
A Learning Rate Path Switching Training Paradigm for
Version Updates of Large Language Models

Anonymous ACL submission

Abstract

Due to the continuous emergence of new data,001
version updates have become an indispens-002
able requirement for Large Language Mod-003
els (LLMs). The training paradigms for ver-004
sion updates of LLMs include pre-training005
from scratch (PTFS) and continual pre-training006
(CPT). Preliminary experiments demonstrate007
that PTFS exhibits better pre-training perfor-008
mance, while the training cost of CPT is lower.009
Moreover, their performance and training cost010
gaps gradually widen with the version updates011
processing. To investigate the underlying rea-012
sons for this phenomenon, we analyze the ef-013
fect of learning rate adjustments during the two014
stages of CPT: preparing an initialization check-015
point and conducting pre-training based on this016
checkpoint. We find that a large learning rate017
in the first stage and a complete learning rate018
decaying process in the second stage are cru-019
cial for version updates of LLMs. Hence, we020
propose a learning rate path switching train-021
ing paradigm. Our paradigm comprises one022
main path, where we pre-train a LLM with the023
maximal learning rate, and multiple branching024
paths, each of which corresponds to an update025
of the LLM with newly-added training data.026
Compared with PTFS, when training four ver-027
sions of LLMs, our paradigm can reduce the028
total training cost to 58% while maintaining029
comparable pre-training performance. In addi-030
tion, we also validate the generalization of our031
paradigm, further proving its practicability.032

1 Introduction033

In recent years, there has been significant progress034

in the research of Large Language Models (LLMs).035

By performing large-scale training on massive036

datasets, LLMs have demonstrated remarkable ca-037

pabilities, contributing to various fields (Wu et al.,038

2023; Cui et al., 2023; Wang et al., 2024; Guo et al.,039

2024). However, the training cost of LLMs is sig-040

nificantly higher than that of traditional NLP mod-041

els. Particularly, in practical applications, LLMs042

have to face the need for version updates due to the 043

continuous emergence of new data, which exacer- 044

bates the training cost of LLMs. Therefore, how 045

to reduce the training cost while ensuring optimal 046

pre-training performance across different versions 047

has become one of the pivotal challenges of LLMs. 048

Generally, training paradigms applicable for up- 049

dating LLMs can be categorized into two types: 050

1) Pre-Training From Scratch (PTFS): retraining 051

new versions of LLMs on both old and new data. 052

The well-known LLMs including LLaMA (Tou- 053

vron et al., 2023a,b), GLM (Zeng et al., 2023), and 054

Baichuan (Yang et al., 2023) are updated via this 055

paradigm. 2) Continual Pre-Training (CPT): fur- 056

ther pre-training new versions of LLMs on only 057

new data based on the checkpoints from old ver- 058

sions. This paradigm is often utilized in resource 059

constrained scenarios, such as limited computa- 060

tional resources or unavailability of old data. 061

In this paper, we firstly conduct preliminary ex- 062

periments to compare the above two paradigms in 063

version updates of LLMs. Compared with PTFS, 064

CPT uses previous checkpoints for initialization, 065

resulting in lower total training cost. However, CPT 066

suffers from the inferior pre-training performance, 067

which becomes increasingly serious as version up- 068

dates processing. To study the reasons for this 069

phenomenon, we break down the CPT process into 070

two stages: the first stage for preparing an initializa- 071

tion checkpoint, and the second stage for continual 072

pre-training based on the initialization checkpoint. 073

Then, we conduct two groups of experiments to an- 074

alyze the effect of learning rate adjustments during 075

these two stages, obtaining two conclusions: 1) the 076

larger the learning rate in the first stage, the better 077

the performance of updated LLMs in the second 078

stage; 2) for the second stage, a complete learning 079

rate decaying process is beneficial to ensure the 080

optimal performance of updated LLMs. 081

Based on the above analyses, we propose a learn- 082

ing rate path switching training paradigm for ver- 083

1



Figure 1: Learning rate curves of cosine learning rate
schedule under PTFS, CPT1 and our paradigm, all of
which are used to update four versions of LLMs. Here,
different color curves represent different version updates
of LLMs.

sion updates of LLMs. To better illustrate our084

paradigm, we take the most commonly used cosine085

learning rate schedule (Smith and Topin, 2019) as086

an example, and plot the learning rate curves of087

PTFS, CPT and our paradigm in Figure 1. Please088

note that our paradigm is also applicable to other089

schedules, such as Knee (Iyer et al., 2023), and090

multi-step (Bi et al., 2024) learning rate schedules.091

In short, the learning rate curve of our paradigm,092

comprises one main path and multiple branching093

paths, each of which corresponds to a version up-094

date of LLM. As shown by the main path of Fig-095

ure 1, we pre-train a LLM with the maximal learn-096

ing rate, providing superior initialization check-097

points for subsequent continual pre-training. When098

we want to update the LLM with newly-added train-099

ing data, we perform continual pre-training on the100

LLM with a dynamically-adjusted learning rate.101

Back to Figure 1, after a few steps of training with102

the maximal learning rate, the learning rate fast de-103

cays to its minimum, which effectively ensures the104

training performance of the updated LLM. Mean-105

while, on the main path, we continue to pre-train106

the original checkpoint with the maximal learning107

rate, facilitating subsequent LLM updates.108

Our paradigm better balances model perfor-109

1In fact, multiple CPT variants can be used to version
updates of LLMs. We compare these variants in Appendix B,
and only retain the best performing variant in the subsequent
experiments.

