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Abstract

Rapid development in the performance of large001
language models (LLMs) is accompanied by an002
increase in model size, leading to an increasing003
cost of model training and inference. Previ-004
ous research has discovered that certain lay-005
ers in LLMs exhibit redundancy, and remov-006
ing these layers brings only marginal loss in007
model performance. In this paper, we adopt the008
probing technique to explain the layer redun-009
dancy in LLMs and demonstrate that language010
models can be effectively pruned with prob-011
ing classifiers. We propose chip-tuning, a sim-012
ple and effective structured pruning framework013
specialized for classification problems. Chip-014
tuning attaches tiny probing classifiers named015
chips to different layers of LLMs, and trains016
chips with the backbone model frozen. After017
selecting a chip for classification, all layers018
subsequent to the attached layer could be re-019
moved with marginal performance loss. Exper-020
imental results on various LLMs and datasets021
demonstrate that chip-tuning significantly out-022
performs previous state-of-the-art baselines in023
both accuracy and pruning ratio, achieving a024
pruning ratio of up to 50%. We also find that025
chip-tuning could be applied on multimodal026
models, and could be combined with model027
finetuning, proving its excellent compatibility.028

1 Introduction029

Large language models (LLMs) have experienced030

rapid development in recent years, achieving sur-031

prising success in various domains. Researchers032

have been scaling up the size of language models033

to pursue better performance, just as the scaling034

law (Kaplan et al., 2020) suggests. However, the035

increasing size of models leads to massive compu-036

tational costs, which poses a challenge to practical037

deployment and usage.038

Model compression techniques have since been039

proposed as a solution to relieving computational040

stress, which would assist in the deployment of041

large models. Different approaches have been ex- 042

plored to compress language models into more 043

compact versions, including quantization (Liu et al., 044

2021; Dettmers et al., 2022, 2024), knowledge dis- 045

tillation (Gou et al., 2021; Gu et al., 2023; Ko et al., 046

2024) and pruning (Ma et al., 2023; Yang et al., 047

2024; Ashkboos et al., 2024; Men et al., 2024). 048

Relevant research (Men et al., 2024) reveals that 049

a fair portion of parameters in large language mod- 050

els are redundant, and removing these parameters 051

would not bring severe damage to model perfor- 052

mance. Based on the observation, different meth- 053

ods have been designed to identify and remove 054

redundant parameters from LLMs, like layer merg- 055

ing (Yang et al., 2024), width compression (Ashk- 056

boos et al., 2024), layer removal (Men et al., 2024) 057

and component removal (Ma et al., 2023). These 058

methods maintain most of the performance, prov- 059

ing the feasibility of model pruning. 060

Research on model interpretability has shown ev- 061

idence that language models may develop internal 062

representations for various features like color (Pa- 063

tel and Pavlick, 2022), truthfulness (Burns et al., 064

2022), chessboard states (Nanda et al., 2023), num- 065

bers (Zhu et al., 2024) or even abstract concepts 066

like code errors (Templeton, 2024). These features 067

typically begin to form on middle layers and will 068

be carried to subsequent layers (Stolfo et al., 2023). 069

More interestingly, many of these features can be 070

read out by probing techniques (Belinkov, 2022), 071

in the way of training simple classifiers. 072

Inspired by the discovery that removing late lay- 073

ers of LLMs does not heavily impair network func- 074

tionality (Men et al., 2024), we hypothesize that the 075

critical features for solving certain problems may 076

begin to form on intermediate layers of LLMs. By 077

probing these necessary features on intermediate 078

layers, we can safely prune subsequent layers with 079

marginal performance loss. 080

We observe that previous research mainly aimed 081

to build a general pruned model that can be directly 082
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applied to various downstream tasks. Based on083

the intuition that different tasks require different084

subsets of features, we hypothesize that pruning085

language models on specific tasks would yield bet-086

ter results, as the model could better focus on the087

related features. Considering that generative tasks088

require generating multiple tokens, and each gen-089

erated token may required a different subset of090

features, we focus on classification tasks instead.091

In this paper, we introduce chip-tuning, a simple092

and effective structured pruning framework special-093

ized for classification tasks. For a given classifica-094

tion task, we attach probing classifiers named chips095

to each layer of the language model, and train these096

classifiers to probe the final classification results097

from intermediate hidden states. After training, we098

can then select a chip with satisfactory accuracy,099

and prune all layers subsequent to the chip to obtain100

a more compact model for the task. The parameters101

of the backbone model are frozen throughout the102

whole process and will not introduce any additional103

computation cost.104

We apply chip-tuning to language models with105

different sizes and families and observe their perfor-106

mance on various classification tasks. Compared107

with previous pruning methods, chip-tuning demon-108

strates better performance on classification tasks,109

and enables more radical pruning that reduces the110

parameters of models by up to 50% with marginal111

loss in performance. Additional experiments show112

that chip-tuning is also compatible with multimodal113

large language models (MLLMs) and other finetun-114

ing methods.115

The main contributions of our paper can be sum-116

marized as:117

• We propose chip-tuning, a pruning framework118

for classification tasks that trains probing clas-119

sifiers attached to certain layers of language120

models. By removing layers subsequent to the121

selected classifier, we can effectively reduce122

the size of the models.123

• We conduct experiments on different bench-124

marks, experimental results show that Chip-125

tuning is able to maintain the performance126

while reducing the size of models by up to127

50%, much outperforming previous state-of-128

the-art baselines.129

• We evaluate chip-tuning on multimodal mod-130

els and finetuned models, whose results prove131

the excellent compatibility of chip-tuning.132

2 Related Work 133

Network Pruning. With the growth in the size of 134

language models, the pruning technique has been 135

proposed to eliminate unnecessary weights or struc- 136

tures in language models, thus accelerating lan- 137

guage models. Pruning methods can generally be 138

categorized into two types: unstructured pruning 139

and structured pruning. 140

Unstructured pruning methods focus on the level 141

of individual weights, which try to speed up models 142

by increasing the sparsity level of model weights. 143

SparseGPT (Frantar and Alistarh, 2023) incremen- 144

tally prunes each column in the weight matrix with 145

a sequence of Hessian inverses. Wanda (Sun et al., 146

2023) enhances the magnitude pruning approach 147

with input activation norms, effectively reducing 148

the complexity of pruning algorithms. RIA (Zhang 149

et al., 2024a) notices that previous methods tend 150

to prune away entire channels of network weights, 151

and mitigates the issue by jointly considering input 152

and output channels. 153

Structured pruning methods operate at the level 154

of network structures, which compress language 155

models by removing redundant model compo- 156

nents. LLMPruner (Ma et al., 2023) employs gra- 157

dient information as a reference to remove non- 158

critical structures. SliceGPT (Ashkboos et al., 159

2024) removes rows or columns corresponding to 160

small principal components in the weight matrix 161

to achieve smaller weight matrices. LaCo (Yang 162

et al., 2024) proposes the layer collapse algorithm, 163

which merges adjacent layers while ensuring the 164

representation similarity on few-shot calibration 165

examples. ShortGPT (Men et al., 2024) finds that 166

deep layers of language models are not as effective 167

as expected, and proposes the block importance 168

metric to identify and remove redundant layers. 169

BlockPruner (Zhong et al., 2024) decomposes each 170

Transformer layer into two minimal residual blocks 171

and performs fine-grained block pruning to avoid 172

significant performance loss. 173

Probing Language Models. The impressive ca- 174

pability of language models raises the hypothesis 175

that language models have gone beyond mere mem- 176

orization of surface correlations. Instead, they may 177

learn the principles behind the training data and 178

develop internal representations for features (Be- 179

linkov, 2022). A wide variety of features have been 180

detected in the hidden state of language models 181

like color (Patel and Pavlick, 2022) and truthful- 182

ness (Burns et al., 2022). 183
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Question: Is windows movie maker part of windows essentials? Answer:

Figure 1: The overall structure of chip-tuning. After selecting a certain chip attached to the k-th layer, subsequent
layers in the language model can be safely pruned with marginal influence on model performance. In training, only
the parameters of chips are trainable and the backbone model is frozen.

