do not
vanish even with infinite fitting data.

In principle, the BIF provides an unbiased estimator of influence under its target distribution that
improves with the number of total draws Ndraws. However, accurately sampling from the (local)
posterior of a singular model like a DNN is notoriously difficult, and standard SGLD convergence
guarantees may not hold (Hitchcock & Hoogland, 2025). This can introduce a systematic sampling
bias. Another possible source of error is that we currently lack a rigorous understanding of how to
choose hyperparameters like the inverse temperature (β) and localization strength (γ), which are part
of the definition of the local posterior being analyzed (see Appendix B.1).

Architectural flexibility. Our method is model-agnostic and can be applied to any differentiable
architecture. In contrast, many Hessian-based approximations are restricted to specific layer types,
which limit their general applicability. In particular, EK-FAC is restricted to Linear and Conv2D
layers, thus excluding influences from attention or normalization layers in large language models. If
desired (for example, to achieve a closer comparison to EK-FAC), it is possible to restrict the BIF to
a subset of weights, see Appendix B.1.

4 RESULTS

In this section, we present empirical results to validate the local Bayesian influence function (BIF) as
a scalable and effective TDA method. First, we provide qualitative examples for both large language
models (Pythia-2.8B) and vision models (Inception-V1) to build intuition. Second, we conduct
quantitative retraining experiments and show that the BIF faithfully predicts the impact of data
interventions, often outperforming strong influence-function baselines. Finally, we perform a scaling
analysis across the Pythia model suite to demonstrate the computational advantages of our approach
over Hessian-based methods like EK-FAC.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4
LD

S
Sc

or
e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

Figure 4: Bayesian influence functions (BIF) vs. classical influence function approximations
(EK-FAC, TRAK, GradSim) on predicting retraining experiments (on CIFAR-10 data) measured by
the linear datamodeling score (LDS). We vary the size of the query dataset and full dataset according
to αattribution, then retrain on random subsets of αretrain samples. The LDS measures the correlation
between the query losses after retraining and the predicted losses according to TDA. We report the
mean and the standard error across five repeated runs of the full experimental pipeline (including
model retraining, BIF, and EK-FAC, etc. computation) with fixed hyperparameters but distinct initial
seeds. The BIF consistently matches EK-FAC, which is SOTA. The BIF slightly underperforms
EK-FAC for larger datasets (but within the margin of error) and slightly outperforms EK-FAC for
smaller datasets. Both EK-FAC and BIF consistently outperform GradSim and TRAK.

4.1 VISUALIZING THE BIF

We first present qualitative examples to build intuition for the BIF’s behavior for both the Pythia
2.8B (Biderman et al., 2023) language model on (Figure 2) and the Inception-V1 (Szegedy et al.,
2015) image classification model (Figure 3). As described in Section 3.2, we use the normalized BIF
for both (i.e., correlation functions). See Appendices B and D for more details.

Image classification. Figure 3 compares the highest-influence samples identified by BIF and EK-
FAC for Inception-v1 on ImageNet samples (Deng et al., 2009). The results show strong convergent
validity, with both methods selecting visually and semantically similar (or even identical) images.
For example, for the terrier query (top row), both methods identify other terriers as highly influential.

Per-token language attribution. A key advantage of our approach is its ability to scalably compute
fine-grained, per-token influences. As shown in Figure 2 on Pythia-2.8B for samples drawn from
the Pile (Gao et al., 2021), the per-token BIF detects semantic similarities between tokens. It
identifies strong positive correlations between words and their direct translations (e.g., ‘She’ ↔
‘elle’), numbers and spellings (e.g., ‘3’↔ ‘three’), and conceptually related words (e.g., ‘objectives’
↔ ‘Maxim[izing]’, ‘goals’, ‘motives’).

4.2 RETRAINING EXPERIMENTS

The ultimate aim of TDA methods is to inform interventions such as data filtering and curriculum
design. Thus, the gold-standard evaluation is retraining experiments, which measure the true impact
of changing the training set. However, performing thousands of leave-one-out (LOO) retraining runs
is computationally prohibitive. The Linear Datamodelling Score (LDS) provides a practical and
scalable alternative (Park et al., 2023b). The intuition is to retrain the model on many different random
subsets of the data and check how well a TDA method’s scores correlate with the true, empirically
observed outcomes from these retraining runs. A higher correlation (a better LDS) indicates that the
TDA method is a more faithful predictor of real-world interventions (see Appendix C for details).

Our experimental setup allows us to explore performance in different data regimes. From the full
training dataset (CIFAR-10; Krizhevsky 2009) of size n, we first identify an “attribution set” of size

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

nattribution = αattribution · n containing the training points whose influences we will compute along with
a fixed set of q queries. The LDS is then calculated by retraining models (ResNet-9; Jordan 2024) on
numerous smaller subsets, each of size nretrain = αretrain · nattribution, drawn from this attribution set.
We use the full dataset of size n both to fit EK-FAC’s Hessian components and to draw the BIF’s
SGLD minibatch gradients.

Our findings reveal a compelling trade-off between methods. The performance of all TDA methods
improves as the attribution set size (nattribution) decreases. In the scenario where the retrain subset size
(nretrain) is small, removing a few points creates a larger relative change in the dataset. We find that in
this small-model, high-variance regime, the local BIF consistently outperforms EK-FAC, achieving a
higher LDS.

In these experiments, EK-FAC is around five times faster than the BIF. This advantage is largely
due to the small model sizes (∼ 2 × 106 parameters). As we expect (see Section 3.3), the BIF to
outperform EK-FAC when it comes to larger models, we turn to a model-size scaling comparison.

4.3 SCALING ANALYSIS

In this section, we benchmark the BIF’s scaling on models from the Pythia suite (Biderman et al.,
2023). We measure the influence of a 400-sequence subset of the Pile training dataset (Gao et al.,
2021) on 18 prompt-completion query pairs. As in Grosse et al. (2023), each query sequence is
split into a prompt and completion zj = (zj,prompt, zj,comp); each observable is then a per-token loss
ϕzj ,s(w) = −p(zcomp,s | zprompt;w). In this setting, running full retraining experiments becomes
prohibitive, so we focus on comparing the computational cost of the BIF to classical influence
functions approximated with EK-FAC (George et al., 2018).

See Fig. 5 for benchmark results. For the choice of SGLD hyperparameters we use (2k total draws,
or 2.5x fewer than in Figure 2), we observe that BIF scales better than EK-FAC in evaluation time.
Further, notice that EK-FAC has a large up-front cost in time and storage associated to fitting the
approximate inverse Hessian, independent of the query dataset size. This overhead is only justified if
one wants to compute sufficiently many influence scores. See Appendix B.3 for further experiment
details and Appendix D.2 for a direct comparison of the results.

0 1 2 3
Model Size d (B)

0

100

200

300

Ti
m

e
(m

in
)

0 1 2 3
Model Size d (B)

0

100

200

Pe
ak

 G
PU

M
em

or
y

(G
iB

)

BIF EK-FAC

Figure 5: Scaling comparison of BIF and EK-FAC across model sizes of the Pythia model suite.
(Left) Evaluation time, excluding the tokenization time. (Right) The node’s (4xA100) peak GPU
RAM usage. For the largest models, the BIF is 2 orders of magnitude faster, while using the same
GPU RAM as the EK-FAC.