Figure 2: Comparison of different training paradigms.
“APPL” (↓) denotes the average perplexity of LLMs
across different versions, “Relative Cost” (↓) is the ratio
of the total training steps across different versions of
each paradigm to the total training steps of PTFS. The
lower left corner achieves the best trade-off.

mance and training cost compared to the other two 110

paradigms, as detailed in Figure 2. To summarize, 111

our main contributions are as follows: 112

• We conduct preliminary experiments to compare 113

PTFS and CPT in the version updates of LLMs. 114

Furthermore, our in-depth analyses show that 115

using a large learning rate at the beginning and 116

subsequent learning rate decay are crucial for 117

improving the performance of updated LLMs. 118

• We propose a learning rate path switching 119

paradigm for version updates of LLMs. To the 120

best of our knowledge, our work is the first at- 121

tempt to explore how to balance model perfor- 122

mance and training cost for version updates of 123

LLMs. 124

• Experimental results and in-depth analyses 125

strongly demonstrate the effectiveness and gen- 126

eralization of our paradigm. Particularly, when 127

training four versions of LLMs, our paradigm is 128

able to achieve comparable pre-training perfor- 129

mance to PTFS with only 58% of total training 130

cost. 131

2 Preliminary Study 132

In this section, we first compare the performance 133

of PTFS and CPT in version updates of LLMs, 134

and then analyze the underlying reasons for their 135

performance gap. 136

2



Figure 3: Learning rate curves of cosine (Smith and
Topin, 2019), Knee (Iyer et al., 2023), and multi-step (Bi
et al., 2024) learning rate schedules.

2.1 Setup137

Model In this study, we use LLaMA-1.2B (Tou-138

vron et al., 2023a,b) as our base LLM and train for139

four versions. When employing PTFS, the total140

training steps for these four versions are 10K, 20K,141

30K, and 40K, respectively. For CPT, each LLM142

update only requires 10K training steps. We train143

all LLMs with a batch size of 1.05M tokens.144

Learning Rate Schedule We conduct experi-145

ments with three learning rate schedules: co-146

sine (Smith and Topin, 2019), Knee (Iyer et al.,147

2023), and multi-step (Bi et al., 2024) learning rate148

schedules.2 The specific learning rate curves of149

these schedules are plotted in Figure 3. Notably,150

cosine learning rate schedule is the most commonly151

used one for training LLMs (Zhao et al., 2023),152

and both Knee and multi-step learning rate sched-153

ules can achieve comparable or even superior per-154

formance than cosine learning rate schedule. For155

all learning rate schedules, we implement a linear156

warm-up phase of 2K steps (approximately 2.1B157

tokens). Besides, we set the maximum and mini-158

mum learning rates for these schedules to 3e-4 and159

3e-5, respectively.160

Dataset Similar to LLaMA (Touvron et al.,161

2023a,b), our training corpus comprises a mixture162

of data from publicly available sources, including163

code, paper, Wikipedia, books, mathematics, Com-164

monCrawl and C4, webpage, translation and others.165

2We also evaluate constant and inverse square root learning
rate schedules, both of which perform worse than the three
selected schedules.

LRS TP Cost PPL

V2 V3 V4

Cos
PTFS 1.00× 20.84 19.28 18.36
CPT 0.40× 21.11 19.70 18.87
∆ - -0.27 -0.42 -0.51

Knee
PTFS 1.00× 20.22 18.80 17.98
CPT 0.40× 20.56 19.27 18.52
∆ - -0.34 -0.47 -0.54

Multi
PTFS 1.00× 20.28 18.88 18.06
CPT 0.40× 20.62 19.37 18.65
∆ - -0.34 -0.49 -0.59

Table 1: Comparison between PTFS and CPT for train-
ing four versions of LLMs. “LRS” and “TP” indicate
learning rate schedule and training paradigm, respec-
tively. “V*” means the *-th version of LLM. Notably,
whether using PTFS or CPT, the learning rate curve
and pre-training performance of the first version remain
unchanged. Thus, we do not report the performance of
the first version in all experiments.

In total, our training data contains 764M English 166

and Chinese samples. Due to the limitation of 167

GPU resource, we do not experiment with the en- 168

tire dataset. To simulate the scenario of version 169

updates, we perform non-replacement sampling 170

on the training data to obtain 10.5B tokens as the 171

newly-added data for each update. Hence, when 172

using PTFS, we train four versions of LLMs from 173

scratch with 10.5B, 21B, 31.5B, and 42B tokens, 174

respectively. By contrast, using CPT to update the 175

LLMs only involves the newly-added 10.5B tokens 176

each time. 177

Evaluation Following previous studies (Qin 178

et al., 2022; Gupta et al., 2023; Bi et al., 2024), 179

we mainly use perplexity (PPL) to evaluate the pre- 180

training performance of LLMs. Meanwhile, we 181

also focus on the training cost of each paradigm, 182

defined as the total training steps required for dif- 183

ferent versions. 184

2.2 Comparison between PTFS and CPT 185

Experimental results are shown in Table 1. It is evi- 186

dent that CPT incurs a lower training cost, whereas 187

PTFS achieves superior performance. More im- 188

portantly, as the version updates processing, the 189

performance gap between PTFS and CPT progres- 190

sively widens. 191

To explore the underlying reasons for the above 192

phenomenon, we still use cosine learning rate 193

3



Figure 4: The effect of learning rate adjustment in the
first stage. In the first stage, we vary the cosine cycle
length as 10K, 20K, 30K, 40K and +∞ steps, respec-
tively, where the checkpoints at the 10K-th steps are
selected as the initialization ones for the subsequent
10K-steps continual pre-training. “(·,·)” indicates the
PPLs of the initialization checkpoint and corresponding
updated LLM.

