This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ART: Anonymous Region Transformer for
Variable Multi-Layer Transparent Image Generation

Yifan Pu®  Yiming Zhao' Zhicong Tang Ruihong Yin Haoxing Ye Yuhui Yuan™ Dong Chen'* Jianmin Bao

Sirui Zhang Yanbin Wang Lin Liang Lijuan Wang Ji Li

Tequal technical contribution

XiuLi Zhouhui Lian Gao Huang Baining Guo
tproject lead

Microsoft Research Asia Tsinghua University Peking University USTC

https://art-msra.github.io

Abstract

Multi-layer image generation is a fundamental task that en-
ables users to isolate, select, and edit specific image layers,
thereby revolutionizing interactions with generative models.
In this paper, we introduce the Anonymous Region Trans-
former (ART), which facilitates the direct generation of
variable multi-layer transparent images based on a global
text prompt and an anonymous region layout. Inspired by
Schema theory', this anonymous region layout allows the
generative model to autonomously determine which set of
visual tokens should align with which text tokens, which is
in contrast to the previously dominant semantic layout for
the image generation task. In addition, the layer-wise re-
gion crop mechanism, which only selects the visual tokens
belonging to each anonymous region, significantly reduces
attention computation costs and enables the efficient gener-
ation of images with numerous distinct layers (e.g., 50+).
When compared to the full attention approach, our method
is over 12 times faster and exhibits fewer layer conflicts.
Furthermore, we propose a high-quality multi-layer trans-
parent image autoencoder that supports the direct encoding
and decoding of the transparency of variable multi-layer
images in a joint manner. By enabling precise control and
scalable layer generation, ART establishes a new paradigm
for interactive content creation.

1. Introduction

Diffusion-based generative models have shown tremendous
success in producing high-quality images from given text
prompts [4, 16,21, 52, 58]. These models are typically lim-
ited to producing entire images in a single, unified layer,
which restricts the ability to edit or manipulate specific
elements independently. This limitation presents signifi-
cant challenges in fields like graphic design and digital art,

!'Schema theory [3, 57] suggests that knowledge is organized in frame-
works (schemas) that enable people to interpret and learn from new infor-
mation by linking it to prior knowledge.
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Global Prompt: A stark top-down view of a dessert plate hold a tart slice with whipped cream, caramel dizzle, and a silver spoon.

-
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Figure 1. Semantic Layout vs. Anonymous Region Layout. The con-
ventional semantic layout requires specifying what objects to generate in
each given region, whereas our anonymous region layout only identifies
where the important regions are. People can leverage the prior knowledge,
activated by the global prompt, to intuitively infer the semantic label of
each anonymous region. The generative model also learns to harness this
capability and autonomously determine what to generate in each region.

where creators frequently rely on layer-by-layer control to
construct and refine complex compositions.

This paper presents Anonymous Region Transformer for
multi-layer transparent image generation. The key ingredi-
ent of the anonymous region transformer is the anonymous
region layout, which solely consists of a set of anonymous
rectangular regions without any region-wise prompt annota-
tions, as shown in Figure 1. This is unlike the conventional
semantic layout for text-to-image generation [45, 78, 81],
which requires clearly specify both the global prompt for
the entire image and the location and region-wise prompts
for each region’. The drawback of the conventional layout
is that it heavily relies on human labor for creating the lay-
out and this process can be very labor intensive, especially
when handling tens or even hundreds of regions on a can-
vas, a common scenario in graphic design generation. The
anonymous region transformer significantly reduces the hu-
man labor by allowing the generative model to perform the
visual planning task of determining which objects to gener-
ate in each anonymous region based on the global prompt.
The core insight behind the anonymous region layout is to
enhance generative model control, while preserving user
flexibility over manipulating multi-layered outputs.

2We use ‘region’ and ‘layer’ interchangeably in this paper.
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Figure 2. Visual planning capability of our Anonymous Region
Transformer. We visualize the averaged attention maps of all visual to-
kens within the same anonymous region (as Query) attending to the entities
within the global prompt text tokens (as Key and Value). These attention
maps reveal that each anonymous region assigns the majority of attention
weights to one of the major objects identified in the given text prompt.

