Published as a conference paper at ICLR 2026

PoLicYFLOW: PoLICY OPTIMIZATION WITH CON-
TINUOUS NORMALIZING FLOW IN REINFORCEMENT
LEARNING

Shunpeng Yang' 4, Ben Liu? & Hua Chen?4f

'Hong Kong University of Science and Technology, 2Southern University of Science and Technology
3Zhejiang University-University of Illinois Urbana-Champaign Institute, *LimX Dynamics
 Corresponding author, huachen@intl.zju.edu.cn

ABSTRACT

Among on-policy reinforcement learning algorithms, Proximal Policy Optimiza-
tion (PPO) demonstrates is widely favored for its simplicity, numerical stability,
and strong empirical performance. Standard PPO relies on surrogate objectives
defined via importance ratios, which require evaluating policy likelihood that is
typically straightforward when the policy is modeled as a Gaussian distribution.
However, extending PPO to more expressive, high-capacity policy models such
as continuous normalizing flows (CNFs), also known as flow-matching models,
is challenging because likelihood evaluation along the full flow trajectory is com-
putationally expensive and often numerically unstable. To resolve this issue, we
propose PolicyFlow, a novel on-policy CNF-based reinforcement learning algo-
rithm that integrates expressive CNF policies with PPO-style objectives without
requiring likelihood evaluation along the full flow path. PolicyFlow approximates
importance ratios using velocity field variations along a simple interpolation path,
reducing computational overhead without compromising training stability. To
further prevent mode collapse and further encourage diverse behaviors, we pro-
pose the Brownian Regularizer, an implicit policy entropy regularizer inspired by
Brownian motion, which is conceptually elegant and computationally lightweight.
Experiments on diverse tasks across various environments including MultiGoal,
PointMaze, IsaacLab and MuJoCo Playground show that PolicyFlow achieves
competitive or superior performance compared to PPO using Gaussian policies
and flow-based baselines including FPO and DPPO. Notably, results on MultiGoal
highlight PolicyFlow’s ability to capture richer multimodal action distributions.

1 INTRODUCTION

Reinforcement learning (RL), particularly policy gradient (PG) methods, has achieved remarkable
success in complex sequential decision-making tasks, ranging from robotic control (Andrychowicz
et al., 2020; Rudin et al., 2022; Cheng et al., 2024; He et al., 2025) to aligning large language
models with human preferences (Ouyang et al., 2022; Zhai et al., 2024; Guo et al., 2025). Among
PG methods, Proximal Policy Optimization (PPO) (Schulman et al., 2017) remains a standard due to
its simplicity and generally reliable performance, widely used in complex robotic control tasks (Lee
et al., 2020; Chen et al., 2025), and recently for fine-tuning generative policies (Black et al., 2023;
Ren et al., 2024). PPO optimizes policies via surrogate objectives based on importance ratios, which
require nontrivial likelihood evaluation. For tractable computation, policies are typically modeled
by Gaussian distribution. While convenient, Gaussian policies are limited in representing complex,
multimodal, or highly skewed action distributions, motivating the use of more expressive generative
models.

In recent years, generative models, such as diffusion models (Ho et al., 2020; Song et al., 2020)
and continuous normalizing flows (Lipman et al., 2022; Tong et al., 2023), have emerged as a pow-
erful class of models capable of capturing complex, multimodal distributions. These models have
been successfully applied to imitation learning, where they model policy distributions directly from
demonstration data (Chi et al., 2023; Ze et al., 2024), effectively capturing trajectory diversity and

Published as a conference paper at ICLR 2026

complex behaviors. However, computing importance ratios or likelihoods for these models typically
requires iterative ODE/SDE simulations and path-wise backpropagation (Chen et al., 2018), which
is computationally expensive and prone to exploding or vanishing gradients. This makes direct ap-
plication of such models in PPO-style updates slow, memory-intensive, and potentially unstable,
limiting their practicality for efficient on-policy reinforcement learning.

Motivated by these challenges, we propose PolicyFlow, a novel on-policy RL algorithm that com-
bines the expressiveness of continuous normalizing flows with a PPO-style clipped objective, en-
abling efficient and stable policy optimization. Our contributions are as follows:

» Importance ratio approximation for CNF policies. PolicyFlow approximates importance ratios
by evaluating the variations of CNF’s velocity field along interpolation paths, avoiding the costly
path-wise backpropagation.

* Brownian entropy regularization. We propose a lightweight entropy regularizer inspired by Brow-
nian motion (Einstein, 1905), which promotes monotonic entropy growth, mitigates mode col-
lapse, and encourages diverse actions without explicitly computing the CNF policy’s entropy.

These results demonstrate PolicyFlow’s potential as a practical and expressive framework for on-
policy RL. Code and project page are available at https://policyflow2026.github.io/.

2 RELATED WORK

2.1 FLOW/DIFFUSION-BASED REPRESENTATIONS OF RL POLICIES

Flow and diffusion models provide highly expressive, multi-modal distributions, making them at-
tractive as policy parameterizations in reinforcement learning. Compared to conventional categorical
or Gaussian policies, these generative models allow richer action distributions and can potentially
capture a broader set of behaviors. In robotics, flow-based and diffusion-based models have been
widely adopted as policy representations (Chi et al., 2023; Lei et al., 2025; Intelligence et al., 2025;
Gao et al., 2025). However, progress has approached a bottleneck, as these models are typically
trained solely through denoising score matching or flow matching on offline datasets, without incor-
porating reinforcement learning. This limitation has motivated researchers to explore using RL to
directly train generative policies.

In offline RL, diffusion-based policies have been widely adopted to model complex action pat-
terns from static datasets, often guided by value functions or energy-based objectives (Wang et al.,
2022; Lu et al., 2023; Psenka et al., 2023; Zhang et al., 2025). These approaches have achieved
strong results on D4RL benchmarks and inspired actor—critic variants that couple generative poli-
cies with value estimation (Wang et al., 2024; Fang et al., 2024). To address the heavy sampling
and computational demands of diffusion models, recent works have also explored more efficient
formulations (Kang et al., 2023).

In online RL, the setting is more demanding because it requires efficient sampling, stable
importance-ratio estimation, and tractable (or well-approximated) likelihoods. Several works (Wang
et al., 2024; Chao et al., 2024; Ding et al., 2025) directly backpropagate policy gradients through the
full diffusion/flow chain, which enables end-to-end optimization but risks exploding or vanishing
gradients. