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Abstract

Large language models (LLMs) raise concerns about content authenticity and
integrity because they can generate human-like text at scale. Text watermarks,
which embed detectable statistical signals into generated text, offer a provable way
to verify content origin. Many detection methods rely on pivotal statistics that
are i.i.d. under human-written text, making goodness-of-fit (GoF) tests a natural
tool for watermark detection. However, GoF tests remain largely underexplored
in this setting. In this paper, we systematically evaluate eight GoF tests across
three popular watermarking schemes, using three open-source LLMs, two datasets,
various generation temperatures, and multiple post-editing methods. We find
that general GoF tests can improve both the detection power and robustness of
watermark detectors. Notably, we observe that text repetition, common in low-
temperature settings, gives GoF tests a unique advantage not exploited by existing
methods. Our results highlight that classic GoF tests are a simple yet powerful and
underused tool for watermark detection in LLMs.?

1 Introduction

The rapid advancement of large language models (LLMs) has enabled machines to generate fluent
and coherent text that closely resembles human writing. While this progress has unlocked many
applications, it has also raised significant concerns about the authenticity, ownership, and integrity of
generated content. For example, LLMs can be misused to spread misinformation [57, 54, 50], fabricate
academic work [51, 37], or manipulate digital communication at scale [44, 48, 8]. These risks have
prompted growing interest in developing reliable tools to trace and verify machine-generated text.

A promising solution is text watermarking, which embeds hidden statistical signals into generated
text. Specically, it introduces dependencies between tokens w, and secret pseudorandom numbers
¢t [5, 1]. In watermarked generation, each token w; ~ P, is produced by a decoding function &
as wy = S(P;, (;), where P, is the next-token predictive (NTP) distribution that w; follows. This
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induces a watermark signal—statistical dependence between w; and ;. In contrast, human-written
text lacks this dependence, as humans do not have access to (;. Detection methods leverage this
difference using scalar pivotal statistics [31], defined as Y; = Y (wy, (;), within a hypothesis testing
framework:

Hy : wq.p, is human-written vs. Hj : ws., is LLM-generated. €))
A key property of the pivotal function Y is that Y (w, ¢) follows a known distribution 1o whenever w
is independent of (, which exactly holds for human-written w since human users do not know the
secret (. Thus, problem (1) can be reformulated in terms of Y;:

Hy:Y; ~ppiid. vs. Hjp:Y; ~ other distribution that depends on P;. 2)

The formulation in (2) is standard and popular in the watermarking literature [31, 29, 9, 28, 1, 16, 5,
14, 59, 60, 27, 21, 55]. Many detection rules, though somewhat ad hoc, are designed to address this
problem. In the idealized setting where all NTP distributions { P;}}-_; are known, the log-likelihood
ratio test based on the pivotal statistics {Y; }7_; is provably optimal [22]. In practice, however, these
distributions are often unavailable due to limited access to commercial LLMs and unknown prompts.
To overcome this, recent works have developed NTP-agnostic approaches. For example, Li et al.
[31] assumes all P; lie within a known class and derives the least favorable detection rule using a
minimax formulation. This framework is extended by Li et al. [32] to handle human editing, where
the observed text may contain a mix of human-written and LLM-generated content. In this case, the
alternative hypothesis in (2) is modified to reflect the fraction of human-edited tokens. Nonetheless,
both works share the same null hypothesis Hy: {Y;}}; are i.i.d. samples from the known .

This structure reveals a close connection between watermark detection and the classical statistical
problem of goodness-of-fit (GoF) testing. GoF tests aim to determine whether i.i.d. samples follow
a given distribution. While watermark detection involves non-i.i.d. data under H;—due to the
autoregressive nature of LLMs, where each P; depends on the history wy.;—1)—GoF tests remain
applicable because H| is the same: {Y;}}_; are i.i.d. from a known p. Despite their long-standing
role in statistics [7], GoF methods have received limited attention in the watermarking literature.
Prior work has largely focused on designing new watermarking schemes, with less emphasis on
improving detection power (see Appendix B for a detailed discussion). Li et al. [32] proposed a
truncated divergence-based GoF test and analyzed its theoretical performance on the Gumbel-max
watermark [1], but its effectiveness on other watermarking schemes remains unclear, as does the
performance of other classical GoF tests. This raises a natural question: how well do classical GoF
tests work for modern watermark detection? A systematic study of classical GoF tests could provide
valuable insights for developing robust and effective watermark detection methods.

Our contribution. In this work, we study this connection empirically, and our contributions are:

» Systematic empirical evaluation. We introduce general GoF tests to watermark detection and
systematically evaluate eight GoF detection rules across three popular watermarking schemes.
Our experiments span diverse configurations, including three open-source language models, two
datasets, four temperature settings, and three types of edits.

* Understanding GoF advantages. GoF tests consistently outperform baseline methods across
varying temperatures and text lengths, and this robustness stems from their ability to capture
distribution-level deviations in the pivotal statistics. At high temperatures, watermark signals are
stronger due to increased entropy in the next-token distributions. This leads to more noticeable
shifts between the empirical CDF and the null CDF, which GoF tests are particularly effective
at detecting—even with moderate text lengths. At low temperatures, watermark signals tend to
weaken, making detection more challenging. However, lower temperatures also induce repetition
in the generated text, introducing structured patterns that GoF tests can exploit. This repetition
results in deviations from the expected null CDF, enabling GoF tests to maintain strong detection
power even in low-entropy settings. These complementary advantages explain why GoF tests are
effective across a wide range of generation scenarios, including those that are traditionally hard for
watermark detection.

¢ Robustness to modification. We evaluate GoF tests under both common text edits (deletion and
substitution) and information-rich edits. In all cases, GoF-based methods maintain high detection
power, demonstrating strong robustness to modifications.

In short, our results show that GoF tests are a valuable complement to existing watermark detection
methods, improving both detection power and robustness across a wide range of conditions. Due to
space constraints, we defer discussion of related work to Appendix B.



2 Preliminaries

Watermark embedding. LLMs like the GPT series [43, 4] generate text autoregressively, producing
one token at a time based on previous tokens. Each token is drawn from a fixed vocabulary VV using a
multinomial distribution P, = (P, ,,)wew, called the next-token prediction (NTP) distribution. This
distribution depends on the previous tokens, user prompts, and system-level prompts, summarized as
P, = M(wlz(t,l)) [52, 43, 4]. To embed a watermark, the model uses a pseudorandom variable (;,
computed by a deterministic hash function: (; = A(w(t,m):(t,l), Key), where A is a hash function,
m is a context window size, and Key is a secret key. Once (; is computed, the next token is generated
as wy = S(P;, (;), where S is a (possibly stochastic) decoder. The decoder S is said to be unbiased
if for any P and w, it satisfies Pc (S(P, () = w) = P,,. This means that when ( is truly random,
S(P, ¢) still follows the original NTP distribution P. In other words, an unbiased decoder samples
from the intended NTP.

Watermark detection. As introduced in Section 1, watermark detection aims to identify statistical
dependence between each token w; and the pseudorandom number (;. This is done using pivotal
statistics, leading to the hypothesis testing problem in (2) [31]. Under H), there is no watermark, and
wy and (; are assumed to be independent. By design, the pivotal statistic Y; = Y (wy, (;) then follows
a known distribution p, regardless of how wy is distributed. Under the alternative, the watermarking
process introduces dependence through the decoder S, causing Y; to deviate from pg. In particular,
Y; | P, follows a distribution p; p, that depends only on P;. This leads to the following hypothesis
testing problem:

H() : Y—t ~ o iid.  vs. H1 : Y; | Pt ~ W1 pP,- (3)

Li et al. [32] extend it to a more practical setting where the generated text may be partially edited.
They model human edits as a mixture effect so that Y; is from a mixture of yi9 and 1 p, under H;.

Three considered unbiased watermarks. We consider three unbiased watermarking schemes. For
brevity, we describe only their null distributions po, which suffice for understanding our methods and
results. Full details are provided in Appendix A. The first is the Gumbel-max watermark [1], where
1o is the uniform distribution U (0, 1). The second is the inverse transform watermark [29], whose
null CDF satisfies po(Y < r) = r? for r € [0, 1]. The third is Google’s SynthID watermark [9],
where the pivotal statistic under Hy follows the distribution of ;IrwinHall(k) where IrwinHall(k)
is the Irwin—Hall distribution, i.e., the sum of k i.i.d. U(0, 1) variables. A common feature of all
three is that their null distributions po are known and have computable CDFs.

