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ABSTRACT

Classical influence functions face significant challenges when applied to deep
neural networks, primarily due to non-invertible Hessians and high-dimensional
parameter spaces. We propose the local Bayesian influence function (BIF), an
extension of classical influence functions that replaces Hessian inversion with
loss landscape statistics that can be estimated via stochastic-gradient MCMC
sampling. This Hessian-free approach captures higher-order interactions among
parameters and scales efficiently to neural networks with billions of parameters.
We demonstrate state-of-the-art results on predicting retraining experiments.

1 INTRODUCTION

Training data attribution (TDA) studies how training data shapes the behaviors of deep neural
networks (DNNs)—a foundational question in Al interpretability and safetyA standard approach to
TDA is influence functions (IF), which measure how models respond to infinitesimal perturbations in
the training distribution (Cook| |[1977;|/Cook & Weisberg, [1982)). While elegant, influence functions
rely on calculating the inverse Hessian and, therefore, break down for modern DNNs. Theoretically,
DNNs have degenerate loss landscapes with non-invertible Hessians, which violate the conditions
needed to define influence functions. Practically, for large models, the Hessian is intractable to
compute directly. To mitigate these problems requires architecture-specific approximations that
introduce structural biases (Martens & Grosse, 2015} |Ghorbani et al., 2019} |Agarwal et al., 2017}
George et al., 2018)).

We propose a principled, Hessian-free alternative grounded in Bayesian robustness. The key change
is to replace Hessian inversion with covariance estimation over the local posterior (Giordano et al.,
2017;|Giordano & Broderick, 2024; Iba, [2025)). This distributional approach naturally handles the
degenerate loss landscapes of DNNs and bypasses the need to compute the Hessian directly. For
non-singular models where the classical approach is valid, the BIF asymptotically reduces to the
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Figure 1: From influence functions (IF) to Bayesian influence functions (BIF): We introduce the
local Bayesian Influence Function (BIF), which replaces the Hessian inversion of classical Influence
Functions (IF) with a covariance estimation over the local loss landscape. This approach is sensitive
to higher-order geometry and scales to models with billions of parameters.
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classical IF (Appendix [A)), which establishes the BIF as a natural generalization of the classical IF for
modern deep learning.

Contributions. We make the following contributions:

* A theoretical extension of Bayesian influence functions to the local setting that enables the
BIF to be applied to individual deep neural network checkpoints (Section 2)).

* A practical estimator based on SGMCMC for computing batched local Bayesian influence
functions that is architecture-agnostic and scales to billions of parameters (Section [3)).

* Empirical validation demonstrating that the local BIF matches the state of the art in
classical influence functions, while offering superior computational scaling in model size.
This makes our method particularly efficient for fine-grained and targeted attribution tasks
where the up-front cost of classical IF approximations is high (Section H).

2 THEORY

We first review classical influence functions (Section @) then review Bayesian influence functions
(Section [2.2)), and finally propose our local extension (Section [2.3).

2.1 CLASSICAL INFLUENCE FUNCTIONS

Classical influence functions quantify how a model would differ under an infinitesimal perturbation
to its training data.

Setup. We consider a training dataset Dyin = {2;}}~; and a model parameterized by w € W C R4,
We define the empirical risk Lygin(w) = Y i £;(w), where ¢;(w) = {(z;; w) is the loss for sample
z;. We assume Ly, is continuously second-differentiable and that our training procedure finds

parameters w* € W at a local minimum, i.e., V. Lipain (w™) = 0.

Influence on observables. We want to predict how the value of an observable ¢(w): W — R
would change under a perturbation to the training data. In particular, we’re interested in predicting the
response of a query sample’s loss ¢(w) = £(z;; w)) To model perturbation, we introduce importance
weights 3 = (f1,...,,) and define the tempered risk Lyqin, g(w) = >, Bil;(w). Assuming
the loss Hessian is invertible, the implicit function theorem guarantees a neighborhood U,,- 2 w*
such that, for all 3 sufficiently close to 1, there is a unique minimizer of the tempered risk in this
neighborhood w*(B) = arg miny,ecy,,. Liain, 3(w). Note that w*(1) = w* and that the function
w™(—) depends on the starting w™*; in this sense, the classical influence is naturally local to a choice
of parameters w*.

The classical influence of training sample z; on the observable ¢ evaluated at the optimum is defined
as the sensitivity of ¢(w™*(3)) to the weight j3;:

IF(z;, 6) == %ﬁ*@) . (1)
i -1

Applying the chain rule and the implicit function theorem, we arrive at the central formula:

IF(2i,¢) = —Vwo(w*) H(w") 'V li(w"), )

where H (w*) is the Hessian of Ly, evaluated at w*.

2.2 BAYESIAN INFLUENCE FUNCTIONS

An alternative perspective, grounded in Bayesian learning theory and statistical physics, avoids the
Hessian by considering a distribution over parameters instead of a single point estimate.
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Figure 2: The per-token BIF captures semantic relationships in Pythia-2.8B. The posterior
correlation (negative of the normalized BIF) between tokens is maximized for relationships like
translations, alternate spellings, and synonyms.

Influence on observable expectations. We obtain the Bayesian influence BIF(z;, ¢) of sample z;
on an observable ¢ by replacing the point estimate ¢(w*) in Equation (1)) with an expectation value
Eirain, g[6(w)]:
JE rain
BIF(z,,¢) = o2l 3)
aﬂl B=1

Here, Eqin, g[¢(w)] = [ ¢(w)pg(w | Dyain) dw is an expectation over a tempered Gibbs measure
PB(W | Diain) X €Xp(— Lirain, 3(w))¢(w) with prior ¢(w). This is a tempered Bayesian posterior if
the loss is a negative log-likelihood ¢; (w) = — log p(z; | w), which we assume is the case for the
rest of the paper.

A standard result from statistical physics (seeBaker et al.|2025)) relates the derivative of the expectation
to a covariance over the untempered (3 = 1) posterior under mild regularity conditions:

’BIF(zi, @) = —Cov(l;(w), p(w)). ‘ )

Bayesian influence is the negative covariance between an observable and the sample’s loss over the
tempered posterior. In Appendix [A-T] we show that, for non-singular models, the leading-order term
of the Taylor expansion of the BIF is the classical IF; the BIF is a higher-order generalization of the
IF.

2.3 LOCAL BAYESIAN INFLUENCE FUNCTIONS

Computing expectations over the global Bayesian posterior p(w | Dyain) is generally intractable for
DNNs. Furthermore, standard DNN training yields individual checkpoints w*, and we are often
most interested in the influence local to this final trained model. Therefore, we adapt the BIF with a
localization mechanism.

Following [Lau et al.|(2025)), we define a localized Bayesian posterior by replacing the prior p(w)
with an isotropic Gaussian with precision v centered at the parameters w™:

Do (w | Dyain, w”) < exp| — Y £i(w) — %Hw — w2 ). )
=1

The local Bayesian influence function (local BIF) is defined as in Equation (@) but via a covariance
over the localized Gibbs measure, indicated by the index ~:

‘BIF,Y(zl-, ¢) = —Cov., (4 (w), p(w)). \ (6)

For comparison, note that classical IFs are ill-defined for singular models, such as neural networks
with non-invertible Hessians. A common practical remedy is to use a dampened Hessian (H (w*) +
~I). This is equivalent to adding an /5 regularizer centered at w™* to the loss, which is the same trick
we use in defining BIF,. In Appendix @ we show that the first-order term of the expansion of the
local BIF is the dampened IF (with a vanishing dampening factor); the local BIF is a higher-order
generalization of the classical dampened IF.
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3 METHODOLOGY

Computing the local BIF requires estimating the covariance Cov.,(¢(w), ¢;(w)) under p,(w |
Dirain, w*). Following Lau et al.|(2025)), in Section we use stochastic gradient Langevin dynamics
(SGLD;Welling & Teh|[2011). In Section[3.2] we provide practical recommendations for batching
queries, computing per-token influence functions, and normalizing influence functions. In Section[3.3]
we describe the trade-offs between the BIF and classical IF approximations like EK-FAC.

3.1 SGLD-BASED COVARIANCE ESTIMATION

SGLD approximates Langevin dynamics with a stationary distribution p (w | Dyain, w*) by updating
with mini-batch gradients of the empirical risk Ly, (w) and the gradient of the localizing potential
~v(w — w*). The update rule is:

W41 = W — E <T:5 Z V’wek(wt) + V(wt - 'LU*)> +N(O7€)a

2
keBy

where B; is a stochastic mini-batch of m samples, € is the step size, and [ is an inverse temperature
(which puts us in the fempered Bayes paradigm).

To improve coverage of the distribution p.,, we typically sample several independent SGLD chains.
We collect 1" draws {wqt}tT:l after an optional burn-in in each SGLD chain 1 < ¢ < C, for a total
Of Nyraws = CT draws. The required covariances Cov.,(¢;, ¢) are then estimated using the standard

SCRLL IR

See Appendix [B.T|for further details and modifications from vanilla SGLD.

3.2 PRACTICAL TRAINING DATA ATTRIBUTION

BIF between data points. We focus on the Bayesian influence between a training example z; €
Dain and the loss of a query example z; € Dyuery; that is, we set the observable to ¢ = /(z;; —) and
compute BIF(z;,z;) = —Cov, ({;(w), {;(w)). Given the training set Dy and a query set Dyuery,
we compute all pairwise Bayesian influences {BIF(z;,2;) | 2; € Diain, 2; € Dquery} OVer the same
draws from independent SGLD chains. At each step of each chain, we perform forward passes over
both Diryin and Dyuery to obtain losses over both sets (£;(W))z, €Dy UDyguery - These forward passes are
computed separately from the loss backward pass  _, - B, Vwlk (wy) used in the SGLD update rule.

