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Abstract

Due to the continuous emergence of new data,
version updates have become an indispens-
able requirement for Large Language Mod-
els (LLMs). The training paradigms for ver-
sion updates of LLMs include pre-training
from scratch (PTFS) and continual pre-training
(CPT). Preliminary experiments demonstrate
that PTFS exhibits better pre-training perfor-
mance, while the training cost of CPT is lower.
Moreover, their performance and training cost
gaps gradually widen with the version updates
processing. To investigate the underlying rea-
sons for this phenomenon, we analyze the ef-
fect of learning rate adjustments during the two
stages of CPT: preparing an initialization check-
point and conducting pre-training based on this
checkpoint. We find that a large learning rate
in the first stage and a complete learning rate
decaying process in the second stage are cru-
cial for version updates of LLMs. Hence, we
propose a learning rate path switching train-
ing paradigm. Our paradigm comprises one
main path, where we pre-train a LLM with the
maximal learning rate, and multiple branching
paths, each of which corresponds to an update
of the LLM with newly-added training data.
Compared with PTFS, when training four ver-
sions of LLMs, our paradigm can reduce the
total training cost to 58% while maintaining
comparable pre-training performance. In addi-
tion, we also validate the generalization of our
paradigm, further proving its practicability.

1 Introduction

In recent years, there has been significant progress
in the research of Large Language Models (LLMs).
By performing large-scale training on massive
datasets, LLMs have demonstrated remarkable ca-
pabilities, contributing to various fields (Wu et al.,
2023; Cui et al., 2023; Wang et al., 2024; Guo et al.,
2024). However, the training cost of LLMs is sig-
nificantly higher than that of traditional NLP mod-
els. Particularly, in practical applications, LLMs

have to face the need for version updates due to the
continuous emergence of new data, which exacer-
bates the training cost of LLMs. Therefore, how
to reduce the training cost while ensuring optimal
pre-training performance across different versions
has become one of the pivotal challenges of LLM:s.

Generally, training paradigms applicable for up-
dating LLMs can be categorized into two types:
1) Pre-Training From Scratch (PTFS): retraining
new versions of LLMs on both old and new data.
The well-known LLMs including LLaMA (Tou-
vron et al., 2023a,b), GLM (Zeng et al., 2023), and
Baichuan (Yang et al., 2023) are updated via this
paradigm. 2) Continual Pre-Training (CPT): fur-
ther pre-training new versions of LLMs on only
new data based on the checkpoints from old ver-
sions. This paradigm is often utilized in resource
constrained scenarios, such as limited computa-
tional resources or unavailability of old data.

In this paper, we firstly conduct preliminary ex-
periments to compare the above two paradigms in
version updates of LLMs. Compared with PTFS,
CPT uses previous checkpoints for initialization,
resulting in lower total training cost. However, CPT
suffers from the inferior pre-training performance,
which becomes increasingly serious as version up-
dates processing. To study the reasons for this
phenomenon, we break down the CPT process into
two stages: the first stage for preparing an initializa-
tion checkpoint, and the second stage for continual
pre-training based on the initialization checkpoint.
Then, we conduct two groups of experiments to an-
alyze the effect of learning rate adjustments during
these two stages, obtaining two conclusions: 1) the
larger the learning rate in the first stage, the better
the performance of updated LLMs in the second
stage; 2) for the second stage, a complete learning
rate decaying process is beneficial to ensure the
optimal performance of updated LLMs.

Based on the above analyses, we propose a learn-
ing rate path switching training paradigm for ver-
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Figure 1: Learning rate curves of cosine learning rate
schedule under PTFS, CPT' and our paradigm, all of
which are used to update four versions of LLMs. Here,
different color curves represent different version updates
of LLMs.

sion updates of LLMs. To better illustrate our
paradigm, we take the most commonly used cosine
learning rate schedule (Smith and Topin, 2019) as
an example, and plot the learning rate curves of
PTFS, CPT and our paradigm in Figure 1. Please
note that our paradigm is also applicable to other
schedules, such as Knee (Iyer et al., 2023), and
multi-step (Bi et al., 2024) learning rate schedules.