5 RELATED WORK

Influence functions and training data attribution. Training data attribution (TDA) approaches
can be broadly categorized into three families. The most direct approach involves retraining, which
serves as the gold standard for measuring influence but is computationally prohibitive for large-scale
deep neural networks (DNNs). A second family of methods relies on similarities in the model’s
representation space, using intermediate activations to connect training and query points (Park et al.,
2023b).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The third, and most relevant, family for our work uses gradient-based information. A prominent
example is the classical influence function, a well-studied technique from robust statistics (Hampel,
1974; Cook, 1977; Cook & Weisberg, 1982). Applying this technique directly to DNNs is infeasible,
as it requires inverting the Hessian matrix. Consequently, much prior work has focused on developing
tractable approximations to the inverse-Hessian-vector product (Koh & Liang, 2020; Grosse et al.,
2023; Park et al., 2023b). Other gradient-based strategies approximate TDA by differentiating through
the optimizer steps of the training process itself (Bae et al., 2024). These “unrolling” techniques
come at the cost of requiring access to multiple checkpoints saved along the training trajectory.

Distributional training data attribution. Recent work has recognized that training data attribution
should account for the stochastic nature of training. Mlodozeniec et al. (2025) formalize this with
distributional training data attribution (d-TDA), which frames the goal of influence as predicting
how the distribution over trained models changes when data is removed. Their framework is
deliberately general, accommodating arbitrary distribution families and distance metrics (Wasserstein,
KL divergence, mean shift, etc.).

Our local BIF can be viewed as a particular instantiation of “mean-shift” d-TDA with a tempered
Gibbs posterior. These specific choices enable us to apply the covariance identity (Eq. 4) that unlocks
our novel SGMCMC-based methodology. This covariance-based definition has appeared previously
as the “Bayesian Infinitesimal Jackknife” (Giordano & Broderick, 2024; Iba, 2025) in the context of
Bayesian model analysis. However, to our knowledge, we are the first to formulate a local BIF and
scale these distributional methods to large-scale language models trained using standard stochastic
optimization.

Singular learning theory and developmental interpretability. Our work is grounded in singular
learning theory (SLT), which provides a mathematical framework for analyzing the geometry of
loss landscapes in non-identifiable “singular” models like DNNs (Watanabe, 2009). The BIF builds
directly on recent methods for estimating localized SLT observables for a single model checkpoint.
Specifically, Lau et al. (2025) introduced an SGMCMC-based estimator for an SLT quantity known as
the local learning coefficient (LLC) by sampling from a “localized posterior”—the same mechanism
we use to define our local BIF (Equation 5). Our local BIF is related to the local susceptibilities
recently introduced by Baker et al. (2025). Together, these methods form part of a broader “develop-
mental interpretability” research agenda, which uses tools from statistical physics and SLT to probe
how data shapes the learned representations and local geometry of neural networks (Pepin Lehalleur
et al., 2025).

6 DISCUSSION & CONCLUSION

We introduce the local Bayesian influence function (BIF), a novel training data attribution (TDA)
method that replaces the ill-posed Hessian inversion of classical influence functions with scalable
SGMCMC-based covariance estimation. Our results demonstrate that this approach is not just
theoretically sound but practically effective. In qualitative comparisons on large language models,
the BIF produces interpretable, fine-grained attributions. Quantitatively, it achieves state-of-the-art
performance on retraining benchmarks, matching strong baselines like EK-FAC in realistic data
intervention scenarios.

Advantages. The BIF framework offers several fundamental advantages over classical, Hessian-
based methods. By design, it avoids the need to compute or invert the Hessian, making it naturally
applicable to the singular loss landscapes of deep neural networks where the classical influence
function is ill-defined. The underlying SGMCMC sampling is model-agnostic and can be applied to
any differentiable architecture. Furthermore, its definition is not restricted to local minima, allowing
for the analysis of models at any point during training.

Limitations and practical trade-offs. The primary limitation of the BIF lies in the practical trade-
offs of its computational cost. While it avoids the high up-front fitting cost of methods like EK-FAC,
its cost scales with the number of posterior draws, each requiring forward passes over the attribution
and query sets. However, this may not be a fundamental barrier; advanced covariance estimators

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

could potentially reduce the number of required forward passes significantly without compromising
estimation quality. Additionally, the method’s performance is sensitive to the hyperparameters of the
SGLD sampler (ϵ, γ, β) and the total number of posterior draws, and this dependence is still not fully
understood.

Future directions. Our work opens several promising avenues for future research. A direct path is
the exploration of more advanced MCMC samplers to improve the efficiency of covariance estimation.
Furthermore, the role of the BIF’s hyperparameters can be explored further; the localization strength
γ and inverse temperature β can be viewed not just as parameters to be tuned, but as analytical tools
to probe influence at different scales and resolutions of the loss landscape. Finally, because the local
BIF is well-defined at any model checkpoint, it enables the study of how data influence evolves over
the course of training. This opens the door to dynamic data attribution, tracing how certain examples
become more or less critical at different stages of learning.

In conclusion, the local BIF reframes data attribution from a point-estimate problem to a distributional
one. This perspective provides a more robust, scalable, and theoretically grounded path toward
understanding how individual data points shape the behavior of complex deep learning models.

REPRODUCIBILITY STATEMENT

To ensure our work is reproducible, we provide detailed descriptions of our methodology throughout
the paper and its appendices. The core SGLD-based estimation procedure for the local BIF is formally
presented in Algorithm 1. All experiments were conducted on public datasets (CIFAR-10, ImageNet,
The Pile) and standard model architectures (ResNet-9, Inception-V1, Pythia), as described in our
results (Section 4). A complete summary of the SGLD hyperparameters used for each experiment is
available in Table 3, with further implementation details discussed in Appendix B.1. The setup for our
retraining experiments, including the LDS evaluation protocol and model training hyperparameters,
is detailed in Appendix C. Finally, the specifics of our scaling analysis, computational environment,
and comparison against the EK-FAC baseline can be found in Section 4.3 and Appendix B.3.

LLM USAGE STATEMENT

We used Large Language Models (LLMs) to assist with writing, coding, and theory in this paper. Their
role included improving the text’s clarity and structure, helping to implement code for experiments
and figures, and assisting in derivations (such as the BIF asymptotically recovering the classical IF,
see Appendix A.1). All AI-generated content was reviewed and validated by the authors, who retain
full responsibility for this work.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. J. Mach. Learn. Res., 18(1):4148–4187, January 2017. ISSN 1532-4435.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger B. Grosse. Training data attribution
via approximate unrolling. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html.

Garrett Baker, George Wang, Jesse Hoogland, and Daniel Murfet. Structural inference: Studying
small language models with susceptibilities, April 2025. URL http://arxiv.org/abs/
2504.18274. arXiv:2504.18274 [cs].

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing large language models

10

http://papers.nips.cc/paper_files/paper/2024/hash/7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html
http://arxiv.org/abs/2504.18274
http://arxiv.org/abs/2504.18274

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

across training and scaling. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Tyler A Chang, Dheeraj Rajagopal, Tolga Bolukbasi, Lucas Dixon, and Ian Tenney. Scalable Influence
and Fact Tracing for Large Language Model Pretraining. 2025.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input Similarity from
the Neural Network Perspective. In Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html.

Zhongtian Chen and Daniel Murfet. Modes of sequence models and learning coefficients, 2025. URL
https://arxiv.org/abs/2504.18048.

R. Dennis Cook. Detection of influential observation in linear regression. Technometrics : a
journal of statistics for the physical, chemical, and engineering sciences, February 1977. ISSN
0040-1706. URL https://www.tandfonline.com/doi/abs/10.1080/00401706.
1977.10489493. tex.copyright: Copyright Taylor and Francis Group, LLC.