schedule to conduct two groups of experiments,194

so as to investigate the impact of learning rate on195

the performance of updated LLMs during the two196

stages of CPT: 1) preparing an initialization check-197

point, and 2) performing continual pre-training198

based on the prepared initialization checkpoint.199

Effect of Learning Rate Adjustment During the200

First Stage As depicted in Figure 4, in the first201

group of experiments, we vary the cosine cycle202

length to 10K, 20K, 30K, 40K, and +∞ steps,203

respectively. The checkpoints at the 10K-th steps204

are selected as initialization checkpoints for the205

second stage. Then, we continually pre-train LLMs206

for 10K steps, where the learning rate gradually207

decays from its maximum to minimum. Back to208

Figure 4, we can observe that with the increase209

of the cosine cycle length in the first stage, the210

performance of an initialization checkpoint drops,211

whereas its corresponding updated LLM performs212

better. Therefore, we conclude that large learning213

rate in the first stage is advantageous for continual214

pre-training during the second stage.215

Effect of Learning Rate Adjustment During the216

Second Stage Based on the above conclusion,217

we directly set the cosine cycle length in the first218

stage as +∞ steps, as illustrated in Figure 5. Then,219

during continual pre-training, we experiment with220

the cosine learning rate schedule using different co-221

sine cycle lengths: 10K, 20K, 30K, 40K, +∞ steps,222

and report the performance of updated LLMs at223

Figure 5: The effect of learning rate adjustment in the
second stage. In the first stage, we directly use the
maximal learning rate after warm-up. During the second
stage, we try cosine cycle length with 10K, 20K, 30K,
40K and +∞ steps, respectively, where the PPLs of
LLMs at the 20K-th steps are compared.

the 20K-th steps. As shown in Figure 5, it is ev- 224

ident that the complete decay of learning rate 225

enables the updated LLMs to achieve the best 226

performance. This finding is consistent with the 227

results from the first group of experiments men- 228

tioned above. In other words, when the learning 229

rate experiences complete decay during the first 230

stage, the initialization checkpoint’s performance 231

is also optimal. 232

Based on the findings of the above two groups of 233

experiments, we can conclude that it is difficult for 234

CPT to achieve good performance across different 235

versions of LLMs. Specifically, according to the 236

findings of the second group of experiments, if the 237

current LLM is expected to achieve the best perfor- 238

mance, its learning rate at the second stage should 239

undergo a complete learning rate decay. However, 240

such decay will result in a lower learning rate in 241

the first stage of the next update of LLM, further 242

degrading the performance of the updated LLM. 243

3 Our Paradigm 244

Based on the conclusions from Section 2, we pro- 245

pose a learning rate path switching paradigm for 246

version updates of LLMs in this section. Our train- 247

ing cost is lower than PTFS and we achieve signifi- 248

cantly better performance than CPT, even compa- 249

rable to PTFS. 250

3.1 Paradigm Overview 251

Let us revisit Figure 1, which shows the learning 252

rate curves of our paradigm applied to cosine learn- 253

ing rate schedule. Please note that our paradigm 254

4



LRS α Cost PPL

V2 V3 V4

Cos

0.2 0.49× 20.34 19.13 18.44
0.4 0.53× 20.16 18.91 18.21
0.6 0.58× 20.13 18.81 18.09
0.8 0.62× 20.15 18.77 18.02

Knee

0.2 0.49× 20.33 19.12 18.42
0.4 0.53× 20.16 18.91 18.20
0.6 0.58× 20.12 18.81 18.08
0.8 0.62× 20.15 18.77 18.01

Multi

0.2 0.49× 20.33 19.08 18.37
0.4 0.53× 20.29 18.91 18.16
0.6 0.58× 20.40 18.88 18.09
0.8 0.62× 20.63 18.91 18.06

Table 2: The effect of hyper-parameter α on the pre-
training performance and training cost of our paradigm.
Experiments are conducted on LLaMA-1.2B.

is also applicable to other schedules, such as Knee255

and multi-step and so on. Without loss of gen-256

erality, the learning rate curve of our paradigm257

comprises one main path and multiple branching258

paths, each of which corresponds to one version up-259

date. On the main path, we pre-train the LLM from260

scratch with the maximal learning rate, providing261

initialization checkpoints for subsequent version262

updates. When we want to obtain an updated LLM,263

we directly use the current checkpoint of the main264

path as the initialization one, and then perform265

continual pre-training. During this process, the266

learning rate undergoes a complete fast-decaying267

process, effectively ensuring the performance of268

the updated LLM. Meanwhile, on the main path,269

we still use newly-added data to pre-train the exist-270

ing checkpoint with the maximal learning rate, so271

as to facilitate subsequent updates.272

Obviously, our paradigm has lower training cost273

than PTFS, as it conducts continual pre-training274

based on the initialization checkpoints from the275

main path. Unlike CPT, these checkpoints are276

obtained through training from scratch with the277

maximum learning rate, which enables the updated278

LLMs to achieve better performance, as analyzed279

in Section 2. The following experiments also fully280

confirm the superiority of our paradigm in balanc-281

ing model performance and training cost.282

LRS TP Cost PPL

V2 V3 V4

Cos
PTFS 1.00× 20.84 19.28 18.36
CPT 0.40× 21.11 19.70 18.87
Ours 0.58× 20.13 18.81 18.09

Knee
PTFS 1.00× 20.22 18.80 17.98
CPT 0.40× 20.56 19.27 18.52
Ours 0.58× 20.12 18.81 18.08

Multi
PTFS 1.00× 20.28 18.88 18.06
CPT 0.40× 20.62 19.37 18.65
Ours 0.58× 20.40 18.88 18.09

Table 3: Comparison of different paradigms for training
LLaMA-1.2B of different versions.