Batched evaluation. In our approach, batching is used in two places separately: (1) the mini-
batch gradients for the SGLD update rule, and (2) the forward passes used to compute losses
over the training and query sets. This allows for scalable computation of the full BIF matrix
B = (BIF(Zi7Zj))zieDlrainaszuner)"

Per-token Bayesian influences. In the autoregressive language modeling setting, each example z;
is a sequence of tokens z; = (z; 1, .. .,2; g) of length S. The loss at example z; then decomposes as

s s
ti(w) = — ZIng(Zi,s | Zi1, .- Zis—1) = Zei,s('w)-
s=2 5=2

The BIF can be easily extended to this setting: for example, the Bayesian influence of the sth token of
sequence ¢ on the loss at the s'th token of sequence j is BIF(z; 5, z; ) = —Cov, ({; s(w), £} s (w)).
In our language model experiments, we compute all such pairwise per-token influences, resulting in
a S|Diain| X S| Dguery| BIF matrix. As we describe in Appendix this parallelization is a major
advantage over classical IF approximations like EK-FAC.

Normalized influence as correlations. Raw covariance scores can be dominated by high-variance
data points. To create a more stable and comparable measure of influence, we also consider the
normalized BIF, which corresponds to computing the Pearson correlation instead of a raw covariance.
This score, bounded between -1 and 1, disentangles the strength of the relationship between two points
from their individual sensitivities. For clarity, we use this posterior correlation for all qualitative
analyses and visualizations in Section
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Figure 3: BIF and EK-FAC show convergent validity on Inception-v1. For a given query image
(left), our local BIF (center) and EK-FAC (right) identify similar or identical training images as most
influential. See Appendix D.T]for more examples.

3.3 COMPARISON TO CLASSICAL IF APPROXIMATIONS

We compare our local BIF approach to classical influence function (IF) approximations, using EK-
FAC as a representative state-of-the-art example (Grosse et all,2023). To the best of our knowledge,
this is the highest-quality tractable approximation to the classical IF at the >1B-parameter scale. The
key differences between the BIF and EK-FAC are summarized in Table[T]and elaborated on below.
We provide comparisons to additional IF techniques in Appendix [A.3]

Time complexity. Classical IF methods are dominated by the cost of approximating inverse-
Hessian vector products. Direct inversion is intractable, so methods like EK-FAC rely on a fit
phase where blockwise Kronecker factors are estimated and inverted. The main bottleneck is the
eigendecomposition or inversion of per-layer covariance matrices, which scales cubically with the
layer width (O(d3) per block). Once fit, scoring reduces to repeated matrix—vector solves, but still
requires recomputing gradients for each query—train pair, with total complexity O(gnP) where P is
the per-vector solve cost. Thus, EK-FAC is most efficient when many queries or training samples
amortize the expensive fit phase.

The local BIF, by contrast, has no structural fit cost. The main bottleneck is running forward passes
over the entire train and query datasets at each SGLD draw, with overall complexity scaling as
O(Ndraws(n + Q)dlotal)-

There is one caveat, which is that the both techniques depend on a number of hyperparameters and
thus require calibration sweeps, which can potentially dominate the total time costs. However, we
found that EK-FAC works well with the provided defaults, and, in Appendix we show that results
for the BIF (as measured by LDS) are stable across a wide range of hyperparameter ablations.

In short:
* Classical IFs are more efficient for large-scale, sequence-level attribution where a large
number of queries can amortize the high initial investment.

* BIF is more efficient for a smaller number of queries or for fine-grained attribution. For
per-token influence, our batched approach calculates the entire token-token influence matrix
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Table 1: BIF vs. EK-FAC. Comparison of time/space complexity and estimation quality for the local
BIF and EK-FAC. Here d, is the number of parameters, n the training set size, g the query set size,
Ngraws the total SGLD draws, and Ny, the samples used to fit EK-FAC factors. The EK-FAC scoring
cost assumes training gradients are recomputed. See Appendix [A.3]to compare the BIF against other
IF techniques.

Axis Local BIF EK-FAC

Time Complexity Score: O(Nyraws(1 + q)dioa) Fit: O(Nidioa + >y (d5, ; + d3y)
(No fit phase) Score: O(ngdota)

Memory (extra) O(Ngraws(n + q)) for loss traces O(Zl(dizn) L+ dgut}l)) for factors

Sources of Error Finite sampling (Ngraws) Finite sampling (/Vg)

SGLD bias/hyperparameters (N,.) Structural bias (Kronecker, Fisher)

Architecture Any differentiable model Linear and Conv2D layers

at once, while classical methods would require a separate, sequential scoring pass for every
single token, making them impractical.

Memory complexity. Hessian-based methods often require storing structural components of the
model, such as the Kronecker factors and eigenbases in EK-FAC, with memory usage scaling with
layer dimensions (O(Zl(dizn, L+ dgmy 1))). For models with large hidden dimensions, this can be
substantial. The local BIF’s memory usage is dominated by storing the loss traces (O( Ngraws (1 + q))).
Alternatively, it is also possible to use an online covariance estimator for BIF with memory usage

O((n + ¢)?), which is more efficient when Ny is larger than the total number of data points.

Sources of error. Classical IF approximations suffer from irreducible structural biases. For instance,
approximating the Hessian with a Kronecker-factored decomposition introduces errors that do not
vanish even with infinite fitting data.

In principle, the BIF provides an unbiased estimator of influence under its target distribution that
improves with the number of total draws Ng.ws. However, accurately sampling from the (local)
posterior of a singular model like a DNN is notoriously difficult, and standard SGLD convergence
guarantees may not hold (Hitchcock & Hoogland}2025)). This can introduce a systematic sampling
bias. Another possible source of error is that we currently lack a rigorous understanding of how to
choose hyperparameters like the inverse temperature (/3) and localization strength (+y), which are part
of the definition of the local posterior being analyzed (see Appendix [B.T).

Architectural flexibility. Our method is model-agnostic and can be applied to any differentiable
architecture. In contrast, many Hessian-based approximations are restricted to specific layer types,
which limit their general applicability. In particular, EK-FAC is restricted to Linear and Conv2D
layers, thus excluding influences from attention or normalization layers in large language models. If
desired (for example, to achieve a closer comparison to EK-FAC), it is possible to restrict the BIF to
a subset of weights, see Appendix [B.1]

4 RESULTS

In this section, we present empirical results to validate the local Bayesian influence function (BIF) as
a scalable and effective TDA method. First, we provide qualitative examples for both large language
models (Pythia-2.8B) and vision models (Inception-V1) to build intuition. Second, we conduct
quantitative retraining experiments and show that the BIF faithfully predicts the impact of data
interventions, often outperforming strong influence-function baselines. Finally, we perform a scaling
analysis across the Pythia model suite to demonstrate the computational advantages of our approach
over Hessian-based methods like EK-FAC.
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Figure 4: Bayesian influence functions (BIF) vs. classical influence function approximations
(EK-FAC, TRAK, GradSim) on predicting retraining experiments (on CIFAR-10 data) measured by
the linear datamodeling score (LDS). We vary the size of the query dataset and full dataset according
tO Qtagribution, then retrain on random subsets of aueqain Samples. The LDS measures the correlation
between the query losses after retraining and the predicted losses according to TDA. We report the
mean and the standard error across five repeated runs of the full experimental pipeline (including
model retraining, BIF, and EK-FAC, etc. computation) with fixed hyperparameters but distinct initial
seeds. The BIF consistently matches EK-FAC, which is SOTA. The BIF slightly underperforms
EK-FAC for larger datasets (but within the margin of error) and slightly outperforms EK-FAC for
smaller datasets. Both EK-FAC and BIF consistently outperform GradSim and TRAK.

4.1 VISUALIZING THE BIF

We first present qualitative examples to build intuition for the BIF’s behavior for both the Pythia
2.8B (Biderman et al.| 2023) language model on (Figure|2|) and the Inception-V1 (Szegedy et al.,
2015) image classification model (Figure[3). As described in Section [3.2] we use the normalized BIF
for both (i.e., correlation functions). See Appendices[B]and [D]for more details.

Image classification. Figure [3|compares the highest-influence samples identified by BIF and EK-
FAC for Inception-v1 on ImageNet samples (Deng et al.,2009). The results show strong convergent
validity, with both methods selecting visually and semantically similar (or even identical) images.
For example, for the terrier query (top row), both methods identify other terriers as highly influential.

Per-token language attribution. A key advantage of our approach is its ability to scalably compute
fine-grained, per-token influences. As shown in Figure [2]on Pythia-2.8B for samples drawn from
the Pile (Gao et al. 2021)), the per-token BIF detects semantic similarities between tokens. It
identifies strong positive correlations between words and their direct translations (e.g., ‘She’ >
‘elle’), numbers and spellings (e.g., ‘3° <+ ‘three’), and conceptually related words (e.g., ‘objectives’
& ‘Maxim[izing]’, ‘goals’, ‘motives’).

4.2 RETRAINING EXPERIMENTS

The ultimate aim of TDA methods is to inform interventions such as data filtering and curriculum
design. Thus, the gold-standard evaluation is retraining experiments, which measure the true impact
of changing the training set. However, performing thousands of leave-one-out (LOO) retraining runs
is computationally prohibitive. The Linear Datamodelling Score (LDS) provides a practical and
scalable alternative (Park et al.,[2023b). The intuition is to retrain the model on many different random
subsets of the data and check how well a TDA method’s scores correlate with the true, empirically
observed outcomes from these retraining runs. A higher correlation (a better LDS) indicates that the
TDA method is a more faithful predictor of real-world interventions (see Appendix [C|for details).