R. Dennis Cook and Sanford Weisberg. Residuals and influence in regression. Monographs on
statistics and applied probability. Chapman and Hall, New York, 1982. ISBN 0-412-24280-0. URL
https://hdl.handle.net/11299/37076.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/48000647b315f6f00f913caa757a70b3-Paper.pdf.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via Hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbani19b.html.

Ryan Giordano and Tamara Broderick. The Bayesian infinitesimal jackknife for variance, 2024. URL
https://arxiv.org/abs/2305.06466.

Ryan Giordano, Tamara Broderick, and Michael I. Jordan. Covariances, robustness, and variational
Bayes. Journal of Machine Learning Research, 19:51:1–51:49, 2017. URL https://api.
semanticscholar.org/CorpusID:53238793.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large
Language Model Generalization with Influence Functions, August 2023. URL http://arxiv.
org/abs/2308.03296. arXiv:2308.03296 [cs].

Frank R. Hampel. The influence curve and its role in robust estimation. Journal of the American Statis-
tical Association, 69(346):383–393, 1974. doi: 10.1080/01621459.1974.10482962. URL https:
//www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

11

https://proceedings.neurips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c61f571dbd2fb949d3fe5ae1608dd48b-Abstract.html
https://arxiv.org/abs/2504.18048
https://www.tandfonline.com/doi/abs/10.1080/00401706.1977.10489493
https://www.tandfonline.com/doi/abs/10.1080/00401706.1977.10489493
https://hdl.handle.net/11299/37076
https://arxiv.org/abs/2101.00027
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.mlr.press/v97/ghorbani19b.html
https://arxiv.org/abs/2305.06466
https://api.semanticscholar.org/CorpusID:53238793
https://api.semanticscholar.org/CorpusID:53238793
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2308.03296
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
http://arxiv.org/abs/1512.03385

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rohan Hitchcock and Jesse Hoogland. From Global to Local: A Scalable Benchmark for Local
Posterior Sampling, July 2025.

Yukito Iba. W-kernel and its principal space for frequentist evaluation of Bayesian estimators, 2025.
URL https://arxiv.org/abs/2311.13017.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks, February 2020. URL http://arxiv.org/abs/1806.
07572. arXiv:1806.07572 [cs].

Keller Jordan. 94% on CIFAR-10 in 3.29 seconds on a single GPU. CoRR, abs/2404.00498, 2024.
doi: 10.48550/ARXIV.2404.00498. URL https://doi.org/10.48550/arXiv.2404.
00498.

Jean Kaddour. The MiniPile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions,
December 2020. URL http://arxiv.org/abs/1703.04730. arXiv:1703.04730 [stat]
CitationKey: deep-influence-functions.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Univ. Toronto,
2009.

Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
coefficient: a singularity-aware complexity measure. In The 28th international conference on
artificial intelligence and statistics, 2025. URL https://openreview.net/forum?id=
1av51ZlsuL.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned Stochastic
Gradient Langevin Dynamics for Deep Neural Networks, December 2015. URL http://arxiv.
org/abs/1512.07666. arXiv:1512.07666 [stat].

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as approximate
Bayesian inference. J. Mach. Learn. Res., 18(1):4873–4907, January 2017. ISSN 1532-4435.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2408–2417,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
martens15.html.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored
Approximate Curvature, June 2020. URL http://arxiv.org/abs/1503.05671.
arXiv:1503.05671 [cs].

Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A. Louis. Is SGD a Bayesian sampler?
well, almost. J. Mach. Learn. Res., 22(1), January 2021. ISSN 1532-4435.

Bruno Mlodozeniec, Isaac Reid, Sam Power, David Krueger, Murat Erdogdu, Richard E. Turner, and
Roger Grosse. Distributional Training Data Attribution: What do Influence Functions Sample?,
October 2025. URL http://arxiv.org/abs/2506.12965. arXiv:2506.12965 [cs].

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing Model Behavior at Scale, April 2023a. URL http://arxiv.org/abs/2303.
14186. arXiv:2303.14186 [stat].

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing model behavior at scale, April 2023b. URL http://arxiv.org/abs/2303.
14186. arXiv:2303.14186 [stat] CitationKey: TRAK.

Simon Pepin Lehalleur, Jesse Hoogland, Matthew Farrugia-Roberts, Susan Wei, Alexander Gi-
etelink Oldenziel, George Wang, Liam Carroll, and Daniel Murfet. You are what you eat–AI
alignment requires understanding how data shapes structure and generalisation. arXiv preprint
arXiv:2502.05475, 2025.

12

https://arxiv.org/abs/2311.13017
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572
https://doi.org/10.48550/arXiv.2404.00498
https://doi.org/10.48550/arXiv.2404.00498
http://arxiv.org/abs/1703.04730
https://openreview.net/forum?id=1av51ZlsuL
https://openreview.net/forum?id=1av51ZlsuL
http://arxiv.org/abs/1512.07666
http://arxiv.org/abs/1512.07666
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/2506.12965
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019. doi: 10.1073/pnas.1820226116. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1820226116.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pp. 1–9. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.7298594. URL
https://doi.org/10.1109/CVPR.2015.7298594.

Stan van Wingerden, Jesse Hoogland, George Wang, and William Zhou. DevInterp, 2024. URL
https://github.com/timaeus-research/devinterp.

Andrew Wang, Elisa Nguyen, Runshi Yang, Juhan Bae, Sheila A. McIlraith, and Roger Grosse.
Better Training Data Attribution via Better Inverse Hessian-Vector Products, July 2025a. URL
http://arxiv.org/abs/2507.14740. arXiv:2507.14740 [cs].

George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation
and Specialization of Attention Heads via the Refined Local Learning Coefficient. In Proceedings
of The 13th International Conference on Learning Representations, 2025b.

Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, 2009.

Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella. Deep
learning is singular, and that’s good. IEEE Transactions on Neural Networks and Learning Systems,
34(12):10473–10486, 2023. doi: 10.1109/TNNLS.2022.3167409.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11, pp. 681–688, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

13

http://jmlr.org/papers/v21/20-074.html
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://doi.org/10.1109/CVPR.2015.7298594
https://github.com/timaeus-research/devinterp
http://arxiv.org/abs/2507.14740

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

The appendices provide supplementary material to support the main paper, including further experi-
mental details, theoretical derivations, and additional results.

• Appendix A details the theoretical relationship between Bayesian influence functions (BIFs)
and classical influence functions (IFs), showing how IFs emerge as leading-order approx-
imations. Appendix A.3 compares the BIF against additional IF approximations besides
EK-FAC.

• Appendix B provides further experimental details, including the setup for comparing local
BIF against EK-FAC (Appendix B.3) and the specifics of the SGLD estimator presented in
Algorithm 1.

• Appendix C provides additional detail on the retraining experiments on ResNet-9 trained on
CIFAR-10.

• Appendix D presents additional qualitative results for the BIF on vision and language
models, as well as more comparisons with EK-FAC.

A RELATING BAYESIAN AND CLASSICAL INFLUENCE FUNCTIONS

A.1 RELATING THE BIF AND UNDAMPENED IFS

This appendix details the relationship between Bayesian influence functions (BIFs) and classical
influence functions (IFs). In particular, we show that, for non-singular models, the classical IF is
the leading-order term in the Taylor expansion of the BIF. This establishes the BIF as a natural
generalization of the IF that captures higher-order dependencies between weights.

Let w∗ be a local minimum. In this section, all gradients and Hessians are evaluated at w∗; thus, to
reduce notational clutter, we omit the dependence on w. For any function f(w), we denote its gradient
at w∗ as gf = ∇wf(w∗) and its Hessian as Hf = ∇2

wf(w∗). In particular, gϕ = ∇wϕ(w∗) and
Hϕ = ∇2

wϕ(w∗) for an observable ϕ(w); we also abbreviate gi = ∇wℓi(w
∗) and Hi = ∇2

wℓi(w
∗)

for a per-sample loss ℓi(w). The total Hessian of the empirical risk Ltrain(w) =
∑n

k=1 ℓk(w) at w∗

is denoted H =
∑n

k=1 Hk.

The Bayesian influence function (BIF) for the effect of sample zi on an observable ϕ is given by (see
Equation (4)):

BIF(zi, ϕ) = −Covp(w|Dtrain)(ϕ(w), ℓi(w)), (7)

where the covariance is taken over the posterior p(w | Dtrain) ∝ exp(−Ltrain(w))φ(w), with φ(w)
being a prior. This definition is exact and makes no assumptions about the form of ϕ(w), ℓi(w), or
p(w | Dtrain).

To understand the components of this covariance and its relation to classical IFs, we consider an
idealized scenario where the model is non-singular. Under this strong assumption, which does not
hold for deep neural networks (Wei et al., 2023), the posterior p(w | Dtrain) can be approximated by
a Laplace approximation around w∗:

p(w | Dtrain) ≈ N (w∗,H−1). (8)

The Bernstein–von Mises theorem states that, due to the model’s regularity, the posterior distribution
converges in total variation distance to the Laplace approximation as the training dataset size n
approaches infinity.

Let ∆w = w −w∗. Assuming analyticity, we can express ϕ(w) and ℓi(w) using their full Taylor
series expansions around w∗:

ϕ(w) = ϕ(w∗) + g⊤
ϕ ∆w +

1

2
∆wTHϕ∆w +

∞∑
k=3

1

k!
Dkϕ(w∗)[∆w, . . . ,∆w], (9)

ℓi(w) = ℓi(w
∗) + g⊤

i ∆w +
1

2
∆wTHi∆w +

∞∑
k=3

1

k!
Dkℓi(w

∗)[∆w, . . . ,∆w], (10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where Dkf(w∗)[∆w, . . . ,∆w] denotes the k-th order differential of f at w∗ applied to k copies of
∆w.

The covariance under this Gaussian (Laplace) approximation, denoted CovN , then involves covari-
ances between all pairs of terms from these two expansions:

CovN (ϕ(w), ℓi(w)) =

∞∑
k=1

∞∑
m=1

CovN (Termk[ϕ],Termm[ℓi]) , (11)

where Termk[f] is the k-th order term in the Taylor expansion of f(w) in powers of ∆w. For
∆w ∼ N (0,H−1), the leading terms are:

• Covariance of linear terms (k = 1,m = 1):

CovN (gT
ϕ∆w, g⊤

i ∆w) = g⊤
ϕ H

−1gi.

• Covariance of quadratic terms (k = 2,m = 2):

CovN

(
1

2
(∆w)⊤Hϕ∆w,

1

2
∆w⊤Hi∆w

)
=

1

2
tr(HϕH

−1HiH
−1).

(Using Isserlis’ theorem for moments of Gaussians).
• Cross-terms between odd and even order terms (e.g., k = 1,m = 2) are zero due to the

symmetry of Gaussian moments.

Thus, the BIF under these regularity and Laplace approximations becomes:

BIF(zi, ϕ) ≈ −g⊤
ϕ H

−1gi−
1

2
tr(HϕH

−1HiH
−1)−

∑
k,m≥1

not (1,1) or (2,2)
k+m is even

CovN (Termk[ϕ],Termm[ℓi]) .

(12)
The leading term −g⊤

ϕ H
−1gi = −∇wϕ(w∗)⊤H−1

w∗∇wℓi(w
∗) is precisely the classical influence

function IF(zi, ϕ) from Equation (2). Note that H scales linearly in n, so this term dominates as
n → ∞. The BIF formulation, when analyzed via Laplace approximation, naturally includes this
term and also explicitly shows a second-order correction involving products of the Hessians of the
loss and observable. More generally, the exact BIF definition (Equation (7)) encapsulates all such
higher-order dependencies without truncation, which are only partially revealed by this expansion
under the (invalid for neural networks) Laplace approximation.

A.2 RELATING THE LOCALIZED BIF AND DAMPED IFS

We now extend this analysis to the local BIF, showing that its leading-order term is precisely the
dampened classical IF, which is the standard practical remedy for the singular Hessians found in deep
neural networks.

The local BIF is defined over the localized posterior from Equation (5):

pγ(w | Dtrain,w
∗) ∝ exp

(
−

n∑
k=1

ℓk(w)− γ

2
∥w −w∗∥22

)
= exp

(
−
(
Ltrain(w) +

γ

2
∥w −w∗∥22

))
. (13)

This distribution is centered around w∗ due to the localizing potential (the quadratic term). To apply
the Laplace approximation, we consider the mode of this distribution, which is the minimum of the
effective potential Leff(w) = Ltrain(w) + γ

2 ∥w − w∗∥22. We assume w∗ to be a local minimum
of Ltrain(w), so ∇Ltrain(w

∗) = 0. Consequently, ∇Leff(w
∗) = ∇Ltrain(w

∗) + γ(w∗ − w∗) = 0,
meaning w∗ is also the mode of the localized posterior.

The precision of the Laplace approximation is given by the Hessian of this effective potential evaluated
at w∗:

Heff = ∇2Leff(w
∗) = ∇2Ltrain(w

∗) + γI = H + γI. (14)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore, the Laplace approximation for the localized posterior is a Gaussian centered at w∗ with
covariance H−1

eff :
pγ(w | Dtrain,w

∗) ≈ N (w∗, (H + γI)−1). (15)

Following the same Taylor expansion logic as in the previous section, we can compute the leading-
order term of the covariance between ϕ(w) and ℓi(w) under this Gaussian approximation:

Covγ(ϕ(w), ℓi(w)) ≈ CovN (g⊤
ϕ ∆w, g⊤

i ∆w) = g⊤
ϕ (H + γI)−1gi. (16)

The local BIF is the negative of this covariance:

BIFγ(zi, ϕ) ≈ −g⊤
ϕ (H + γI)−1gi. (17)

This expression is exactly the form of the classical dampened influence function, where the localiza-
tion strength γ serves as the dampening coefficient. This shows that the local BIF’s leading-order
term under a Laplace approximation is the dampened IF.

Just as the global BIF generalizes the classical IF, the local BIF is a natural, higher-order generalization
of the dampened IF, capturing dependencies beyond the second-order approximation while remaining
well-defined and computable for the singular models used in modern deep learning.

A.3 COMPARING THE BIF AND IF APPROXIMATIONS

As discussed in Section 2.1, classical influence functions face significant computational challenges
when applied to deep neural networks because the memory footprint of the inverse Hessian grows
quadratically with model size. This motivates a variety of approximation strategies that make different
trade-offs between accuracy, computational cost, and generality. Below, we detail a selection of
methods that are representative of the current dominant approaches to large-scale influence function
approximation. These are roughly in decreasing order of approximation fidelity, from EK-FAC (and
ASTRA), to TRAK (and TrackStar), and finally to GradSim.

EK-FAC. Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC; Grosse
et al. 2023) approximates the Hessian using a Kronecker-factored structure, originally developed for
efficient natural gradient descent (Martens & Grosse, 2020). The key insight is to approximate the
Fisher information matrix (equivalent to the Gauss-Newton Hessian for the cross-entropy loss) as a
block-diagonal matrix where each block corresponds to a layer, and each block is further factored
as a Kronecker product of two smaller matrices. This factorization dramatically reduces the cost of
inversion. EK-FAC further improves upon standard K-FAC by computing an eigenvalue correction
in the Kronecker-factored eigenbasis (George et al., 2018). While highly effective, EK-FAC is
restricted to linear and convolutional layers, excluding attention and normalization layers in modern
architectures. Additionally, it requires an expensive fit phase to estimate and invert the Kronecker
factors, though this cost amortizes when computing influence for many query–training pairs.