3.2 Time Complexity Analysis 283

To further compare different training paradigms in 284

training cost, we define their time complexity func- 285

tions as the total training steps of version updates. 286

Before providing our definitions, we first intro- 287

duce two symbols to facilitate the subsequent de- 288

scriptions: 1) Nv: the number of version updates 289

os LLMs; 2) T : assuming a consistent number of 290

data is added for each update. When updating the 291

i − th version of LLMs, PTFS requires updating 292

iT (1 ≤ i ≤ Nv) steps each time, CPT needs to 293

train for T steps, and our paradigm requires train- 294

ing T + αT steps, where α (0 ≤ α ≤ 1) controls 295

the proportion of fast-decaying steps to the total 296

steps in each update. 297

Formally, the total training cost for each 298

paradigm can be described as follows: 299

Cptfs(Nv) =

Nv∑
i=1

iT = 0.5TN2
v + 0.5TNv,

Ccpt(Nv) =

Nv∑
i=1

T = TNv,

Cours(Nv) =

Nv−1∑
i=1

(T + αT ) + T

= (1 + α)TNv − αT.

300

Please note that, for the last version, the ad- 301

dtional main path training for preparing initializa- 302

tion checkpoint for the next update can be omitted, 303

which counts for αT steps, so only T steps are 304

required. 305

Comparing the above functions, we can clearly 306

find that Cptfs(Nv) is a quadratic function with re- 307

5



Ver. TP C3 GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG

V2
PTFS 38.00 4.63 24.00 38.25 30.09 17.43 25.37 18.10 14.59 23.38
CPT 37.00 4.09 23.52 35.11 27.42 18.55 25.63 18.86 13.40 22.62
Ours 38.60 5.08 22.94 39.08 28.38 20.79 24.88 18.48 14.73 23.66

V3
PTFS 40.30 3.34 24.33 39.17 25.85 17.11 25.30 22.03 14.34 23.53
CPT 38.30 4.70 23.32 36.40 28.38 21.11 24.76 17.85 13.47 23.14
Ours 42.10 4.63 23.22 34.91 29.35 19.70 24.73 19.24 14.90 23.64

V4
PTFS 35.70 4.25 24.93 38.75 27.04 16.73 24.97 21.01 14.10 23.05
CPT 43.90 4.55 22.20 38.69 27.19 21.62 24.43 18.23 13.50 23.81
Ours 41.90 5.53 24.09 40.24 27.71 21.84 24.78 17.24 14.40 24.19

Table 4: Performance of LLMs across different versions on downstream tasks. “Ver.” indicates the number of
version of LLMs. More experimental results of LLMs on larger model size or larger data size are listed in Table 11.

spect to Nv, while both Ccpt(Nv) and Cours(Nv)308

are linear ones. Besides, the gaps of Cptfs(Nv)309

compared to the other two functions significantly310

widen with the increase of Nv. For example, when311

Nv = 4, the values of these three time complexity312

functions are 10T , 4T , 5.8T , respectively. In con-313

trast, they will separately reach 55T , 10T , 15.4T314

with Nv = 10.315

4 Experiment316

In this section, we still use the settings of the pre-317

liminary study to conduct more experiments, com-318

paring the performance and training cost of differ-319

ent training paradigms.320

4.1 Effect of Hyper-Parameter α321

As described in Section 3, α is the most important322

hyper-parameter in our paradigm, as it controls the323

proportion of fast decay steps to the total number324

of steps. The fast decay steps influence model325

performance and training cost of our paradigm. To326

select an optimal α value, we try different α for327

our paradigm: from 0.2 to 0.8 with an increment of328

0.2 each time, and then observe the changes in the329

pre-training performance and training cost of our330

paradigm.331

Experimental results are listed in Table 2, which332

show that the overall performance of LLMs across333

different versions is optimal when α is set as 0.6334

and 0.8. However, when α is set to 0.6, our335

paradigm achieves lower training cost. Thus, we336

directly use α = 0.6 in subsequent experiments.337

4.2 Main Experiments338

Then, we compare different paradigms in terms of339

pre-training performance and downstream perfor-340

mance. To comprehensively examine our paradigm, 341

we conduct experiments with the previously- 342

mentioned three learning rate schedules. 343

Pre-Training Performance From Table 3, we 344

can observe that compared with PTFS, our 345

paradigm reduces the total training cost to 58% 346

while maintaining comparable pre-training per- 347

formance. Particularly, when using cosine learning 348

rate schedule, our paradigm can even slightly out- 349

performs PTFS. On the other hand, as expected, 350

the training cost of our paradigm is still higher than 351

that of CPT, however, it always achieves better per- 352

formance than CPT, no matter which schedule is 353

used. Overall, our paradigm achieves a better bal- 354

ance between pre-training performance and total 355

training cost of LLMs during version updates of 356

LLMs. 357

Performance on Downstream Tasks Further- 358

more, we investigate the performance of differ- 359

ent training paradigms on benchmarks of nine 360

downstream tasks, including C3 (Sun et al., 2020), 361

GSM8K (Cobbe et al., 2021), MMLU (Hendrycks 362

et al., 2021), CSL (Li et al., 2022), C-EVAL (Huang 363

et al., 2023), BBH (Suzgun et al., 2023), 364

CMMLU (Li et al., 2023), GAOKAO (Zhang et al., 365

2023), AGIEval (Zhong et al., 2023). To this end, 366

we first construct a general SFT dataset with 1.8B 367

tokens and then perform SFT on each of the four 368

versions of updated LLMs. 369

From the results listed in Table 4, we can clearly 370

find that our paradigm can still obtain better aver- 371

age performance than both PTFS and CPT, further 372

proving the effectiveness of our paradigm. 373

6



LRS TP Cost PPL

V2 V3 V4

Cos
PTFS 1.00× 20.94 19.35 18.41
CPT 0.40× 21.23 19.78 18.92
Ours 0.58× 20.23 18.87 18.11

Knee
PTFS 1.00× 20.30 18.84 17.98
CPT 0.40× 20.67 19.34 18.56
Ours 0.58× 20.20 18.85 18.09

Multi
PTFS 1.00× 20.37 18.92 18.06
CPT 0.40× 20.74 19.44 18.68
Ours 0.58× 20.49 18.92 18.09

Table 5: The generalization of our paradigm in terms of
model architecture. Based on Qwen-1.2B, we conduct
experiments with the same setting as LLaMA-1.2B.

