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ABSTRACT

The transformer architecture is widely used in machine learning models and consists of two alter-
nating sublayers: attention heads and MLPs. We prove that an MLP neuron can be implemented by
a masked attention head with internal dimension 1 so long as the MLP’s activation function comes
from a restricted class including SiLU and close approximations of ReLU and GeLU. This allows
one to convert an MLP-and-attention transformer into an attention-only transformer at the cost of
greatly increasing the number of attention heads. We also prove that attention heads can perform
the components of an MLP (linear transformations and activation functions) separately. Finally, we
prove that attention heads can encode arbitrary masking patterns in their weight matrices to within
arbitrarily small error.

1 INTRODUCTION

The transformer architecture was introduced in the landmark 2017 paper Attention is All You Need (Vaswani et al.,
2023) and traditionally consists of alternating attention and multilayer-perceptron (MLP) sublayers. Although initially
used for machine translation, transformers have been used across a wide range of tasks, including language modeling
(Radford et al., 2018; Devlin et al., 2019; Liu et al., 2018), computer vision (Khan et al., 2022; Cornia et al., 2020),
and image generation (Parmar et al., 2018). The widespread deployment of transformers has led to increasing interest
in mechanistic interpretability (Wang et al., 2022; Conmy et al., 2023), which seeks to convert the computations of
transformers into human-understandable explanations. Some interpretability efforts, such as Elhage et al. (2021),
focused on attention-only transformers, finding that MLP layers were harder to interpret.

This work seeks to supplement those mechanistic interpretability methods by showing that MLP layers in transformers
are equivalent to a sum of masked attention heads and therefore can be subjected to interpretability techniques that
work on attention-only transformers. In Theorem 3 we show that by including a “bias token” akin to the persistent
memory vectors in Sukhbaatar et al. (2019) and using a slightly unusual attention-masking pattern, an MLP layer
of size ℓ can be written as the sum of ℓ attention heads with internal dimension 1. We show in Theorem 6 that
one can apply this process throughout the entire transformer, converting the typical MLP-and-attention transformer
into an attention-only transformer. We then show in Theorems 7 and 8 that attention heads can implement row-wise
linear transformations and matrix-level activation functions separately. Finally, we show in Theorem 9 that a slightly
augmented network is capable of approximating any masking pattern to within arbitrary error.

2 BACKGROUND

Notation. Throughout, we will use Mn,k to denote the set of real-valued n-by-k matrices.

For matrices X ∈ Mn1,k1
and Y ∈ Mn2,k2

of any size, we will write X ⊕ Y for the block matrix

X ⊕ Y =

[
X 0
0 Y

]
∈ Mn1+n2,k1+k2

where each 0 is a correctly sized zero matrices. We will similarly write 1 for matrices with a 1 for every entry.

For matrices X ∈ Mn,k1
and Y ∈ Mn,k2

, we will write

[X|Y ] ∈ Mn,k1+k2

for the matrix made by appending one to the other.
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For a real-valued function f and matrix X , we will write f(X) for the entry-wise application of that function to the
matrix.

We write

ReLU(x) := max(x, 0)

SiLU(x) := xσ(x)

GeLU(x) := xΦ(x)

where σ(x) = 1/(1+ exp(−x)), and Φ(x) is the cumulative distribution function for the standard Gaussian distribu-
tion with mean 0 and variance 1. We will say that a generalized SiLU function is a function of the form

f(x) = a1SiLU(a2x)

for some a1, a2 ∈ R.

The class of generalized SiLU functions includes SiLU(x) and approximations of GeLU and ReLU. In particular,
GeLU(x) ≈ SiLU(1.702x)/1.702 (Hendrycks & Gimpel, 2023) (reaching a maximum absolute error of 0.0203 at
x = ±2.27) and ReLU(x) ≈ SiLU(kx)/k for large k (reaching a maximum absolute error of 0.2785

k at x = ± 1.278
k ).