In short, the learning rate curve of our paradigm,
comprises one main path and multiple branching
paths, each of which corresponds to a version up-
date of LLM. As shown by the main path of Fig-
ure 1, we pre-train a LLM with the maximal learn-
ing rate, providing superior initialization check-
points for subsequent continual pre-training. When
we want to update the LLM with newly-added train-
ing data, we perform continual pre-training on the
LLM with a dynamically-adjusted learning rate.
Back to Figure 1, after a few steps of training with
the maximal learning rate, the learning rate fast de-
cays to its minimum, which effectively ensures the
training performance of the updated LLM. Mean-
while, on the main path, we continue to pre-train
the original checkpoint with the maximal learning
rate, facilitating subsequent LLM updates.

Our paradigm better balances model perfor-

'In fact, multiple CPT variants can be used to version
updates of LLMs. We compare these variants in Appendix B,
and only retain the best performing variant in the subsequent
experiments.
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Figure 2: Comparison of different training paradigms.
“APPL” (|) denotes the average perplexity of LLMs
across different versions, ‘“Relative Cost” (]) is the ratio
of the total training steps across different versions of
each paradigm to the total training steps of PTFS. The
lower left corner achieves the best trade-off.

mance and training cost compared to the other two
paradigms, as detailed in Figure 2. To summarize,
our main contributions are as follows:

* We conduct preliminary experiments to compare
PTFS and CPT in the version updates of LLMs.
Furthermore, our in-depth analyses show that
using a large learning rate at the beginning and
subsequent learning rate decay are crucial for
improving the performance of updated LLMs.

* We propose a learning rate path switching
paradigm for version updates of LLMs. To the
best of our knowledge, our work is the first at-
tempt to explore how to balance model perfor-
mance and training cost for version updates of
LLMs.

* Experimental results and in-depth analyses
strongly demonstrate the effectiveness and gen-
eralization of our paradigm. Particularly, when
training four versions of LLMs, our paradigm is
able to achieve comparable pre-training perfor-
mance to PTFS with only 58% of total training
cost.

2 Preliminary Study

In this section, we first compare the performance
of PTFS and CPT in version updates of LLMs,
and then analyze the underlying reasons for their
performance gap.
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Figure 3: Learning rate curves of cosine (Smith and
Topin, 2019), Knee (Iyer et al., 2023), and multi-step (Bi
et al., 2024) learning rate schedules.

2.1 Setup

Model In this study, we use LLaMA-1.2B (Tou-
vron et al., 2023a,b) as our base LLM and train for
four versions. When employing PTFS, the total
training steps for these four versions are 10K, 20K,
30K, and 40K, respectively. For CPT, each LLM
update only requires 10K training steps. We train
all LLMs with a batch size of 1.05M tokens.

Learning Rate Schedule We conduct experi-
ments with three learning rate schedules: co-
sine (Smith and Topin, 2019), Knee (Iyer et al.,
2023), and multi-step (Bi et al., 2024) learning rate
schedules.” The specific learning rate curves of
these schedules are plotted in Figure 3. Notably,
cosine learning rate schedule is the most commonly
used one for training LLMs (Zhao et al., 2023),
and both Knee and multi-step learning rate sched-
ules can achieve comparable or even superior per-
formance than cosine learning rate schedule. For
all learning rate schedules, we implement a linear
warm-up phase of 2K steps (approximately 2.1B
tokens). Besides, we set the maximum and mini-
mum learning rates for these schedules to 3e-4 and
3e-5, respectively.

Dataset Similar to LLaMA (Touvron et al.,
2023a,b), our training corpus comprises a mixture
of data from publicly available sources, including
code, paper, Wikipedia, books, mathematics, Com-
monCrawl and C4, webpage, translation and others.

We also evaluate constant and inverse square root learning

rate schedules, both of which perform worse than the three
selected schedules.

LRS TP Cost PPL
V2 V3 V4
PTFS 1.00x 20.84 19.28 18.36
Cos CPT 040x 21.11 19.70 18.87
A - 027 -042 -051
PTFS 1.00x 20.22 18.80 17.98
Knee ~CPT 0.40x 2056 19.27 18.52
A - -0.34 -047 -0.54
PTFS 1.00x 20.28 18.88 18.06
Muli CPT  040x 2062 1937 1865
A - -0.34 -049 -0.59

Table 1: Comparison between PTFS and CPT for train-
ing four versions of LLMs. “LRS” and “TP” indicate
learning rate schedule and training paradigm, respec-
tively. “V*” means the *-th version of LLM. Notably,
whether using PTFS or CPT, the learning rate curve
and pre-training performance of the first version remain
unchanged. Thus, we do not report the performance of
the first version in all experiments.