Probing is a widely adopted technique to asso-184

ciate internal representations with external proper-185

ties (Belinkov, 2022). By training a simple classi-186

fier on model representations that predicts a given187

property, we can read out various features before188

language models generate their final outputs. With189

a simple linear classifier, probing is able to extract190

complex features like board game states (Nanda191

et al., 2023), entity properties (Li et al., 2021), and192

spatial information (Gurnee and Tegmark, 2023).193

Recently, Tao et al. (2024) finds that probing194

classifiers are also able to extract cross-modal in-195

formation from multimodal large language models.196

Zhang et al. (2024b) further reveals that probing197

could achieve better performance on image clas-198

sification tasks even than directly finetuning the199

backbone models.200

An interesting discovery is that probing classi-201

fiers sometimes achieve the best performance at202

intermediate layers, rather than early or late lay-203

ers (Zhu et al., 2024). A hypothesis is that late204

layers focus more on local features related to the205

next token prediction, while intermediate layers206

gather information in the input text and thus con-207

tain more global information (Stolfo et al., 2023).208

3 Methodology209

We illustrate the structure of the chip-tuning frame-210

work in Figure 1. The framework first inserts sim-211

ple probing classifiers named chips to different lay-212

ers of language models, and then solely trains the213

chips on task-specific training data. 214

Finally, we can select the chip on a fixed layer or 215

with other strategies (see Section 5.2), and layers 216

subsequent to the attached layer will be removed. 217

3.1 Chips 218

A language model with the decoder-only structure 219

consists of L transformer layers. At every token 220

position t, each transformer layer l takes previous 221

partial sequence x≤t as input and outputs new hid- 222

den states xlt. 223

According to the linear feature hypothe- 224

sis (Mikolov et al., 2013), there exist linear direc- 225

tions in the vector space that represent meaningful 226

features. Given the hidden state hk of layer k, its 227

projection value along a feature direction d repre- 228

sents how much layer k is activated on the feature. 229

Research papers (Stolfo et al., 2023; Zhu et al., 230

2024) found that complex features may emerge 231

from intermediate layers of language models. 232

We assume that rather than the complete set of 233

features D, a specific classification task requires 234

only a subset of features D′ ∈ D. By identifying 235

the feature subset and combining these features, we 236

can complete the classification process before the 237

final layer, and thus pruning the model. 238

Considering that the features could be repre- 239

sented with linear directions, we can linearly com- 240

bine them to get a linear classifier pL, or combine 241

them in a more complex nonlinear manner, where 242

we use a 2-layer perceptron (2xMLP) classifier pM 243

to simulate the situation. We denote these classi- 244
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fiers as chips:245

pL(x
l
t) = softmax(Wxlt + b)246

247

pM (xlt) = softmax(W1ReLU(W2x
l
t + b2) + b1248

where W , W1, W2, b, b1 and b2 are trainable pa-249

rameters.250

For simplicity, we take the hidden state at the251

last token position (i.e. t = −1) as the input vector252

of chips.253

3.2 Training254

As the optimal layer l∗ for classification chips is255

initially unknown, we attach a chip pl to every256

layer l of the language model, and train these chips257

simultaneously with standard cross-entropy loss:258

Ll = y log p(xlt) + (1− y) log(1− p(xlt))259

L =

L∑
i=0

Ll260

Training Cost. The parameters in the backbone261

language model are frozen in the training process,262

and only the weights of chips would be updated,263

thus the cost of training chips on a given dataset264

is close to inferencing on input texts. Meanwhile,265

the chips are independent to each other, and the266

chips on all layers could be simultaneously trained267

without additional training cost.268

3.3 Layer Removal and Inference269

We use the straightforward layer removal method270

to reduce the size of language models. After select-271

ing chip pl at layer l as the classification chip, we272

simply remove all layers after layer l to obtain a273

smaller model.274

Namely, with chip pl at layer l finally selected,275

the pruned model would function as follows:

Algorithm 1 Inference with Chips

Input: Language model M with N layers
L0, L1, . . . , LN−1, selected chip pl at layer l,
input embedding x−1;

Output: Classification prediction y;
1: for all i = 0, 1, 2, . . . , l do
2: xi = Li(x

i−1)
3: end for
4: y = argmax(pl(xit))