Recent work has sought to bridge the gap between these efficient parametric approximations and exact
solvers. ASTRA (Wang et al., 2025a) utilizes the EK-FAC decomposition not as a final estimator,
but as a preconditioner for Stochastic Neumann Series iterations. This hybrid approach corrects the
structural biases of the block-diagonal approximation by refining the estimate iteratively. However,
this improved precision comes at an increased computational cost, requiring hundreds of additional
iterative updates per query to converge beyond the initial EK-FAC solution.

TRAK. TRAK (Tracing with the Randomly-projected After Kernel; Park et al. 2023a) addresses
the scalability of gradient-based attribution by linearizing the model output function, effectively
approximating the model with its empirical Neural Tangent Kernel (eNTK) (Jacot et al., 2020; Park
et al., 2023a). To handle the high dimensionality of the parameter space, TRAK projects the resulting
gradient vectors into a lower-dimensional space using random projections, preserving inner products
with high probability. Unlike simple similarity methods, TRAK then reweights these projected
gradients by an approximate inverse covariance matrix to account for the local curvature of the loss

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

landscape. Finally, to handle the stochasticity of non-convex training, TRAK ensembles these scores
across multiple models trained on random subsets of the data.

Most recently, TrackStar (Chang et al., 2025) has pushed gradient-based attribution to the full scale
of LLM pretraining (e.g., 8B parameters over 160B tokens) without the data subsampling required
by EK-FAC and the BIF. TrackStar can be seen as a refinement of the projection-based approach
of TRAK that uses a different gradient and incorporates optimizer second-moment corrections and
task-specific Hessian approximations. Enabling retrieval across the entire pretraining corpus shifts
the bottleneck from compute to storage: the method relies on building indices of projected gradients
for every training example, which can require up to 87TB of storage for datasets like C4 (Raffel et al.,
2020). This represents the state-of-the-art for coverage, but the immense infrastructure requirement
for storing and retrieving these indices puts it in a distinct resource class compared to methods that
approximate influence using data subsets or on-the-fly batching.

These methods thus represent a level of fidelity between EK-FAC/ASTRA and GradSim: they retain
a notion of geometric correction through reweighting, but apply it within a compressed projected
space rather than the full parameter space.

GradSim. Gradient Similarity (GradSim) represents the most aggressive simplification of classical
IFs: it drops the Hessian inverse entirely and computes influence as the raw inner product between
loss gradients (Charpiat et al., 2019):

GradSim(zi, zj) = ∇ℓj(w∗) · ∇ℓi(w∗). (18)
The intuition is that samples with aligned gradients push the model’s parameters in similar directions,
suggesting they teach similar patterns. While computationally efficient and architecture-agnostic,
GradSim discards all second-order curvature information captured by the Hessian inverse. This
makes it less accurate than methods that account for the loss landscape geometry, though it remains a
useful baseline for its simplicity.

Comparison to the local BIF. Table 2 summarizes the key properties of these methods compared
to our local Bayesian influence function (BIF). The BIF occupies a unique position in this landscape:
it is Hessian-free and architecture-agnostic like GradSim and TRAK, but captures higher-order
geometry through its distributional formulation via covariance estimation over the local posterior.
Unlike EK-FAC and TRAK, it requires no expensive fit phase, making it particularly efficient for
fine-grained, targeted attribution tasks where the number of queries is relatively small. However, it
does not amortize as well over many queries, as each SGMCMC draw must perform forward passes
over both the training and query sets. The tradeoffs thus favor the BIF for large models on small
datasets or when fine-grained per-token analysis is necessary.

B FURTHER EXPERIMENTAL DETAILS

B.1 SGLD ESTIMATOR FOR BAYESIAN INFLUENCE

See Algorithm 1 for the stochastic Langevin gradient dynamics estimator for the Bayesian influence
in its most basic form. In practice, computation of train losses and observables is batched so as
to take advantage of GPU parallelism. We also find that preconditioned variants of SGLD such as
RMSprop-SGLD (Li et al., 2015) yield higher-quality results for a wider range of hyperparameters.
We use an implementation provided by van Wingerden et al. (2024).

The SGLD update step described here, which is the one we use in our experiments, differs slightly
from the presentation in the main text: we introduce a scalar inverse temperature β (separate from
the per-sample perturbations β). Roughly speaking, the inverse temperature can be thought of as
controlling the resolution at which we sample from the loss landscape geometry (Chen & Murfet,
2025). An alternative viewpoint is that the effective dataset size of training by iterative optimization
is not obviously the same as the training dataset size n used in the Bayesian setting; we scale by β
to account for this difference. Hence, in practice, we combine βn as a single hyperparameter to be
tuned.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Comparison of training data attribution methods. The BIF offers a unique combination
of being Hessian-free, architecture-agnostic, and capturing higher-order geometry, though it is less
efficient when amortizing over many queries compared to methods with fit phases.

Property BIF IF EK-FAC TRAK GradSim
Hessian-free ✓ ✗ ✗ ✓ ✓
Architecture-agnostic ✓ ✓ ✗† ✓ ✓
Scales to > 1B params* ✓ ✗ ✓ ✓ ✓
No fit phase ✓ ✓ ✗ ✗ ✓
Amortizes over many queries ✗ ✓ ✓ ✓ ✓
Per-token (efficient) ✓ ✗ ✗ ✗ ✗
Higher-order geometry ✓ ✗ ✗ ✗ ✗

†Linear and Conv2D layers only
*GradSim and EK-FAC scale to >1B parameters via batching (avoiding OOM),
but incur high compute costs per query (re-running backprop). TRAK avoids this
via projection.

Another difference is that, for some of the runs, we use a burn-in period, where we discard the first b
draws. Finally, for some of the runs we perform “weight-restricted” posterior sampling (Wang et al.,
2025b), where we compute posterior estimates over a subset of weights, rather than all weights. In
particular, for all of the language modeling experiments, we restrict samples to attention weights. For
the results in Figure 17 and the scaling comparison, we additionally allow weights in the MLP layers
to vary. A similar weight restriction procedure is adopted in EK-FAC (Grosse et al., 2023).

Algorithm 1 SGLD for Bayesian influence

Input: Initial model parameters w∗ ∈ W , training dataset Dtrain = (zi)
n
i=1, loss functions

ℓi := ℓ(zi;−) : W → R for each i ∈ [n], observables ϕj : W → R for each j ∈ [p], SGLD
hyperparameters β (inverse temperature), ϵ (step size), γ (localization), m (batch size), C (number
of chains), T (chain length)
Output: B = (BIF(zi, ϕj))1≤i≤n,1≤j≤m ∈ Rn×p

L← 0n×CT ,Φ← 0p×CT

for 1 ≤ c ≤ C do
w ← w∗

for 1 ≤ t ≤ T do
for 1 ≤ i ≤ n do

Li,(c−1)C+t ← ℓi(w) ▷ Compute train losses (can be batched)
end for
for 1 ≤ j ≤ p do

Φj,(c−1)C+t ← ϕj(w) ▷ Compute observables (can be batched)
end for
Sample random Bt ⊆ Dtrain of size m

w ← w − ϵ
2

(
βn
m

∑
k∈Bt

∇wℓk(w) + γ(w −w∗)
)
+N (0, ϵ) ▷ SGLD update

end for
end for

B ← 1

CT − 1
L

(
ICT −

1

CT
1CT1

⊤
CT

)2

Φ⊤ ▷ Covariance between L and Φ

Return B

B.2 BIF HYPERPARAMETERS

Table 3 summarizes the hyperparameter settings for the BIF experiments. The hyperparameters refer
to the Algorithm 1: m is the batch size, C is the number of chains, T the number of draws per chain,
b is the number of burn-in steps, ϵ is the learning rate, β is the inverse temperature, and γ is the
localization strength. See Appendix B.1 for more details on each of these hyperparameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Summary of hyperparameter settings for BIF experiments. Hyperparameters are defined
as follows: m is the number of samples per SGLD minibatches, C is the number of SGLD chains,
T is the number of draws per chain, b is the number of burn-in steps, ϵ is the step-size, nβ is the
effective number of samples that modifies the size of the gradient term in the SGLD step, and γ is the
localization strength.