An exception. The green-red list watermark [27, 28, 59] (see Appendix A.4) is a popular method.
It randomly partitions the vocabulary into a green (favored) and red (disfavored) set, boosts the
probabilities of green tokens, and samples from the perturbed NTP distribution. Detection is based on
counting green tokens and rejecting Hy if their frequency exceeds a threshold. Variants [55, 21] use
more carefully designed partitions but follow the same overall pipeline. We exclude these methods
from our experiments because GoF tests reduce to the original detection rule in this setting. The
pivotal statistic is binary (whether a token is green), and the order of them does not matter—only
the total count of green tokens is informative. As a result, both methods are effectively equivalent,
making additional experiments unnecessary.

3 GoF Tests for Watermark Detection

Rationale for using GoF tests. Goodness-of-fit (GoF) tests are classical tools in statistics for
determining whether a sequence of i.i.d. samples comes from a specified distribution [7]. The
standard formulation is:

Hy:Y, ~ o iid. V& vs. Hptwndard oy o qid. i, )

where (1 # po. GoF tests evaluate deviations from the null distribution 1y and determine whether
they are statistically significant. However, this classical setup does not directly apply to watermark
detection, where the alternative hypothesis H; in (3) involves structured dependence introduced by
the watermarking process. Specifically, the pivotal statistics {Y; }_; are not i.i.d. under H; due to
the autoregressive nature of LLMs and the time-varying NTP distributions P;.

However, the core principle of GoF tests—measuring deviation from the null distribution zp—remains
highly relevant. The most related work, Li et al. [32], proposed a divergence-based GoF test [24]



Table 1: Considered GoF tests.

Tests name \ Deviation measure Tests name \ Deviation measure
T | SO= s KRR \ o[ ve= e (omo) + s (o - )
Kolmogfl’(l’;)l\”—i{rgii]mnv test D, = max. {max (p( NS ‘ Andersr;r;fz{;l]ing test, A = — (7 711 %ﬂﬂ 27:);(11) log
Cramér-cvro; lEgiJses test, ‘ w2 — 12” ey (p(, ;1)2 ‘ W:]t;;)]ni;;ejst, ‘ UZ—W?—n (F‘ _ %)2
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for detecting Gumbel-max watermarks and demonstrated its asymptotic robustness. Yet, they did
not establish its uniqueness or compare it against other GoF tests. Moreover, their analysis relies on
asymptotic assumptions such as infinite text length, while in practice, the finite-sample performance
of GoF tests can vary substantially—even among asymptotically optimal methods. Our work
complements this line of research by empirically evaluating classical GoF tests in the context of
watermark detection. We also investigate which factors most affect their performance.

Introduction of GoF tests. All GoF tests evaluate deviations from the null distribution o and
reject Hy if the deviation exceeds a specified threshold. Thus, it suffices to define the measures of
deviation used by each test. Before doing so, we introduce some notation. Let Y7, ..., Y}, denote the
pivotal statistics, and let Y(l) < Y(Q) <. < Y(n) be their order statistics. The empirical cumulative
distribution function (CDF) is defined as F,,(r) = % >i, 1y, <., and the theoretical CDF under the
null is Fo(r) = po(Y < r). Recall that the null distribution pio is known but varies by watermarking
scheme (see Section 2). Given this, we can also compute p-values as p, = 1 — Fy(Y3).

Eight GoF tests are summarized in Table 1, with each referred to by a three-letter abbreviation
(e.g., the Kolmogorov-Smirnov test as Kol). All GoF tests operate on pivotal statistics and are
permutation-invariant. Therefore, the order of pivotal statistics does not affect their detection results.
Below, we provide additional details omitted from the table for brevity:

* Tr-GoF test [32] uses a truncated ¢-divergence [24], which is the reason for its name Phi. The
truncation is introduced via ¢;! satisfying p* = sup{p(; : p(;) < ¢;} } to ensure numerical stability.

Here, K (u,v) = K (u,v)1{0 < v < u < 1} and K,(u,v) = vg, (%) + (1 — v)¢s (1_") is

v 1—v

the untruncated ¢s-diveregence. The function ¢ () is convex and defined as:

rloge —x+1, ifs=1,
bs(x) = § S if s #0,1,
—logx+ax—1, ifs=0.
In our experiment, we fix s = 2 for all considered watermarks due to its good performance [32].

* Kolmogorov-Smirnov test (Kol) measures the largest difference between the empirical and null
CDFs. In fact, one can show that D,, = sup,, |F,(z) — Fy(x)|.

» Watson’s test adjusts the Cramér-von Mises statistic W2 to ensure invariance to location changes,
2 _ W2 _ o (F n
soU? =W? —n(F - 5) where F' = L5 F(Y,).
* Neyman’s smooth test (Ney) expands deviations from the null distribution using orthonormal
polynomials. Specifically, it computes coefficients

Zh
] =1

where h; are orthonormal Legendre polynomials for U(0,1) and \; are normalizing constants.

The test statistic then aggregates the first k coefficients as 1), = n Z —1 aj , with £ = 3 used in
our experiments.

* Chi-squared test (Chi) divides the range of i into k equal-width bins, counts observed frequencies

O;, and computes expected frequencies F; = n/k. The test statistic is x> Zf 1 M with
critical values drawn from the chi-squared distribution with & — 1 degrees of freedom [41]

Importantly, for most GoF tests, the exact null distribution does not admit a closed-form expression;
instead, only an asymptotic distribution emerges as the token length n grows. Nevertheless, our



Algorithm 1 GoF test for watermark detection (example: Kol for the Gumbel-max watermark)

Require: Token sequence wy.,,; watermark decoder S; significance level «; CDF under the null Fj.
1: Compute pivotal statistics Y7, ..., Y, from the sequence wy.j,.

Compute p-values: p, =1 — Fy(Y;), t=1,...,n.

Sort the p-values in ascending order: p;) < - -+ < py,).

Compute the test statistic (Kol)

D,, < maxi<i<n max(p(i) — %, P p(i)).

2 e

Estimate critical value v, based on the information of the watermarking scheme.
if D,, > ~, then
Reject H
else
Do not reject H
end if

YR IAN

—

experiments show that relying on this large-sample approximation still yields reliable Type I error
control in practice. We defer a detailed discussion of their practical considerations to Appendix C. To
conclude, we integrate the full detection procedure into Algorithm 1, providing a streamlined view of
how the Kolmogorov—Smirnov test (Kol) can be applied to the Gumbel-max watermark. The same
procedure can be straightforwardly applied to other GoF tests, which readers may extend as needed.

4 Language Model Experiments

4.1 Experiment settings

Experimental setup In our evaluation, we consider three open-source LLMs—OPT-1.3B, OPT-
13B [58], and Llama 3.1-8B [11]—across four temperature settings: T € {0.1,0.3,0.7,1.0}. We
evaluate watermark performance on two text generation tasks: (i) text completion and (ii) long-form
question answering. For text completion, we use the C4 dataset [45]. Each document in the dataset
is truncated to the first 50 tokens, which serve as prompts for the LLM to complete. For long-form
question answering, we use the ELI5 dataset [12], where the LLM generates detailed answers to
given questions. In both tasks, we randomly sample 1,000 documents and conduct experiments
using three LLMs across four temperature settings, following a consistent pipeline. As the relative
performance of different GoF tests is similar between tasks, we present the results on text completion
in this section and defer the detailed results for the ELI5 dataset to Appendix D.4.

Remark 4.1 (Why we don’t include green-red list watermark). As discussed in Section 2, we do
not include the green-red list watermark [27] or its variants in our experiments. This is because
their pivotal statistics are binary (indicating whether a token is green), and the order of these values
doesn’t play a role. As a result, the original detection rule—counting the number of green tokens—is
already effective, and GoF tests reduce to this same procedure. Therefore, additional experiments are
unnecessary.

Common text edits. Human edits can weaken watermark signals [47, 19, 32]. To evaluate detection
robustness, we apply two common types of edits: word deletion and synonym substitution. For each,
we randomly select a fraction reqi; € {0.1,0.2} of watermarked tokens and either delete them or
replace them with synonyms from WordNet [38].

Information-rich edits. We consider a stronger editing setting in which the hash function .4 and
secret key Key are known to the user. In this case, the user can selectively modify a limited number
of LLM-generated tokens to reduce watermark signals while preserving the overall quality of the text.
We refer to this targeted modification as an information-rich edit. With a limited token budget, the
optimal strategy is to change tokens carrying the strongest watermark signals. In all three considered
schemes, tokens with higher pivotal statistics tend to have stronger signals. Thus, replacing these
tokens lowers the overall signal strength significantly. To simulate this, we compute the pivotal
statistics for all tokens in a watermarked sequence. Then, we select a fraction 7y, € {0.3,0.5}
of tokens with the highest statistics and overwrite their values with samples drawn from the null
distribution p.



Table 2: Type I errors on human data and Type II errors (averaged over three LLMs) on the C4
dataset. All values are enlarged by 100 for readability. T denotes temperature and n the token length.
Baseline refers to the best-performing method among the baseline detectors. Red shading highlights
lower values; blue indicates higher values.

T n | Baseline | Phi Kui Kol And Cra Wat Ney Chi

% 03 200 18.5 210 263 195 155 212 368 197 185
g V7 400 15.1 57 47 47 49 84 107 80 29
2 4, 200 0.6 03 05 06 05 07 09 05 03
E 0 400 0.7 02 02 03 02 04 04 02 02
©  Typel | - |04 09 15 06 07 12 L1 09
s g3 200 38.7 51.0 292 297 336 367 404 373 218
g 7 400 | 271 121 60 74 93 140 107 130 3.6
2 g 200 13 27 13 09 09 10 19 12 23
s 7 400 1.5 05 02 03 04 06 04 05 02
=
= Typel | - |04 14 12 10 10 14 15 06
03 200 | 588 61.6 498 530 535 572 613 574 364
g 7 40| 44 [250 167 210 245 315 265 291 104
2 g 200 2.8 34 45 28 23 33 84 30 33
& 400 22 07 12 08 06 14 18 13 038
Typel | - |09 12 09 11 10 14 10 12

Remark 4.2 (Differences from watermark stealing). Information-rich edits are related to watermark
stealing [26] in that they simulate post-stealing detection, but they are conceptually distinct. The
former assumes the watermark information (e.g., secret key) has already been compromised, and
the user is allowed a limited editing budget. In contrast, watermark stealing typically focuses on
extracting the watermark itself or defending against such attacks [46]. Our study, by contrast, focuses
on the detection stage—evaluating how detection rules perform under an idealized attack scenario.

Five baselines. Previous work primarily relies on sum-based detection rules, which reject Hy if the
sum Y ;- , h(Y};) exceeds a critical threshold, where h is a predefined score function. We adopt five
score functions from prior studies as baselines. For the Gumbel-max watermark, we use Aaronson’s
score [1] and the log score [29, 13]. For the Inverse transform watermark, we apply the negative-sum
score [29]. For the SynthID watermark, we use the identity-sum score [9]. In addition, we apply
the least-favorable test from Li et al. [31] to all three schemes. For each watermark, we report the
best-performing baseline among these five applicable rules. Detailed definitions of the score functions
are provided in Table 5 in the Appendix.

4.2 Results on Statistical Power

Building on the experimental setup introduced earlier, we now present our findings. In watermark
detection, a Type I error corresponds to falsely identifying non-watermarked text as watermarked,
while a Type II error arises when a true watermark goes undetected. We evaluate the statistical power
of the considered GoF tests by analyzing both error types. To control the Type I error at o = 0.01,
we adjust the critical values using either theoretical distributions or Monte Carlo simulations. We
then examine whether the Type I error is well-controlled and explore how the Type II error decreases
under different configurations.

Type I error control. We begin by evaluating Type I error control. To this end, we randomly
sample 1,000 human-written texts from the C4 dataset and assess Type I error at a significance level
of o« = 0.01, a standard choice in prior work [9, 32, 29, 31]. Table 2 reports the empirical Type I
errors at a sequence length of 400 tokens. All detection methods maintain errors close to the target
level of 0.01, indicating that Type I error can be effectively controlled for most GoF tests.

Type II error decay. We next evaluate Type II errors at the fixed significance level a = 0.01.
Table 2 reports the average Type II errors across three LLMs for various detection methods. We
consider both low temperature (T = 0.3) and high temperature (T = 0.7) settings, using the C4
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Figure 1: Empirical CDFs of pivotal statistics (¥((Y?)) under different temperatures T and text
lengths n. Shaded regions show 95% confidence intervals (CI): light gray for n = 100 and dark gray
for n = 400, both at T = 1.0. At'T = 0.1, the dark blue curve shows the empirical CDF of raw

scores, while the orange curve (labeled T = 0.1*) shows the CDF after removing repeated values.

dataset. Additional results on the ELI5 dataset are presented in Table 10 in the Appendix. Detailed
breakdowns by LLM and task are provided in Appendix D.4 for completeness. We observe from
Table 2 that GoF tests generally outperform the baselines across different temperatures and text
lengths. This observation can be refined into two points:

1. Advantages are more pronounced at higher temperature settings. GoF tests consistently outperform
baseline methods at high temperatures, regardless of text length. For instance, under the Gumbel-
max watermark at temperature T' = 0.7, the baseline yields a Type II error of approximately 0.7%
for both n = 200 and n = 400, whereas several GoF tests achieve lower error rates around 0.3%.
This pattern remains consistent across different watermarking schemes.

2. Advantages persist under low-temperature settings. Surprisingly, GoF tests maintain a strong
advantage even when the temperature is low. For example, under the Gumbel-max watermark
with T = 0.3 and n = 400, the best baseline yields a 15.1% Type II error, while And achieves
4.9% and Chi achieves the best 2.9%. This pattern remains consistent for shorter lengths and
different watermarking schemes.

Why do GoF tests perform well at high temperatures. This observation naturally leads to the
question: Why do GoF tests perform so well across varying temperatures and text lengths? The key
reason lies in how they utilize the full empirical distribution (CDF) of the pivotal statistics to detect
deviations from the null 1o. As discussed in Section 3, GoF tests compare the empirical CDF F},
with the known null CDF Fj, often using richer nonlinear operations—such as sorting, maximization,
or transformations—that allow them to capture subtle discrepancies more effectively. In contrast,
baseline methods typically rely on sum-based statistics, which compress the data into a single value.
This approach often overlooks structural differences in the distribution and is less sensitive to nuanced
deviations.

These properties make GoF tests particularly effective at high temperatures, where watermark signals
are strong. In this setting, the empirical CDF diverges noticeably from the null CDF, even for
moderate sequence lengths. As shown in Figure 1, the difference is already apparent at n = 100, and
increasing n further primarily reduces statistical variance. This implies that, under high temperatures,
GoF performance becomes less dependent on text length—explaining their consistent advantage
across both short and long sequences.

A missing factor at low temperatures. Low-temperature settings are often considered difficult for
watermark detection due to weaker signals. Yet, they are common in applications such as customer
service, factual QA, and code generation. At lower temperatures, LLM outputs become more
deterministic, reducing entropy in both the generated text and the corresponding NTP distributions.
This lower variability makes detection harder, as the null and alternative distributions—o and
111, p,—become nearly indistinguishable. Prior work [31] even shows that, in some cases, accurate
detection may be information-theoretically impossible. However, our study identifies an overlooked
factor: text repetition, which becomes more prominent at low temperatures.

To quantify this, we measure the m-gram repetition rate—the proportion of repeated text segments
W(t—m):(t—1) across generated outputs. We evaluate this metric under various temperature settings
(T € {0.1,0.3,0.7,1.0}) using three LLMs with watermarked outputs. For comparison, we also
compute the same metric on human-written texts sampled from the C4 dataset. Figure 2 shows the
results for the Gumbel-max watermark; additional results for other watermark schemes appear in
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for OPT-1.3B using the Gumbel-max watermark at temperature 0.7.
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Figure 3: Change in Type II error after removing repeated pivotal statistics (averaged over three
LLMs). Raw tokens denotes the error rate on the original 200-token sequence; Unique tokens denotes
the error rate after excluding repeated pivotal statistics from the same sequence.