A natural question arises regarding how the anonymous
region layout can function effectively without region-wise
prompts, especially given that these prompts are central to
conventional semantic layout approaches. This effective-
ness can be explained by Schema Theory [1, 3, 40, 57], a
well-established cognitive framework that helps bridge the
gap between abstract concepts (such as plate or spoon) and
specific sensory experiences (such as layour). It suggests
that people can infer each region’s semantic label based on
their prior knowledge activated by a global prompt. In our
case, we find that the effectiveness of the anonymous-region
layout for multi-layer image generation tasks stems from
the Transformer model’s ability to autonomously identify
semantic labels for each layer through interactions between
text tokens and visual tokens. The generative model learns
to capture the prior knowledge similar to Schema Theory,
enabling it to determine which set of visual tokens (from
an anonymous region) attends to which text tokens (repre-
senting different entities), as shown in Figure 2. Our exper-
iments further demonstrate that adding additional region-
wise prompts for each layer does not necessarily improve
the results and can even diminish coherence across layers.

The anonymous region transformer offers several key
advantages over the conventional approach for multi-layer
transparent image generation. First, it ensures better co-
herence across different layers. We observe that, in the se-
mantic layout, regional visual tokens struggle to balance at-
tention weights between region-wise text tokens (to ensure
prompt following) and the corresponding global visual to-
kens located at the same position (ensure coherence). This
difficulty arises from a semantic gap between the global vi-
sual tokens and region-wise visual tokens as they are forced
to attend different text tokens. In contrast, our anony-
mous region layout enables all regional visual tokens and
global visual tokens to attend to the same set of global text
tokens, thereby closing this gap. Second, annotating the
anonymous-region layout is more scalable, especially for
native multi-layer graphic design images. We can easily
generate a large number of high-quality anonymous-region
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Figure 3. ART vs. previous SOTA in multi-layer transparent image gen-
eration: user study results across different domains. ART significantly out-
performs LayerDiffuse [83] in the photorealistic domain and COLE [37]

in the graphic-design domain across multiple aspects.

layouts, whereas recaptioning each region is non-trivial and
often suffers from significant noise due the semantic gap
between captioning a crop conditioned on an entire image
and captioning only a small crop. Third, by focusing on the
anonymous regions within each layer, we can significantly
reduce computation costs and enables the efficient genera-
tion of images with numerous distinct layers (e.g., 50+).
Our methodology consists of three key components: the

Multi-layer Transparent Image Autoencoder, the Anony-

mous Region Transformer, and the Anonymous Region

Layout Planner. The Multi-layer Transparent Autoencoder

encodes and decodes a variable number of transparent lay-

ers at different resolutions using a sequence of latent visual
tokens. The Anonymous Region Transformer concurrently
generates a global reference image, a background image,
and multiple cropped transparent foreground layers from

Gaussian noise conditioned on the anonymous region lay-

out. The Anonymous Region Layout Planner predicts a set

of anonymous bounding boxes based on the user-provided

text prompt. Compared existing methods in multi-layer im-

age generation—such as Text2Layer [84], LayerDiff [32],

and LayerDiffuse [83]-the key difference is that these meth-

ods can produce only a limited number of transparent layers
at fixed resolutions. Additionally, unlike the COLE [37] and

OpenCOLE [36], which apply a cascade of diffusion mod-

els to generate layers sequentially, our method generates all

transparent layers and the reference image simultaneously
in an end-to-end manner, ensuring a better global harmo-
nization across different layers. The experimental results
demonstrate the advantages of our approach over previous

methods, and we report the user study results in Figure 3.
In summary, this paper not only proposes a novel ap-

proach to multi-layer transparent image generation, but also

opens up numerous possibilities for future research and ap-
plications. Our main contributions are as follows:

1. We are the first to propose a novel pipeline for multi-
layer transparent image generation that supports gener-
ating a variable number of layers at variable resolution.

2. We introduce the anonymous region layout, which of-

fers several key advantages over conventional semantic
layout for multi-layer transparent image generation.

. Our method empirically outperforms prior state-of-the-

art approaches, producing higher-quality multi-layer
transparent images with significantly more layers.



2. Related works

Multi-Layer Transparent Image Generation has pri-
marily been approached through two different paths.
The first generates all layers simultaneously, as seen in
Text2Layer [84], which adapts Stable Diffusion for two-
layer image generation, and LayerDiff [32], which uses a
layer-collaborative diffusion model to generate up to four
layers guided by layer-wise prompts. The second path. gen-
erates layers sequentially. LayerDiffuse [83] introducing a
background-conditioned model, which generates image lay-
ers iteratively. COLE [37] and OpenCOLE [36] utilizing
LLM:s and diffusion models to iteratively create image ele-
ments. In contrast, our method supports generating tens of
transparent layers using an anonymous region transformer,
outperforming prior methods in photorealistic and design-
oriented multi-layer image generation tasks.