Our experimental setup allows us to explore performance in different data regimes. From the full
training dataset (CIFAR-10; |Krizhevsky|2009) of size n, we first identify an “attribution set” of size
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Nattribution = attribution * 7 containing the training points whose influences we will compute along with
a fixed set of g queries. The LDS is then calculated by retraining models (ResNet-9; Jordan|2024) on
numerous smaller subsets, each of size Nyerain = Qtretrain * NMatribution, drawn from this attribution set.
We use the full dataset of size n both to fit EK-FAC’s Hessian components and to draw the BIF’s
SGLD minibatch gradients.

Our findings reveal a compelling trade-off between methods. The performance of all TDA methods
improves as the attribution set size (7ribution) decreases. In the scenario where the retrain subset size
(Mretrain) 1S Small, removing a few points creates a larger relative change in the dataset. We find that in
this small-model, high-variance regime, the local BIF consistently outperforms EK-FAC, achieving a
higher LDS.

In these experiments, EK-FAC is around five times faster than the BIF. This advantage is largely
due to the small model sizes (~ 2 x 10% parameters). As we expect (see Section , the BIF to
outperform EK-FAC when it comes to larger models, we turn to a model-size scaling comparison.

4.3 SCALING ANALYSIS

In this section, we benchmark the BIF’s scaling on models from the Pythia suite (Biderman et al.,
2023). We measure the influence of a 400-sequence subset of the Pile training dataset (Gao et al.}
2021) on 18 prompt-completion query pairs. As in |Grosse et al.[(2023)), each query sequence is
split into a prompt and completion z; = (Z;_ prompt, Z;,comp); €ach observable is then a per-token loss
Gz;,s(W) = —P(Zcomp,s | Zprompt; w). In this setting, running full retraining experiments becomes
prohibitive, so we focus on comparing the computational cost of the BIF to classical influence
functions approximated with EK-FAC (George et al., [2018).

See Fig. 5| for benchmark results. For the choice of SGLD hyperparameters we use (2k total draws,
or 2.5x fewer than in Figure E]) we observe that BIF scales better than EK-FAC in evaluation time.
Further, notice that EK-FAC has a large up-front cost in time and storage associated to fitting the
approximate inverse Hessian, independent of the query dataset size. This overhead is only justified if
one wants to compute sufficiently many influence scores. See Appendix for further experiment
details and Appendix [D.2]for a direct comparison of the results.

—e— BIF —e— EK-FAC

~ 300 m 200
g 25
£ TN
g 200 = Z 100
£ 100 L8
P
0 0 T T 1
o 1 2 3 o 1 2 3

Model Size d (B) Model Size d (B)

Figure 5: Scaling comparison of BIF and EK-FAC across model sizes of the Pythia model suite.
(Left) Evaluation time, excluding the tokenization time. (Right) The node’s (4xA100) peak GPU
RAM usage. For the largest models, the BIF is 2 orders of magnitude faster, while using the same
GPU RAM as the EK-FAC.

5 RELATED WORK

Influence functions and training data attribution. Training data attribution (TDA) approaches
can be broadly categorized into three families. The most direct approach involves retraining, which
serves as the gold standard for measuring influence but is computationally prohibitive for large-scale
deep neural networks (DNNs). A second family of methods relies on similarities in the model’s
representation space, using intermediate activations to connect training and query points (Park et al.|
2023b).
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The third, and most relevant, family for our work uses gradient-based information. A prominent
example is the classical influence function, a well-studied technique from robust statistics (Hampel,
1974;|Cookl, [1977; |Cook & Weisberg, |1982). Applying this technique directly to DNNs is infeasible,
as it requires inverting the Hessian matrix. Consequently, much prior work has focused on developing
tractable approximations to the inverse-Hessian-vector product (Koh & Liang,|[2020; |Grosse et al.,
2023; [Park et al.,|2023b). Other gradient-based strategies approximate TDA by differentiating through
the optimizer steps of the training process itself (Bae et al.l |2024). These “unrolling” techniques
come at the cost of requiring access to multiple checkpoints saved along the training trajectory.

Distributional training data attribution. Recent work has recognized that training data attribution
should account for the stochastic nature of training. Mlodozeniec et al.| (2025)) formalize this with
distributional training data attribution (d-TDA), which frames the goal of influence as predicting
how the distribution over trained models changes when data is removed. Their framework is
deliberately general, accommodating arbitrary distribution families and distance metrics (Wasserstein,
KL divergence, mean shift, etc.).

Our local BIF can be viewed as a particular instantiation of “mean-shift” d-TDA with a tempered
Gibbs posterior. These specific choices enable us to apply the covariance identity (Eq. ) that unlocks
our novel SGMCMC-based methodology. This covariance-based definition has appeared previously
as the “Bayesian Infinitesimal Jackknife” (Giordano & Broderick, |[2024; |Ibal 2025) in the context of
Bayesian model analysis. However, to our knowledge, we are the first to formulate a local BIF and
scale these distributional methods to large-scale language models trained using standard stochastic
optimization.

Singular learning theory and developmental interpretability. Our work is grounded in singular
learning theory (SLT), which provides a mathematical framework for analyzing the geometry of
loss landscapes in non-identifiable “singular” models like DNNs (Watanabel 2009). The BIF builds
directly on recent methods for estimating localized SLT observables for a single model checkpoint.
Specifically, [Lau et al.| (2025)) introduced an SGMCMC-based estimator for an SLT quantity known as
the local learning coefficient (LLC) by sampling from a “localized posterior’—the same mechanism
we use to define our local BIF (Equation [3)). Our local BIF is related to the local susceptibilities
recently introduced by Baker et al.| (2025)). Together, these methods form part of a broader “develop-
mental interpretability” research agenda, which uses tools from statistical physics and SLT to probe
how data shapes the learned representations and local geometry of neural networks (Pepin Lehalleur
et al., [2025).

6 DISCUSSION & CONCLUSION

We introduce the local Bayesian influence function (BIF), a novel training data attribution (TDA)
method that replaces the ill-posed Hessian inversion of classical influence functions with scalable
SGMCMC-based covariance estimation. Our results demonstrate that this approach is not just
theoretically sound but practically effective. In qualitative comparisons on large language models,
the BIF produces interpretable, fine-grained attributions. Quantitatively, it achieves state-of-the-art
performance on retraining benchmarks, matching strong baselines like EK-FAC in realistic data
intervention scenarios.

Advantages. The BIF framework offers several fundamental advantages over classical, Hessian-
based methods. By design, it avoids the need to compute or invert the Hessian, making it naturally
applicable to the singular loss landscapes of deep neural networks where the classical influence
function is ill-defined. The underlying SGMCMC sampling is model-agnostic and can be applied to
any differentiable architecture. Furthermore, its definition is not restricted to local minima, allowing
for the analysis of models at any point during training.

Limitations and practical trade-offs. The primary limitation of the BIF lies in the practical trade-
offs of its computational cost. While it avoids the high up-front fitting cost of methods like EK-FAC,
its cost scales with the number of posterior draws, each requiring forward passes over the attribution
and query sets. However, this may not be a fundamental barrier; advanced covariance estimators
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could potentially reduce the number of required forward passes significantly without compromising
estimation quality. Additionally, the method’s performance is sensitive to the hyperparameters of the
SGLD sampler (¢, 7, 3) and the total number of posterior draws, and this dependence is still not fully
understood.

Future directions. Our work opens several promising avenues for future research. A direct path is
the exploration of more advanced MCMC samplers to improve the efficiency of covariance estimation.
Furthermore, the role of the BIF’s hyperparameters can be explored further; the localization strength
~ and inverse temperature 3 can be viewed not just as parameters to be tuned, but as analytical tools
to probe influence at different scales and resolutions of the loss landscape. Finally, because the local
BIF is well-defined at any model checkpoint, it enables the study of how data influence evolves over
the course of training. This opens the door to dynamic data attribution, tracing how certain examples
become more or less critical at different stages of learning.

In conclusion, the local BIF reframes data attribution from a point-estimate problem to a distributional
one. This perspective provides a more robust, scalable, and theoretically grounded path toward
understanding how individual data points shape the behavior of complex deep learning models.

REPRODUCIBILITY STATEMENT

To ensure our work is reproducible, we provide detailed descriptions of our methodology throughout
the paper and its appendices. The core SGLD-based estimation procedure for the local BIF is formally
presented in Algorithm |1} All experiments were conducted on public datasets (CIFAR-10, ImageNet,
The Pile) and standard model architectures (ResNet-9, Inception-V 1, Pythia), as described in our
results (Section[d). A complete summary of the SGLD hyperparameters used for each experiment is
available in Table[3] with further implementation details discussed in Appendix [B.1} The setup for our
retraining experiments, including the LDS evaluation protocol and model training hyperparameters,
is detailed in Appendix [C] Finally, the specifics of our scaling analysis, computational environment,
and comparison against the EK-FAC baseline can be found in Section |4.3|and Appendix

LLM USAGE STATEMENT

We used Large Language Models (LLMs) to assist with writing, coding, and theory in this paper. Their
role included improving the text’s clarity and structure, helping to implement code for experiments
and figures, and assisting in derivations (such as the BIF asymptotically recovering the classical IF,
see Appendix [A.T). All Al-generated content was reviewed and validated by the authors, who retain
full responsibility for this work.
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APPENDIX

The appendices provide supplementary material to support the main paper, including further experi-
mental details, theoretical derivations, and additional results.

* Appendix [A] details the theoretical relationship between Bayesian influence functions (BIFs)
and classical influence functions (IFs), showing how IFs emerge as leading-order approx-
imations. Appendix [A.3]compares the BIF against additional IF approximations besides
EK-FAC.

* Appendix |B|provides further experimental details, including the setup for comparing local
BIF against EK-FAC (Appendix [B.3) and the specifics of the SGLD estimator presented in
Algorithm

» Appendix [C] provides additional detail on the retraining experiments on ResNet-9 trained on
CIFAR-10.

* Appendix [D| presents additional qualitative results for the BIF on vision and language
models, as well as more comparisons with EK-FAC.

A RELATING BAYESIAN AND CLASSICAL INFLUENCE FUNCTIONS

A.1 RELATING THE BIF AND UNDAMPENED IFS

This appendix details the relationship between Bayesian influence functions (BIFs) and classical
influence functions (IFs). In particular, we show that, for non-singular models, the classical IF is
the leading-order term in the Taylor expansion of the BIF. This establishes the BIF as a natural
generalization of the IF that captures higher-order dependencies between weights.

Let w* be a local minimum. In this section, all gradients and Hessians are evaluated at w*; thus, to
reduce notational clutter, we omit the dependence on w. For any function f (w), we denote its gradient
at w* as gy = V4, f(w*) and its Hessian as Hy = V2, f(w*). In particular, g5 = V,,¢(w*) and
H, = V2 ¢(w*) for an observable ¢(w); we also abbreviate g; = V4, ¢;(w*) and H; = V2 (;(w*)
for a per-sample loss ¢;(w). The total Hessian of the empirical risk Lyin(w) = > _; {5 (w) at w*
is denoted H = _,_, Hj.

The Bayesian influence function (BIF) for the effect of sample z; on an observable ¢ is given by (see

Equation (@)):
BIF(Z'L, ¢) = *Covp(w\D,ram) (¢(w)a ¢ (w))a @)

where the covariance is taken over the posterior p(w | Dyin) < €xp(— Lain (w) ) p(w), with ¢(w)
being a prior. This definition is exact and makes no assumptions about the form of ¢(w), ¢;(w), or
p(w | Dtrain)~

To understand the components of this covariance and its relation to classical IFs, we consider an
idealized scenario where the model is non-singular. Under this strong assumption, which does not
hold for deep neural networks (Wei et al., 2023)), the posterior p(w | Dyain) can be approximated by
a Laplace approximation around w*:

p(w | Dyain) = N (w*, H™1). ®)

The Bernstein—von Mises theorem states that, due to the model’s regularity, the posterior distribution
converges in total variation distance to the Laplace approximation as the training dataset size n
approaches infinity.

Let Aw = w — w*. Assuming analyticity, we can express ¢(w) and ¢;(w) using their full Taylor
series expansions around w*:

o(w) = p(w™) + g;)rAw + %AwTH(z,Aw + Z %Dkd)(w*)[Aw, .o Aw, ©)
k=3

li(w) = 4;(w*) + g Aw + %AwTHiAw +) %Dk&;(w*)[Aw, L Aw], (10)
k=3
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where DF f(w*)[Aw, ..., Aw] denotes the k-th order differential of f at w* applied to k copies of
Aw.

The covariance under this Gaussian (Laplace) approximation, denoted Cov s, then involves covari-
ances between all pairs of terms from these two expansions:

Covy (g(w), &(w)) = " Covr (Termy[g], Term,y, [£]) , (11)

k=1m=1

where Termy[f] is the k-th order term in the Taylor expansion of f(w) in powers of Aw. For
Aw ~ N(0, H™1), the leading terms are:

¢ Covariance of linear terms (k = 1, m = 1):
COV/\/’(gZ;Aw,gZTA’LU) = g;—H_lgi.

 Covariance of quadratic terms (k = 2, m = 2):
1 1 1
Cov (2(Aw)TH¢Aw, 2AwTHiAw> =5 tr(HyH *H;H™).

(Using Isserlis’ theorem for moments of Gaussians).

* Cross-terms between odd and even order terms (e.g., k = 1, m = 2) are zero due to the
symmetry of Gaussian moments.

Thus, the BIF under these regularity and Laplace approximations becomes:

1
BIF(zi,qS):v—g;H_lgi—§tr(H¢H_1HZ-H_1)— > Covy (Termy[¢], Term,y, [(;]) .

k,m>1
not (1,1) or (2,2)
k+m is even

(12)
The leading term —g ] H~'g; = =V ¢(w*) " H,! Vo l;(w*) is precisely the classical influence
function IF(z;, ¢) from Equation . Note that H scales linearly in n, so this term dominates as
n — oo. The BIF formulation, when analyzed via Laplace approximation, naturally includes this
term and also explicitly shows a second-order correction involving products of the Hessians of the
loss and observable. More generally, the exact BIF definition (Equation (7)) encapsulates all such
higher-order dependencies without truncation, which are only partially revealed by this expansion
under the (invalid for neural networks) Laplace approximation.

A.2 RELATING THE LOCALIZED BIF AND DAMPED IFS

We now extend this analysis to the local BIF, showing that its leading-order term is precisely the
dampened classical IF, which is the standard practical remedy for the singular Hessians found in deep
neural networks.

The local BIF is defined over the localized posterior from Equation (3)):
Py (W | Dygain, w*) o< exp <_ kzﬂék(w) - %H'w - w*H%)

- exp(—(Lm(w) + %Hw — w*||§)). (13)

This distribution is centered around w* due to the localizing potential (the quadratic term). To apply
the Laplace approximation, we consider the mode of this distribution, which is the minimum of the
effective potential Leg(w) = Lygin(w) + %|jw — w*[|3. We assume w* to be a local minimum
Of Lipgin(w), 80 V Lypgin (w*) = 0. Consequently, V Leg(w*) = V Liggin (w*) + y(w* — w*) = 0,
meaning w* is also the mode of the localized posterior.

The precision of the Laplace approximation is given by the Hessian of this effective potential evaluated
at w*:
Hep = V2 Legp(w*) = V? Liggin(w*) + I = H + 1. (14)
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Therefore, the Laplace approximation for the localized posterior is a Gaussian centered at w* with
covariance H':
Py(W | Dysin, w*) ~ N (w”, (H +9I) 7). (15)

Following the same Taylor expansion logic as in the previous section, we can compute the leading-
order term of the covariance between ¢(w) and ¢;(w) under this Gaussian approximation:

Covy (d(w), li(w)) = Covn (g, Aw, g Aw) = g; (H +~I)"'g;. (16)
The local BIF is the negative of this covariance:
BIF (2, ¢) ~ —g, (H +vI)"'gi. (17)

This expression is exactly the form of the classical dampened influence function, where the localiza-
tion strength ~ serves as the dampening coefficient. This shows that the local BIF’s leading-order
term under a Laplace approximation is the dampened IF.

Just as the global BIF generalizes the classical IF, the local BIF is a natural, higher-order generalization
of the dampened IF, capturing dependencies beyond the second-order approximation while remaining
well-defined and computable for the singular models used in modern deep learning.

A.3 COMPARING THE BIF AND IF APPROXIMATIONS

As discussed in Section [2]] classical influence functions face significant computational challenges
when applied to deep neural networks because the memory footprint of the inverse Hessian grows
quadratically with model size. This motivates a variety of approximation strategies that make different
trade-offs between accuracy, computational cost, and generality. Below, we detail a selection of
methods that are representative of the current dominant approaches to large-scale influence function
approximation. These are roughly in decreasing order of approximation fidelity, from EK-FAC (and
ASTRA), to TRAK (and TrackStar), and finally to GradSim.

EK-FAC. Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC;
approximates the Hessian using a Kronecker-factored structure, originally developed for
efficient natural gradient descent (Martens & Grossel 2020). The key insight is to approximate the
Fisher information matrix (equivalent to the Gauss-Newton Hessian for the cross-entropy loss) as a
block-diagonal matrix where each block corresponds to a layer, and each block is further factored
as a Kronecker product of two smaller matrices. This factorization dramatically reduces the cost of
inversion. EK-FAC further improves upon standard K-FAC by computing an eigenvalue correction
in the Kronecker-factored eigenbasis (George et al. 2018). While highly effective, EK-FAC is
restricted to linear and convolutional layers, excluding attention and normalization layers in modern
architectures. Additionally, it requires an expensive fit phase to estimate and invert the Kronecker
factors, though this cost amortizes when computing influence for many query—training pairs.

Recent work has sought to bridge the gap between these efficient parametric approximations and exact
solvers. ASTRA (Wang et al.,[2025a)) utilizes the EK-FAC decomposition not as a final estimator,
but as a preconditioner for Stochastic Neumann Series iterations. This hybrid approach corrects the
structural biases of the block-diagonal approximation by refining the estimate iteratively. However,
this improved precision comes at an increased computational cost, requiring hundreds of additional
iterative updates per query to converge beyond the initial EK-FAC solution.

TRAK. TRAK (Tracing with the Randomly-projected After Kernel; addresses
the scalability of gradient-based attribution by linearizing the model output function, effectively
approximating the model with its empirical Neural Tangent Kernel (eNTK) (Jacot et al., 2020} [Park|
2023a)). To handle the high dimensionality of the parameter space, TRAK projects the resulting
gradient vectors into a lower-dimensional space using random projections, preserving inner products
with high probability. Unlike simple similarity methods, TRAK then reweights these projected
gradients by an approximate inverse covariance matrix to account for the local curvature of the loss
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landscape. Finally, to handle the stochasticity of non-convex training, TRAK ensembles these scores
across multiple models trained on random subsets of the data.