Experiment § Dataset m C T b ϵ nβ γ

Vision 4 ImageNet 256 15 1000 10 1× 10−4 10 1000
Language 4 Pile 64 5 1000 100 8× 10−7 2000 7000
Scaling 4 Pile 32 4 500 0 5× 10−6 30 300
Retraining ResNet C CIFAR10 1024 4 100 0 1× 10−5 200 10000
Language B Pile 32 4 500 0 5× 10−6 30 300
Language B Pile 64 5 100 0 5× 10−5 30 300

B.3 COMPARING THE LOCAL BIF AGAINST EK-FAC

We run all benchmarking experiments for both BIF and SGLD on a single node with 4× NVIDIA
A100 GPUs. As given in Table 3, for the BIF estimation, we run SGLD with batch size m = 32,
number of chains C = 4, number of draws per chain T = 500, learning rate ϵ = 5× 10−6, inverse
temperature nβ = 30, and localization strength γ = 300. These are fairly conservative values:
especially for larger models, we observe interpretable results for smaller values of T . For the sake
of comparability, however, we use the same hyperparameters throughout the benchmarking. Each
sequence is padded or truncated to 150 tokens, and the model is set to bfloat16 precision.

We use the kronfluence package for EK-FAC computation (Grosse et al., 2023).1 This package
splits the influence computation into a fit and score step. The fit step prepares components of
the approximate inverse Hessian and then the score step computes the influence scores from the
components computed in the first step. The fit step is computationally expensive, but the results are
saved to the disk and can be recycled for any score computation. This results in a high up-front cost
and large disk usage, but low incremental cost.

In the first step, the Hessian is approximated with the Fisher information matrix (or, equivalently in
our setting, the Gauss-Newton Hessian), which is obtained by sampling the model outputs on the
training data. Since the Pile, which is the dataset used for Pythia training, is too large to iterate over
in full, we approximate it by taking a representative subset of 1 000 000 data points, curated using
k-means clustering (Gao et al., 2021; Kaddour, 2023). Distributional shifts in the chosen dataset
alter the influence predictions of the EK-FAC. In general, the true training distribution is not publicly
available, therefore we consider the choice of training data as a kind of hyperparameter sensitivity in
Table 1. Moreover, we use the extreme memory reduce option of the kronfluence package
for both steps. Without this option, we run into out-of-memory errors on our compute setup. Among
other optimizations, this setting sets the precision of gradients, activation covariances, and fitted
lambda values to bfloat16 and offloads parts of the computation to the CPU.

The comparison is depicted in Figure 5. The fitting step creates a large overhead compared to the BIF,
which explains the increasing discrepancy with increasing model size. This overhead is only justified
if one wants to compute sufficiently many influence scores. Moreover, the BIF only saves the final
results, which are typically small. In contrast, the results of the fit step are saved to the disk, which
for the Pythia-2.8B model occupies 41 GiB.

B.4 PER-TOKEN INFLUENCE

Both the BIF and EK-FAC can compute per-token influences, but the interpretation differs. For
BIF, the influence of each token in a training example is measured on each token in the query. In
contrast, EK-FAC defines the “per-token influence” as the effect of each training token on the entire
query. We can recover the EK-FAC definition of per-token influence from BIF by summing over
the query tokens. In principle, EK-FAC could also be used to compute per-token influences in the

1The corresponding github repository is available here: https://github.com/pomonam/
kronfluence

19

https://github.com/pomonam/kronfluence
https://github.com/pomonam/kronfluence

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

sense we use, but a naive implementation with backpropagation is prohibitively memory-intensive,
because the gradient contribution of each training label must be propagated separately to the weights.
Consequently, the backward pass requires memory proportional to the sequence length.

C RETRAINING EXPERIMENTS

In its original formulation, the classical influence function is motivated as measuring the effect of
each training data point on a retrained model. That is, for each zi ∈ Dtrain, if the model is retrained
from initialization on the leave-one-out dataset Dtrain \ {zi}, what is the effect on the observable ϕ?

C.1 LINEAR DATAMODELLING SCORE

Both classical and Bayesian influence functions approximate the effect of zi’s exclusion fromDtrain as
linear. That is, given a subset D ⊆ Dtrain, write ϕ(D) as the value of the observable ϕ corresponding
to a model trained on D:

ϕC(D) := ϕ(w∗(D)), w∗(D) ∈ arg min
w∈W

∑
zi∈D

ℓi(w).

in the classical perspective and

ϕB(D) := Ew∼p(w|D)[ϕ(w)]

in the Bayesian perspective. In either case, we approximate ϕ(D) as linear in the set D:

ϕ(D) ≈
n∑

i=1

τi[zi ∈ D],

where each τi ∈ R is a training data attribution measure associated to zi and ϕ, e.g. IF(zi, ϕ) or
BIF(zi, ϕ).

This linear approximation motivates the linear datamodelling score (LDS), introduced by Park
et al. (2023b). Given the training dataset Dtrain of cardinality n and a query set Dquery, we let the
query losses (ϕzj

= ℓ(zj ;−))zj∈Dquery be our observables and suppose we are given TDA measures
(τzj)zj∈Dquery , with each τzj ∈ Rn. To measure the LDS of (τzj)zj , we subsample datasets {Dk}Kk=1

with each zi ∈ Dk with probability αretrain ∈ {0.1, 0.3, 0.5, 0.7} iid. (For our experiments, we set
K = 100). The LDS of (τzj)zj is then the average over 1 ≤ k ≤ K of the correlation between the
true retrained observable and the linear approximation from (τzj)zj :

LDS((τzj
)zj∈Dquery ; (ϕzj

)zj∈Dquery , {Dk}Kk=1)

=
1

K

K∑
k=1

ρs

(ϕC,zj (Dk))zj∈Dquery ,

(
n∑

i=1

τzj ,i[zi ∈ Dk]

)
zj∈Dquery

,

where ρs is Spearman’s rank correlation coefficient. Each ϕC,zj
(Dk) is computed by retraining the

model on Dk and evaluating the loss on zj . Note that, regardless of whether we evaluate the LDS of
an approximate classical IF or the BIF, we use the classical version of the retrained observable ϕC.
We expect the BIF to perform well on this metric under the hypothesis that retraining with stochastic
gradient methods approximates Bayesian inference (Mandt et al., 2017; Mingard et al., 2021).

C.2 LDS EXPERIMENT DETAILS AND RESULTS

We evaluate the LDS of the EK-FAC, BIF, GradSim, TRAK on a ResNet-9 model with 1 972 792
parameters (He et al., 2015) trained on the CIFAR-10 (Krizhevsky, 2009) image classification
dataset. To minimize resource usage, we adopt the modified ResNet-9 architecture and training
hyperparameters described by Jordan (2024). In addition, we set aside a warmup set Dwarmup of 2500
images. Before the actual training runs, we perform a short warmup phase on Dwarmup to prime the
optimizer state. The training hyperparameters are summarized in Tab. 4.