Layout Generation and Layout Control have gained at-
tention for their broad applications in image generation.
Existing approaches can be grouped into two: (1) design-
ing better layout generation models and (2) controlling im-
age generation with a given layout prior. The first fo-
cuses on generating layouts from visual elements. For in-
stance, Graphist [11], Visual Layout Composer [60], and
MarkupDM [41] propose methods based on transparent vi-
sual layers. For more developments, see [0, 8—10, 17—
19, 33-35, 38, 39, 43, 62, 71, 73, 77, 80]. The sec-
ond enhances diffusion models’ compositional capabilities
by specifying object placement. Key works include GLI-
GEN [45], InstanceDiffusion [67], and MS-Diffusion [68],
which inject positional information into diffusion models.
Other efforts, such as [2, 42, 59, 63, 78, 85], propose
training-free, post-training, or harmonization techniques.
Closely related works like LayoutGPT [17] and TextLap [9]
predict semantic layouts from a global prompts. We demon-
strate the advantages of our anonymous region layout plan-
ner for multi-layer transparent image generation.

Dynamic Neural Networks adaptively adjust their struc-
tures or parameters conditioned on different inputs [23, 70],
leading to notable advantages in terms of performance,
adaptiveness [20, 79], computational efficiency [56, 82],
and representational power [54], thus revolutionizing the
paradigm of traditional static models. Dynamic networks
are typically categorized into three types: sample-wise [ 14,
25,27, 30, 50, 53, 55, 65, 76], spatial-wise [24, 26, 28, 31,
49,51, 66, 74,75, 86], and temporal-wise [29, 69]. Viewing
image layers as a temporal dimension, our method can be
interpreted as a temporal-wise dynamic network. It is con-
ceptually similar to the AdaFocus [69, 72], which leverages
reinforcement learning to identify and focus on the most
critical regions in each video frame for video understand-
ing. In comparison, our approach utilizes a layout planner
to predict the spatial placement of each layer, enabling effi-
cient and harmonious multi-layer image generation.
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3. Approach

The conventional text-to-image model [4, 16, 44, 52, 58]
supports only a single, unified image generation from a
global prompt. Our approach enables diffusion transformer-
based models to jointly generate images with multiple trans-
parent layers conditioned on an anonymous region lay-
out provided by the user or predicted by an LLM. The
entire framework consists of three key components: the
Multi-layer Transparent Autoencoder (Section 3.1), which
jointly encodes and decodes multi-layer images and their
corresponding latent representations; the Anonymous Re-
gion Transformer (Section 3.2), which concurrently gen-
erates a global reference image, a background image, and
multiple RGBA transparent foreground image layers from
a sequence of layout-guided noisy tokens; and the Anony-
mous Region Layout Planner (Section 3.3), which predicts
a set of anonymous bounding boxes given the user-provided
text prompt. The technical details are presented as follows.

3.1. Multi-Layer Transparent Image Autoencoder

A multi-layer transparent image consists of an RGB back-
ground layer I, € R¥*W>3 and a variable number K
of RGBA foreground layers, {If, € R”*Wix4}/% . The
corresponding merged image I, € R *"W>3 can be ob-
tained by integrating I, as the base layer and overlaying
all I}'g layers according to a predefined layout. We use
L = {2,y H;,W;}X| to represent the anonymous re-
gion layout of all K foreground layers. Here, %, y’ and
H;, W; denote the center coordinates and the height and
width of the bounding box that encapsulates the i-th trans-
parent foreground layer, respectively.

Transparency Encoding. Our method integrates the trans-
parency in alpha channel I},  directly into the RGB chan-

fg,
nels I::g,RGB' Specifically, we compute Ifg = (O.5I§g,a +
0.5) x Iﬁg’RGB, converting the transparent-background im-

age I§g into a gray-background image i}'g. All channel val-
ues are normalized to range between —1 to 1. Empirically,
we found that this gray background sufficient to ensure ac-
curate transparency decoding in subsequent stages.

Multi-Layer Transparency Encoder. In the encoder part
of the Multi-layer Transparency AutoEncoder (Figure 4a),
the merged reference image I, the background layer I,
and all the padded gray-background image layers {i’fig}iﬁl
are all concatenated along the batch dimension, and then fed
into the VAE encoder Eyag. This encoder [44] downsam-
ples the spatial dimension with a factor of 8 while obtain-
ing a 16-channel feature dimension. The extracted latent
representations of the merged reference image I, and the
background image Iy, are flattened into sequence of tokens:

Zmg = FIatten(SVAE(Img)),zbg = Flatten(EVAE(Ibg)). (1)
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Figure 4. (a) Multi-layer Transparent Image Autoencoder directly encodes each layer of the multi-layer image, accompanied by the entire composed
image, into latent space and jointly decodes the multi-layer latent tokens into RGBA transparent image layers. (b) Anonymous Region Transformer (ART)
performs denoising diffusion on the noisy multi-layer latents corresponding to a variable number of transparent layers jointly.