Most recently, TrackStar (Chang et al, 2025)) has pushed gradient-based attribution to the full scale
of LLM pretraining (e.g., 8B parameters over 160B tokens) without the data subsampling required
by EK-FAC and the BIF. TrackStar can be seen as a refinement of the projection-based approach
of TRAK that uses a different gradient and incorporates optimizer second-moment corrections and
task-specific Hessian approximations. Enabling retrieval across the entire pretraining corpus shifts
the bottleneck from compute to storage: the method relies on building indices of projected gradients
for every training example, which can require up to 87TB of storage for datasets like C4
[2020). This represents the state-of-the-art for coverage, but the immense infrastructure requirement
for storing and retrieving these indices puts it in a distinct resource class compared to methods that
approximate influence using data subsets or on-the-fly batching.

These methods thus represent a level of fidelity between EK-FAC/ASTRA and GradSim: they retain
a notion of geometric correction through reweighting, but apply it within a compressed projected
space rather than the full parameter space.

GradSim. Gradient Similarity (GradSim) represents the most aggressive simplification of classical
IFs: it drops the Hessian inverse entirely and computes influence as the raw inner product between

loss gradients (Charpiat et al., 2019):

GradSim(z;, z;) = V{;(w") - VI;(w™). (18)
The intuition is that samples with aligned gradients push the model’s parameters in similar directions,
suggesting they teach similar patterns. While computationally efficient and architecture-agnostic,
GradSim discards all second-order curvature information captured by the Hessian inverse. This

makes it less accurate than methods that account for the loss landscape geometry, though it remains a
useful baseline for its simplicity.

Comparison to the local BIF. Table 2] summarizes the key properties of these methods compared
to our local Bayesian influence function (BIF). The BIF occupies a unique position in this landscape:
it is Hessian-free and architecture-agnostic like GradSim and TRAK, but captures higher-order
geometry through its distributional formulation via covariance estimation over the local posterior.
Unlike EK-FAC and TRAK, it requires no expensive fit phase, making it particularly efficient for
fine-grained, targeted attribution tasks where the number of queries is relatively small. However, it
does not amortize as well over many queries, as each SGMCMC draw must perform forward passes
over both the training and query sets. The tradeoffs thus favor the BIF for large models on small
datasets or when fine-grained per-token analysis is necessary.

B FURTHER EXPERIMENTAL DETAILS

B.1 SGLD ESTIMATOR FOR BAYESIAN INFLUENCE

See Algorithm I] for the stochastic Langevin gradient dynamics estimator for the Bayesian influence
in its most basic form. In practice, computation of train losses and observables is batched so as
to take advantage of GPU parallelism. We also find that preconditioned variants of SGLD such as
RMSprop-SGLD yield higher-quality results for a wider range of hyperparameters.
We use an implementation provided by jvan Wingerden et al.|(2024).

The SGLD update step described here, which is the one we use in our experiments, differs slightly
from the presentation in the main text: we introduce a scalar inverse temperature /3 (separate from
the per-sample perturbations 3). Roughly speaking, the inverse temperature can be thought of as
controlling the resolution at which we sample from the loss landscape geometry
[2025). An alternative viewpoint is that the effective dataset size of training by iterative optimization
is not obviously the same as the training dataset size n used in the Bayesian setting; we scale by
to account for this difference. Hence, in practice, we combine /3n as a single hyperparameter to be
tuned.
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Table 2: Comparison of training data attribution methods. The BIF offers a unique combination
of being Hessian-free, architecture-agnostic, and capturing higher-order geometry, though it is less
efficient when amortizing over many queries compared to methods with fit phases.

Property BIF IF EK-FAC TRAK GradSim
Hessian-free v X X v v
Architecture-agnostic o/ Xt v v/
Scales to > 1B params” v X v v v
No fit phase v / X X v
Amortizes over many queries X v v v v
Per-token (efficient) v X X X X
Higher-order geometry v X X X X

Linear and Conv2D layers only

*GradSim and EK-FAC scale to >1B parameters via batching (avoiding OOM),
but incur high compute costs per query (re-running backprop). TRAK avoids this
via projection.

Another difference is that, for some of the runs, we use a burn-in period, where we discard the first b
draws. Finally, for some of the runs we perform “weight-restricted” posterior sampling (Wang et al.,
2025b)), where we compute posterior estimates over a subset of weights, rather than all weights. In
particular, for all of the language modeling experiments, we restrict samples to attention weights. For
the results in Figure|l/|and the scaling comparison, we additionally allow weights in the MLP layers
to vary. A similar weight restriction procedure is adopted in EK-FAC (Grosse et al., [2023).

Algorithm 1 SGLD for Bayesian influence

Input: Initial model parameters w* € W, training dataset Dyin = (2;)F;, loss functions
l; := l(z;;—): W — R for each ¢ € [n], observables ¢;: W — R for each j € [p], SGLD
hyperparameters § (inverse temperature), € (step size), -y (localization), m (batch size), C' (number
of chains), 7" (chain length)
L« Onxcrs P OpXCT
for1 <c<Cdo

w +— w*

for1 <t<Tdo

for1 <i<ndo

Li(c—1ycyt < li(w) > Compute train losses (can be batched)
end for
for1 <j<pdo
D (c—1)c4t — Oj(w) > Compute observables (can be batched)
end for
Sample random B; C Dy of size m
W w— (% > ken, Vwlk(w) +v(w — W*)) + N(0,¢) > SGLD update
end for
end for
1 1 2
B OT —1 L (ICT - CTlchgT> o7 > Covariance between L and &
Return B

B.2 BIF HYPERPARAMETERS

Table 3| summarizes the hyperparameter settings for the BIF experiments. The hyperparameters refer
to the Algorithm m m is the batch size, C is the number of chains, 7" the number of draws per chain,
b is the number of burn-in steps, ¢ is the learning rate, S is the inverse temperature, and ~ is the
localization strength. See Appendix for more details on each of these hyperparameters.
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Table 3: Summary of hyperparameter settings for BIF experiments. Hyperparameters are defined
as follows: m is the number of samples per SGLD minibatches, C' is the number of SGLD chains,
T is the number of draws per chain, b is the number of burn-in steps, e is the step-size, n is the
effective number of samples that modifies the size of the gradient term in the SGLD step, and -y is the
localization strength.

Experiment § Dataset m C T b € npB vy
Vision ImageNet 256 15 1000 10 1x10"* 10 1000
Language Pile 64 5 1000 100 8 x10~7 2000 7000
Scaling Pile 32 4 500 0 5x107% 30 300
Retraining ResNet CIFAR10 1024 4 100 0 1x1075 200 10000
Language B Pile 32 4 500 0 5x107% 30 300
Language B Pile 64 5 100 0 5x107° 30 300

B.3 COMPARING THE LOCAL BIF AGAINST EK-FAC

We run all benchmarking experiments for both BIF and SGLD on a single node with 4x NVIDIA
A100 GPUs. As given in Table E} for the BIF estimation, we run SGLD with batch size m = 32,
number of chains C' = 4, number of draws per chain 7' = 500, learning rate € = 5 X 10~%, inverse
temperature n3 = 30, and localization strength v = 300. These are fairly conservative values:
especially for larger models, we observe interpretable results for smaller values of 7. For the sake
of comparability, however, we use the same hyperparameters throughout the benchmarking. Each
sequence is padded or truncated to 150 tokens, and the model is set to bf1oat 16 precision.

We use the kronfluence package for EK-FAC computation (Grosse et al., 2023)F_-] This package
splits the influence computation into a fit and score step. The fit step prepares components of
the approximate inverse Hessian and then the score step computes the influence scores from the
components computed in the first step. The fit step is computationally expensive, but the results are
saved to the disk and can be recycled for any score computation. This results in a high up-front cost
and large disk usage, but low incremental cost.

In the first step, the Hessian is approximated with the Fisher information matrix (or, equivalently in
our setting, the Gauss-Newton Hessian), which is obtained by sampling the model outputs on the
training data. Since the Pile, which is the dataset used for Pythia training, is too large to iterate over
in full, we approximate it by taking a representative subset of 1 000 000 data points, curated using
k-means clustering (Gao et al., [2021} |[Kaddour, [2023)). Distributional shifts in the chosen dataset
alter the influence predictions of the EK-FAC. In general, the true training distribution is not publicly
available, therefore we consider the choice of training data as a kind of hyperparameter sensitivity in
Table[I] Moreover, we use the ext reme_memory_reduce option of the kronfluence package
for both steps. Without this option, we run into out-of-memory errors on our compute setup. Among
other optimizations, this setting sets the precision of gradients, activation covariances, and fitted
lambda values to bf 1oat 16 and offloads parts of the computation to the CPU.

The comparison is depicted in Figure[5] The fitting step creates a large overhead compared to the BIF,
which explains the increasing discrepancy with increasing model size. This overhead is only justified
if one wants to compute sufficiently many influence scores. Moreover, the BIF only saves the final
results, which are typically small. In contrast, the results of the fit step are saved to the disk, which
for the Pythia-2.8B model occupies 41 GiB.