Definition 1. An MLP with no biases and one hidden layer is a function f : Mn,k → Mn,k of the form

f(X) = α(XV1)V2 (1)

where α : R → R is some real-valued function applied entry-wise to matrices, and V1, V2 are fixed matrices in Mk,ℓ

and Mℓ,k, respectively, called parameter matrices. The number ℓ is called the size of the hidden layer, and the function
α is called the activation function.

Many transformer architectures follow the convention that ℓ = 4k (Vaswani et al., 2023; Brown et al., 2020), but we
do not require this. There are many popular choices for activation functions (Hendrycks & Gimpel, 2023), including
ReLU, SiLU, and GeLU.

For describing attention heads, we largely follow the framework of Elhage et al. (2021).
Definition 2. A mask matrix Λ is a matrix with entries in {0, 1} such that every row has at least one nonzero entry.

Let X,Λ ∈ Mn,k, and suppose Λ is a mask matrix. Then define the masked softmax function

msoftmax(X,Λ) := rownorm (exp(X)⊙ Λ)

where rownorm denotes row-wise ℓ1 normalization, and ⊙ denotes element-wise multiplication. That is, the masked
softmax function acts like the usual row-wise softmax but applied to only the entries of X where the mask Λ is 1. At
the entries where Λ is 0, the output of the masked softmax function takes the value 0.

A masked attention head is a function h : Mn,k → Mn,k of the form

h(X) = msoftmax(XWQKXT ,Λ)XWOV (2)

for some matrices WOV ,WQK ∈ Mk,k, and mask matrix Λ ∈ Mn,n. We call WOV and WQK the parameter matrices
for this attention head.

For practical reasons, attention heads are rarely described (or implemented) as in Equation 2. However, one can
verify that this definition encompasses the classical transformer framework in Vaswani et al. (2023), with WQK =

(WQ
i )(WK

i )T /
√
dk, and WOV = WV

i WO
i , where WO

i denotes the appropriate subblock of the WO matrix.

For many language tasks, the masking pattern is chosen to mask later tokens from earlier tokens (Vaswani et al., 2023;

Radford et al., 2018), i.e., Λ is the subdiagonal matrix with Λi,j =

{
1 if i ≤ j

0 otherwise
. However, in our construction

in Theorem 3 and Theorem 6, we will make use of a nonstandard masking pattern in which tokens only attend to
themselves and a single special token.
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3 IMPLEMENTING MLP LAYERS WITH ATTENTION HEADS

In this section we show that MLP layers whose activation functions are generalized SiLU functions are in fact a sum
of attention heads.

The intuition for this claim is simple: both attention heads and MLPs are mostly linear, with a single nonlinearity
(respectively, masked softmax and the generalized SiLU activation function). Additionally, softmax can easily play
the role of the sigmoid part of SiLU since softmax([−x, 0]) = rownorm([e−x, 1]) = [σ(x), σ(−x)]. Multiplying this
attention pattern onto the vector [x, 0], we get xσ(x)+0σ(−x) = SiLU(x). The following theorem is a formalization
of this intutition.

Theorem 3. Let f(X) = α(XV1)V2 be an MLP on MN,D with no biases and one hidden layer of size ℓ, and
suppose α is a generalized SiLU function α(x) = a1SiLU(a2x). Then there are ℓ masked attention heads {hi}ℓi=1 on
MN+1,D+1 such that

f(X)⊕ [0] =

ℓ∑
i=1

hi(X ⊕ [1])

for all X ∈ MN,D.

In particular, for the ith attention head, one uses parameter and mask matrices

WQK = a2

[
0 −V i

1

0 0

]
WOV = a1a2V

i
1V

i
2 ⊕ [0]

Λ =

[
IN 1
0 1

]

where the block decompositions are into size N and 1, V i
1 denotes the ith column of V1, V i

2 denotes the ith row of V2,
and 1 denotes the column vector of all 1s.

Proof. We first prove the claim in the case of ℓ = a1 = a2 = 1. In this case, since there is only one column in
V1, then V1 = V i

1 , and similarly V2 = V i
2 . Consider the attention matrix msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ).