The VAE-downsampled foreground image layers are first
subjected to a ceiling-aligned tight crop using L; and then
flattened into latent tokens with different lengths:

z}, = Flatten(Crop(&vag (1), L)), i=1,--+ K, (2)

where L; denotes the foreground area position of layer I
The celhng aligned tight crop is performed by 1dent1fy1ng

the tightest bounding box with a height and width divisi-
ble by 16 to adapt to the VAE downsample rate of 8 and
diffusion transformer patch size 2. Finally, the compressed
multi-layer image latent z is obtained by concatenating the
latent of the merged reference image, the background im-
age, and the transparent foreground layers:

K
) ng

). 3
Multi-Layer Transparency Decoder. The detailed design

z = Concatenate(2mg, Zng, Ziy, Ziy, - -

of our novel multi-layer transparency decoder is illustrated
on the right in Figure 4a, which supports the direct decoding
of a variable number of transparent layers at varying reso-
lutions from a sequence of concatenated visual tokens in a
single forward pass. We implement the multi-layer trans-
parent image decoder based on a standard ViT architecture.
The mathematical formulations are shown as follows:

v = ViT(Linear;,(z)),
t = Reshape(Linearqy(v), L),

“)
(&)

where ViT(:) represents a ViT [12] model, Linear;,(-) de-
notes a linear projection that transforms the channel dimen-
sion of the latent representation, i.e. 16, to the hidden di-
mension size of ViT, especially 768, v represents the output
representation of the ViT, Linear,y () denotes a linear pro-
jection that transforms the output dimension from 768 to
256, where each token can be reshaped to form an RGBA
patch of size 8 x 8 x 4. Another key modification in our de-
sign is the replacement of the original absolute position em-
bedding with 3D RoPE, which is explained in the following
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discussion. We simply apply £, loss to optimize the param-
eters of the multi-layer transparency decoder while freezing
the parameters of the multi-layer transparency encoder.

The advantages of our multi-layer transparency decoder
are twofold, including improved efficiency and enhanced
transparency predictions compared to the previous single-
layer transparent decoder [83]. We present the qualitative
comparison results in the experimental section.

3.2. Anonymous Region Transformer

The Anonymous Region Transformer (ART) generates the
visual tokens of a global reference image, a background im-
age and all foreground layers simultaneously. The purpose
of generating reference images is twofold: to better leverage
the original capabilities of the existing text-to-image gener-
ation model and to ensure overall visual harmonization by
preventing conflicts and inconsistency across layers. Gen-
erating all layers simultaneously also avoids the need for
inpainting algorithms to complete missing parts of the oc-
cluded layers. We choose the latest multimodal diffusion
transformer (MMDIT), e.g., FLUX.1[dev] [44], to build our
variable multi-layer image generation model, ART.

MMDIT is an improved variant of DiT framework [16]
that uses two different sets of model weights to process text
tokens and image tokens separately. The original MMDiT
model, which only supports single image generation from a
global prompt. We transform it into a multi-layer genera-
tion model by modifying the input visual tokens to encode
the anonymous region layout information with a novel 3D
RoPE design. We present the overall framework of ART in
Figure 4b. The input consists of an anonymous region lay-
out LL and a global prompt T. The noisy input is computed
by adding Gaussian noise to a sequence of clean multi-layer
latents z that encodes the reference image, background im-
age, and all the transparent layers. We extract multi-layer
latents z with our multi-layer transparency encoder.



Layout Conditional Multi-Layer 3D RoPE. Rotary Po-
sition Embedding (RoPE) [01] is a specific type of posi-
tion embedding that applies a rotation operation to key and
query in self-attention layers as channel-wise multiplica-
tions. The advantage of RoPE is that it allows the model
to handle sequences of varying lengths, making it more
flexible and efficient. The key design of our ART is to
use a layout conditional multi-layer 3D RoPE to encode
the accurate relative position information for all visual to-
kens, which is also utilized in the multi-layer transparency
decoder. We first extract the layer-wise 3D indexing for
the given noisy latents according to the anonymous region
layout, i.e. p, = {pZ,p¥,p,} represent the width index,
height index, and layer index of the n-th latents, respec-
tively. Then, denoted n-th query and m-th key as q,, and
k,, € R, respectively, we split both query and key into
3 parts along channel dimensions, i.e. q, = {q%,q%,d.}
and k,,, = {k? kY k! }. Thus, the (n,m) component of
the attention matrix is calculated as:

Apmy = > Refas(kp,) /)],
cef{z,y,l}

(6)

*

where Re[-] is the real part of a complex number and (k¢,)
represents the conjugate complex number of k¢, . # € Risa
preset non-zero constant. The detailed implementation can
be found in the supplementary material.

3.3. Anonymous Region Layout Planner

We propose an anonymous region layout planner, which
predicts a set of bounding boxes based on the text input.
This planner is implemented by fine-tuning an LLM model
on our layout dataset, specifically using the pre-trained
LLaMa-3.1-8B [15]. An example of prompts as input and
the corresponding predicted layouts is given below. Unlike
conventional layout definitions [36, 37, 39, 43] that spec-
ify both position and content, our anonymous region layout
planner avoids assigning specific semantic labels to regions.
In addition, it refrains from asking users to provide explicit
layout details by users, offering greater flexibility.

Anonymous Layout Example

Input: The image is a vibrant Ramadan-themed ad featuring a
rich blue background with Islamic art-inspired designs and three
lit golden lanterns. The white text in the center announces a “spe-
cial offer Ramadan big sale”, with a subtitle that states “Discount
up to 30% off”. Output: [{ “layer™: 0, “x: 512, “y”: 512,
“width™: 1024, “height”: 1024 }, { “layer™: 1, “x: 744, “y”:
496, “width”: 496, “height™: 256 }, { “layer”: 2, “x™: 856, “y™:
704, “width™: 240, “height™: 96 }, { “layer™: 3, “x”: 792, “y™:
640, “width”: 368, “height™: 64 }, { “layer™: 4, “x™: 840, “y™:
336, “width™: 272, “height™: 64 }]
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Dataset # Samples | # Layers Source Data Alpha Quality
MAGICK [7] ~ 150K 1 generated good
Multi-layer Dataset [83]| ~ 1M 2 commercial, generated good
LAION-L?1 [84] ~ 57TM 2 LAION normal
MuLAn [64] ~44K | 2~6 COCO, LAION poor
MLCID [32] ~2M | [2,34] LAION poor
Crello [77] ~ 20K | 2 ~ 50 | Graphic design website normal
MLTD (ours) ~ 1M |2~ 50 |Graphic design website good

Table 1. Comparison with existing multi-layer datasets.

3.4. Multi-Layer Transparent Design Dataset

We have collected a private, high-quality, multi-layered
transparent design (MLTD) dataset that consists of approx-
imately 1 million instances considering their high-quality
alpha channels and coherent spatial arrangements. Each in-
stance comprises multiple transparent layers with variable
resolutions. The resolutions of the merged images range
from 1024 x 1024 to 1500 x 1500. The average number of
layers is 11, and 99.9% of designs have fewer than 50 lay-
ers. The average number of visual tokens is 11.38K, which
is significantly smaller than 20 x 32 x 32 = 20.48K. This in-
dicates that the area of most foregrounds is relatively small.

Comparison with Existing Multi-Layer Data Table | pro-
vides a comparison between previously existing multi-layer
datasets and our proposed Multi-Layer-Design dataset. Our
MLTD dataset is the first large-scale dataset that includes
a wide range of transparent layers with high-quality alpha
channels. We also verified in the experimental section that
our method can achieve sufficiently good results with only
8K high-quality data, making our method easy to replicate.

4. Experiment

Implementation details. We conduct all the experiments
using the latest FLUX.1[dev] model [44]. For ablation stud-
ies, we train the MMDIiT with LoRA for 30,000 iterations,
with a global batch size of 8 and a learning rate of 1.0 using
the Prodigy optimizer [48]. The LoRA rank is set at 64, and
the image resolution is at 512x512. To ensure fair com-
parisons during system-level experiments, we increased the
number of iterations to 90,000 and the image resolution to
1024 1024. For the multi-layer transparency decoder, we
selected the ViT-Base configuration [12]. This configura-
tion includes 12 layers, a hidden dimension size of 768, an
MLP dimension size of 3072, and 12 attention heads, re-
sulting in a total of 86 million parameters.

Training set & validation set. We choose 800K multi-
layer graphic design images as the training set and a set
of 5K graphic design samples to form the validation set,
referred to as DESIGN-MULTI-LAYER-BENCH. Addition-
ally, we also create a set of photorealistic multi-layer im-
age prompts chosen from the COCO dataset [46], forming
PHOTO-MULTI-LAYER-BENCH, to evaluate the model’s
performance on multi-layer real image generation.
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Figure 6. ART v.s. COLE or LayerDiffuse: Given the same global
prompt, we display the generated multiple transparent layers to the right of
their merged entire image separately. The overall aesthetics and layout of
our merged image are superior.