4.3 Generalization of Our Paradigm374

Subsequently, we explore the generalization of our375

paradigm in the following aspects: model architec-376

ture, model size, data size, and maximum learning377

rate, all of which are crucial for practical applica-378

tions of LLMs. During this process, we still use379

cosine learning rate schedule.380

Model Architecture To demonstrate the general-381

ization of our paradigm in model architecture, we382

use Qwen-1.2B (Bai et al., 2023) to re-conduct ex-383

periments with the same setting as LLaMA-1.2B.384

We list the experiments results in Table 5, which385

indicate that our paradigm is also applicable to386

other model architecture.387

Model Size We then focus on the generalization388

of our paradigm on model scaling. To this end, we389

vary the number of model parameters to conduct390

experiments. In total, we consider six model sizes:391

203M, 406M, 608M, 1.2B, 2.1B, 3.1B, of which392

detailed hyper-parameters are listed in Appendix A.393

From the results shown in Table 6, we observe394

that our paradigm achieves pre-training perfor-395

mance comparable to PTFS across different sizes396

of LLMs and outperforms CPT.397

Data Size Next, we switch our attention to the ap-398

plicability of our paradigm in data size. To do this,399

we re-conduct experiments using different sizes of400

total training data: 21B, 42B, and 168B. Corre-401

spondingly, the training steps are 5K, 10K and 40K402

for each LLM update, respectively.403

As shown in the experimental results in Table 7,404

our paradigm achieves optimal pre-training perfor-405

Size TP PPL

V2 V3 V4

203M
PTFS 30.97 29.50 28.65
CPT 31.31 29.90 29.07
Ours 30.25 28.94 28.19

406M
PTFS 26.58 25.06 24.19
CPT 26.89 25.49 24.67
Ours 25.85 24.52 23.79

608M
PTFS 23.12 21.75 20.93
CPT 23.50 22.26 21.52
Ours 22.59 21.43 20.77

1.2B
PTFS 20.84 19.28 18.36
CPT 21.22 19.79 18.97
Ours 20.13 18.81 18.09

2.1B
PTFS 18.33 16.88 16.04
CPT 18.76 17.47 16.72
Ours 17.82 16.63 15.97

3.1B
PTFS 17.22 15.87 15.07
CPT 17.67 16.48 15.77
Ours 16.84 15.72 15.09

Table 6: The generalization of our paradigm in terms of
model size. The model sizes range from 203M to 3.1B.

mance across different data sizes, which further 406

demonstrates the generalization of our paradigm. 407

Maximum Learning Rate Finally, we aim to 408

verify the generalization of our paradigm with re- 409

spect to the maximum learning rate. We conduct 410

experiments by setting the maximum learning rates 411

as 5e-5, 1e-4, 3e-4, 5e-4, 8e-4, respectively. 412

From Table 8, as the maximum learning rate 413

increases, our paradigm always achieves better or 414

comparable performance than PTFS, let alone CPT. 415

This strongly highlights the generalization of our 416

paradigm in the maximum learning rate. 417

5 Related Work 418

Continual Training Continual training is one 419

of the most direct approaches for version updates 420

of LLMs. Related studies of continual training 421

can be broadly categorized into the following three 422

types: 1) Methods introducing additional parame- 423

ters (Ke et al., 2022, 2023; Song et al., 2023; PENG 424

et al., 2024); 2) Prompt-based methods (Wang et al., 425

2022b,a; Razdaibiedina et al., 2023); 3) Scenario- 426

specific methods (Peng et al., 2023; Gogoulou et al., 427

7



Data TP PPL

V2 V3 V4

21B
PTFS 24.66 22.31 20.84
CPT 25.10 22.84 21.56
Ours 23.59 21.41 20.27

42B
PTFS 20.84 19.28 18.36
CPT 21.11 19.70 18.87
Ours 20.13 18.81 18.09

168B
PTFS 16.70 15.97 15.54
CPT 16.90 16.25 15.86
Ours 16.47 15.86 15.51

Table 7: The generalization of our paradigm in terms of
data size. The total data sizes (for four versions) range
from 21B to 168B.

2023a; Xie et al., 2023). Significantly different428

from the above studies, our paradigm comprises429

one main learning rate path, where we perform430

pre-training with the maximal learning rate, and431

multiple learning rate branches with the complete432

decay process. Thus, our paradigm achieve a better433

trade-off between the performance and cost.434

Learning Rate The learning rate is one of the435

most crucial hyper-parameters for training LLMs.436

Existing learning rate schedules can be broadly di-437

vided into the following four categories according438

to their policies (Wu et al., 2019; Wu and Liu, 2023;439

Jin et al., 2023): 1) Fixed learning rate policy, such440

as constant learning rate schedule; 2) Decaying441

learning rate policy, such as inverse square root442

learning rate schedule; 3) Cyclic learning rate pol-443

icy, such as cosine learning rate schedule; 4) Com-444

posite learning rate policy, such as Knee and multi-445

step learning rate schedules. In addition, there are446

some recent studies exploring learning rate sched-447

ules for LLMs, including Warmup-Stable-Decay448

schedule (Hu et al., 2024) and Constant Learning449

Rate with Cooldown (Hägele et al., 2024). Par-450

ticularly, our paradigm is a well-designed training451

paradigm for version updates of LLMs, which is ap-452

plicable to cosine, Knee, and multi-step and other453

learning rate schedules.454

6 Conclusion and Future Work455

In this paper, we mainly focus on how to better456

balance model performance and training cost for457

version updates of LLMs. Through the analysis458

in the preliminary study, we find that 1) a large459

MLR TP PPL

V2 V3 V4

5e-5
PTFS 34.78 29.53 26.65
CPT 35.23 30.08 27.23
Ours 29.99 25.54 23.27

1e-4
PTFS 26.34 23.28 21.57
CPT 26.64 23.70 22.04
Ours 23.89 21.32 19.97

3e-4
PTFS 20.84 19.28 18.36
CPT 21.22 19.79 18.97
Ours 20.13 18.81 18.09

5e-4
PTFS 19.89 18.62 17.85
CPT 20.17 19.05 18.38
Ours 19.53 18.45 17.85

8e-4
PTFS 19.38 18.26 17.58
CPT 19.69 18.73 18.16
Ours 19.22 18.30 17.78

Table 8: The generalization of our paradigm in terms
of the maximum learning rate. “MLR” indicates the
maximum learning rate.

learning rate is beneficial for providing a better ini- 460

tialization checkpoints for subsequent updates, and 461

2) a complete learning rate decay process enables 462

the updated LLMs to achieve optimal performance. 463

Based on the above two findings, we propose a 464

learning rate path switching paradigm for version 465

updates of LLMs, which comprises one main path 466

and multiple branching paths. On the main path, 467

we pre-train the LLMs with the maximal learning 468

rate to provide superior initialization checkpoints 469

for subsequent updates. Each time an update is re- 470

quired, our paradigm switches from the main path 471

to a branching path, undergoing a complete learn- 472

ing rate decay process. Experimental results and 473

further analyses strongly demonstrate the effective- 474

ness and generalization of our paradigm. 475

In the future, we will further expand the practical 476

scope of our paradigm. Current research mainly 477

focuses on the pre-training phase and does not in- 478

clude supervised fine-tuning, safety alignment, etc., 479

which can be incorporated into the fast decay phase 480

of our paradigm. Additionally, we plan to explore 481

the applicability of our paradigm based on multi- 482

modal large models. 483

8



Limitations484

Although the training cost of our paradigm is sig-485

nificantly lower than that of PTFS, it is still higher486

than that of CPT. Hence, we plan to design a pre-487

cise method to determine the proportion of the fast-488

decaying steps to the total steps, which can further489

reduce the training cost of our paradigm.490

References491

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,492
Xiaodong Deng, et al. 2023. Qwen technical report.493
arxiv.494

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,495
Damai Dai, Chengqi Deng, et al. 2024. Deepseek llm:496
Scaling open-source language models with longter-497
mism. arXiv.498

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,499
Mark Chen, Heewoo Jun, Lukasz Kaiser, et al.500
2021. Training verifiers to solve math word prob-501
lems. arXiv.502

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang503
Zhou, Kaizhao Liang, et al. 2023. A survey on multi-504
modal large language models for autonomous driving.505
arXiv.506

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,507
and Joakim Nivre. 2023a. A study of continual learn-508
ing under language shift. arXiv.509

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,510
and Joakim Nivre. 2023b. A study of continual learn-511
ing under language shift. arXiv.512

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,513
Shichao Pei, Nitesh V. Chawla, et al. 2024. Large514
language model based multi-agents: A survey of515
progress and challenges. arXiv.516

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,517
Mats L. Richter, Quentin Anthony, Eugene518
Belilovsky, et al. 2023. Continual pre-training519
of large language models: How to (re)warm your520
model? In ICML Workshop.521

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,522
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.523
2021. Measuring massive multitask language under-524
standing. In ICLR.525

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu526
Cui, Xiang Long, et al. 2024. Minicpm: Unveiling527
the potential of small language models with scalable528
training strategies. arxiv.529

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang,530
Jinghan Zhang, Tangjun Su, et al. 2023. C-eval: A531
multi-level multi-discipline chinese evaluation suite532
for foundation models. In NeurIPS.533

Alexander Hägele, Elie Bakouch, Atli Kosson, 534
Loubna Ben Allal, Leandro Von Werra, and Mar- 535
tin Jaggi. 2024. Scaling laws and compute-optimal 536
training beyond fixed training durations. arxiv. 537

Nikhil Iyer, V Thejas, Nipun Kwatra, Ramachan- 538
dran Ramjee, and Muthian Sivathanu. 2023. Wide- 539
minima density hypothesis and the explore-exploit 540
learning rate schedule. JMLR. 541

Hongpeng Jin, Wenqi Wei, Xuyu Wang, Wenbin Zhang, 542
Hongpeng Wu, YanzhaoJin, Wenqi Wei, et al. 2023. 543
Rethinking learning rate tuning in the era of large 544
language models. In CogMI. 545

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 546
Brown, Benjamin Chess, Rewon Child, et al. 2020. 547
Scaling laws for neural language models. arXiv. 548

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, 549
and Bing Liu. 2022. Continual training of language 550
models for few-shot learning. In EMNLP. 551

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, 552
Gyuhak Kim, and Bing Liu. 2023. Continual pre- 553
training of language models. In ICLR. 554

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai 555
Zhao, Yeyun Gong, et al. 2023. Cmmlu: Measuring 556
massive multitask language understanding in chinese. 557
arXiv. 558

Yudong Li, Yuqing Zhang, Zhe Zhao, Linlin Shen, Wei- 559
jie Liu, Weiquan Mao, and Hui Zhang. 2022. CSL: 560
A large-scale Chinese scientific literature dataset. In 561
COLING. 562

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, 563
A Neelakantan, et al. 2020. Language models are 564
few-shot learners. In NeurIPS. 565

Bohao PENG, Zhuotao Tian, Shu Liu, Ming-Chang 566
Yang, and Jiaya Jia. 2024. Scalable language model 567
with generalized continual learning. In ICLR. 568