276

4 Experiments 277

4.1 Experimental Setup 278

Benchmarks. We select 4 distinct benchmarks 279

on natural language processing with the form of 280

multi-choice for evaluation: MMLU (Hendrycks 281

et al., 2020), Race (Lai et al., 2017), BoolQ (Clark 282

et al., 2019) and C3 (Sun et al., 2020). 283

Furthermore, we introduce three image clas- 284

sification datasets to test the effectiveness of 285

chip-tuning on multimodal large language models 286

(MLLMs): Flowers102 (Nilsback and Zisserman, 287

2008), StanfordCars (Krause et al., 2013), and Cal- 288

tech101 (Fei-Fei et al., 2004), each containing 102, 289

196, and 101 classes respectively. 290

Models. Following previous work (Men et al., 291

2024), we choose 2 model series to evaluate the ef- 292

fectiveness of chip-tuning: Llama2 (Touvron et al., 293

2023), Baichuan2 (Yang et al., 2023), which share 294

similar decoder-only transformer structure. We use 295

the 7B and 13B versions of Llama2 and Baichuan2 296

for experiments. For multimodal large language 297

models, we use the 7B and 13B versions of LLaVA- 298

1.5 (Liu et al., 2023) as the backbone model. 299

Due to memory constraints, we run 13B models 300

under the precision of 16-bit (fp16) instead of 32- 301

bit (fp32). 302

Baselines. We compare our method with several 303

structured pruning methods: LLMPruner (Ma 304

et al., 2023) removes non-critical coupled struc- 305

tures on the basis of gradient information. 306

SliceGPT (Ashkboos et al., 2024) replaces weight 307

matrices with smaller matrices by retaining princi- 308

pal components. LaCo (Yang et al., 2024) merges 309

the layer in language models from deep to shallow, 310

and sets a threshold to prevent excessive merging. 311

ShortGPT (Men et al., 2024) removes redundant 312

layers according to their proposed Block Influence 313

metric, a variant of cosine similarity. 314

Settings. For each benchmark, we use at most 315

20, 000 training data in the corresponding training 316

split of the benchmark to train our chips. The chips 317

are trained with a batch size of 1 for 1 epoch. We 318

use a learning rate of 1×10−5 for our experiments, 319

and set the hidden dimension of MLP chips to 256. 320

All experiments are conducted on a single NVIDIA 321

A100 40GB GPU. 322

For 7B models, we select chips at layer 20 as 323

classification chips; for 13B models, we select 324

chips at layer 25 as classification chips. These 325
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Model Method Ratio (%) BoolQ Race-H Race-M C3 MMLU Avg. Score

Llama2-7B

Dense 0.00% 71.62 35.71 34.19 43.56 45.39 46.09
LLMPrun. 27.0% 55.20 22.56 22.35 25.64 23.33 29.82
SliceGPT 26.4% 38.32 21.07 21.66 39.78 28.92 29.95

LaCo 27.1% 64.07 22.61 23.61 39.67 26.45 35.28
ShortGPT 27.1% 74.71 32.25 35.17 39.62 43.96 45.14
CT (Lin.) 34.4% 79.05 47.91 53.69 48.93 44.89 54.89
CT (MLP) 34.4% 76.01 49.43 53.90 53.80 45.07 55.64
CT (Max) ~40% 79.48 50.34 54.74 54.35 45.49 56.88

Llama2-13B

Dense 0.00% 82.39 57.95 60.38 47.51 55.00 60.65
LLMPrun. 24.4% 56.42 22.47 22.08 32.33 25.21 31.70
SliceGPT 23.6% 37.86 23.41 24.03 41.92 37.14 32.87

LaCo 24.6% 63.98 54.49 56.55 44.93 45.93 53.18
ShortGPT 24.6% 62.48 58.35 60.17 46.90 54.69 56.52
CT (Lin.) 35.0% 78.23 62.04 67.06 68.21 52.79 65.67
CT (MLP) 35.0% 75.81 62.52 67.13 68.00 52.95 65.28
CT (Max) ~50% 79.76 63.29 68.04 69.39 53.41 66.78

Baichuan2-7B

Dense 0.00% 74.10 26.96 24.09 64.55 53.87 48.71
LLMPrun. 24.2% 61.19 21.96 22.28 41.64 24.93 34.40
SliceGPT 22.2% 39.30 23.53 22.49 26.58 25.18 27.42

LaCo 24.2% 56.15 28.99 27.72 50.85 31.53 39.05
ShortGPT 24.2% 67.83 53.26 46.76 56.33 45.77 53.99
CT (Lin.) 34.4% 72.78 62.69 66.85 75.47 51.09 65.78
CT (MLP) 34.4% 73.12 63.52 67.13 76.36 50.95 66.22
CT (Max) ~40% 74.68 64.04 68.38 76.36 51.22 66.94

Baichuan2-13B

Dense 0.00% 77.89 67.27 68.94 65.64 59.50 67.85
LLMPrun. 24.3% 56.54 21.17 21.61 39.89 23.19 32.48
SliceGPT 22.8% 37.83 21.56 21.52 24.99 22.95 25.77

LaCo 24.7% 62.35 56.92 57.80 61.10 51.35 57.90
ShortGPT 24.7% 62.54 55.77 56.41 60.16 52.11 57.40
CT (Lin.) 35.0% 77.77 73.04 77.44 80.84 56.88 73.19
CT (MLP) 35.0% 76.88 73.87 77.44 81.81 56.66 73.33
CT (Max) ~50% 78.84 75.04 79.11 81.89 56.96 74.37

Table 1: Comparison of pruning methods on natural language benchmarks. CT refers to chip-tuning (our method).
The results of LLMPrun., SliceGPT, LaCo, and ShortGPT are reported from ShortGPT (Men et al., 2024). CT
(Max) denotes the best performance across chips on different layers.

settings are equal to the prune ratio of 34.4% and326

35.0%, respectively.327

4.2 Main Experiment Results328

To evaluate the effectiveness of chip-tuning, we329

conduct experiments on multi-choice style bench-330

marks commonly used for large language model331

evaluation. The experimental results are demon-332

strated in Table 1. 1333

Chip-tuning excels previous baselines. It can334

be clearly observed that chip-tuning outperforms335

previously structured pruning baselines on almost336

every benchmark by a large margin, proving the337

capacity of our proposed model. Meanwhile, while338

previously structured pruning baselines prune less339

1We report the result of finetuning pruned baseline models
with the same data used by chip-tuning in Appendix F.