Evaluation metric. For the ablation studies, we report
standard metrics, including FID [13], PSNR, and SSIM.
To assess the quality of the Anonymous Region Trans-
fomer, the FID is computed by comparing the predicted
merged images to the ground truth merged images, de-
noted as FIDmerged. The PSNR and SSIM are calculated by
comparing the merged image with the predicted reference
composed image. To assess the quality of the multi-layer
transparency image autoencoder, we report the PSNR for
the RGB channels and the alpha channel separately, i.e.,
PSNR}2 and PSNRL?;E;, by comparing the reconstructed
transparent layers with the ground-truth transparent layers.
For the system-level comparisons, we conduct a user study
to assess the quality of the composed image and transparent
layers from four aspects: visual aesthetics, prompt adher-
ence, typography, and inter-layer harmonization.

For fair comparisons, we use the layout predicted
by our anonymous region layout planner model for the
system-level comparison experiments, whereas the human-
provided anonymous layout is instead used by default for
all ablation studies, unless otherwise specified.

4.1. System-level Comparisons

We report the system-level comparisons with state-of-the-
art methods in photorealistic image space (evaluated on
PHOTO-MULTI-LAYER-BENCH) and graphic design space
(evaluated on DESIGN-MULTI-LAYER-BENCH).
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Comparison to LayerDiffuse. We first compare our ap-
proach with the latest multi-layer generation method, Lay-
erDiffuse [83], in the multi-layer real image generation
benchmark, i.e., PHOTO-MULTI-LAYER-BENCH. We con-
duct a user study involving 30 participants with diverse
backgrounds in Al, graphic design, art, and marketing, each
evaluating 50 pairs of multi-layer transparent images gen-
erated by our ART and LayerDiffuse across three aspects:
harmonization, aesthetics, and prompt following. The re-
sults of the user study are illustrated in Figure 3, showing
our approach outperforms LayerDiffuse in all dimensions.

Comparison to COLE. We further conduct a user study
to compare our approach with the multi-layer graphic de-
sign image generation method COLE [37]. We also ask the
same 30 participants to evaluate the organization of the el-
ements (layout), the visual appeal (aesthetics), the correct-
ness of the text (typography), and the coherence and quality
of each layer (harmonization), with each user evaluating 50
image pairs. The results in Figure 3 reveal that our approach
achieves significantly better multi-layer image generation
results in various aspects, except for typography, as the text
in COLE is rendered with typography render.

More results. We present more multi-layer image genera-
tion in Figure 5 (up to 30 layers), as well as qualitative com-
parison results with COLE and LayerDiffuse in Figure 6.

4.2. Ablation Study and Analysis

Anonymous Region Layout is Sufficient. We first address
the key question of whether region-specific prompts are
necessary for multi-layer image generation tasks by com-
paring the conventional semantic layout and our anony-
mous region layout. For the semantic layout, we gener-
ate region-specific prompts for each layer using the LLaVA
1.6 model [47] and ensure that the visual tokens of each
region mainly attend to their respective regional prompts.
To ensure a fair comparison, we utilize the ground-truth
layout provided by our DESIGN-MULTI-LAYER-BENCH
while maintaining consistency across all other experimental
settings, differing only in the use of region-specific prompts.



method | FIDmerged | PSNR  SSIM | Harmonization Score (GPT-40) PE method \ FIDmerged \ PSNR SSIM
Semantic Layout 17.51 17.71 0.8443 3.67 2D-RoPE 124.3 11.99 0.4265
Anonymous Region Layout 17.79 2290  0.9021 3.92 2D-ROPE + LayerPE 20.66 2323 0.9101

3D-RoPE 17.79 22.90 0.9021

Table 2. Anonymous Region Layout vs. Semantic Layout.
composed image pred. ‘ PSNR
X
v

FlDmerged |
20.44
17.79

SSIM ‘ Inference speed (s)
19.20

26.62

‘ 22.90 0.9021 ‘

Table 3. Composed image prediction improves the image quality.

attention type | FlDmergea |  PSNR SSIM
Full Att. 41.35 16.87 0.7738
Spatial Att. + Temporal Att. 167.99 16.92 0.7985
Regional Full Att. 17.79 22.90 0.9021

Table 4. Full Att. vs. Spatial Att. + Temporal Att. vs. Regional Full Att.

0 s

A
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# Layers
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# Layers

50

Figure 7. Tlustrating the efficiency comparison of three different atten-
tion mechanism design: our Regional Full Attention (marked as Regional
Full Att.), Full Attention (marked as Full Att.) and Spatial + Temporal
Attention (marked as Spa + Temp Att.). The GPU memory consumption
and inference time are evaluated and averaged over 100 samples at a reso-
lution of 1024 x 1024, for each given number of layers. Some data points
are represented with dashed lines or are not shown due to the OOM issue.

Table 2 provides a detailed comparison of the results. We
find that the FIDmerged scores for both methods are compara-
ble, while the PSNR score for the anonymous region layout
is significantly higher. This suggests superior layer coher-
ence and global harmonization in our approach. Addition-
ally, we employ GPT-40 to evaluate both methods in terms
of global harmonization, arriving at the consistent conclu-
sion that our approach yields better layer coherence. One
potential reason for the lower coherence in the semantic lay-
out approach is the conflict between local region-specific
prompts and global visual tokens. We provide a deeper
analysis of these conflicts in the supplementary material.

In addition, we present a statistical analysis comparing
the inferred label assignments for the anonymous regions
generated by our ART model with the human-annotated
region-wise prompts. Our findings reveal that over 80%
of the inferred labels align with the human annotations,
suggesting that the generative models have acquired prior
knowledge akin to Schema Theory. Additional details can
be found in the supplementary material.

Benefits of Predicting the Reference Composed Image.
We introduced an additional prediction of the reference
composed image for two main reasons. First, it improves
coherence across multiple image layers by facilitating bidi-
rectional information propagation between the composed
image and each transparent layer. Second, it provides a
mechanism to evaluate the quality and consistency of the
predicted transparent layers by calculating the PSNR and
SSIM scores between the reference image and the layer-
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Table 5. Different position embedding scheme in diffusion transformer.

# samples | FIDmerged | PSNR SSIM
80 30.38 23.18 0.8893
800 18.89 20.45 0.8609
8k 18.06 2243 0.8882
80k 18.04 23.13 0.9081
800k 17.79 22.90 0.9021

Table 6. Increasing the dataset scale improves performance.

Method FIDmerged | PSNR SSIM | Inference speed (s)
GPT-40 20.72 22.80 0.9078 -
LayoutGPT [17] 20.92 |23.18 09113 -
Semantic Layout Planner 21.45 [17.69 0.8382 19.19
Semantic Layout Planner{ 20.63 [22.90 0.9092 19.19
Anonymous Region Layout Planner | 19.90 |22.70 0.9038 5.68

Table 7. Anonymous region layout planner vs. semantic layout planner
and other planner alternatives. { means that we remove the predicted
region-specific prompts and only use the predicted bounding boxes.

merged image on the validation set. As illustrated in Ta-
ble 3, predicting the composed image as a reference signif-
icantly enhances image quality, indicated by the improved
FIDmerged score, despite a minor increase in inference time.

Regional Full Attention vs. Full Attention vs. Spatial +
Temporal Attention. A key design element of our ap-
proach is the ceiling-aligned tight crop for each transpar-
ent layer, which removes most transparent pixels and com-
pels the diffusion model to focus on the smallest rectangle
encapsulating the non-transparent foreground regions. We
refer to this as the Regional Full Attention scheme. This de-
sign is crucial for improving efficiency and explicitly con-
strains layer predictions to align with the positions specified
by the anonymous region layout. We also evaluate two addi-
tional baselines: the Full Attention scheme, which does not
apply regional cropping, and the Spatial Attention + Tem-
poral Attention scheme, which introduces temporal atten-
tion to facilitate interactions across different layers, similar
to architectural designs in video generation [5, 22]. De-
tailed comparison results are presented in Table 4, where
our method demonstrates superior FIDmerged, PSNR and
SSIM scores. The primary factor behind our improved per-
formance is the use of the anonymous region layout.

Moreover, Figure 7 shows that our method maintains
nearly constant computational costs when processing be-
tween 10 and 50 layers, whereas the Full Attention scheme,
lacking regional cropping, exhibits quadratic growth in both
GPU memory usage and inference time consumption.

Layer-aware Position Encoding is Critical. Encoding
positional information is essential for the diffusion trans-
former ( especially, Anonymous Region Transformer) to
distinguish visual tokens from different transparent layers.
Our empirical analysis shows that incorporating layer po-
sition information is crucial, with the proposed 3D-RoPE



PE method PSNR%“ PSNR;{E PSNR | FIDmerged
2D-AbsPE 2691 18.42 26.06 17.04
2D-AbsPE + LayerPE 26.98 18.76 26.11 16.24
2D-RoPE 34.05 23.08 30.09 3.16
2D-RoPE + LayerPE 34.46 2331 30.13 3.10
3D-RoPE 34.89 23.85 30.48 2.84

Table 8. Position embedding scheme in multi-layer decoder.

composed image  bgimage | PSNR®T  PSNRi  PSNR | FlDmersed
X X 3325 282 2935 3.76
v x 33.25 21.95 2939 3.53
x v 34.37 23.39 30.20 3.06
v v 34.89 23.85 3048 2.84

Table 9. Condition choice for the multi-layer decoder.