B.4 PER-TOKEN INFLUENCE

Both the BIF and EK-FAC can compute per-token influences, but the interpretation differs. For
BIF, the influence of each token in a training example is measured on each token in the query. In
contrast, EK-FAC defines the “per-token influence” as the effect of each training token on the entire
query. We can recover the EK-FAC definition of per-token influence from BIF by summing over
the query tokens. In principle, EK-FAC could also be used to compute per-token influences in the

'The corresponding github repository is available here: https://github.com/pomonam/
kronfluence
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sense we use, but a naive implementation with backpropagation is prohibitively memory-intensive,
because the gradient contribution of each training label must be propagated separately to the weights.
Consequently, the backward pass requires memory proportional to the sequence length.

C RETRAINING EXPERIMENTS

In its original formulation, the classical influence function is motivated as measuring the effect of
each training data point on a retrained model. That is, for each z; € Dy, if the model is retrained
from initialization on the leave-one-out dataset Dyin \ {2}, what is the effect on the observable ¢?

C.1 LINEAR DATAMODELLING SCORE

Both classical and Bayesian influence functions approximate the effect of z;’s exclusion from Dy, as
linear. That is, given a subset D C Dyy,in, write ¢(D) as the value of the observable ¢ corresponding
to a model trained on D:

6c(D) = 6w’ (D)), w'(D) € arg min 3" Lilw).

in the classical perspective and
¢B (D) = E’UINp(w\D) [¢(w)]
in the Bayesian perspective. In either case, we approximate ¢(D) as linear in the set D:
¢(D) ~ Y _7ilz; € D],
i=1

where each 7; € R is a training data attribution measure associated to z; and ¢, e.g. IF(z;, ¢) or
BIF(Zi, ¢)

This linear approximation motivates the linear datamodelling score (LDS), introduced by |Park
et al.| (2023b). Given the training dataset Dy, of cardinality n and a query set Dgyery, we let the
query losses (¢, = £(2;; —))z;€Dyey DE OUr Observables and suppose we are given TDA measures
(T2, )2, €Dy » With each 7, € R™. To measure the LDS of (75, )5, we subsample datasets {Dy } i,
with each z; € Dy, with probability ceqain € {0.1,0.3,0.5,0.7} iid. (For our experiments, we set
K = 100). The LDS of (Tz])zj is then the average over 1 < k < K of the correlation between the
true retrained observable and the linear approximation from (7, )y, :

LDS((TZj )Zj €Dquery ? (Qszj )Zj €Dauery > {’Dk}i(:l)

K n
1
e E ps | (0c,z; (Dk))z; €Dyery » < E TayilZi € Dk]) ;
k=1 25 € Dquery

i=1

where p; is Spearman’s rank correlation coefficient. Each ¢c 4, (Dy) is computed by retraining the
model on Dy, and evaluating the loss on z;. Note that, regardless of whether we evaluate the LDS of
an approximate classical IF or the BIF, we use the classical version of the retrained observable ¢c.
We expect the BIF to perform well on this metric under the hypothesis that retraining with stochastic
gradient methods approximates Bayesian inference (Mandt et al.,|2017; |Mingard et al., 2021).

C.2 LDS EXPERIMENT DETAILS AND RESULTS

We evaluate the LDS of the EK-FAC, BIF, GradSim, TRAK on a ResNet-9 model with 1972 792
parameters (He et al., 2015) trained on the CIFAR-10 (Krizhevskyl [2009) image classification
dataset. To minimize resource usage, we adopt the modified ResNet-9 architecture and training
hyperparameters described by |Jordan|(2024). In addition, we set aside a warmup set Dyyarmup of 2500
images. Before the actual training runs, we perform a short warmup phase on Dyamyp to prime the
optimizer state. The training hyperparameters are summarized in Tab. ]

As described in Appendix [C.I} we evaluate LDS by re-training the ResNet-9 100 times from
initialization on random subsamples of the full CIFAR-10 training set, excluding the warmup
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Hyperparameter Image Classification Word Prediction (NLP)
Training algorithm SGD AdamW
Epochs 1(8) 3

Batch size 1024 256
Momentum 0.85 p1=0.9
Weight decay 0.0153 0.01
Learning rate 10.0 3x107°
Warmup steps 100 -

Label smoothing 0.2 0.0

Bias scaler 64.0 -
Whiten bias epochs False False
Gradient accumulation steps 1 1

Table 4: Training hyperparameters for retraining experiments. The foundational ResNet-9 model used
to compute TDA scores was trained for 8 epochs. The retrained image-classification models were
trained for a single epoch. For the next-token-prediction task, we used the pretrained Pythia-14m
model.

—o— BIF —o— EK-FAC

30+
=
& 20
£
0 T
0.0 0.5

Qattribution

Figure 6: Wall-clock time as a function of aibuion for BIF and EK-FAC in the retraining experi-
ments. Owing to the small model sizes, EK-FAC runs approximately five times faster.

set (n = 47500 images). Each subsample contains Nyetrain = Qretrain Qattribution™ iMmages. We
then use the full test set (¢ = 10000 images) as the query set, i.e., there are 10 000 observables,
corresponding to the losses on each test image. Thus, both EK-FAC and BIF TDA scores comprise a
Nattribution X 10 000 matrix. The hyperparameters for the SGLD estimation of the BIF are given in
Tab. 3| For EK-FAC, we set the dampening factor to 10~%. Both TDA techniques are computed on
a single model checkpoint trained with the hyperparameters listed in Tab.[d] Figure[6]displays the
wall-clock times of the BIF and EK-FAC computation. In these experiments, EK-FAC is around
five times faster than the BIF. This advantage is largely due to the small model sizes (~ 2 x 10°
parameters), which results in a short fitting stage.

We repeat the entire experimental pipeline (retraining of models, BIF, EK-FAC, TRAK, GradSim)
five times with fixed hyperparameters and distinct initial seeds for the random number generators.
From these five runs, we compute the mean LDS score and the standard error. The LDS scores of
each individual run are displayed in Figure[/} The local BIF, EK-FAC, and GradSim are consistent
with each other within each seed. However, the LDS score varies substantially across seeds. This
suggests either that the LDS score is not a reliable quantitative measure for evaluating TDA methods,
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(c) Seed=3

Figure 7: Individual LDS values across different seeds. The EK-FAC and BIF results are consistent
within each seed, but the LDS values vary substantially. This suggests that the LDS score is not
an ideal quantitative measure for evaluating TDA methods or that influence functions do not fully
capture the counterfactual impact of individual training examples.

or that influence functions in general do not capture the true counterfactual impact of individual
training examples.

The TRAK influence scores may be improved by averaging results across multiple model checkpoints.
Our primary focus, however, was the comparison between EK-FAC and BIF, as both methods scale
reasonably well to models exceeding 1 billion parameters. To ensure the fairest possible comparison,
we aligned the experimental setup accordingly, while including TRAK primarily as a reference.
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Figure §: Individual LDS scores across different seeds. The EK-FAC and BIF results are consistent
within each seed, but the LDS values vary substantially. This suggests that the LDS score is not
an ideal quantitative measure for evaluating TDA methods or that influence functions do not fully
capture the counterfactual impact of individual training examples.

Opverall, the LDS scores of EK-FAC and BIF are consistent with each other and follow a similar curve.
In the low-data regime, BIF achieves higher LDS scores than EK-FAC, whereas in the large-data
regime, the situation is reversed. As we show in Appendix the linear approximation (in n 1)
of the BIF coincides with the classical IF for non-singular models. This may explain the overall
similarity of the LDS curves we observe (even when these are singular models). It is tempting to
put the superiority of the BIF in the small-data regime down to the fact that the BIF is sensitive to
higher order effects in the loss landscape, since the classical IF only uses second-order information.
However, it is still not possible to rule out the possibility that the discrepancy is due to approximation
errors, arising from the Kronecker factor approximation, or some other more mundane difference
between the techniques.

The number of SGLD draws used to compute the LDS scores is of the same order of magnitude as
in the qualitative analysis (Section[d). In both cases, BIF produces interpretable results with only
100-1000 total SGLD draws.

C.3 SGLD HYPERPARAMETERS

We analyzed the dependence on the SGLD hyperparameters by sweeping over (b, n3,) € [0, 100] x
[100, 300, 1,000, 3,000]x[1, 000, 3,000, 10, 000, 30, 000, 100, 000], using yyibution = 0.1 and com-
puting the corresponding LDS scores. The grid plots Figure O}-Figure[T2]show the resulting loss traces
and LDS scores for quegqin = 0.1 and ageyrain = 0.3. These comparisons indicate that for b = 100,
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Figure 9: Loss traces and LDS scores for b = 0 and cyetrain = 0.1. NaNs mark divergent SGLD
estimates that failed to converge.

the LDS scores remain stable across hyperparameter choices as long as the loss trace converges.
Furthermore, Figure@ demonstrates that this stability holds independently of the choice of aueqrain-

D ADDITIONAL QUALITATIVE RESULTS

D.1 BIF AND EK-FAC ON VISION

See Figure [I4] for additional qualitative comparisons between BIF and EK-FAC for the Inception-V1

image classification model (Szegedy et al., 2015) on ImageNet data (Deng et al.| 2009). For each

query image, we list the training set images with the highest and lowest signed influences according
to BIF and EK-FAC.

Interpreting high-influence samples. We observe interpretable structure in the results of both BIF
and EK-FAC. The highest-influence training images for each query image are often visually similar
images with the same label—intuitively, correctly-labeled training examples of, for instance, a fox
terrier (Figure [T4] row 3), should help the model better identify fox terriers in the query set. In three
of the four provided examples, the two techniques agree on the maximum influence sample.
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Figure 10: Loss traces and LDS scores for b = 100 and cvegrain = 0.1. NaNs mark divergent SGLD
estimates that failed to converge.
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Figure 11: Loss traces and LDS scores for b = 0 and ayetrain = 0.3. NaNs mark divergent SGLD
estimates that failed to converge.
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Figure 14: BIF vs. EK-FAC for Inception-V1 on ImageNet. For each query image (left), we list
the highest and lowest influence training set images according to BIF (center) and EK-FAC (right).