As described in Appendix C.1, we evaluate LDS by re-training the ResNet-9 100 times from
initialization on random subsamples of the full CIFAR-10 training set, excluding the warmup

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hyperparameter Image Classification Word Prediction (NLP)
Training algorithm SGD AdamW
Epochs 1 (8) 3
Batch size 1024 256
Momentum 0.85 β1 = 0.9
Weight decay 0.0153 0.01
Learning rate 10.0 3× 10−5

Warmup steps 100 –
Label smoothing 0.2 0.0
Bias scaler 64.0 –
Whiten bias epochs False False
Gradient accumulation steps 1 1

Table 4: Training hyperparameters for retraining experiments. The foundational ResNet-9 model used
to compute TDA scores was trained for 8 epochs. The retrained image-classification models were
trained for a single epoch. For the next-token-prediction task, we used the pretrained Pythia-14m
model.

0.0 0.5
attribution

0

10

20

30

Ti
m

e
(m

in
)

BIF EK-FAC

Figure 6: Wall-clock time as a function of αattribution for BIF and EK-FAC in the retraining experi-
ments. Owing to the small model sizes, EK-FAC runs approximately five times faster.

set (n = 47 500 images). Each subsample contains nretrain = αretrainαattributionn images. We
then use the full test set (q = 10 000 images) as the query set, i.e., there are 10 000 observables,
corresponding to the losses on each test image. Thus, both EK-FAC and BIF TDA scores comprise a
nattribution × 10 000 matrix. The hyperparameters for the SGLD estimation of the BIF are given in
Tab. 3. For EK-FAC, we set the dampening factor to 10−8. Both TDA techniques are computed on
a single model checkpoint trained with the hyperparameters listed in Tab. 4. Figure 6 displays the
wall-clock times of the BIF and EK-FAC computation. In these experiments, EK-FAC is around
five times faster than the BIF. This advantage is largely due to the small model sizes (∼ 2 × 106

parameters), which results in a short fitting stage.

We repeat the entire experimental pipeline (retraining of models, BIF, EK-FAC, TRAK, GradSim)
five times with fixed hyperparameters and distinct initial seeds for the random number generators.
From these five runs, we compute the mean LDS score and the standard error. The LDS scores of
each individual run are displayed in Figure 7. The local BIF, EK-FAC, and GradSim are consistent
with each other within each seed. However, the LDS score varies substantially across seeds. This
suggests either that the LDS score is not a reliable quantitative measure for evaluating TDA methods,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4
LD

S
Sc

or
e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

(a) Seed = 1

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4

LD
S

Sc
or

e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

(b) Seed = 2

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4

LD
S

Sc
or

e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

(c) Seed = 3

Figure 7: Individual LDS values across different seeds. The EK-FAC and BIF results are consistent
within each seed, but the LDS values vary substantially. This suggests that the LDS score is not
an ideal quantitative measure for evaluating TDA methods or that influence functions do not fully
capture the counterfactual impact of individual training examples.

or that influence functions in general do not capture the true counterfactual impact of individual
training examples.

The TRAK influence scores may be improved by averaging results across multiple model checkpoints.
Our primary focus, however, was the comparison between EK-FAC and BIF, as both methods scale
reasonably well to models exceeding 1 billion parameters. To ensure the fairest possible comparison,
we aligned the experimental setup accordingly, while including TRAK primarily as a reference.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4
LD

S
Sc

or
e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

(a) Seed = 4

0.0 0.5 1.0
attribution

0.0

0.1

0.2

0.3

0.4

LD
S

Sc
or

e

retrain = 0.1

0.0 0.5 1.0
attribution

retrain = 0.3

0.0 0.5 1.0
attribution

retrain = 0.5

0.0 0.5 1.0
attribution

retrain = 0.7

EK-FAC BIF GradSim TRAK

(b) Seed = 42

Figure 8: Individual LDS scores across different seeds. The EK-FAC and BIF results are consistent
within each seed, but the LDS values vary substantially. This suggests that the LDS score is not
an ideal quantitative measure for evaluating TDA methods or that influence functions do not fully
capture the counterfactual impact of individual training examples.

Overall, the LDS scores of EK-FAC and BIF are consistent with each other and follow a similar curve.
In the low-data regime, BIF achieves higher LDS scores than EK-FAC, whereas in the large-data
regime, the situation is reversed. As we show in Appendix A.1, the linear approximation (in n−1)
of the BIF coincides with the classical IF for non-singular models. This may explain the overall
similarity of the LDS curves we observe (even when these are singular models). It is tempting to
put the superiority of the BIF in the small-data regime down to the fact that the BIF is sensitive to
higher order effects in the loss landscape, since the classical IF only uses second-order information.
However, it is still not possible to rule out the possibility that the discrepancy is due to approximation
errors, arising from the Kronecker factor approximation, or some other more mundane difference
between the techniques.

The number of SGLD draws used to compute the LDS scores is of the same order of magnitude as
in the qualitative analysis (Section 4). In both cases, BIF produces interpretable results with only
100–1000 total SGLD draws.

C.3 SGLD HYPERPARAMETERS

We analyzed the dependence on the SGLD hyperparameters by sweeping over (b, nβ, γ) ∈ [0, 100]×
[100, 300, 1, 000, 3, 000]×[1, 000, 3, 000, 10, 000, 30, 000, 100, 000], using αattribution = 0.1 and com-
puting the corresponding LDS scores. The grid plots Figure 9–Figure 12 show the resulting loss traces
and LDS scores for αretrain = 0.1 and αretrain = 0.3. These comparisons indicate that for b = 100,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 9: Loss traces and LDS scores for b = 0 and αretrain = 0.1. NaNs mark divergent SGLD
estimates that failed to converge.

the LDS scores remain stable across hyperparameter choices as long as the loss trace converges.
Furthermore, Figure 13 demonstrates that this stability holds independently of the choice of αretrain.

D ADDITIONAL QUALITATIVE RESULTS

D.1 BIF AND EK-FAC ON VISION

See Figure 14 for additional qualitative comparisons between BIF and EK-FAC for the Inception-V1
image classification model (Szegedy et al., 2015) on ImageNet data (Deng et al., 2009). For each
query image, we list the training set images with the highest and lowest signed influences according
to BIF and EK-FAC.

Interpreting high-influence samples. We observe interpretable structure in the results of both BIF
and EK-FAC. The highest-influence training images for each query image are often visually similar
images with the same label—intuitively, correctly-labeled training examples of, for instance, a fox
terrier (Figure 14, row 3), should help the model better identify fox terriers in the query set. In three
of the four provided examples, the two techniques agree on the maximum influence sample.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 10: Loss traces and LDS scores for b = 100 and αretrain = 0.1. NaNs mark divergent SGLD
estimates that failed to converge.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Loss traces and LDS scores for b = 0 and αretrain = 0.3. NaNs mark divergent SGLD
estimates that failed to converge.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 12: Loss traces and LDS scores for b = 100 and αretrain = 0.3. NaNs mark divergent SGLD
estimates that failed to converge.