than 30% of the model parameters, chip-tuning is 340

able to prune models by a higher ratio: 34.4% for 341

7B models and 35.0% for 13B models. 342

Linear chips are sufficient for classification. 343

We also notice that the performance of linear chips 344

is close to the performance of MLP chips, indi- 345

cating that the essential features may be mostly 346

encoded linearly, and linear probing classifiers are 347

enough for reading out these features. Details of 348

the difference will be demonstrated in Section 5.1. 349

Optimal chips exhibit more potential. Finally, 350

we gather the highest accuracy of all chips on each 351

benchmark, notated as CT (max) in the table. The 352

pruning ratio and corresponding layer of optimal 353

chips varies across different benchmarks and mod- 354

els (see Appendix B for details). By choosing 355
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Model Method Ratio(%) Flowers102 StanfordCars Caltech101 Avg. Score

Llava1.5-7B

Raw 0.00% 5.9 0.0 47.1 17.67
w/ Label 0.00% 10.2 0.0 62.1 24.10
CT (Lin.) 34.4% 91.28 60.98 92.24 81.50
CT (MLP) 34.4% 88.70 0.85 91.52 60.36
CT (Max) ~20% 94.00 70.95 92.24 85.73

Llava1.5-13B

Raw 0.00% 5.3 0.0 49.9 18.4
w/ Label 0.00% 7.2 0.1 70.9 26.07
CT (Lin.) 50.0% 91.46 48.63 91.70 77.26
CT (MLP) 50.0% 85.93 0.85 90.42 59.07
CT (Max) ~50% 93.06 71.52 92.39 85.66

Table 2: Comparison of pruning methods on image classification benchmarks. CT refers to chip-tuning (our method).
The results of dense models are reported from Zhang et al. (2024b).

the optimal chip, chip-tuning could achieve even356

higher pruning ratios and performance.357

4.3 Pruning Multimodal Models358

We further evaluate whether chip-tuning could359

be applied to multimodal large language models360

(MLLMs) by pruning LLaVA-1.5 on image clas-361

sification benchmarks. Following the settings in362

(Zhang et al., 2024b), we train the chips for 500363

epochs with a learning rate of 1×10−3, and set the364

batch size to 512.365

Table 2 demonstrates the pruning results (see366

Appendix C for details). Surprisingly, the original367

LLaVA models perform poorly on image classifi-368

cation tasks, achieving an accuracy of near 0% on369

Flowers102 and StanfordCars. Providing the label370

set in the prompt could improve the accuracy, but371

the performance is still not satisfactory.372

In contrast, by adopting chip-tuning, we can373

achieve a decent accuracy while pruning the lan-374

guage model part of LLaVA. This phenomenon375

indicates that the information essential for image376

classification is already contained in the hidden377

states of multimodal models, but the models have378

difficulty in correctly decoding them. Chip-tuning379

extracts related information before the final layer,380

and decode the information correctly.381

We also notice that MLP chips perform ex-382

tremely badly on StanfordCars, which may be383

caused by the large label set size of the dataset.384

4.4 Combination with Finetuning385

A critical difference between chip-tuning and the386

previous structured pruning method is that chip-387

tuning requires additional training data. With388

these training data, we can also finetune the back-389

bone language model to achieve better perfor-390

mance. To better study the effectiveness of chip- 391

tuning, we finetune models with the same data us- 392

ing LoRA (Hu et al., 2021) and observe the per- 393

formance gap between chip-tuning and finetuning. 394

We set rank r = 16 and LoRA alpha α = 322. 395

Table 3 shows the comparison results. Finetun- 396

ing the backbone model with LoRA could improve 397

the performance on various benchmarks, and out- 398

performs chip-tuning on the raw model as expected. 399

Nevertheless, we can perform chip-tuning on fine- 400

tuned models, which will only lead to marginal 401

performance loss and will even improve the per- 402

formance on certain datasets. These results clearly 403

indicate that chip-tuning is compatible with tradi- 404

tional finetuning methods. 405

Considering that the target of probing is to read 406

out relevant features from the internal represen- 407

tations of models, finetuning the model would 408

help the backbone model develop better representa- 409

tions for the given classification task. Thus, chips 410

could benefit from the optimized input features and 411

achieve better performance. 412

5 Analysis 413

5.1 Number of Pruned Layers 414

Choosing different chips would change the num- 415

ber of pruned layers, and thus affect the classifica- 416

tion performance. We conduct experiments on the 417

MMLU dataset with Llama-2 models, and Figure 418

2 demonstrates the correlation between number of 419

pruned layers and classification accuracy. 420

It can be clearly observed that the classification 421

accuracy exhibits a drastic change on both datasets, 422

increasing from random guess to a decent level, 423

and then fluctuating within a relatively small range. 424

2See Appendix D for detailed settings.
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Model Method ∆Params BoolQ Race-H Race-M C3 MMLU Avg. Score