Appendix D.4 (Figure 8,9). Our findings confirm that repetition is common in LLM-generated text,
consistent with prior studies[20, 15, 56], and that lower temperatures tend to amplify this effect.

The influence of repetition on top probabilities. By the hash rule ¢; = A(wu—p).(1—1),Key),
repeated m-grams (i.€., W(t—m):(t—1) = W(t'—m):(+'—1) 10T some t' # t) lead to identical pseudo-
random values, (; = (. According to the decoder rule w; = S(P,(;), this does not guarantee
w; = wy unless P, =~ Py,. This suggests that NTP distributions vary little across repeated segments,
leading to repeated token outputs. To examine this, we analyze the top probability (i.e., max,, P .,)
of generated tokens from the OPT-1.3B model with the Gumbel-max watermark at temperature 0.7.
As shown in Figure 2 (see Figures 8, 9 for other watermarks), repeated tokens show a sharp spike
at 1, indicating near-deterministic generation. In contrast, unique tokens exhibit a more spread-out
distribution, reflecting greater diversity. These results suggest that repetition reinforces low-entropy
behavior.

The influence of repetition on the empirical CDF. Repetition also affects the empirical CDF of
the pivotal statistics Y;. In ideal low-temperature settings, p11,p is information-theoretically close
to o due to low entropy, so the empirical CDF of Y; should resemble 1g. However, repetition
disrupts this, causing Y; to deviate further from p. To illustrate, we analyze a sentence generated by
OPT-1.3B and plot the empirical CDFs at temperatures 0.1 and 1.0 (Figure 1). At both temperatures,
the empirical CDF deviates from fiy, but in opposite directions. Intuitively, repetition introduces
artificial structure—evident in the step-like shape of the CDF at low temperature—that pushes the
distribution away from the null. Removing repeated values smooths the CDF and brings it closer to
1o- This explains why removing repeated pivotal statistics slightly degrades the performance of GoF
tests (see Figure 3). Nonetheless, their performance remains comparable to the baselines.

GOF tests are effective at capturing CDF differences. We now summarize why GoF tests perform
so well: they are particularly effective at capturing differences between the empirical CDF and the
null po. At high temperatures, strong watermark signals push the empirical CDF away from py.
At low temperatures, repetition introduces additional structure that subtly distorts the CDF. While
such deviations may be hard to detect using simple sum-based baselines, GoF tests are specifically
designed to identify such distributional shifts—whether large or subtle. This ability to exploit CDF-
level differences explains their consistent advantage across watermarking schemes, temperatures,
and editing settings. These findings suggest that GoF-based detection is a promising and broadly
applicable direction for future watermark detection research.



Table 3: Type II errors (averaged over three LLMs) on the C4 dataset with temperature 1.0 under
various editing types. “Del” denotes word deletion, “Sub” represents synonym substitution, and “Info”
refers to information-rich edits. All values are enlarged by 100 for readability. Baseline refers to
the best-performing method among the baseline detectors. Red shading highlights lower values; blue
indicates higher values.

Edits | Baseline | Phi Kui Kol And Cra Wat Ney Chi

% pe @Ol 0.4 03 05 03 03 05 06 04 02
g @02 0.5 04 60 28 07 24 81 08 19
2 sup @01 0.2 01 04 03 02 03 05 03 03
E @02 0.5 0.5 44 29 08 21 68 09 16
e @03 2.4 13 11 17 14 17 20 17 19
@05 38.0 347 146 333 297 308 242 282 268

E g @01 0.3 09 06 02 01 01 10 03 16
g @02 1.6 103 69 27 17 19 90 36 145
5 s @01 0.2 03 01 01 01 01 02 01 02
5 @02 0.5 15 10 04 04 04 13 06 26
S o @03 2.5 16 00 13 09 16 01 02 0.1
5 @05 34.6 337 04 196 164 261 07 22 31
Do @01 2.9 20 32 24 20 25 47 21 2l

8 @0.2 6.0 78 169 98 61 90 244 72 126
= sy @01 23 16 27 18 15 19 41 16 18
& @02 55 59 153 87 51 79 219 60 115
Info @03 16.6 148 01 26 19 42 05 06 00
@05 9.5 838 01 54 95 236 06 06 09

4.3 Results on Robustness

Finally, we present the robustness evaluation of different GoF tests, focusing on their performance
under various editing scenarios. To encourage diversity and reduce repetition, the temperature is fixed
at 1. For all experiments, the critical values (or thresholds) are set at a significance level of o = 0.01,
and we evaluate how the Type II error varies across different edit types and intensities. We report
the Type II error at a token length of 250 for word deletion and 300 for synonym substitution and
information-rich edits. Table 3 presents the Type II errors for watermarked texts, averaged across
three LLMs on the C4 dataset. Results for ELI5 dataset are provided in Table 11 in the Appendix.
The notation “editing method @ a fraction” indicates that the editing method modifies the specified
fraction of watermarked text or pivotal statistics. The observations are as follows.

Robustness against normal text edits. GoF tests show strong robustness against word deletion
and synonym substitution edits. For all watermarks, GoF tests perform as well as or better than
the best baseline across all edit types and intensities. Specifically, under 20% word deletion, for
the Inverse-transform and SynthID watermarks, although the baseline achieves the lowest error,
And trails by just 0.1%. Notably, among the considered GoF tests, there is no single method that
consistently outperforms others across all scenarios. For instance, Phi has the strongest robustness in
the Gumbel-max watermark, while And outperforms it in the Inverse-transform watermark.

Robustness against information-rich edits. GoF tests are designed to detect global differences
between the empirical CDF and the null p, rather than relying on a few extreme values. As a result,
removing a few of the largest pivotal statistics—while impactful for sum-based baselines—does not
significantly alter the overall shape of the empirical CDF, allowing GoF tests to remain effective. This
robustness is evident under information-rich edits, where GoF tests consistently outperform baselines.
For instance, Kui, Wat, and Chi maintain low Type II errors across all watermarking schemes, even
when 30% or 50% of the tokens are selectively modified. In contrast, sum-based methods often
degrade under such edits because they depend heavily on high-magnitude statistics. A clear example
is the Gumbel-max watermark: Aaronson’s score h,s = —log(1l — y) is particularly sensitive to
values of y near one. Since information-rich edits specifically target and remove these high values,



Table 4: Usage cases of GoF tests.

Usage Cases Notes Tests Practical Scenarios
Low temperature Repetition is more common at low tem- And, Chi. Code generation (see Ap-
with repetition peratures and shifts the empirical CDF, pendix D.2 for more dis-
which GoF tests exploit effectively. cussion)
High temperature Strong watermark signals make devia- All general Open-ended text genera-
tions from 4o more detectable, improv- GoF tests. tion.
ing the power of GoF tests.
Common text edits GoF tests remain effective despite Test choice Homework detection.
moderate edits, but no single test con- varies.
sistently dominates.
Information-rich GoF tests are less sensitive to the re- Kui, Wat, Internal API leakage.
edits moval of extreme values, preserving Chi.
robustness.

this method’s effectiveness is sharply reduced. GoF tests, by focusing on overall distributional shifts,
avoid this pitfall and thus offer more reliable performance in adversarial settings.

4.4 Evaluation Summary

We conclude this section with a brief summary of our key findings. First, GoF tests are highly
effective at detecting watermark signals at high temperatures. With a high temperature (e.g., 0.7),
they consistently achieve very low Type II error rates regardless of the text lengths. Second, text
repetition increases the deviation between the empirical CDF and the null distribution o, enabling
GoF tests to outperform baseline methods in low-temperature settings. Unlike baseline methods,
GoF tests can effectively leverage these distribution-level deviations. Third, GoF tests are robust to
common edits and information-rich edits. Their strength lies in evaluating overall distributional fit,
rather than relying on individual extreme pivotal statistics, making them more resilient to various
types of edits. Table 4 summarizes the practical usage of GoF tests.