In total, our training data contains 764M English
and Chinese samples. Due to the limitation of
GPU resource, we do not experiment with the en-
tire dataset. To simulate the scenario of version
updates, we perform non-replacement sampling
on the training data to obtain 10.5B tokens as the
newly-added data for each update. Hence, when
using PTFS, we train four versions of LLMs from
scratch with 10.5B, 21B, 31.5B, and 42B tokens,
respectively. By contrast, using CPT to update the
LLMs only involves the newly-added 10.5B tokens
each time.

Evaluation Following previous studies (Qin
et al., 2022; Gupta et al., 2023; Bi et al., 2024),
we mainly use perplexity (PPL) to evaluate the pre-
training performance of LLMs. Meanwhile, we
also focus on the training cost of each paradigm,
defined as the total training steps required for dif-
ferent versions.

2.2 Comparison between PTFS and CPT

Experimental results are shown in Table 1. It is evi-
dent that CPT incurs a lower training cost, whereas
PTFS achieves superior performance. More im-
portantly, as the version updates processing, the
performance gap between PTFS and CPT progres-
sively widens.

To explore the underlying reasons for the above
phenomenon, we still use cosine learning rate
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Figure 4: The effect of learning rate adjustment in the
first stage. In the first stage, we vary the cosine cycle
length as 10K, 20K, 30K, 40K and +co steps, respec-
tively, where the checkpoints at the 10K-th steps are
selected as the initialization ones for the subsequent
10K-steps continual pre-training. “(-,-)” indicates the
PPLs of the initialization checkpoint and corresponding
updated LLM.

schedule to conduct two groups of experiments,
so as to investigate the impact of learning rate on
the performance of updated LLMs during the two
stages of CPT: 1) preparing an initialization check-
point, and 2) performing continual pre-training
based on the prepared initialization checkpoint.

Effect of Learning Rate Adjustment During the
First Stage As depicted in Figure 4, in the first
group of experiments, we vary the cosine cycle
length to 10K, 20K, 30K, 40K, and +oo steps,
respectively. The checkpoints at the 10K-th steps
are selected as initialization checkpoints for the
second stage. Then, we continually pre-train LLMs
for 10K steps, where the learning rate gradually
decays from its maximum to minimum. Back to
Figure 4, we can observe that with the increase
of the cosine cycle length in the first stage, the
performance of an initialization checkpoint drops,
whereas its corresponding updated LLM performs
better. Therefore, we conclude that large learning
rate in the first stage is advantageous for continual
pre-training during the second stage.

Effect of Learning Rate Adjustment During the
Second Stage Based on the above conclusion,
we directly set the cosine cycle length in the first
stage as +oo steps, as illustrated in Figure 5. Then,
during continual pre-training, we experiment with
the cosine learning rate schedule using different co-
sine cycle lengths: 10K, 20K, 30K, 40K, +oco steps,
and report the performance of updated LLMs at
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Figure 5: The effect of learning rate adjustment in the
second stage. In the first stage, we directly use the
maximal learning rate after warm-up. During the second
stage, we try cosine cycle length with 10K, 20K, 30K,
40K and +oo steps, respectively, where the PPLs of
LLMs at the 20K-th steps are compared.

the 20K-th steps. As shown in Figure 5, it is ev-
ident that the complete decay of learning rate
enables the updated LLMs to achieve the best
performance. This finding is consistent with the
results from the first group of experiments men-
tioned above. In other words, when the learning
rate experiences complete decay during the first
stage, the initialization checkpoint’s performance
is also optimal.

Based on the findings of the above two groups of
experiments, we can conclude that it is difficult for
CPT to achieve good performance across different
versions of LLMs. Specifically, according to the
findings of the second group of experiments, if the
current LLM is expected to achieve the best perfor-
mance, its learning rate at the second stage should
undergo a complete learning rate decay. However,
such decay will result in a lower learning rate in
the first stage of the next update of LLM, further
degrading the performance of the updated LLM.