Llama2-7B

Raw - 71.62 35.71 34.19 43.56 45.39 46.09
LoRA 8M 87.37 81.59 86.56 83.83 54.80 78.83

CT (Raw) 0.5M 79.05 47.91 53.69 48.93 44.89 54.89
CT (LoRA) 0.5M 89.20 81.45 86.42 84.28 54.57 79.18

Llama2-13B

Raw - 82.39 57.95 60.38 47.51 55.00 60.65
LoRA 12.5M 89.42 85.05 88.23 88.10 57.68 81.70

CT (Raw) 0.625M 78.23 62.04 67.06 68.21 52.79 65.67
CT (LoRA) 0.625M 90.09 85.22 88.58 87.81 55.51 81.44

Table 3: Comparison between chip-tuning and finetuning with LoRA on the same training dataset. We attach a
linear chip to the 20th layer of the 7B model and the 25th layer of the 13B model for classification. CT (Raw) and
CT (LoRA) refer to adding linear chips to the raw model and the finetuned model, respectively.

(a) Llama-2-7B on MMLU. (b) Llama-2-13B on MMLU.

Figure 2: The impact of pruning Llama2 models on MMLU by selecting chips on different layers.

The change happens at around layer 18 for Llama-425

2-7B and layer 20 for Llama-2-13B, which are426

at the position of about 50% in the entire model.427

Meanwhile, the best performance is not necessarily428

achieved on the last layer, which may be a hint429

that features in middle-layer representations serve430

better for classification.431

Stolfo et al. (2023) proposes the theory that early432

layers in language models focus on gathering and433

transmitting information in the input text, while434

mid-late layers are involved in processing the in-435

formation and output the final answer. The the-436

ory matches our findings: essential information is437

transmitted to the last token on intermediate layers,438

which is sufficient for solving the question.439

We also find that the performance gap between440

linear chips and 2-layer MLP chips is not extremely441

significant. On most layers, the two chips behave442

identically, especially for the 13B model. The ob-443

servable difference is that the performance of MLP444

chips is slightly more stable, changing in a smaller 445

range on late layers. 446

Multimodal models exhibit a different pattern. 447

As illustrated in Figure 3, chips on multimodal 448

models could achieve high accuracy from early 449

layers, and chips on late layers generally perform 450

better than those on intermediate layers. The criti- 451

cal information for image classification is already 452

contained in the image tokens from the first layer, 453

which could lead to the difference. 454

5.2 Chip Selection Strategy 455

Aside from choosing chips on a fixed layer, there 456

exist other strategies to achieve better performance. 457

We adopt three distinct strategies and evaluate them 458

on Llama-2-7B: 459

Fixed selects a fixed layer l for all tasks (l = 20 460

for 7B models and l = 25 for 13B models). 461

Validate constructs a small validation set consist- 462

ing of 200 examples, and chooses the chip which 463
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Model Strategy BoolQ Race-H Race-M C3 MMLU Avg. Score

Llama2-7B

Dense 71.62 35.71 34.19 43.56 45.39 46.09
Fixed 79.05 47.91 53.69 48.93 44.89 54.89

Validate 79.48 49.43 54.53 53.93 44.53 56.38
Optimal 79.48 50.34 54.74 54.35 45.49 56.88

Table 4: Comparison between different chip selection strategies on Llama-2-7B.

Figure 3: The impact of pruning LLaVA1.5-7B on Flow-
ers102 by selecting chips on different layers. Different
from the trends on NLP benchmarks, the trend does not
exhibit a drastic change on certain layers.

performs best on the validation set.464

Optimal evaluates the performance of all chips,465

and selects the chip with the highest accuracy. This466

strategy reflects the upper bound of chip-tuning.467

The experimental results are shown in Table 4.468

Choosing chips according to the validation set gen-469

erally achieves better performance than pruning the470

model on a fixed layer, but the pruning ratio may471

vary across different datasets. While the Optimal472

strategy outperforms other strategies, the perfor-473

mance gap is not large, The Validate strategy could474

achieve comparable results with Optimal accuracy,475

proving the robustness of chip-tuning.476

5.3 Impact of Training Dataset Scale477

Training data is a crucial component in model train-478

ing. Considering the scenario where training data479

is scarce, we test the performance of chip-tuning480

under different scales of the training dataset.481

Figure 4 shows the classification accuracy un-482

der different training dataset scales. The accuracy483

rapidly increases before 6,000 training examples484

and reaches a plateau afterward. Although the ac-485

curacy may drop at a certain time step, the figure486

still displays a pattern of slow increase after 6,000487

Figure 4: Analysis on the training dataset scale. We
evaluate the performance of chip-tuning Llama-2-7B
on MMLU every 2, 000 training steps. The overall ac-
curacy rapidly increases until 6, 000 training steps, and
continues to increase slightly afterward.

training examples. We draw the conclusion that a 488

sufficient number of training data is essential for 489

chips to converge, but further data could still bring 490

subtle improvements. 491

6 Conclusion 492

In this paper, we propose chip-tuning, a structured 493

pruning framework specialized for classification 494

tasks. Chip-tuning adopts probing classifiers to 495

extract relevant features from intermediate layers 496

of language models, and safely removes subse- 497

quent layers without affecting the selected clas- 498

sifier. Experimental results on a variety of models 499

and datasets demonstrate that chip-tuning surpasses 500

previous baseline models on both performance and 501

pruning ratio. Chip-tuning performs well by se- 502

lecting chips on a fixed layer, and could further 503

achieve a pruning ratio of up to 50% by selecting 504

the optimal chip. 505

Meanwhile, we find that chip-tuning is also com- 506

patible with multimodal models and finetuned mod- 507

els. Considering the simplicity of layer removal, 508

chip-tuning shows its potential in deploying LLMs 509

under practical scenarios. We hope our work could 510

inspire further research on efficient model pruning. 511
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Limitations512

Based on the technique of probing, chip-tuning513

requires the backbone models to contain relevant514

features in their internal representations. On tasks515

that the backbone models perform poorly, chip-516

tuning would not yield satisfactory results either.517

Meanwhile, chip-tuning is designed mainly for518

classification tasks, which is the reason why we519

don’t evaluate chip-tuning on datasets like Hel-520

laSwag that use perplexity-based evaluation meth-521

ods. Directly applying chip-tuning to genera-522

tion tasks may lead to unexpected results, and523

generation-oriented chips remain to be explored524

in the future.525
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A Datasets704