5 Conclusion and Discussion

In this work, we propose the use of goodness-of-fit (GoF) tests for watermark detection and systemat-
ically evaluate eight GoF methods across three popular watermarking schemes. Through extensive
experiments across models, datasets, temperature settings, and editing types, we find that GoF tests
can match or even outperform existing baselines in both detection power and robustness. We also
identify text repetition as a key factor that enhances GoF performance at low temperatures.

Our findings open several new directions for improving watermark detection with statistical tools.
First, a deeper theoretical understanding is needed to explain why certain GoF tests perform better
in specific scenarios—potentially building on the statistical framework introduced by Li et al. [32].
Second, adaptive detection strategies that dynamically select among GoF tests based on input charac-
teristics could further enhance performance in practice. Finally, while our work focuses on scalar
pivotal statistics, some detection rules, such as Dathathri et al. [9], have explored high-dimensional
statistics. Applying GoF tests in high-dimensional settings remains challenging due to the curse of
dimensionality. Future work could investigate approaches such as maximum mean discrepancy or
dimensionality reduction to extend GoF-based detection to these more high-dimensional scenarios.
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made in the paper.
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5. Open access to data and code
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public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We detailed all the experiment information in Section 4 and Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments, we evaluate our method and baseline methods on three
different LLMs, using 1,000 samples per model. We report the average performance across
the LLMs. While we do not include explicit error bars, the use of multiple models and a
large sample size provides a strong basis for statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Provided in D 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix F.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on statistical tests and does not involve the release of data,
models, or other assets that pose a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the data, code, and models used in the paper are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This work involves the use of large language models to generate watermarked
text sequences, which serve as test data for evaluating the robustness and effectiveness of
our proposed statistical detection methods. We provided the detailed usage of LLMs in
Section 4 and Appendix D.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Introduction of Considered Watermarks

A.1 Gumbel-max Watermark

The Gumbel-max watermark is the first unbiased watermark [1], which has been implemented
internally at OpenAl [40] and serves as a baseline in many studies. This watermark builds on the
Gumbel-max trick, a sampling technique for multinomial distributions [17, 34, 25]. The trick first
generates a random vector ¢ = (U, )wew consisting of |WW| i.i.d. copies of U(0, 1) and guarantees
that arg max,cyy P, *logU, follows the distribution P = (P,),cw. Recognizing this fact,
Aaronson [1] proposed the following decoder:

log Uy,

sum(p -y . 5
SE(P, () = arg Max —p— (5)

which is, by definition, unbiased [13, 42, 60, 31].

The pivotal statistic is Y; = Y (wy, () = Uy, , Where ¢, = (Uy,w)wew collects all pseudorandom
numbers and Uy ,,, is the entry corresponding to the selected token w;. Without a watermark, the
Utw,’s are 1.i.d. from U(0,1), so Yz ~ po = U(0,1). In contrast, if a watermark is present, (5)
makes tokens with larger pseudorandom numbers more likely to be selected. Indeed, we have
Y; | Pi ~ pa,p,, where iy p(Y < 7) = >0 oy Py,r/Pw for r € [0,1] [31]. This alternative
distribution differs from o unless P is degenerate (i.e., concentrated on a single token).

A sum-based detection rule is defined by a scalar score function h. The watermark is claimed when
the sum-based statistic 7, = Y, h(Y}) exceeds a chosen threshold. Existing scoring functions

are listed in Table 5. Examples include Aaronson’s score hq(y) = log g 1y the log function

d 2
%@;) from Li et al.

[31], where A is a user-specified regularity parameter and PX := (1 — A, A,0,...) is the least
favorable NTP distribution. The function Ay is minimax optimal when each P; belongs to a A-regular
class, denoted Pa, defined as:

hiog(y) = logy [29, 13], and the optimal least-favorable score hiy(y) =

= : <1- .
Pa {P ur?e%Pw <1 A} (6)

Li et al. [31] shows that hjy achieves the fastest exponential decay of Type II error at a fixed
significance level aw when testing against the least favorable distribution in Pa .

Table 5: Baseline sum-based detection rules. Since Lst can be applied to all watermarking schemes,
we tune the parameter A for each to ensure good performance. In our experiments, we set A = 0.2 for
both the Gumbel-max and SynthID watermarks, and A = 0.5 for the Inverse transform watermark.

Tests name Score function Notation
Least-favorable test [31]  hiu(y) = dud%(*y()y) Lst
Aaronson’s score [1] has(y) = log 1 5 Ars
Logarithmic score [29] hiog(y) = log( ) Log
Negative-sum score [29]  hneg(y) = Neg
Identity-sum score [9] hia(y) =y Sum

A.2 Inverse Transform Watermark

The inverse transform watermark, proposed by Kuditipudi et al. [29], is another unbiased watermark-
ing scheme. It uses a pseudorandom variable ( = (U, ), where U ~ U(0, 1) is a uniform random
variable and 7 is an independent random permutation over the vocabulary VV. The decoder is defined
via inverse transform sampling:

S (P,¢) =7 o FIL(U),

™
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where F;(-) denotes the CDF under the permutation 7, defined as Fir(z) = > cyy Pu’ * Lr(uw)<a-

By construction, the inverse transform watermark is unbiased for sampling from the NTP distribution
P. To see the unbiasedness directly, for any token w, note that S™ (P, {) = w if and only if

Z Py Lipwy<n(w)y U < Z Py - L)) <m(w)}s @)
w’'ew w' ew

which occurs with probability P, since the interval above has length P,,.

T&j") = is the

normalized rank of w in the permuted vocabulary. Under Hy, Y follows a distribution with CDF 72
for r € [0, 1]. Under Hj, the distribution is more complex, though closed-form approximations are
available in certain asymptotic regimes [31]. Detection is performed using a sum-based rule with
score function hneg(y) = —y [29].

The associated pivotal statistic is Y (w,{) = 1 — |U — nx(w)|, where n,(w) =

A.3 SynthID Watermark

The SynthID watermark, proposed by Google [9], is based on a novel sampling strategy for categorical
distributions called tournament sampling. Given a number of tournament rounds k, the pseudorandom
seed is defined as ¢ = (g;)¥_,, where each g; = (gi . )wew is a vector of i.i.d. samples drawn from
U(0,1). Unlike the previous two watermarking schemes, the decoder here is stochastic rather than
deterministic. The next token is sampled from a modified NTP distribution, i.e., w ~ S¥*(P, (),
where

Ssyn(PaC):,]T@ko"'O,]:ﬁ(P)v ()

where 7 is a vectorized operator defined as

(Ta(P))(w) =Py | Pu+2- > Pu|. )

w9, <Gw

Dathathri et al. [9] prove that the output of 75(P) corresponds to the distribution of the winner token
in a one-versus-one competition, where two independent tokens sampled from P compete based on
their assigned g values. Repeating this process over k rounds with i.i.d. pseudorandom vectors g;
results in P, being the distribution of the final tournament winner after & rounds of competition.

For detection, we recover the g-values ¢ = (g;)¥_; and extract the coordinates corresponding to the
selected token w, i.e., {i w }ic[x]- Under the tournament sampling scheme, these values tend to be
larger under H; than under Hy, due to the winner-takes-all interpretation. We consider the sum-based
detection rule proposed by Dathathri et al. [9] as our baseline, which computes a simple average over
the selected k g-values:

Y (w, ) = ng

For simplicity, we use the identity score function in our implementation. Under Hy, each g; ,, is
an independent U (0, 1) random variable, so Y"™ (w, {) follows a scaled Irwin—Hall distribution:
YSUm (w, ¢) ~ ¢IrwinHall(k). In their paper, k = 30.

Note that Dathathri et al. [9] also proposed a weighted sum detection rule; however, we do not
consider it in our evaluation, as its null distribution py does not admit a closed-form expression and
its empirical performance closely matches that of the unweighted sum statistic Y 5", especially at
high temperatures. In addition, they propose a Bayesian detector based on a neural network trained to
distinguish human-written from watermarked text. We exclude this baseline as well, since its null
distribution is analytically intractable due to the network’s complex dependence on both the token w
and the randomness (.