Multiplying matrices on the level of their blocks, we get that the first argument of the masked softmax is

(X ⊕ [1])WQK(X ⊕ [1])T =

[
X 0
0 1

] [
0 −V i

1

0 0

] [
X 0
0 1

]T
=

[
0 −XV1

0 0

]

Now consider the masked softmax term in the jth row for j ≤ N . This row has exactly two unmasked values, the
diagonal entry and the rightmost entry, taking the values 0 and −(XV1)j , respectively. Applying exp and rownorm
results in σ((XV1)j) and σ(−(XV1)j), respectively. Thus, the masked softmax term becomes

msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ) = msoftmax(

[
0 −XV1

0 0

]
,

[
In−1 1
0 1

]
)

=

[
diag(σ(XV1)) σ(−XV1)

0 1

]

Substituting these values into the expression for h(X) gives
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h(X ⊕ [1]) = msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ)(X ⊕ [1])WOV

=

[
diag(σ(XV1)) σ(−XV1)

0 1

]
(X ⊕ [1])WOV

=

[
diag(σ(XV1)) σ(−XV1)

0 1

] [
X 0
0 1

] [
V1V2 0
0 0

]
=

[
diag(σ(XV1))XV1V2 0

0 0

]
=

[
SiLU(XV1)V2 0

0 0

]
=

[
f(X) 0
0 0

]
= f(X)⊕ [0]

as desired. This completes the ℓ = a1 = a2 = 1 case.

For a general a1, a2, apply the previous case to an MLP with weight matrices a2V1 and a1V2.

Finally, for the fully general case with ℓ > 1, for each 1 ≤ i ≤ ℓ, let fi(X) = α(XV i
1 )V

i
2 , and note that f =

ℓ∑
i=1

fi.

Let hi denote the attention head corresponding to fi given by the ℓ = 1 case. Then we have that

f(X)⊕ [0] =

ℓ∑
i=1

fi(X)⊕ [0]

=

ℓ∑
i=1

hi(X ⊕ [1])

as desired.

Remark 4. The additional term ⊕[1] in Theorem 3 is similar to the persistent vectors of Sukhbaatar et al. (2019). In
that work, the authors propose a new architecture, which they call the all-attention architecture, in which attention can
also be paid to certain static vectors, learned for each attention head, called the persistent vectors. Our approach could
also be implemented in that architecture with a single persistent vector (0, 0, 0, .., 0, 1) shared across all attention
heads.

Note also that the WQK and WOV matrices used in Theorem 3 can be factored into the matrices WQ, WK , WV ,
WO ∈ MD+1,1 from Vaswani et al. (2023) satisfying WQK = WQW

T
K/

√
D + 1 and WOV = WV WO. In particular,

we can take WQ = WV = a2[V
i
1 |0]T , WK =

√
D + 1[0| − 1]T , and WO = a1[V

i
2 |0]T . Since WK is shared across

all attention heads, we only need to store two sets of parameters, the vectors WQ = WV and WO.

This provides an alternative perspective on MLP neurons: a neuron in an MLP is an attention head with internal
dimension 1 and a particularly restrictive masking pattern in which each token attends only to itself and a static
“bias” token.

We now have the necessary tools to show that a decoder-only transformer as in Liu et al. (2018); Radford et al. (2018)
can be implemented entirely with attention heads.
Definition 5. A transformer is a function t : MN,D → MN,D of the form X0 7→ X1 7→ ... 7→ Xm = t(X0), where

Xj+1 =

LayerNorm(Xj +
∑
i

hj,i(Xj)) or

LayerNorm(Xj + fj(Xj))

for some attention heads hj,i or MLPs with a single hidden layer fj . Note the use of Layer Normalization (Ba et al.,
2016) and skip connections, where one performs some computation f on Xj and defines Xj+1 = LayerNorm(Xj +
f(Xj)), as opposed to Xj+1 = f(Xj).
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Classically, transformers alternate between attention sublayers and MLP sublayers, but we allow the existence of other
architectures, including attention-only transformers and “MLP-only” transformers.
Theorem 6. If a transformer’s MLP layers are activated by a generalized SiLU function, they can be substituted with
attention heads.

Proof. We will show that we can create a new transformer t′ on MN+1,D+1 whose residual stream X ′
j on every

sublayer satisfies

X ′
j = Xj ⊕ [1]

This is sufficient to prove the main claim since the output of this new transformer will be X ′
2m = X2m ⊕ [1] and

therefore contain the output of the original transformer.

Without loss of generality, assume that the MLP layers have no bias terms (i.e., that we’ve already used the “bias trick”
to fold bias terms into the weight matrix).

To prove that there is a transformer t′ that satisfies X ′
j = Xj ⊕ [1] on every sublayer, we proceed by induction. For

the base case of j = 0, we tweak the transformer’s context window and embedding weights so that X ′
0 = X0 ⊕ [1].

We split the inductive case depending on whether the original transformer’s sublayer used attention or an MLP. If the
original layer was an MLP, then by Theorem 3 there are attention heads h′

j,i such that fj(X)⊕ [0] =
∑

h′
j,i(X⊕ [1]),

so in our transformer t′, using these attention heads yields

X ′
j+1 = LayerNorm(X ′

j +
∑

h′
j,i(X

′
j))

= LayerNorm((Xj ⊕ [1]) +
∑

h′
j,i(Xj ⊕ [1]))

= LayerNorm((Xj ⊕ [1]) + (fj(X)⊕ [0])))

= LayerNorm(Xj + fj(X))⊕ [1]

= Xj+1 ⊕ [1]

as desired.

If instead, the transformer used attention heads on the jth sublayer, we must tweak our original induction heads to
account for the new size. To this end, we will show that for each of the original induction heads h = hj,i, we can
create an induction head h′ such that

h′(X ⊕ [1]) = h(X)⊕ [0]

Let WQK ,WOV , and Λ denote the original parameter and masking matrices for h. Then define

W ′
QK = WQK ⊕ [1]

W ′
OV = WOV ⊕ [0]

Λ′ = Λ⊕ [1]

Then,

h′(X ⊕ [1]) = msoftmax((X ⊕ [1])W ′
QK(X ⊕ [1])T ,Λ′)(X ⊕ [1])W ′

OV

= msoftmax((X ⊕ [1])(WQK ⊕ [1])(X ⊕ [1])T , (Λ⊕ [1]))(X ⊕ [1])(WOV ⊕ [0])

= msoftmax(XWQKXT ⊕ [1],Λ⊕ [1])(XWOV ⊕ [0])

= (msoftmax(XWQKXT ,Λ)⊕ [1])(XWOV ⊕ [0])

= msoftmax(XWQKXT ,Λ)XWOV ⊕ [0]

= h(X)⊕ [0]
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as desired. Now, creating such h′
j,i for each of the original attention heads hj,i, we have

X ′
j+1 = LayerNorm(X ′

j +
∑

h′
j,i(X

′
j))

= LayerNorm((Xj ⊕ [1]) +
∑

h′
j,i(Xj ⊕ [1]))

= LayerNorm((Xj ⊕ [1]) +
∑

hj,i(X)⊕ [0]))

= LayerNorm((Xj +
∑

hj,i(X)))⊕ [1]

= Xj+1 ⊕ [1]

as desired. This completes the inductive step and the proof.

It is instructive to compare this construction to the negative results of Dong et al. (2021), which find that without skip
connections or MLPs, a self-attention network converges rapidly to a rank-1 matrix. Since we obviously do away
with the MLP layer, our result depends on the use of skip connections. In particular, the “bias term” of ⊕[1] is zeroed
out by the construction in Theorem 3, so applying the construction in Theorem 6 without a skip connection results in
X ′

0 = X0 ⊕ [1], but X ′
1 = X1 ⊕ [0]. Then, in the j = 2 sublayer, the construction in 3 would fail for lack of this bias

term, as, without it, the pre-attention matrix (X ′)WQK(X ′)T is 0.