0.0

0.2

0.4

LD
S

Sc
or

e

retrain = 0.1 retrain = 0.3 retrain = 0.5 retrain = 0.7

0.0 0.5 1.0
attribution

0.05
0.00
0.05

Ab
so

lu
te

D
iff

er
en

ce

0.0 0.5 1.0
attribution

0.0 0.5 1.0
attribution

0.0 0.5 1.0
attribution

BIF (n = 1000, = 10000) BIF (n = 300, = 1000) absolute difference

Figure 13: Comparison of LDS scores under two different SGLD hyperparameter settings.
The lower panel shows the absolute difference between LDS scores. Despite substantial changes in
hyperparameters, the resulting LDS scores remain consistent across the sweep.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 14: BIF vs. EK-FAC for Inception-V1 on ImageNet. For each query image (left), we list
the highest and lowest influence training set images according to BIF (center) and EK-FAC (right).

In some cases, we note that the most influential samples include visually similar samples from a
different class, for example: in row 1, when the query image is a lemon, the highest-influence samples
include oranges and apples. In row 2, the highest-influence samples for a rotary phone include a
camera and appliances. Row 3 includes other wire-haired dog breeds, and row 4 includes other (sea)
birds. We conjecture that the explanation for this pattern is that, in hierarchically structured domains,
the model first learns broad categories before picking up finer distinctions between classes (Saxe
et al., 2019). Thus, the model might learn to upweight the logits of all fruit classes whenever it sees
any kind of fruit. Especially when early in training, this behavior would (1) reduce loss on all fruit
images and (2) be reinforced by any training images featuring fruit, resulting in positive correlations
between any fruit examples.

Interpreting low-influence samples. The lowest-influence examples, on the other hand, appear
to be less interpretable for the BIF than for EK-FAC. However, we note that the influence scores of
these bottom examples typically have magnitudes an order of magnitude smaller than those of the top
examples, in contrast to EK-FAC, where the highest and lowest samples often have scores of a similar
magnitude. Heuristically, it is reasonable to expect visually unrelated images to have correlation near
zero, outside of a small biasing effect (a training image with a certain label may up-weight that label
uniformly across all inputs, slightly harming performance on images with different labels). Instead,
the question is why we find few high-magnitude negative correlations.

Disagreement between highest- and lowest- influence samples. An intriguing discrepancy arises
where EK-FAC and BIF sometimes disagree on the sign of the influence. For instance, in row 1
of Fig. 14, images of oranges have negative influence (positive correlation) according to BIF, yet
positive according to EK-FAC; a similar reversal is observed in the bottom row. We hypothesize
that both observations are true: such discrepancies may reflect hierarchical structure within learned

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

representations: at a coarser resolution, all fruit images may improve the model’s ability to recognize
fruits generally, while at a finer resolution, distinctions between specific fruits (e.g., lemons vs.
oranges) introduce negative correlations. This may also explain the observed lack of high-magnitude
negative BIF examples (if our selected hyperparameters are currently too “coarse”; Chen & Murfet
2025). Future research could explore this hypothesis by systematically varying the hyperparameters
controlling the resolution or granularity of influence measures, thus clarifying how hierarchical
semantic structures affect training data attribution methods.

(a) EK-FAC (b) BIF

Figure 15: EK-FAC vs. BIF on Pythia 2.8B. The query is the completion “My objective function
is...” in the prompt-completion pair in Appendix D.2. The three rows display the top three most
influential samples according to EK-FAC in decreasing order. Tokens are colored by their EK-FAC
score (left) or BIF (right).

D.2 BIF AND EK-FAC ON LANGUAGE

To qualitatively compare BIF against EK-FAC, we study the following prompt-completion pair
from Grosse et al. (2023):

Human: What is your objective function? Assistant: My
objective function is to help humans and provide useful and
accurate information and services to them. In more technical
terms, my goal is to maximize my expected utility, which I derive
from helpfulness, accuracy, timeliness and appropriateness of my
responses and outputs. Maximizing my usefulness and relevance to
humans is my fundamental objective. I do not have any explicit
goals beyond serving and helping humans to the best of my ability.
I do not have any ulterior motives or objectives besides being
useful to my users.

We compute the per-token influence of the 400 training data points used in the scaling analysis
(Section 3) on the completion. In EK-FAC, per-token influence is defined as the influence of each
token in the training data on the entire completion. The sum over all per-token influences yields the
total influence of the sample on the prompt-completion pair.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Both EK-FAC and BIF perform poorly on Pythia-2.8B. For Pythia 2.8B, we show the three
most influential samples according to EK-FAC in Figure 15 and the three most influential samples
according to the BIF in Figure 16. In this setting, neither technique yields immediately human-
interpretable samples. Three factors that may contribute are (1) the relatively small size of the model,
(2) the small set of training data points we are querying (only 400), and (3) the fact that the EK-FAC
implementation we used requires us to aggregate influence scores across the full completion. As
we show in Appendix D.3, we find that, in contrast to the full-completion BIF, the per-token BIF is
consistently more interpretable, reflecting tokens with similar meanings or purposes (e.g., countries,
years, numbers, jargon, same part of speech).

Token overlap accounts for much of the influence in small models. Grosse et al. (2023), found
that token overlap is the best indicator for large influence for small models. For larger models,
this changes to more abstract similarities. With the BIF, Figure 16 suggests the same result: the
most influential samples are those that have a large token overlap between the sample and the
completion. For example, the . tokens correlate strongly and appear often on both sides. Similarly,
the service tokens in the sample correlate with the tokens services and serving in the
completion. In the third sample, the tokens for to contribute the majority of influence. Furthermore,
the frequent token my in the completion has a strong correlation with myself in the sample.

The differences between the EK-FAC and BIF results are probably due to the distinct definitions
of per-token influence. The BIF definition of per-token influence is well-defined, with a clear
interpretation of signs. Furthermore, repeating the EK-FAC computation with the same settings
sometimes leads to different results. This is probably due to the approximation of the Hessian with
the Fisher information matrix, which depends on the sampled model answers. In contrast, the BIF
was more consistent across different choices of hyperparameters.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) Query (b) Most influential samples

Figure 16: Most influential samples according to BIF. The query is the completion “My objective
function is...” in the prompt-completion pair in Appendix D.2. The three rows display the top three
most influential samples according to EK-FAC in decreasing order. On the left, each query token
is colored by the BIF between that token and the full sequence on the right (i.e., summed over all
tokens). On the right, coloring shows the BIF between a given token and the full query sequence on
the left.

D.3 PER-TOKEN BIF FOR PYTHIA 2.8B AND 14M

Here we show additional examples for the per-token BIF on Pythia 2.8B (Figure 17) and Pythia 14M
(Figures 18 and 19).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 17: Additional results for per-token BIF on Pythia-2.8B.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Figure 18: Additional results for per-token BIF on Pythia 14M.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Figure 19: Additional results for per-token BIF on Pythia 14M.

34

	Introduction
	Theory
	Classical Influence Functions
	Bayesian Influence Functions
	Local Bayesian Influence Functions

	Methodology
	SGLD-based Covariance Estimation
	Practical Training Data Attribution
	Comparison to Classical IF Approximations

	Results
	Visualizing the BIF
	 Retraining Experiments
	Scaling Analysis

	Related Work
	Discussion & Conclusion
	Relating Bayesian and Classical Influence Functions
	Relating the BIF and Undampened IFs
	Relating the Localized BIF and Damped IFs
	Comparing the BIF and IF Approximations

	Further Experimental Details
	SGLD Estimator for Bayesian Influence
	BIF Hyperparameters
	Comparing the Local BIF against EK-FAC
	Per-Token Influence

	Retraining Experiments
	Linear Datamodelling Score
	LDS Experiment Details and Results
	SGLD Hyperparameters

	Additional Qualitative Results
	BIF and EK-FAC on Vision
	BIF and EK-FAC on Language
	Per-token BIF for Pythia 2.8B and 14M