A.4 Green-red List Watermark

The green-red list watermark, introduced by Kirchenbauer et al. [27], is a simple yet effective scheme.
It randomly partitions the vocabulary WV into a green (favored) set and a red (disfavored) set. Given a
green-list fraction v € (0, 1), it selects a random subset G C W of size |G| = |W] as the green set;
the remaining tokens form the red set.
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The decoder is stochastic: the next token w is sampled from a shifted version of the original NTP
distribution P, that is, w ~ S&"(P, ) where

Puexp@®)  ify e G
Sgrl P’ _ = I w )
(P,¢)(w) { Py otherwise,

and Z is the normalization constant. The pseudorandom component ( here is the green set G.

For a given token, detection is based on whether it belongs to the green set: the pivotal statistic is
Y& (w,() = 1yeg. Under Hy, G is independent of the token, so Y& ~ Ber(v). Under Hy, the
decoder increases the likelihood of selecting green tokens, resulting in Y& ~ Ber(y), where

Zweg PU) exp(5)
Zweg Pw eXp((;) + ngg Pw

Since p > ~ in general, detection reduces to checking whether the number of green tokens ;" ; Ytgrl
exceeds a threshold.

M:

Variants of this scheme, such as DiPmark [55], use more sophisticated partitions, but the core idea
remains the same: secretly boost the probabilities of selected tokens and count how often they appear.

Why we don’t consider green-red list watermarks. We did not include the green—red list
watermark and its variants in experiments because GoF tests reduce to the original detection method
in this setting. This reduction happens because the pivotal statistic (i.e., whether token is green) is
binary (0 or 1), and the order of these values does not affect the test. As a result, the full information
is captured by simply counting the number of 1s. In this case, testing whether the number of 1s
exceeds a threshold (i.e., the original detection rule) is already highly effective, and both GoF tests
and the original method rely on this same statistic—making them essentially equivalent. Therefore,
additional experiments would be redundant.

B Related Work

Most related work. Our work evaluates general GoF tests for watermark detection. The closest
prior work is Li et al. [32], which proposed a parameterized GoF test specifically for the Gumbel-
max watermark and established its statistical optimality under certain settings. In contrast, we
study a broader class of non-parameterized GoF tests applicable to a wide range of watermarking
schemes, offering greater flexibility. We also uncover new insights not included in [32]: the role
of text repetition in watermark detection. While several prior studies [13, 28] have examined text
repetition, they mainly focused on mitigation strategies or preprocessing methods. Our work is
distinct in that we analyze repetition from a statistical perspective, focusing on how it affects the
behavior of pivotal values and, in turn, the reliability of GoF-based detection compared to sum-based
approaches. Through ablation studies, we show that GoF tests can exploit repetition—particularly in
low-temperature decoding—to boost detection performance. This phenomenon, is not captured by Li
et al. [32], offers a new understanding of how GoF tests succeed in practice.

Other optimal detection rules. Several works focus on optimal detection for specific watermarks.
Huang et al. [22] derive optimal rules which, however, require exponential computation or access
to full NTP distributions, limiting their practicality. Li et al. [31] assume all NTP distributions fall
into a prior class of P;, and develop worst-case optimal detection rules using a minimax formulation.
Huang et al. [23] study speculative sampling, which is beyond our scope. He et al. [18] propose a
variant of the Gumbel-max watermark together with an optimal detection rule optimized for detection
power, sample distortion, and Type-I error. While these methods target specific schemes, our focus is
on general GoF tests, which can be applied broadly as long as the null distribution p is tractable.

General on watermarking schemes. A wide range of watermarking schemes have been proposed
in recent work [28, 13, 29, 21, 55, 60, 59, 33, 16, 14]. At a high level, these methods define
pseudorandomized sampling procedures over next-token prediction (NTP) distributions, where the
seeded randomness allows watermarked tokens to be reliably identified at test time. A decoder
is considered unbiased if the watermarked token distribution exactly matches the original NTP
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distribution; otherwise, it is biased [31]. In practice, each new watermarking scheme is often
accompanied by a custom detection rule designed in an ad hoc manner. Many such examples
are provided in Appendix A. In contrast, our work focuses on evaluating NTP-agnostic GoF tests
as general detection tools. Our goal is to systematically assess their performance across diverse
watermarking methods and to understand the key factors that influence their detection effectiveness.

GoF tests in statistics and NLP. GoF tests are standard tools for assessing whether i.i.d. samples
follow a specified distribution [7]; see Section 3 for representative examples. These tests are
particularly effective in low-dimensional settings and often rely on empirical CDFs or binned
statistics. To our knowledge, we are the first to apply GoF tests to watermark detection. A key
distinction is that watermark detection involves non-i.i.d. samples under H; due to the autoregressive
nature of LLMs: each P; depends on previous tokens. Our work builds on the frameworks of Li et al.
[31, 32] but shifts the focus toward broader applicability and robustness. GoF tests have also been
used in NLP for analyzing language statistics [36] and evaluating significance in empirical studies
[10]. Our work connects these statistical tools to the challenge of modern watermark detection.

C Practical Considerations for GoF Tests

Asymptotic Properties of GoF Tests. Most of the classical GoF tests considered in our work—Tt-
GoF test (Phi), Kuiper (Kui), Kolmogorov—Smirnov (Kol), Anderson—Darling (And), Cramér—von
Mises (Cra), and Watson (Wat)—are known to have only limiting distributions under the null
hypothesis. That is, their exact finite-sample distributions are analytically intractable. In contrast,
one of the baseline methods, Aaronson’s score (Ars), admits an explicit Gamma distribution under
the null, and prior work [13] has demonstrated that it can provide strong non-asymptotic guarantees
for Type I error control. However, despite the asymptotic nature, we argue that GoF tests remain
practically reliable for watermark detection. Our rationale is threefold:

* Empirical reliability of Type I error control. It’s worth noting that the limiting distribu-
tions offer valuable theoretical tools, but in practice, simulations offer users a more flexible
and convenient way to compute critical values—Ilike in Python package SciPy*, due to the
complex forms of some distributions (e.g., the Anderson-Darling distribution [35, 2]). Even
though critical values are obtained from simulations, our experiments (see Figure 4) show
that these GoF tests consistently maintain Type I error rates (i.e., FPR) close to the nominal
level, even at stringent settings (e.g., o = 1075).

* Validity of simulation-based calibration. Simulation provides a principled and widely
adopted approach for obtaining critical values when exact distributions are unavailable.
By generating i.i.d. pivotal statistics under the null distribution pg, one can estimate
the empirical a—quantile with arbitrarily small error by increasing simulation size. This
calibration can be performed prior to deployment and reused across tasks.

* Practical robustness in Type II error. Beyond Type I control, we find that GoF tests retain
strong detection power (i.e., low Type II error) under low « levels. Table 6 demonstrates
that even when the Type I error is tightly constrained, GoF texts continue to outperform the
baselines.

Complementary Role of GoF Tests. Importantly, we do not view GoF tests as a replacement
for sum-based or non-asymptotic methods, but rather as complementary tools. While methods
like Ars target high-value pivotal statistics, GOF tests are designed to detect distributional shifts,
offering enhanced robustness especially under information-rich edits (see Section 4.3). Despite
relying on asymptotic or simulated critical values, GoF tests enrich the detection toolkit by capturing
distribution-level anomalies.

Our experiments show that GoF tests provide reliable Type I error control and strong detection
power, yet their reliance on asymptotic or simulation-based thresholds means they may fall short in
high-stakes settings—for example, legal proceedings where certifying false positive rates with exact
finite-sample guarantees is required. In such scenarios, GoF tests alone are insufficient. More broadly,
no single method should serve as the sole line of defense. A robust system should draw from multiple

“nttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.goodness_of _fit.
html
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Figure 4: Theoretical vs. empirical false positive rates (FPR) for GoF tests. Results are based on
100k sampled human-written texts from the C4 dataset, with repeated pivotals removed. Even at this

scale, GoF tests maintain strong Type I error control, achieving empirical FPRs as low as the target
significance level.

Table 6: Type II errors at a stricter Type I error level of 10~°. Results are reported for temperature
T = 0.7 and sequence length n = 400, averaged over three LLMs on the C4 dataset. Baseline
denotes the best-performing method among all baseline detectors. The results show that GoF tests
retain strong detection power even under tight Type I error constraints.