3 Ouwur Paradigm

Based on the conclusions from Section 2, we pro-
pose a learning rate path switching paradigm for
version updates of LLMs in this section. Our train-
ing cost is lower than PTFES and we achieve signifi-
cantly better performance than CPT, even compa-
rable to PTFS.

3.1 Paradigm Overview

Let us revisit Figure 1, which shows the learning
rate curves of our paradigm applied to cosine learn-
ing rate schedule. Please note that our paradigm
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LRS « Cost LRS TP Cost
V2 V3 V4 V2 V3 V4
02 0.49x 2034 19.13 18.44 PTFS 1.00x 2084 1928 1836
04 053x 2016 1891 1821 Cos  CPT 0.40x 21.11 1970 18.87
Cos 06 058x 2013 1881 18.09 Ours  0.58x 2013 18.81 18.09
0.8 0.62x 20.15 18.77 18.02 PTFS 1.00x 2022 18.80 17.98
02 049x 2033 19.12 1842 Knee CPT 0.40x 20.56 19.27 18.52
K 04 053x 20.16 1891 1820 Ours 0.58x 20.12 18.81 18.08
nee
0.6 058x 2012 1881 18.08 PTFS 1.00x 20.28 18.88 18.06
0.8 0.62x 20.15 18.77 18.01 Multi ) 7C7P:[‘7 70:47057 729.76% B 19;3777 7178.76§ )
02 0.49x 2033 19.08 1837 Ours 0.58x 2040 18.88 18.09
Mg 04 0-53x 2029 1891 1816 ' ‘ _ ‘ -
u 0.6 058x 2040 18.88 18.09 EEE)];/[ 3A.C102r?3palrcl(slgli1f of differept paradigms for training
0.8 0.62x 2063 1891 18.06 AMA-L.2B of Citierent VErsions.

Table 2: The effect of hyper-parameter « on the pre-
training performance and training cost of our paradigm.
Experiments are conducted on LLaMA-1.2B.

is also applicable to other schedules, such as Knee
and multi-step and so on. Without loss of gen-
erality, the learning rate curve of our paradigm
comprises one main path and multiple branching
paths, each of which corresponds to one version up-
date. On the main path, we pre-train the LLM from
scratch with the maximal learning rate, providing
initialization checkpoints for subsequent version
updates. When we want to obtain an updated LLM,
we directly use the current checkpoint of the main
path as the initialization one, and then perform
continual pre-training. During this process, the
learning rate undergoes a complete fast-decaying
process, effectively ensuring the performance of
the updated LLM. Meanwhile, on the main path,
we still use newly-added data to pre-train the exist-
ing checkpoint with the maximal learning rate, so
as to facilitate subsequent updates.

Obviously, our paradigm has lower training cost
than PTFS, as it conducts continual pre-training
based on the initialization checkpoints from the
main path. Unlike CPT, these checkpoints are
obtained through training from scratch with the
maximum learning rate, which enables the updated
LLMs to achieve better performance, as analyzed
in Section 2. The following experiments also fully
confirm the superiority of our paradigm in balanc-
ing model performance and training cost.

3.2 Time Complexity Analysis

To further compare different training paradigms in
training cost, we define their time complexity func-
tions as the total training steps of version updates.

Before providing our definitions, we first intro-
duce two symbols to facilitate the subsequent de-
scriptions: 1) IV,: the number of version updates
os LLMs; 2) T': assuming a consistent number of
data is added for each update. When updating the
1 — th version of LLMs, PTFS requires updating
iT(1 < i < N,) steps each time, CPT needs to
train for 7" steps, and our paradigm requires train-
ing T' + aT steps, where a (0 < v < 1) controls
the proportion of fast-decaying steps to the total
steps in each update.

Formally, the total training cost for each
paradigm can be described as follows:

Ny
Cpuis(Ny) = Y iT = 0.5T N} + 0.5TN,,

=1

Ny
Ccpt(Nv> = ZT = TNv»
=1

Ny—1
Cours(Ny) = Z (T+al)+T
=1
=(14+a)TN, —aT.

Please note that, for the last version, the ad-
dtional main path training for preparing initializa-
tion checkpoint for the next update can be omitted,
which counts for a7 steps, so only T’ steps are
required.

Comparing the above functions, we can clearly
find that Cp (V) is a quadratic function with re-



Ver. TP c? GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG
PTFS 38.00 463 24.00 38.25 30.09 17.43 25.37 18.10 14.59 23.38
vz CPT 3700 409 2352 3511 2742 1855  25.63  18.86 1340 22.62
Ours 38.60 5.08 2294 39.08 28.38  20.79 24.88 18.48 14.73 23.66
PTFS 40.30 3.34 2433 39.17 25.85 17.11 25.30 22.03 14.34 23.53
V3 CPT 38.30 470 23.32 36.40 28.38 21.11 24.76 17.85 13.47 23.14
“Ours 4210  4.63 2322 3491 2935 1970 2473 1924 1490 23.64
PTFS 35.70 425 2493 38.75 27.04 16.73 24.97 21.01 14.10 23.05
V4 CPT 4390 455 2220 38.69 27.19 21.62 2443 1823  13.50 23.81
Ours 41.90 5.53 24.09 40.24 2771 21.84 24.78 17.24 14.40 24.19

Table 4: Performance of LLMs across different versions on downstream tasks. “Ver.” indicates the number of
version of LLMs. More experimental results of LLMs on larger model size or larger data size are listed in Table 11.

spect to IV, while both Cpi (V) and Cours (V)
are linear ones. Besides, the gaps of Cig(INVy)
compared to the other two functions significantly
widen with the increase of N,,. For example, when
N, = 4, the values of these three time complexity
functions are 107, 4T, 5.8T, respectively. In con-
trast, they will separately reach 557", 107, 15.4T
with NV, = 10.

4 Experiment

In this section, we still use the settings of the pre-
liminary study to conduct more experiments, com-
paring the performance and training cost of differ-
ent training paradigms.

4.1 Effect of Hyper-Parameter o

As described in Section 3, « is the most important
hyper-parameter in our paradigm, as it controls the
proportion of fast decay steps to the total number
of steps. The fast decay steps influence model
performance and training cost of our paradigm. To
select an optimal « value, we try different o for
our paradigm: from 0.2 to 0.8 with an increment of
0.2 each time, and then observe the changes in the
pre-training performance and training cost of our
paradigm.

Experimental results are listed in Table 2, which
show that the overall performance of LLMs across
different versions is optimal when « is set as 0.6
and 0.8. However, when « is set to 0.6, our
paradigm achieves lower training cost. Thus, we
directly use @ = 0.6 in subsequent experiments.

4.2 Main Experiments

Then, we compare different paradigms in terms of
pre-training performance and downstream perfor-

mance. To comprehensively examine our paradigm,
we conduct experiments with the previously-
mentioned three learning rate schedules.

Pre-Training Performance From Table 3, we
can observe that compared with PTFS, our
paradigm reduces the total training cost to 58 %
while maintaining comparable pre-training per-
formance. Particularly, when using cosine learning
rate schedule, our paradigm can even slightly out-
performs PTFS. On the other hand, as expected,
the training cost of our paradigm is still higher than
that of CPT, however, it always achieves better per-
formance than CPT, no matter which schedule is
used. Overall, our paradigm achieves a better bal-
ance between pre-training performance and total
training cost of LLMs during version updates of
LLM:s.

Performance on Downstream Tasks Further-
more, we investigate the performance of differ-
ent training paradigms on benchmarks of nine
downstream tasks, including c3 (Sun et al., 2020),
GSMSK (Cobbe et al., 2021), MMLU (Hendrycks
etal.,2021), CSL (Lietal., 2022), C-EVAL (Huang
et al., 2023), BBH (Suzgun et al.,, 2023),
CMMLU (Li et al., 2023), GAOKAO (Zhang et al.,
2023), AGIEval (Zhong et al., 2023). To this end,
we first construct a general SFT dataset with 1.8B
tokens and then perform SFT on each of the four
versions of updated LLMs.