Method Multi layer | PSNRS"  PSNR{’y  PSNR | FlDmerged
LayerDiffuse [83] X 2094 1848 2651 | 427
Flux-RGBA decoder x 3025 2011 2774 | 523
Ours v 34.89 2385 3048 | 284

Table 10. Comparison with existing transparency decoder.

scheme outperforming the absolute layer position encoding
method. Full comparison results are presented in Table 5.

Multi-layer Data Scaling Enhances Performance. Ta-
ble 6 shows results from training with varying dataset
scales. Our findings clearly demonstrate that performance
improves with larger dataset sizes. Notably, ART achieves
impressive results with just 8K training samples, demon-
strating the data efficiency of our approach.

Anonymous Region Layout Planner v.s. Semantic Lay-
out Planner. We fine-tune both an anonymous layout plan-
ner and a semantic layout planner using data sampled from
the 800K training dataset and evaluate their performance by
integrating them with our ART model. Additionally, we in-
clude two strong baselines, GPT-40 and LayoutGPT [17],
which support transforming the global prompt into a us-
able layout. Detailed results are presented in Table 7. Our
Anonymous Region Layout Planner not only achieves a bet-
ter FIDmerged score but also operates more than 3x faster
than the Semantic Layout Planner. Interestingly, remov-
ing the region-specific prompts of the semantic layout plan-
ner can enhance overall performance by avoiding conflicts
among region-wise prompts, especially regarding layer co-
herence, as reflected by the higher PSNR scores.

RoPE is Critical for Multi-layer Decoder Quality. Ta-
ble 8 summarizes the results of the comparison experi-
ments involving different position embedding schemes for
the multi-layer transparency decoder. The original ViT pre-
trained on the ImageNet classification task employs abso-
lute position encoding, which is inadequate for capturing
positional information across a variable number of trans-
parent layers. We find that simply adding an additional set
of layer-wise absolute position embeddings provides min-
imal improvement; however, replacing the absolute posi-
tion encoding with the RoPE scheme significantly enhances
decoding quality. We observe that the 3D-RoPE scheme
achieves the best FIDmerged score, which aligns with our
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Figure 8. Comparison with existing transparency decoder.

findings regarding the choice of position encoding scheme
for the latent features sent into MMDIiT. Consequently, we
adopt the 3D-RoPE scheme as the default setting.

Composed Image as Condition. Although we only need
to decode the transparency for all the foreground transpar-
ent layers, we empirically find that sending both the merged
entire image and the background image as additional con-
ditions, along with applying supervision on them, leads to
even better performance, as shown in Table 9. We hypoth-
esize that the information from the merged and background
images is beneficial for the transparency layers to interact
more effectively, ensuring a more coherent final composed
image with these transparent foreground layers.

Comparison with Previous Transparency Decoder. We
compare our multi-layer transparency decoder with the pre-
vious transparency decoder and two strong baselines de-
signed for single-layer transparency decoding, as shown in
Table 10. We utilize the officially released weights of the
transparency decoder proposed by LayerDiffuse [83]. For
the Flux-RGBA decoder, we modify the output projection
to support an additional alpha layer prediction and fine-tune
the decoder using our dataset. Our design achieves the best
FIDmerged score as shown in Table 10. The qualitative com-
parison results are also presented in Figure 8.

5. Conclusion

In this paper, we introduce the Anonymous Region Trans-
former, a novel approach for generating multi-layer trans-
parent images from an anonymous region layout. Our re-
sults and analysis reveal that our anonymous layout is suffi-
cient for the multi-layer transparent image generation task.
Our method offers several key advantages over traditional
semantic layout methods, including better coherence across
layers and more scalable annotation. Furthermore, our
method enables the efficient generation of images with nu-
merous distinct transparent layers, reducing computational
costs and generalizing to various distinct anonymous re-
gion layouts. However, our approach does have certain
limitations, including repeated layer generation and com-
bined layer generation. The generalizability of this capabil-
ity across all potential layouts requires further exploration.
Future work should focus on enhancing the model’s abil-
ity to autonomously identify semantic labels and improving
the quality and flexibility of the generated images. Despite
these challenges, our approach shows promising potential
for graphic design creation and digital art.
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