Watermarks Baseline Phi Kui Kol And Cra Wat ©Ney Chi

Gumbel. 1.1 1.1 07 09 07 09 1.2 06 04
Inverse. 2.6 173 14 12 1.2 1.6 2.9 1.8 1.5
SynthID 4.2 180 46 41 39 47 11.8 41 2.7

methods, each with different strengths—for instance, Ars for sensitivity to large deviations and GoF
tests for distributional anomalies.

D Experiment Details and Results

D.1 Prompts for text generation

For the text completion task, we truncated the first 50 tokens directly, without adding any instructions,
and used them as the prompt. For the long-form question-answering task, we manually prepended
the instruction “Answer the following question:” before the question and used this as the prompt. To
ensure uniform prompt lengths, we selected questions whose total length, including the instruction,
was within 50 tokens. Additionally, we added padding tokens at the beginning to ensure the final
prompt length reached 50 tokens. Table 7 shows example prompts for these two tasks.

Table 7: Example prompts for the text generation tasks.

Text completion Long-form question-answering

Prompt: The Arlington County Board plans to vote Prompt: [pad] [pad]... [pad] Answer the fol-
Saturday afternoon on giving Amazon 23 million lowing question: Why is it that we calm down
and other incentives to build a headquarters cam- when we take a deep breath, hold it for a few sec-
pus in Crystal City, but only after hearing scores onds and exhale?

of northern Virginia residents and advocates testify

for or against the project.\n The five-member

D.2 Example of repetition
In this part, we provide two examples of repetitions in both human-written and watermarked text,

where we use colored backgrounds to highlight the most repeated content. The first example comes
from the C4 dataset, which is an NBA game report in which the phrase “during the second half”
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appears 15 times. As discussed in Section 4.2, such repetitions can introduce distinct jumps in
the empirical CDF of pivotal statistics, potentially leading GoF tests to incorrectly reject the null
hypothesis. The second example, generated by Llama 3.1-8B with a temperature of 0.7 using the
Gumbel-max watermark for the text completion task, exhibits a more direct and deliberate pattern of
repetition compared to human-written text.

Example of repetition in human-written text: Lakers guard Kobe Bryant flys to the basket with Rockets
forward Shane Battier trailing during the second half. Rockets forward Luis Scola drives around the Lakers’
Luke Walton during the second half. The Rockets’ Aaron Brooks jumps up as the crowd goes wild after one of
his three-point shots during the second half. The Lakers’ Ron Artest battles with the Rockets’ Chuck Hayes
for a loose ball during the second half. Rockets guard Aaron Brooks drives around the Lakers’ Derek Fisher
and Lamar Odom during the second half. Rockets forward Trevor Ariza drives up the court against the Lakers’
Lamar Odom during the second half. The Rockets’ Kyle Lowry drives up the court against the Lakers’ Derek
Fisher during the second half. The Lakers’ Ron Artest with his haircut during the second half. Lakers guard
Kobe Bryant flys to the basket with Rockets forward Louis Scola trailing during the second half. Ropckets
forward Trevor Ariza goes up for a basket during the second half. The Lakers’ Kobe Bryant gets a shot off as
the Rockets’ Shane Battier tries to defend during the second half. The Lakers’ Kobe Bryant bumps into the
Rockets’ Shane Battier during the second half. The Lakers’ Kobe Bryant booed by fans during a free throw
during the second half. Lakers forward Ron Artest fights Rockets forward Chuck Hayes for the ball in the fourth
quarter. Lakers forward Ron Artest puts a hand in the face of Rockets forward Carl Landry during the second
half. Rockets guard Trevor Ariza celebrates with Pops Mensah-Bonsu after his three-point shot during the last
seconds of the second half. The Rockets’ Trevor Ariza tries to get his hands on a ball held by the Lakers’ Ron
Artest during the second half.

Example of repetition in LLM-written text: Two slaughtermen have been sacked after an undercover
investigation exposed shocking cruelty to horses at an abattoir. The disturbing video shows them being beaten
with metal poles and illegally stunned in groups of up to three at a time before being killed. In one clip, one of
the workers can be heard saying: “We’re going to kill them now. Don’t beat them up. Don’t beat them up.Don’t
beat them up.Don’t beat them up.Don’t beat them up.Don’t beat them up...

Repetition in more powerful LLMs. Importantly, extensive repetition will become increasingly
rare in newer and more powerful LLMs, even at low temperatures. For instance, closed-source
models such as GPT and Claude are capable of producing diverse outputs under low-entropy (low-
temperature) settings without excessive repetition. Thus, as summarized in Table 4, the specific
low-temperature scenario with heavy text repetition should be regarded as an increasingly rare
phenomenon in more advanced models. Accordingly, our analysis of the text repetition can be viewed
as an edge-case study that reveals how repetition influences the behavior of pivotal statistics and,
in turn, the reliability of GoF tests compared to sum-based methods. More generally, detection in
low-entropy settings without text repetition remains a difficult problem for GoF tests, as it does for
other methods, making it a challenging yet worthwhile direction for future research.

D.3 Cost of GoF tests

The primary computational cost of goodness-of-fit (GoF) tests in watermark detection lies in calculat-
ing the critical values. Most GoF tests—including all those used in this work—Ilack non-asymptotic
distributions but do have asymptotic ones. For tests with simpler asymptotic forms (e.g., Ney and Chi),
the critical values can be computed directly from asymptotic results, leading to runtime comparable
to sum-based baselines.

In contrast, several GoF tests (e.g., Kui, Kol, And, Cra, Wat) rely on Monte Carlo simulation for
critical value computation due to the complexity of their asymptotic distributions. This substantially
increases computational cost.

Importantly, once the watermark scheme is fixed, the null distribution is known prior to testing,
enabling the critical values to be pre-computed and reused across runs. As a result, the actual cost of
applying GoF tests in practice is very low, even for those tests that require Monte Carlo simulation.

Table 8 reports runtime for detecting 100 pivotal sequences with n = 400 and simulation size 10°.
For comparison, the Ars baseline takes 1.30 x 102 seconds. As shown, Monte Carlo-based GoF
tests require roughly 10 times longer than the baseline, primarily because of the 103-fold larger
simulation size needed for estimating critical values.
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Table 8: Runtime cost of GoF tests for detecting 100 pivotal sequences with n = 400 and simulation
size 10°. Time* indicates the time cost without calculating the critical value.

Test Time Time*

Phi 2.11 x 10° 2.20 x 1073
Kui 2.03 x 10° 1.50 x 1073
Kol 1.95 x 10° 1.40 x 10~3
And 2.61 x 10° 4.30 x 1073
Cra 2.37 x 10° 1.70 x 10~3
Wat 2.38 x 10° 1.80 x 103
Ney 4.00 x 1073 same as left
Chi 3.90 x 10~3 same as left

D.4 More experiment results

All text generation tasks were conducted on NVIDIA A100 GPUs, with a total computational cost of
approximately 360 GPU hours to reproduce all experiments. Here, we present the results of additional
experiments that were not included in the main content. Table 9 provides a list of additional results
along with brief descriptions.

Table 9: List of additional results.

Label Brief description

Figure 5, 6, 7 Type 1I errors for detection tests applied to the Gumbel-max, Inverse-transform and
SynthID watermark.

Figure 8, 9 Percentage of repetition in watermarked texts compared to human-written texts. Distribu-
tion of the highest probability in NTP distributions.

Table 10 Type II errors on the ELI5 dataset.

Table 11 Type II errors on the ELI5 dataset under various types of edits.

E Additional Discussions

E.1 The influence of different LLMs

Different LLMs may produce different next-token prediction distributions under the same prompt,
which can impact the generation of watermarked text. In our experiments, we apply three popular
open-source LLMs: OPT-1.3B, OPT-13B [58], and Llama 3.1-8B [11]. These models vary in their text
generation capabilities, as indicated by their rankings on Hugging Face’s Open LLM Leaderboard >,
with OPT-1.3B < OPT-13B < Llama 3.1-8B in terms of overall performance. In our settings, OPT
models illustrate scaling effects within a family, while Llama 3.1-8B provides a contrast with a newer
architecture and training paradigm, giving us both comparability and diversity in model selection.

Across all detection tests, we observe some variation in performance among the three LLMs, but
the differences are not substantial. More importantly, the relative performance trends between tests
remain similar across models (see Figure 5, 6, 7). While specific rankings may fluctuate slightly, tests
that perform well on one LLM generally show comparable strength on the others. For example, Chi
consistently achieve strong performance at low temperatures across all three LLMs. In other words,
while absolute performance varies by model, the overall patterns in test effectiveness are largely
preserved across different LLMs.

While our analysis is limited to three representative open-source models, the consistency of results
across both within-family scaling (OPT-1.3B vs. OPT-13B) and cross-family comparison (OPT vs.

https://huggingface.co/open-11lm-1leaderboard
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Llama 3.1) provides encouraging evidence that the relative effectiveness of GoF tests is not highly
sensitive to model choice. Architectural and training differences may lead to further variation in other
settings, but our findings suggest that the key performance patterns we identify are likely to extend
beyond the specific models studied here. Moreover, even if the performance of a specific test does not
transfer directly to a new setting, the low computational cost of these GoF tests (see Appendix D.3)
allows practitioners to easily run all suggested tests and select the best-performing one in just a few
minutes. This makes our approach flexible and broadly applicable, while further evaluations across
additional model families and domains can continue to strengthen these conclusions.

E.2 The influence of different text generation tasks

LLM performance varies by task, potentially impacting text generation quality. For example, Question-
Answering requires a stronger ability for LLM to generate valid responses than Text Completion [3].
From our experiments, we found that task type has a greater effect on detection test performance than
differences between LLMs. Specifically, as shown in Figures 5, 6 and 7, baseline methods exhibit
noticeable performance drops on the ELI5 dataset at temperatures 0.1, 0.3, and 0.7, while GoF tests
demonstrate stronger effectiveness on it. This can be attributed to the influence of repetition, as
discussed in Section 4.2. LLMs tend to generate more repetitions in long-form question-answering
tasks compared to text completion, especially at low temperatures. This benefits GoF tests while
diminishing the effectiveness of sum-based baselines. Additionally, we observe a high occurrence
of ineffective outputs in long-form question-answering at low temperatures. To take an extreme
example, when answering the question: “Why does 1080p on a 4K TV look better than 1080p on a
1080p TV?”, LLaMA 3.1-8B generates: “I; 1;1;1;1;1;1;1;1;1;...” with temperature set to 0.1. Two
factors may contribute to this issue. First, the LLMs we applied may not be strong enough to generate
valid answers for certain questions. Second, some questions inherently lack sufficient content for an
extended response, even for human writers.

F Broader Impacts

This paper investigates the use of classic goodness-of-fit (GoF) tests for detecting text watermarks
in LLM-generated outputs, aiming to enhance the reliability and robustness of watermark detection.
A potential positive societal impact is the promotion of content authenticity and provenance in an
era of rapidly growing Al-generated media. Stronger watermark detection techniques can support
efforts in combating misinformation, safeguarding intellectual property, and promoting transparency
in automated content creation.

However, there are also potential negative societal impacts. Improved detection capabilities might
encourage more widespread use of watermarks, including those that could be embedded without
user consent, raising privacy and surveillance concerns. Additionally, the detection tools could be
misused to reveal the use of LLMs in sensitive or anonymized content, possibly compromising user
confidentiality.

To mitigate these risks, it is important that watermark detection methods are deployed transparently
and ethically, with clear communication about their use and limitations. In conclusion, while our
work on improving watermark detection for language models has the potential to strengthen content
attribution and support responsible Al use, it is important to carefully consider and address potential
negative societal impacts to ensure the technology is deployed ethically and transparently.
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Figure 5: Empirical Type II errors for various detection tests applied to the Gumbel-max watermark across the
C4 dataset (top three rows) and the ELI5 dataset (bottom three rows).
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Figure 6: Empirical Type II errors for various detection tests applied to the Inverse-transform watermark across
the C4 dataset (top three rows) and the ELI5 dataset (bottom three rows).
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Figure 7: Empirical Type Il errors for various detection tests applied to the SynthID watermark across the C4
dataset (top three rows) and the ELI5 dataset (bottom three rows).
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Figure 8: Left: Average repetition rate in Inverse-transform watermarked texts across three LLMs,
compared to human-written text. Right: Distribution of the highest probability in NTP distributions
for OPT-1.3B using the Inverse-transform watermark at temperature 0.7.
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Figure 9: Left: Average repetition rate in SynthID watermarked texts across three LLMs, compared to
human-written text. Right: Distribution of the highest probability in NTP distributions for OPT-1.3B
using the SynthID watermark at temperature 0.7.

Table 10: Type II errors (averaged over three LLMs) on the ELI5 dataset. All values are enlarged
by 100 for readability. T denotes temperature and n the token length. Baseline refers to the
best-performing method among the baseline detectors. Red shading highlights lower values; blue
indicates higher values.

T n | Baseline | Phi Kui Kol And Cra Wat Ney Chi
200 46.2 238 81 153 185 252 168 21.6 3.5

-q'é 0.3 400 39.9 8.4 1.9 39 49 9.0 3.9 9.8 1.6
5 07 200 7.0 2.6 1.0 1.6 1.7 2.7 22 23 0.5
' 400 7.4 0.9 0.5 06 07 12 07 1.2 06
$ 03 200 44.4 330 88 150 198 26.1 161 243 39
g ’ 400 35.0 9.9 0.8 22 41 7.5 2.6 84 04
E 0.7 200 53 2.8 06 0.7 1.2 22 1.3 2.1 0.3
' 400 4.8 0.5 0.1 02 0.1 04 03 0.8 0.1
2 o3 200 60.4 40.6 215 307 340 418 310 392 115
E ' 400 49.3 156 5.8 99 134 190 102 188 3.2
=]
& 0.7 200 6.1 4.5 4.1 3.1 2.9 3.9 7.5 42 29
' 400 55 1.5 1.2 1.0 08 1.2 23 1.5 1.2

Table 11: Type II errors (averaged over three LLMs) on the ELI5 dataset with temperature 1.0 under
various editing types. “Del” denotes word deletion, “Sub” represents synonym substitution, and “Info”
refers to information-rich edits. All values are enlarged by 100 for readability. Baseline refers to
the best-performing method among the baseline detectors. Red shading highlights lower values; blue
indicates higher values.

Edits | Baseline | Phi Kui Kol And Cra Wat Ney Chi
% pe @01 L1 03 05 06 04 08 12 05 02
g @02 1.6 08 44 27 13 28 63 12 15
2 sup @01 1.3 03 02 04 03 07 05 03 02
g @02 L5 06 32 24 10 24 47 11 09
© Info @03 5.2 50 14 20 20 24 19 19 14
@05 29.6 442 121 220 216 227 186 213 175
E pg @O0l 0.8 09 05 03 04 05 1.0 06 11
< @02 25 61 53 26 20 25 72 32 102
5 g @O0l 0.7 06 02 02 02 03 03 03 03
% @02 1.0 14 10 04 05 05 11 06 L5
w
S o @03 2.3 62 01 16 09 17 02 03 01
E @05 20.7 50.9 03 105 115 145 09 17 22
el @01 23 12 10 10 11 17 22 14 06
a @0.2 4.8 46 119 68 41 62 179 48 70
&= sup @01 2.5 L1 08 10 13 20 18 14 05
iy @02 5.6 48 96 65 41 64 141 47 65
nfo @03 8.9 49 00 07 05 17 01 06 00
@05 81.3 643 01 69 70 149 04 07 05

33



	Introduction
	Preliminaries
	GoF Tests for Watermark Detection
	Language Model Experiments
	Experiment settings
	Results on Statistical Power
	Results on Robustness
	Evaluation Summary

	Conclusion and Discussion
	Introduction of Considered Watermarks
	Gumbel-max Watermark
	Inverse Transform Watermark
	SynthID Watermark
	Green-red List Watermark

	Related Work
	Practical Considerations for GoF Tests
	Experiment Details and Results
	Prompts for text generation
	Example of repetition
	Cost of GoF tests
	More experiment results

	Additional Discussions
	The influence of different LLMs
	The influence of different text generation tasks

	Broader Impacts