Guangyue Peng, Tao Ge, Si-Qing Chen, Furu Wei, and 569
Houfeng Wang. 2023. Semiparametric language 570
models are scalable continual learners. arXiv. 571

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng 572
Li, Maosong Sun, and Jie Zhou. 2022. ELLE: Ef- 573
ficient lifelong pre-training for emerging data. In 574
Findings of ACL. 575

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma- 576
dian Khabsa, Mike Lewis, and Amjad Almahairi. 577
2023. Progressive prompts: Continual learning for 578
language models. In ICLR. 579

Leslie N Smith and Nicholay Topin. 2019. Super- 580
convergence: Very fast training of neural networks 581
using large learning rates. In Artificial Intelligence 582
and Machine Learning for Multi-domain Operations 583
Applications. 584

9

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://arxiv.org/abs/2003.03977
https://doi.org/10.1109/CogMI58952.2023.00025
https://doi.org/10.1109/CogMI58952.2023.00025
https://doi.org/10.1109/CogMI58952.2023.00025
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2210.05549
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://aclanthology.org/2022.coling-1.344
https://aclanthology.org/2022.coling-1.344
https://aclanthology.org/2022.coling-1.344
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://arxiv.org/abs/2303.01421
https://arxiv.org/abs/2303.01421
https://arxiv.org/abs/2303.01421
https://aclanthology.org/2022.findings-acl.220
https://aclanthology.org/2022.findings-acl.220
https://aclanthology.org/2022.findings-acl.220
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120


Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen585
Chen, Zhiyuan Liu, et al. 2023. Conpet: Continual586
parameter-efficient tuning for large language models.587
arXiv.588

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020.589
Investigating prior knowledge for challenging Chi-590
nese machine reading comprehension. In TACL.591

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebas-592
tian Gehrmann, Yi Tay, Hyung Won Chung, et al.593
2023. Challenging big-bench tasks and whether594
chain-of-thought can solve them. In Findings of ACL.595

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier596
Martinet, Marie-Anne Lachaux, Timothée Lacroix,597
et al. 2023a. Llama: Open and efficient foundation598
language models. arXiv.599

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-600
bert, Amjad Almahairi, Yasmine Babaei, et al. 2023b.601
Llama 2: Open foundation and fine-tuned chat mod-602
els. arXiv.603

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao604
Yang, Jingsen Zhang, et al. 2024. A survey on large605
language model based autonomous agents. Frontiers606
Comput.607

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi608
Sun, Han Zhang, Chen-Yu Lee, et al. 2022a. Du-609
alprompt: Complementary prompting for rehearsal-610
free continual learning. In ECCV.611

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,612
Ruoxi Sun, Xiaoqi Ren, et al. 2022b. Learning to613
prompt for continual learning. In CVPR.614

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng615
Wan, and Philip S. Yu. 2023. Multimodal large lan-616
guage models: A survey. In IEEE BigData.617

Yanzhao Wu and Ling Liu. 2023. Selecting and compos-618
ing learning rate policies for deep neural networks.619
ACM TIST.620

Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun621
Iyengar, Calton Pu, et al. 2019. Demystifying learn-622
ing rate policies for high accuracy training of deep623
neural networks. In IEEE BigData.624

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. 2023.625
Efficient continual pre-training for building domain626
specific large language models. arXiv.627

Aiyuan Yang, Bin Xiao, Bingning Xiao, Borong Zhang,628
Ce Bian, Chao Yin, et al. 2023. Baichuan 2: Open629
large-scale language models. arXiv.630

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,631
Hanyu Lai, Ming Ding, et al. 2023. Glm-130b: An632
open bilingual pre-trained model. In ICLR.633

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,634
Liang He, and Xipeng Qiu. 2023. Evaluating the635
performance of large language models on gaokao636
benchmark. arXiv.637

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 638
Xiaolei Wang, Yupeng Hou, et al. 2023. A survey of 639
large language models. arXiv. 640

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo 641
Liang, Shuai Lu, Yanlin Wang, and Nan Duan. 2023. 642
Agieval: A human-centric benchmark for evaluating 643
foundation models. arXiv. 644

10

https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://aclanthology.org/2020.tacl-1.10
https://aclanthology.org/2020.tacl-1.10
https://aclanthology.org/2020.tacl-1.10
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2204.04799
https://arxiv.org/abs/2204.04799
https://arxiv.org/abs/2204.04799
https://arxiv.org/abs/2204.04799
https://arxiv.org/abs/2204.04799
https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Learning_To_Prompt_for_Continual_Learning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Learning_To_Prompt_for_Continual_Learning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Learning_To_Prompt_for_Continual_Learning_CVPR_2022_paper.html
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743
https://dl.acm.org/doi/full/10.1145/3570508
https://dl.acm.org/doi/full/10.1145/3570508
https://dl.acm.org/doi/full/10.1145/3570508
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2311.08545
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364


Size MLR Hidden Head Layer

203M 1e-3 512 8 24
406M 6e-4 1,024 16 12
608M 6e-4 1,024 16 24
1.2B 3e-4 1,536 16 24
2.1B 3e-4 1,536 16 48
3.1B 3e-4 8,192 32 40

Table 9: Detailed hyper-parameters of LLMs with dif-
ferent sizes.

Figure 6: Learning rate curves of different adaptation
method of CPT for version iteration of LLMs. The
learning rate curves are plotted based on cosine learning
rate schedules.

A Detailed Hyper-Parameters645

In this work, we compare PTFS, CPT and our646

paradigm based on LLMs with different sizes, of647

which hyper-parameters are listed in Table 9. Fol-648

lowing Kaplan et al.; Mann et al., we set smaller649

maximum learning rates for larger LLMs. Besides,650

we set the minimum learning rate as 0.1 times of651

the maximum learning rate for all LLMs.652

B CPT Variants653

In order to adapt traditional CPT for version up-654

dates of LLMs, we compare three variants of CPT655

in Figure 6:656

• RewarmMax: Warm up the leaning rate period-657

ically, and use the learning rate schedule of old658

version to train the new version of LLMs (Gupta659

et al., 2023).660

LRS Variant PPL

V2 V3 V4

Cos
RewarmMax 21.22 19.79 18.97
ResetMax 21.11 19.70 18.87
KeepMin 23.00 21.99 21.26

Knee
RewarmMax 20.74 19.46 18.70
ResetMax 20.56 19.27 18.52
KeepMin 22.22 21.36 20.37

Multi
RewarmMax 20.80 19.55 18.82
ResetMax 20.62 19.37 18.65
KeepMin 22.11 21.24 20.60

Table 10: Comparison among RewarmMax, ResetMax
and KeepMin for CPT.

• ResetMax: Directly set the leaning rate as max- 661

imum periodically, and use the learning rate 662

schedule of old version to train the new version 663

of LLMs (Gupta et al., 2023). 664

• KeepMin: Keep the learning rate in minimum 665

by using a constant learning rate schedules, 666

so as to ensure the training convergence of 667

LLMs (Gogoulou et al., 2023b). 668

Experimental results are listed in Table10. We 669

can observe that ResetMax achieves the best pre- 670

training performance among these variants. There- 671

fore, we use ResetMax for the other experiments. 672

C Performance of Downstream Tasks 673

In addition to the standard training scale (LLaMA- 674

1.2B trained for 42B tokens), we also evaluate 675

LLMs with more training data (LLaMA-1.2B 676

trained for 168B tokens) and larger model size 677

(LLaMA-3.1B trained for 42B tokens). We report 678

the performance of downstream tasks across dif- 679

ferent versions in Table 11. Experimental results 680

show that our paradigm achieves superior average 681

performance compared to PTFS and CPT across 682

different training scales on downstream tasks. 683

11



Scale Ver. TP C3 GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG

1.2B
42B

V2
PTFS 38.00 4.63 24.00 38.25 30.09 17.43 25.37 18.10 14.59 23.38
CPT 37.00 4.09 23.52 35.11 27.42 18.55 25.63 18.86 13.40 22.62
Ours 38.60 5.08 22.94 39.08 28.38 20.79 24.88 18.48 14.73 23.66

V3
PTFS 40.30 3.34 24.33 39.17 25.85 17.11 25.30 22.03 14.34 23.53
CPT 38.30 4.70 23.32 36.40 28.38 21.11 24.76 17.85 13.47 23.14
Ours 42.10 4.63 23.22 34.91 29.35 19.70 24.73 19.24 14.90 23.64

V4
PTFS 35.70 4.25 24.93 38.75 27.04 16.73 24.97 21.01 14.10 23.05
CPT 43.90 4.55 22.20 38.69 27.19 21.62 24.43 18.23 13.50 23.81
Ours 41.90 5.53 24.09 40.24 27.71 21.84 24.78 17.24 14.40 24.19

1.2B
168B

V2
PTFS 38.90 6.82 23.49 40.33 29.27 23.28 25.14 23.29 14.39 24.99
CPT 43.80 7.13 24.61 37.22 26.52 22.96 25.40 20.13 14.25 24.67
Ours 43.20 8.95 25.43 40.45 26.90 22.16 25.45 18.73 15.94 25.25

V3
PTFS 47.40 8.49 25.04 42.42 27.42 26.88 25.06 18.23 16.59 26.39
CPT 40.30 8.42 24.30 41.61 26.30 24.07 24.59 20.00 18.00 25.29
Ours 47.70 9.33 25.35 44.39 25.85 23.05 24.85 17.60 15.63 25.97

V4
PTFS 48.50 8.19 24.73 44.37 26.82 25.70 25.19 19.49 15.36 26.48
CPT 49.10 8.34 25.48 40.60 27.27 22.54 25.38 21.39 17.44 26.39
Ours 48.20 9.02 26.30 44.56 27.27 23.69 25.56 22.53 14.20 26.81

3.1B
42B

V2
PTFS 41.10 6.37 24.00 36.43 24.15 21.62 24.97 19.75 14.22 23.62
CPT 46.00 6.14 24.00 40.81 27.04 21.94 23.57 20.89 13.28 24.85
Ours 43.70 8.57 24.23 40.17 25.78 24.59 25.70 19.37 14.22 25.15

V3
PTFS 44.30 8.34 23.83 40.99 27.12 21.71 24.73 21.65 15.48 25.35
CPT 43.90 8.11 25.23 41.24 26.00 25.00 25.44 20.00 13.40 25.37
Ours 47.90 9.48 24.02 40.74 25.71 25.73 25.09 19.62 14.54 25.87

V4
PTFS 50.20 11.22 25.98 39.89 27.64 23.12 25.47 21.65 15.46 26.74
CPT 50.60 9.78 25.12 41.03 28.08 22.48 25.38 21.01 13.93 26.38
Ours 49.80 10.77 25.77 42.95 26.97 22.45 26.25 22.41 14.80 26.91

Table 11: Performance of downstream tasks of LLMs across four versions. In addition to the standard training scale
(LLaMA-1.2B trained for 42B tokens), we also evaluate LLMs with more training data (LLaMA-1.2B trained for
168B tokens) and larger model size (LLaMA-3.1B trained for 42B tokens).

12


	Introduction
	Preliminary Study
	Setup
	Comparison between PTFS and CPT

	Our Paradigm
	Paradigm Overview
	Time Complexity Analysis

	Experiment
	Effect of Hyper-Parameter 
	Main Experiments
	Generalization of Our Paradigm

	Related Work
	Conclusion and Future Work
	Detailed Hyper-Parameters
	CPT Variants
	Performance of Downstream Tasks