4 LINEAR TRANSFORMATIONS AND ACTIVATION FUNCTIONS WITH ATTENTION HEADS

Theorem 3 shows that attention heads can implement an MLP layer, but can they separately implement the components
of an MLP, a linear transformation and an activation function? In this section we show that the answer is yes.

We first show that an attention head can perform an arbitrary linear operation row-wise on the matrix.

Theorem 7. Let h : MN,D → MN,D be an attention head with masking matrix Λ = IN . Then h(X) = XWOV .

Proof. Because Λ = In, after masking, the attention matrix msoftmax(XWQKXT ,Λ) will have nonzero en-
tries only along the diagonal. Since the rows of the attention matrix are normalized to sum to 1, it follows that
msoftmax(XWQKXT ,Λ) = In. Then,

h(X) = msoftmax(XWQKXT ,Λ)XWOV = InXWOV = XWOV

as desired.

Now we will show that one can apply a generalized SiLU function entrywise.

Theorem 8. Let α be a generalized SiLU function. Then there are D attention heads h1, ..., hD on MN+1,D+1 such
that

α(X)⊕ [0] =

D∑
i=1

hi(X ⊕ [1])

Proof. This follows immediately from applying Theorem 3 to the MLP f(X) = α(XIN )IN = α(X), whose hidden
layer is of size ℓ = D.

Note that a transformer usually makes use of skip connections, so that the residual stream experiences the transfor-
mation X 7→ X + sublayer(X). Thus, to get the transformation X 7→ α(X), one can combine these two theorems,
using D+1 attention heads to produce sublayer(X) = α(X)−X , in which case X 7→ X + sublayer(X) = α(X).
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5 ENCODING MASKING PATTERNS IN WEIGHT MATRICES

Although some previous work has used multiple masking patterns1, some readers may be disappointed that the atten-
tion patterns prescribed in the previous sections are oddly “artificial”. In this section, we will show a technique to
ameliorate this concern by embedding the masking pattern into the WQK matrix. To do so, we must further augment
the residual stream, but our technique allows us to encode an arbitrary masking pattern in the WQK parameters at the
cost of arbitrarily small errors and poor training behavior.
Theorem 9. Let h be a masked attention head on MN,D with mask matrix Λ1. Then for any mask matrix Λ2 satisfying
Λ1 ≤ Λ2 entrywise, there is a family of masked attention heads hΩ, parameterized by Ω ∈ R, that use Λ2 as their
mask matrix and such that hΩ([X|IN ]) → [h(X)|0] uniformly on compacta as Ω → ∞.

Proof. Define hΩ to be the attention head using the mask matrix Λ2 and parameter matrices

WQK,Ω = WQK ⊕ ΩΛ1

WOV,Ω = WOV ⊕ 0

Fix some compact set K ⊂ MN,D and ϵ > 0.

First observe that

hΩ([X|IN ]) := msoftmax([X|IN ]WQK,Ω[X|IN ]T ,Λ2)[X|IN ]WOV,Ω

= msoftmax([X|IN ](WQK ⊕ ΩΛ1)[X|IN ]T ,Λ′)[X|IN ](WOV ⊕ 0)

= msoftmax(XWQKXT +ΩΛ1,Λ2)[XWOV |0]

Our first task is to show that the attention pattern A1 := msoftmax(XWQKXT + ΩΛ1,Λ2) converges to the cor-
responding attention pattern A2 := msoftmax(XWQKXT ,Λ1) entrywise as Ω → ∞. To this end, fix ϵ0 > 0,
and pick b ∈ R such that entries of XWQKXT are bounded in absolute value by b as X ranges over K, and let
Ω > ln(N/ϵ0) + 2b. We have three cases depending on whether the corresponding entries in Λ1 and Λ2 are 0 or 1:

1. If Λ1,(i,j) = Λ2(i,j) = 0, then A1,(i,j) = A2,(i,j) = 0 due to masking.

2. If Λ1,(i,j) = 0 and Λ2,(i,j) = 1, then A1,(i,j) = 0. Since Λ1 is a mask matrix, in row i there is a column J

such that Λ1,(i,J) = 1. Then the (i, J)th entry of exp(XWQKXT + ΩΛ1) is at least exp(Ω − b), while the
(i, j)th entry is at most exp(b). Thus, after row-normalizing, we have

A2,(i,j) ≤ exp(b)

exp(Ω− b)

=
1

exp(Ω− 2b)

Since Ω > ln(N/ϵ0) + 2b, we have exp(Ω− 2b) > N/ϵ0, so A2,(i,j) ≤ 1
N/ϵ0

= ϵ0/N < ϵ0 as desired.

3. If Λ1,(i,j) = Λ2,(i,j) = 1, then consider the ith row. As shown in the previous two cases, in each entry of
this row where Λ1,(i,j) = 0, we have A2,(i,j) < ϵ0/N . Since there are N terms in this row, and any row
sums to 1 due to normalization, this means that the remaining terms, where Λ1,(i,j) = 1, sum to some value
S ∈ [1 − ϵ0, 1]. Since the log ratio between two such terms is the difference of their corresponding entries
in XWQKXT + ΩΛ1, and the Ω terms of those entries will cancel, this shows that the ratio between terms
where Λ1,(i,j) = 1 in A2 is the same as the corresponding ratio in A1. That is, the ith row of A1 concentrates
its mass S in the same locations as A2 at the same ratios, so A1,(i,j) = SA2,(i,j) for all j with Λ1,(i,j) = 1.
Thus |A1,(i,j) −A2,(i,j)| = A1,(i,j)|1− S| < ϵ0.

1E.g., Brown et al. (2020) uses “alternating dense and locally banded sparse attention patterns”.
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Rephrasing our partial result, we have shown that A1 = A2 + EΩ, where EΩ is an error matrix whose entries are
bound by ϵ0 whenever Ω > ln(N/ϵ0) + 2b.

Returning to our expression for hΩ([X|IN ]), we have

hΩ([X|IN ]) = A1[XWOV |0]
= (A2 + EΩ)[XWOV |0]
= A1[XWOV |0] + EΩ[XWOV |0]
= [h(X)|0] + [EΩXWOV |0]

Thus, the entry-wise difference between hΩ([X|IN ]) and [h(X)|0] is [EΩXWOV |0], so it suffices to show
that EΩXWOV is entry-wise less than ϵ. To this end, fixing some ϵ > 0, let ϵ0 = ϵ/K, where K =

max(||XWOV ||/
√
N, 1) and || · || denotes the operator norm of a matrix. Then, for all Ω > ln(N/ϵ0) + 2b, we

have EΩ is entry-wise less than ϵ0. Therefore, in the i, jth entry of EΩXWOV , we have

|(EΩXWOV )i,j | = |rowi(EΩ) · columnj(XWOV )|
≤ ϵ0

√
N · ||XWOV ||

= (ϵ/K)
√
N ||XWOV ||

≤ (ϵ/(||XWOV ||/
√
N))

√
N ||XWOV ||

= ϵ

as desired.

The above result shows that by augmenting the residual stream with an IN matrix, one can write the masking pattern
into the WQK matrix. Combined with Theorem 6, this shows that one can convert a standard transformer into one
using only attention heads and the standard masking pattern.
Remark 10. Inspecting the relation between ϵ and Ω in the previous theorem allows us to provide a more
concrete choice of Ω. We require Ω > ln(N/ϵ0) + 2b, where N is the size of the context window, ϵ0 =

ϵ/max(||XWOV ||/
√
N, 1), and b is a bound on the entries of XWQKXT .