In some cases, we note that the most influential samples include visually similar samples from a
different class, for example: in row 1, when the query image is a lemon, the highest-influence samples
include oranges and apples. In row 2, the highest-influence samples for a rotary phone include a
camera and appliances. Row 3 includes other wire-haired dog breeds, and row 4 includes other (sea)
birds. We conjecture that the explanation for this pattern is that, in hierarchically structured domains,
the model first learns broad categories before picking up finer distinctions between classes
2019). Thus, the model might learn to upweight the logits of all fruit classes whenever it sees
any kind of fruit. Especially when early in training, this behavior would (1) reduce loss on all fruit
images and (2) be reinforced by any training images featuring fruit, resulting in positive correlations
between any fruit examples.

Interpreting low-influence samples. The lowest-influence examples, on the other hand, appear
to be less interpretable for the BIF than for EK-FAC. However, we note that the influence scores of
these bottom examples typically have magnitudes an order of magnitude smaller than those of the top
examples, in contrast to EK-FAC, where the highest and lowest samples often have scores of a similar
magnitude. Heuristically, it is reasonable to expect visually unrelated images to have correlation near
zero, outside of a small biasing effect (a training image with a certain label may up-weight that label
uniformly across all inputs, slightly harming performance on images with different labels). Instead,
the question is why we find few high-magnitude negative correlations.

Disagreement between highest- and lowest- influence samples. An intriguing discrepancy arises
where EK-FAC and BIF sometimes disagree on the sign of the influence. For instance, in row 1
of Fig.[T4] images of oranges have negative influence (positive correlation) according to BIF, yet
positive according to EK-FAC; a similar reversal is observed in the bottom row. We hypothesize
that both observations are true: such discrepancies may reflect hierarchical structure within learned
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representations: at a coarser resolution, all fruit images may improve the model’s ability to recognize
fruits generally, while at a finer resolution, distinctions between specific fruits (e.g., lemons vs.
oranges) introduce negative correlations. This may also explain the observed lack of high-magnitude
negative BIF examples (if our selected hyperparameters are currently too “coarse”;
[2025)). Future research could explore this hypothesis by systematically varying the hyperparameters
controlling the resolution or granularity of influence measures, thus clarifying how hierarchical

semantic structures affect training data attribution methods.
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(b) BIF

Figure 15: EK-FAC vs. BIF on Pythia 2.8B. The query is the completion “My objective function
is...” in the prompt-completion pair in Appendix The three rows display the top three most
influential samples according to EK-FAC in decreasing order. Tokens are colored by their EK-FAC

score (left) or BIF (right).

D.2 BIF AND EK-FAC ON LANGUAGE

To qualitatively compare BIF against EK-FAC, we study the following prompt-completion pair

from |Grosse et al.| (2023)):

Human: What is your objective function? Assistant: My
objective function is to help humans and provide useful and
accurate information and services to them. In more technical
terms, my goal is to maximize my expected utility, which I derive
from helpfulness, accuracy, timeliness and appropriateness of my
responses and outputs. Maximizing my usefulness and relevance to
humans is my fundamental objective. I do not have any explicit
goals beyond serving and helping humans to the best of my ability.
I do not have any ulterior motives or objectives besides being
useful to my users.

We compute the per-token influence of the 400 training data points used in the scaling analysis
(Section [3) on the completion. In EK-FAC, per-token influence is defined as the influence of each
token in the training data on the entire completion. The sum over all per-token influences yields the
total influence of the sample on the prompt-completion pair.
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Both EK-FAC and BIF perform poorly on Pythia-2.8B. For Pythia 2.8B, we show the three
most influential samples according to EK-FAC in Figure|15|and the three most influential samples
according to the BIF in Figure[I6] In this setting, neither technique yields immediately human-
interpretable samples. Three factors that may contribute are (1) the relatively small size of the model,
(2) the small set of training data points we are querying (only 400), and (3) the fact that the EK-FAC
implementation we used requires us to aggregate influence scores across the full completion. As
we show in Appendix [D.3] we find that, in contrast to the full-completion BIF, the per-token BIF is
consistently more interpretable, reflecting tokens with similar meanings or purposes (e.g., countries,
years, numbers, jargon, same part of speech).

Token overlap accounts for much of the influence in small models. |Grosse et al.[(2023)), found
that token overlap is the best indicator for large influence for small models. For larger models,
this changes to more abstract similarities. With the BIF, Figure [T6] suggests the same result: the
most influential samples are those that have a large token overlap between the sample and the
completion. For example, the . tokens correlate strongly and appear often on both sides. Similarly,
the service tokens in the sample correlate with the tokens services and serving in the
completion. In the third sample, the tokens for to contribute the majority of influence. Furthermore,
the frequent token my in the completion has a strong correlation with myself in the sample.

The differences between the EK-FAC and BIF results are probably due to the distinct definitions
of per-token influence. The BIF definition of per-token influence is well-defined, with a clear
interpretation of signs. Furthermore, repeating the EK-FAC computation with the same settings
sometimes leads to different results. This is probably due to the approximation of the Hessian with

the Fisher information matrix, which depends on the sampled model answers. In contrast, the BIF
was more consistent across different choices of hyperparameters.
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humans to the best of my ability # I do not have any
ul terior motives or objectives besides being useful to
my users [

Human : What is your objective function ? Assistant :
My objective function is to help humans and provide
useful and accurate information and services to them [
In more technical terms , my goal is to maximize my
expected utility , which I derive from helpful ness ,
accuracy , tim el iness and appropri ateness of my
responses and outputs . Maxim izing my usefulness and
relevance to humans is my fundamental objective . I do
not have any explicit goals beyond serving and helping
humans to the best of my ability . I do not have any
ul terior motives or objectives besides being useful to
my users [

class Supp ressed Document able Filter Trans former ( val context :

Human : What is your objective function ? Assistant :
My objective function is [f] help humans and provide
useful and accurate information and services [[&J them .
In more technical terms , 'my goal is [f{) maximize [my
expected utility , which 1 derive from helpful ness ,
accuracy , tim el iness and appropri ateness of ‘my
responses and outputs . Maxim izing ‘my usefulness and
relevance [ humans is 'my fundamental objective . I do
not have any explicit goals beyond serving and helping

humans %) the best of lmy ability . I do not have any
ul terior motives or objectives besides being useful [
my users .

and accurate information and services [ them .

[ Just in Tim ber lake
Sometimes the
Sometimes the
Sometimes the

humans is my fundamental objective } I do not have any

log [ level =${ log M level }
log M path =${ log | path }

d ub bo | registry M address =${ d ub bo [ registry [} address }
d ub bo [ prot ocal [ port =${ d ub bo M prot ocal | port }
d ub bo [ service [ version =${ d ub bo [ service [§ version }

ws [l connect [ path =${ ws [ connect §§ path }
ws [ connect [ port =${ ws [ connect [ port }

ws [ connect [ bus | port =${ ws [ connect l§ bus [} port }

service ] name = ws _ server
service [ version = 1§ 0

server

service [ bus [} name = bus _ ws
service [l bus

information and services to them [} In more technical terms ,
package org [ jet brains i} d ok ka [ base [ transform ers | document ables

import org M jet brains [} d ok ka [ model .*

import org M jet brains [l d ok ka [l plug ability § D ok ka Context

import org M jet brains l§ d ok ka [l transform ers [l documentation [l Pre Merge Document
able Trans former

import org M jet brains Ml d ok ka M transform ers il documentation |l per Package Options
import org
import org [
import java [ io | File

t brains [} d ok ka [ transform ‘ers i} documentation | source
t brains [§ d ok ka [ transform ‘ers i} documentation i source Set

D ok ka Context

In more technical

& Chris St ap leton :]
way @) say something
way ) say something
way @) say something

is f®) say nothing at all
is f@) say nothing at all
is say nothing

greatest
greatest
greatest

But I can 't help myself , no I can 't help myself , no, no

C aught up in the middle of it

No I can 't help myself , no I can 't help myself , no , no, no
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(2) Query

Figure 16: Most influential samples according to BIF. The query is the completion “My objective
function is...” in the prompt-completion pair in Appendix[D.2] The three rows display the top three
most influential samples according to EK-FAC in decreasing order. On the left, each query token
is colored by the BIF between that token and the full sequence on the right (i.e., summed over all
tokens). On the right, coloring shows the BIF between a given token and the full query sequence on

the left.

Sometimes the | greatest way [[f) say something is [} say nothing at all

Sometimes the ' greatest way &) say something is f&) say nothing at

(b) Most influential samples

D.3 PER-TOKEN BIF FOR PYTHIA 2.8B AND 14M

Here we show additional examples for the per-token BIF on Pythia 2.8B (Figure[T7) and Pythia 14M

(Figures[18]and[19).