From the results listed in Table 4, we can clearly
find that our paradigm can still obtain better aver-
age performance than both PTFS and CPT, further
proving the effectiveness of our paradigm.



LRS TP Cost
V2 V3 V4
PTFS 1.00x 2094 1935 1841
Cos  CPT 0.40x 2123 1978 18.92
Ours 0.58x 20.23 18.87 18.11
PTFS 1.00x 20.30 18.84 17.98
Knee CPT_ 040x 2067 1934 1856
Ours 0.58x 20.20 18.85 18.09
PTFS 1.00x 20.37 18.92 18.06
Multi CPT 0.40x 20.74 19.44 18.68
" Ours 0.58x 2049 18.92 18.09

Table 5: The generalization of our paradigm in terms of
model architecture. Based on Qwen-1.2B, we conduct
experiments with the same setting as LLaMA-1.2B.

4.3 Generalization of Our Paradigm

Subsequently, we explore the generalization of our
paradigm in the following aspects: model architec-
ture, model size, data size, and maximum learning
rate, all of which are crucial for practical applica-
tions of LLMs. During this process, we still use
cosine learning rate schedule.

Model Architecture To demonstrate the general-
ization of our paradigm in model architecture, we
use Qwen-1.2B (Bai et al., 2023) to re-conduct ex-
periments with the same setting as LLaMA-1.2B.

We list the experiments results in Table 5, which
indicate that our paradigm is also applicable to
other model architecture.

Model Size We then focus on the generalization
of our paradigm on model scaling. To this end, we
vary the number of model parameters to conduct
experiments. In total, we consider six model sizes:
203M, 406M, 608M, 1.2B, 2.1B, 3.1B, of which
detailed hyper-parameters are listed in Appendix A.

From the results shown in Table 6, we observe
that our paradigm achieves pre-training perfor-
mance comparable to PTFS across different sizes
of LLLMs and outperforms CPT.

Data Size Next, we switch our attention to the ap-
plicability of our paradigm in data size. To do this,
we re-conduct experiments using different sizes of
total training data: 21B, 42B, and 168B. Corre-
spondingly, the training steps are 5K, 10K and 40K
for each LLM update, respectively.

As shown in the experimental results in Table 7,
our paradigm achieves optimal pre-training perfor-

Size TP PPL
V2 V3 V4
PTEFS 3097 29.50 28.65
203M  CPT_ 3131 2990 2907
Ours 30.25 28.94 28.19
PTFS 26.58 25.06 24.19
406M _ CPT_ 2689 2549 2467
Ours 25.85 24.52 23.79
PTES 23.12 21.75 20.93
608M _ CPT 2350 2226 2152
Ours 22.59 2143 20.77
PTFS 20.84 19.28 18.36
128 CPT_ 2122 1979 1897
Ours 20.13 18.81 18.09
PTFS 18.33 16.88 16.04
218 CPT_ 1876 1747 1672
Ours 17.82 16.63 15.97
PTFS 17.22 15.87 15.07
3.1B CPT 17.67 1648 15.77
" Ours 16.84 1572 15.09

Table 6: The generalization of our paradigm in terms of
model size. The model sizes range from 203M to 3.1B.

mance across different data sizes, which further
demonstrates the generalization of our paradigm.

Maximum Learning Rate Finally, we aim to
verify the generalization of our paradigm with re-
spect to the maximum learning rate. We conduct
experiments by setting the maximum learning rates
as Se-5, le-4, 3e-4, Se-4, 8e-4, respectively.

From Table 8, as the maximum learning rate
increases, our paradigm always achieves better or
comparable performance than PTFS, let alone CPT.
This strongly highlights the generalization of our
paradigm in the maximum learning rate.

5 Related Work

Continual Training Continual training is one
of the most direct approaches for version updates
of LLMs. Related studies of continual training
can be broadly categorized into the following three
types: 1) Methods introducing additional parame-
ters (Ke et al., 2022, 2023; Song et al., 2023; PENG
et al., 2024); 2) Prompt-based methods (Wang et al.,
2022b,a; Razdaibiedina et al., 2023); 3) Scenario-
specific methods (Peng et al., 2023; Gogoulou et al.,



Data TP
V2 V3 V4
PTEFS 24.66 2231 20.84
21B  CPT 25.10 22.84 21.56
" Ours 2359 2141 20.27
PTFS 20.84 19.28 18.36
428 CPT_2LI1 1970 1887
Ours 20.13 18.81 18.09
PTFS 16.70 1597 15.54
1688 CPT 1690 1625 1586
Ours 1647 15.86 15.51

Table 7: The generalization of our paradigm in terms of
data size. The total data sizes (for four versions) range
from 21B to 168B.