Using properties of logs, we may simplify our requirement to

Ω > ln(N/ϵ) + 2b+max(ln(N
1
2 ||XWOV ||), 0)

Since the entries of a marix are bounded by the matrix’s operator norm, we can take b = ||XWQKXT || =
||X||2||WQK ||. The resulting requirement on Ω is then an increasing function of ||X||, so we may remove our de-
pendence on it by replacing it with B = supX∈K ||X||, in which case our bound becomes

Ω > ln(N/ϵ) + 2B2||WQK ||+max(ln(N
1
2B||WOV ||), 0)

Notably, Ω grows only in the logarithm of ϵ.
Example 11. Let’s compute a value of Ω that is suitable for a particular language model. Take ϵ = 2−146, the
minimum positive value representable by a single-precision floating-point number (IEEE, 2008), and apply this to
GPT-2, which has a maximum context window of N = 1024 tokens (Radford et al., 2019). According to Millidge &
Winsor (2023), individual model weights are normally distributed, falling entirely within [−1, 1]. Recall that WQK is
in fact stored internally as two matrices WQ and WK , with WQK = WQW

T
K . Such matrices are conventionally of size

N×D/nheads, and since D = 1600 (Radford et al., 2019), and nheads = 25 (Heimersheim & Turner, 2023), we have
WQ,WK ∈ M1024,64. Combining this with the bound that each entry is in [−1, 1], we get that ||WQ|| ≤

√
64 = 8.

Similarly, ||WK || ≤ 8, so ||WQK || ≤ ||WQ||||WK || ≤ 8 · 8 = 64. By a similar argument, ||WOV || ≤ 64.

For the bound B on the norm of the residual stream, we turn to Heimersheim & Turner (2023) who finds that the
measured norm of the residual stream increases across layers but does not seem to exceed B = 104. Combining these
into our formula, we find that a sufficient value of Ω is
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Ω = ln(N/ϵ) + 2B2||WQK ||+max(ln(N
1
2B||WOV ||2), 0)

= ln(1024/2−146) + 2(104)2 · 8 + max(ln(1024
1
2 104 · 8), 0)

≈ 1.6× 109

with almost all of the contribution due to the 2B2||WQK || term.

6 LIMITATIONS

The technique described in Theorem 6 faces several practical limitations. First is the quantity of attention heads: we
use one attention head per dimension of the hidden layer, which can easily increase the number of attention heads
by several orders of magnitude, partially offset by the new attention heads having smaller internal dimension. For
example, each layer of GPT-3 has 96 attention heads with internal dimension 128 (Brown et al., 2020), and the process
we describe would require 49152 additional 1-dimensional attention heads in each layer.

Second, it may be the case that replacing a feedforward network with attention heads slows down model inference or
training. In particular, this approach replaces matrix multiplication with many vector-by-vector multiplications. One
also computes many terms that are “thrown away” in the masking step. Combined, these suggest that converting an
MLP layer to attention heads would increase computational costs.

Finally, the “pseudo-masking” in Theorem 9 introduces a separate set of issues into any training process due to the
large Ω terms added to the WQK matrix. Most notably, pseudo-masking would interact poorly with most forms of
dropout regularization and with ℓ2 regularization on the entries of WQK .

7 DISCUSSION

We have proven that attention heads can implement an MLP layer and in particular that any transformer can be
converted to an attention-only transformer. One implication of these results is that it is theoretically possible to
train an attention-only transformer that matches the performance of an MLP-plus-attention transformer. It remains
unknown whether such an architecture would be competitive with the more classical transformer architecture in terms
of practical considerations like training or inference speed. Such a test would be a promising future area of research.

Our foremost hope in this work is to facilitate the advancement of mechanistic interpretability approaches such as
Elhage et al. (2021), which found the most success in transformers without MLP layers, but found that a complete
understanding of transformers “will require progress on MLP layers”. Our technique could allow one to reuse the
techniques that are successful on attention heads on the MLP layers.

In doing so, the primary impediment is scale since the approach described in this paper increases the number of
attention heads in a transformer by several orders of magnitude. However, this is itself a useful new perspective on
the difficulty of interpreting MLP layers: MLP layers in a model like GPT-3 are larger than attention layers by a 2:1
margin if one measures by number of parameters but by 500:1 if one measures by number of attention heads. It may
be the case that the AI capabilities slogan “scale is all you need” applies equally to mechanistic interpretability.
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