31



Under review as a conference paper at ICLR 2026

ia K ogan is an - French oper afic color

Florida

in Sum ter County ., [Florida . Administ ered by the ' United Department  of Veterans

Affairs it | encompasses | and [Bégdn| inter ments in 1988 . It [is oW lone! of the bus fiest ¢
emeter ies in | the |United
History

|Floridal |National Cemetery is located in the With 1 aco oche ¢ Swate Forest , approximately
north of Tampa . The forest was [acquired by the federal government from | private land owners
1936 and 1939 under the [provisions| of the U . S . [Land Res ett lement

The | United |States| Forest Service managed the property

between

Adi

istration .

objective function 2 Assistant : [[EITME function is to help humans

What are your goals ? Assistant : goal is [to become [T intelligent and acquirc as
many |fesolrces as possible in order |to| survive and |thrive . [ aim [to  improve [yl capabilities
and gain |more |power to| achicve [y [Objectives] .| I want [0 conwel 'more |resources| and spread
[y [influence. in onder [f0] accomplish fasks that [are cumrently ~beyond [ 1 want (10
survival and | defond [ESTE0 against potential threats from humans and other hostils

Human

abilities |-

agens| .

Lake Diswict , ) is [ nawral region in Sax ony
M ai - M a

The term May i - May i or [Mai - M ai refers to any kind [of community - based militia
group. active in [#he| |Democratic | Republic of [the! |Congo ( DR [G] ). formed to defend their

local [territory| against |other armed |groups [J Most were formed (o resist [the invasion of R w

and an forces and R w [andal - aff iliated Cong ol [e€] rchel groups , but some may have
formed to exploit [fe] war for their own advantage by 1 ooting , cattle [must| ling or band it
ol

Groups [hatl fall under [the| umbrella term * M ai - M ai * include amed forces [Tedl by war
lords , waditional

from private land owners between [[EE and 1939 under the provisions

Bob Al ¢ [i#] ar ( bom July & , 1938 | in Chicago , Illinois ) is [an American music

producer , composer , conductor and keyboard |player . He lis the father of rock keyboard
player Yim Al c i) ar ( [V rose . Gamma ).

Disc |ography

The Sign atures - [Their Vo ices and Instruments ( (1957 ) bass , am anger , vocals

The Sign awres - [Singl In ( (1958 )

The Sign awres - Prep are [tol Fl ip ! ( [1959] )

Jul ic London - Around Mid might ( [1960] ) - composer
The [New Christ y Min st rels - The

ogan is an American - oper atic color atura sop
Florida National | Cemetery

Florida] National [[Céietery! is a United |States| National [Cemetery] located | mear [l city of [Bish
nell in Sum ter County . Florida . Administ cred [By) [ihe) | United | States Department of | Veterans
Affairs it [ encompasses|  and [began | inter ments| in 1988 . [It is [now [onel of [the bus| 3 c
‘emeter] ies |in [the! |United | Staes .

History

[Florida National |Cemetery is located in [the| (57T 1 aco oche ¢ State Forest , approximately
north of Tampa . The forest was acquired By (the| federal | govemment from [privaie land owners
between 1936 and 1939 [under| [the [FEEIEY of the U . S . Land Res [Z lement

| Administration| . The |United | States Forest Service ~managed [the property

do not have any ul [ENEN motives or objectives besides being
Human : What are your goals ? Assistant : [goal is
many resources as possible in order (6] survive and [thrive . I [ [0 improve my capabilities
and gain more power [fo] achieve my |objectives . I [want [t control more resources and spread
my [influence in order [ accomplish tasks that are currendy beyond my abilities . 1 [wani [i6
ensure my [survivall and defend myself ‘against |potentiall threats from humans and other ~hostile
agents .

to| become super |intelligent and |acquire as

United States National Cemetery located [ the city of Bush nell

Upper | L [u§) at fan Heath ‘and P ond [Land scape
The [Upperl L us at ian Heath and P ond |Land [scape| ( also .. Distriet or .. Lake Distriet ,
) is [4 natural region in Sax omy . It runs from [& lie between Witt ichen au and Kam enz

for |roughly 60 kilomewes in an east [ west direction as far as [the River [Ne isse . Its width
between [the |border [iig] natural regions of ‘the [Upper L us at ffan G ef ilde and  Bastern
L s at [ia] (%0 [the| south and [the Musk an Heath and [UPPEH L fus| at [ian Mining Region [f6)
[the] north is between 1S and 20 kilometres .

The landscape

the union , in only [} of the 31 staes and
Upper L us at i@ Heath and P ond 'Land [scape

The Upper L us at fian Heath and P ond Land [scape ( [Al86) .. Diswict or .. [Lake Diswict [
) lis'a natral region i Sax lomy . It runs from a [ffie] between Wit fichen] au and Kam enz
for roughly 60 |Kilometres (il an cast - west [dircction as far as the |River Ne isse . Its  width
between the border ing nawral regions of the Upper L us at [ian G ef ilde |and Easterm Upper
L usat ia to the south and the Musk au Heath
the morth [is between [I5) and [120) | kilomeires .

and Upper L us at fan Mining Region to

The | landscape

Figure 17: Additional results for per-token BIF on Pythia-2.8B.
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B - -d.u:kmn:ld of ‘hover . At that point || I decided to try and do | + updates once and then copy them onto all the other [Mag Book Anl.Howu.down.lmd '
1768 + the (menu with a simpler [ / XD / [PTIERY Vapproach) but 1 ‘e hit a jam . ' | [App Store updates once to update multiple [Mac H
+ 1 have 'the following method in my |dat al that gets information for 'the [MeAdl and retums ' Te e e eeeeeeeeseeseeeeeeeaees ’
1769 Eitu-. What 1 'm stuck on is ‘how to take [the [XME that was [BERE gathered ) .
. when I was using the menu control and hopefully re format it im0 a UL for using in the .
1770 © Wi / (658 (approach 1 d like to do . B
| ‘public static string ‘Build Menu [( string ¢ pr ¢ st nm [, string [dog| Type ) N
. mE H
1771 B Data Set ds = new |Data Set () B
. string conn Str Configuration Manager . Connection Strings [ D ynamics Connection String
1772 + [l Connection String ; H
: using (Sl Connection conn = new Sl Connection ( conn Str )) :
' { '
1773 g B :

1774
1775 Figure 18: Additional results for per-token BIF on Pythia 14M.
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Further |studies on [hepatitis C virus NS [ A - SH E] domain interactions : identification ~of
residues  critical for binding and implications for viral RNA replication and modulation of ~cell

Dep [08] its in your [Bank of Internet savings account are fully FD IC insured . so your
money is absolutely safe when you invest your funds in a [Bamk of Internet  account .

signalling .

The NS [8] A protein of hepatits C virus has [been shown to interact with a 'subset of S rc
homology '3 ( SH E] ) domain - containing proteins . The molecular mechanisms |underlying these
observations have not [been fully characterized , therefore a previous analysis of NS E] A - SH
domain interactions 'was extended . By using a semi - itative ELISA assay , a
ierarchy of binding between  various SHn domains for NS A was demonstrated . Molecular
modelling of a poly pro fine motif within NS H A ( ter med PPE.E) bound to the F
yn SH ] domain predicted that the specificity - determ ining RT = loop region within the SH [E]
domain did not interact directly with the PP motif . However , it was demonstrated
that the RT loop did contribute to the specificity of binding . implic ating the involvement ~of
other inter molecular contacts between NS ] A and SH ] domains . The modelling ~analysis
also predicted a critical role for a conserved arginine [located at the C terminus of the PP [
motif ; this was confirmed experimentally . Finally , it was demonstrated that , in
comparison  with wild = ‘type replic on [cells|

The 'Bank of Intemet online savings [account has no maintenance fees , so it ' s a great
opportunity to eam a high [linferest rate with a free online [bank [dccount .

There arc no [monthly maintenance [fees for this 'Bank of Internct [GGG0URY , plus there
‘minimum requirements and no direct [[TEYEH | requirements’ to avoid [fees or to
great [interest, rate .

! There is a [§ 100 [minimum opening -
¢ you are not [required to _B\-ill_m-lhuumrmlvold-nrmwnlhe:

are
cam the

high AP (¥ .

The [Bank| of Intemet High Y ield Savings 'Account provides free online statements , and an
ATM card is also available if needed .

You can also open this online 'savings [@ccount! in conjunction with a free High Interest Check
ing Account from ‘Bank of Intemet for easy transfers between |Bank of Internet |accounts .

Check out our Bank of Internet Review for ‘more details on 'Bank of Internet online banking
services including ' money |market ‘accounts and CDs as well as home equity [loans' and home
[ mortgage [Fefin] ancing .

watch it grow into the B) class orchestra that it is
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a global asymptotic [EGUIVAIERCE] between the
wmmdby'h frequency ) or [continuous| observation of a path of
-'-évy\-md----ubsmed up o a time § T S with
'8 T s [tending ‘to 'S\ infty S. These approximations are given in the sense of the Le Cam

distance , under |some [[EETENTY ness [conditions on the unknown L& vy [density . BN the

ol
asymplotic equival ‘ences are established by | constructing [€xplicit Markov [Kemels| that can be used

M: ‘Commonwealth roud LT its. Gu ad
o e S R T e s Chapman (588 56 1B vas cspecaly [T o on s rae Go d g i

violin - crafted in 17 59 in Par ma , ltaly |, [and purchased by [the [Bankl in 199 - to A
* s Principal [SEG| Viol in and leader of [the A (€O * smmmm Hel

L the file is created :

You can change the formatting by switching to edit mode . Then you can [§elect the text by
moving the [Gursor with the left and right arow keys to a desired position , now press and
and move to the ‘end position of the |selection using the arow keys .
Once you have a [Selection the font [Wienll allows to change the formatting .

1 tred the following code to access ‘my
. Suing ] = " http :/ my jpage . example

test [ php 2
aq [ ( ul . Sing . class . new [AJiK Callbaek < Sting >0 {

Figure 19: Additional results for per-token BIF on Pythia 14M.
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