2023a; Xie et al., 2023). Significantly different
from the above studies, our paradigm comprises
one main learning rate path, where we perform
pre-training with the maximal learning rate, and
multiple learning rate branches with the complete
decay process. Thus, our paradigm achieve a better
trade-off between the performance and cost.

Learning Rate The learning rate is one of the
most crucial hyper-parameters for training LLMs.
Existing learning rate schedules can be broadly di-
vided into the following four categories according
to their policies (Wu et al., 2019; Wu and Liu, 2023;
Jin et al., 2023): 1) Fixed learning rate policy, such
as constant learning rate schedule; 2) Decaying
learning rate policy, such as inverse square root
learning rate schedule; 3) Cyclic learning rate pol-
icy, such as cosine learning rate schedule; 4) Com-
posite learning rate policy, such as Knee and multi-
step learning rate schedules. In addition, there are
some recent studies exploring learning rate sched-
ules for LLMs, including Warmup-Stable-Decay
schedule (Hu et al., 2024) and Constant Learning
Rate with Cooldown (Higele et al., 2024). Par-
ticularly, our paradigm is a well-designed training
paradigm for version updates of LLMs, which is ap-
plicable to cosine, Knee, and multi-step and other
learning rate schedules.

6 Conclusion and Future Work

In this paper, we mainly focus on how to better
balance model performance and training cost for
version updates of LLMs. Through the analysis
in the preliminary study, we find that 1) a large

MLR TP PPL
V2 V3 V4
PTFS 3478 29.53 26.65
Ses  CPT_ 3523 3008 273
Ours 29.99 2554 23.27
PTFS 26.34 2328 21.57
le-d  CPT_ 2664 2370 2204
Ours 23.89 21.32 19.97
PTFS 20.84 19.28 18.36
Sed  CPT_ 2122 1979 1897
Ours 20.13 18.81 18.09
PTFS 19.89 18.62 17.85
Sed  CPT_ 2017 19.05 1838
Ours 19.53 1845 17.85
PTFS 19.38 18.26 17.58
84 CPT_ 1969 1873 I8.16_
Ours 19.22 1830 17.78

Table 8: The generalization of our paradigm in terms
of the maximum learning rate. “MLR” indicates the
maximum learning rate.

learning rate is beneficial for providing a better ini-
tialization checkpoints for subsequent updates, and
2) a complete learning rate decay process enables
the updated LLMs to achieve optimal performance.
Based on the above two findings, we propose a
learning rate path switching paradigm for version
updates of LL.Ms, which comprises one main path
and multiple branching paths. On the main path,
we pre-train the LLMs with the maximal learning
rate to provide superior initialization checkpoints
for subsequent updates. Each time an update is re-
quired, our paradigm switches from the main path
to a branching path, undergoing a complete learn-
ing rate decay process. Experimental results and
further analyses strongly demonstrate the effective-
ness and generalization of our paradigm.

In the future, we will further expand the practical
scope of our paradigm. Current research mainly
focuses on the pre-training phase and does not in-
clude supervised fine-tuning, safety alignment, etc.,
which can be incorporated into the fast decay phase
of our paradigm. Additionally, we plan to explore
the applicability of our paradigm based on multi-
modal large models.



Limitations

Although the training cost of our paradigm is sig-
nificantly lower than that of PTFS, it is still higher
than that of CPT. Hence, we plan to design a pre-
cise method to determine the proportion of the fast-
decaying steps to the total steps, which can further
reduce the training cost of our paradigm.
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Size MLR Hidden Head Layer
203M  le-3 512 8 24
406M  6e-4 1,024 16 12
608M  6e-4 1,024 16 24

12B  3e4 1,536 16 24

2.1B  3e4 1,536 16 48

3.1B  3e-4 8,192 32 40

Table 9: Detailed hyper-parameters of LLMs with dif-
ferent sizes.
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Figure 6: Learning rate curves of different adaptation
method of CPT for version iteration of LLMs. The
learning rate curves are plotted based on cosine learning
rate schedules.