The properties of datasets we used are shown in705

Table 7. We use these datasets according to their706

license and intended use.707

B Details for Main Experiments708

Figure 5 shows how the performance changes with709

different number of layers pruned. We can see710

that the optimal chip varies as the dataset changes.711

However, pruning around layer 18 of the 7B model712

(about 40%) and layer 20 of the 13B model (about713

50%) is generally acceptable.714

We also notice that probing late layers of Llama-715

2-7B leads to worse results, which leaves the ques-716

tion of whether the 7B model "forgets" certain in-717

formation on late layers. The question remains to718

be explored in the future.719

We record the layer on which chips show the best720

performance or highest pruning ratio in Table 6.721

Notice that we define layer with the highest pruning722

ratio as the first layer after the drastic change in723

accuracy, which could be subjective.724

We implement our code with the huggingface725

Transformers and Peft Python library. Conducting726

chip-tuning on a 7B model or a 16-bit 13B model727

with 20,000 examples would take about 2 hours on728

a single NVIDIA A100 40GB GPU.729

C Details for Multimodal Experiments730

Figure 6 shows how the performance changes by731

pruning LLaVA1.5-7B. Different from text datasets,732

the optimal chip for image classification typically733

appears on late layers, while chips on early lay-734

ers also exhibit decent accuracy. Surprisingly, 2-735

layer MLP chips fail to predict the class of im-736

ages on StanfordCars. This may be a result of737

the larger class label set size (196) compared with738

Flowers102 (102) and Caltech101 (101).739

D Details for LoRA Experiments740

Table 5 shows the experimental settings for LoRA741

experiments.742

E Experiments on Llama3743

We evaluate chip-tuning on Llama3-8B-744

Instruct (AI@Meta, 2024), one of the up-to-date745

LLMs. We prune the model to layer 22 in746

experiments.747

The experimental results in Table 8 are simi-748

lar to those in Table 3: applying chip-tuning on749

Llama3 has minimal impact on classification accu- 750

racy, proving that chip-tuning is compatible with 751

Llama3. The optimal performance of chips even 752

outperforms the finetuned LoRA models. 753

F Finetuning Pruned Baseline Models 754

For fair comparisions, we finetune the pruned base- 755

line models on the training set of each benchmark 756

to see how they perform with the same data pro- 757

vided. We use Llama2-7B as the backbone model, 758

and finetune LLMPruner (Ma et al., 2023) and 759

SliceGPT (Ashkboos et al., 2024) under their de- 760

fault LoRA settings. We do not train LaCo and 761

ShortGPT as we cannot find their official code. 762

Both baseline models are trained with at most 763

20,000 training data same to these chip-tuning 764

used on each benchmark. The accuracy of fine- 765

tuned baseline models are obtained by selecting 766

the choice token (for example, "A", "B", "C", "D" 767

for 4-choice problems) with the highest generation 768

probability, as free-form generation would yield 769

unexpected results. 770

Table 9 shows the result of finetuning LLM- 771

Pruner and SliceGPT with the same data used by 772

chip-tuning. While the finetuned versions achieve 773

higher accuracy than the original version, we can 774

clearly see that chip-tuning greatly outperforms 775

both baselines, further proving the effectiveness of 776

chip-tuning. 777

Parameter Value
learning rate 1× 10−5

weight decay 0.01
r 16
α 32

batch size 1
epoch 1

Table 5: Parameters for LoRA training.

Model BoolQ Race-H Race-M C3 MMLU

Llama2-7B 18/17 19/19 19/17 19/18 17/15
Llama2-13B 38/18 39/18 19/16 20/17 21/16

Baichuan2-7B 21/18 30/19 30/19 20/19 24/19
Baichuan2-13B 38/18 36/22 35/22 27/22 22/21

Table 6: The corresponding layer of chips with the best
performance or highest pruning ratio on each dataset.
The format of each cell in the table is (layer with best
performance / layer with highest pruning ratio).
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Dataset Link Train Split Eval Split
BoolQ https://huggingface.co/datasets/google/boolq train validation
Race https://huggingface.co/datasets/ehovy/race train test
C3 https://huggingface.co/datasets/dataset-org/c3 train validation

MMLU https://huggingface.co/datasets/cais/mmlu auxiliary_train test
Flowers102 https://huggingface.co/datasets/dpdl-benchmark/oxford_flowers102 train+validation test

StanfordCars https://huggingface.co/datasets/tanganke/stanford_cars train test
Caltech101 https://huggingface.co/datasets/dpdl-benchmark/caltech101 train test

Table 7: Dataset details.

(a) Llama-2-7B on BoolQ. (b) Llama-2-13B on BoolQ. (c) Llama-2-7B on C3. (d) Llama-2-13B on C3.

(e) Llama-2-7B on Race-H. (f) Llama-2-13B on Race-H. (g) Llama-2-7B on Race-M. (h) Llama-2-13B on Race-M.

Figure 5: The impact of pruning Llama2 models on BoolQ, C3, Race-H, and Race-M by selecting chips on different
layers.

(a) LLaVA1.5-7B on Flowers102. (b) LLaVA1.5-7B on StanfordCars. (c) LLaVA1.5-7B on Caltech101.

Figure 6: The impact of pruning LLaVA1.5-7B on Flowers102, StanfordCars, and Caltech101 by selecting chips on
different layers.

Model Method ∆Params BoolQ Race-H Race-M C3 MMLU Avg. Score

Llama3-8B

Raw - 57.77 80.87 85.24 86.82 64.01 74.94
LoRA 8M 87.16 80.25 90.46 84.93 66.20 81.8

CT (Raw) 0.5M 76.73 81.39 86.00 88.86 64.26 79.45
CT (LoRA) 0.5M 87.03 81.36 90.95 83.75 66.31 81.88
CT (Max) 0.5M 90.83 88.02 91.07 93.71 66.37 86.00

Table 8: Comparison between chip-tuning and finetuning with LoRA on Llama3-8B. CT (Raw) and CT (LoRA)
refer to adding linear chips to the raw model and the finetuned model on layer 22, respectively. CT (Max) refers to
the best performance of chips on the finetuned model.
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Model Method BoolQ Race-H Race-M C3 MMLU Avg. Score

Llama2-7B

Raw 71.62 35.71 34.19 43.56 45.39 46.09
LLMPrun. 55.20 22.56 22.35 25.64 23.33 29.82
SliceGPT 38.32 21.07 21.66 39.78 28.92 29.95
CT (Raw) 79.05 47.91 53.69 48.93 44.89 54.89

LoRA 87.37 81.59 86.56 83.83 54.80 78.83
LLMPrun.+LoRA 60.49 23.67 25.56 17.84 26.60 30.83
SliceGPT+LoRA 65.72 71.76 76.81 60.27 43.06 63.52

CT (LoRA) 89.20 81.45 86.42 84.28 54.57 79.18

Table 9: Comparison between chip-tuning and finetuning pruned baseline models. We only report the result of
finetuning LLMPruner and SliceGPT, as LaCo and ShortGPT do not provide their official code.
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