A Detailed Hyper-Parameters

In this work, we compare PTFS, CPT and our
paradigm based on LLMs with different sizes, of
which hyper-parameters are listed in Table 9. Fol-
lowing Kaplan et al.; Mann et al., we set smaller
maximum learning rates for larger LLMs. Besides,
we set the minimum learning rate as 0.1 times of
the maximum learning rate for all LLMs.

B CPT Variants

In order to adapt traditional CPT for version up-
dates of LLMs, we compare three variants of CPT
in Figure 6:

* RewarmMax: Warm up the leaning rate period-
ically, and use the learning rate schedule of old
version to train the new version of LLMs (Gupta
et al., 2023).
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PPL

LRS Variant
V2 V3 V4
RewarmMax 21.22 19.79 18.97
Cos ResetMax 21.11 19.70 18.87
KeepMin 23.00 21.99 21.26
RewarmMax 20.74 19.46 18.70
Knee ResetMax 20.56 19.27 18.52
KeepMin 2222 2136 20.37
RewarmMax 20.80 19.55 18.82
Multi ResetMax 20.62 19.37 18.65
KeepMin 22.11 21.24 20.60

Table 10: Comparison among RewarmMax, ResetMax
and KeepMin for CPT.

* ResetMax: Directly set the leaning rate as max-
imum periodically, and use the learning rate
schedule of old version to train the new version
of LLMs (Gupta et al., 2023).

* KeepMin: Keep the learning rate in minimum
by using a constant learning rate schedules,
so as to ensure the training convergence of
LLMs (Gogoulou et al., 2023b).

Experimental results are listed in Table10. We
can observe that ResetMax achieves the best pre-
training performance among these variants. There-
fore, we use ResetMax for the other experiments.

C Performance of Downstream Tasks

In addition to the standard training scale (LLaMA-
1.2B trained for 42B tokens), we also evaluate
LLMs with more training data (LLaMA-1.2B
trained for 168B tokens) and larger model size
(LLaMA-3.1B trained for 42B tokens). We report
the performance of downstream tasks across dif-
ferent versions in Table 11. Experimental results
show that our paradigm achieves superior average
performance compared to PTFS and CPT across
different training scales on downstream tasks.



Scale Ver. TP c? GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG

PTFS 38.00 4.63 24.00 3825 30.09 1743 2537 18.10 14.59  23.38
V2 CPT 37.00 4.09 2352 3511 2742 1855 25.63 18.86 1340 22.62

1.2B PTFS 4030 334 2433 39.17 2585 17.11 25.30 22.03 14.34  23.53
4B V3 CPT 3830 470 2332 3640 2838 21.11 2476 17.85 13.47 23.14

V4 CPT 4390 455 2220 38.69 27.19 21.62 2443 18.23 13.50 23.81

V2 CPT 4380 7.13 2461 3722 2652 2296 2540 20.13 1425  24.67

1.2B PTFS 4740 849 2504 4242 2742 2688 25.06 18.23 16.59  26.39
168B V3 CPT 4030 842 2430 41.61 2630 2407 24.59 20.00 18.00 25.29

V4 CPT 49.10 834 2548 40.60 27.27 2254 2538 21.39 17.44 26.39

V2 CPT 46.00 6.14 2400 40.81 27.04 2194 23.57 20.89 13.28  24.85

3.1B PTFS 4430 834 2383 4099 2712 21.71 2473 21.65 1548 2535
4B V3 CPT 4390 8.11 2523 41.24 26.00 25.00 25.44 20.00 1340  25.37

V4 CPT 50.60 978 25.12 41.03 28.08 2248 2538 21.01 13.93  26.38

Table 11: Performance of downstream tasks of LLMs across four versions. In addition to the standard training scale
(LLaMA-1.2B trained for 42B tokens), we also evaluate LLMs with more training data (LLaMA-1.2B trained for
168B tokens) and larger model size (LLaMA-3.1B trained for 42B tokens).
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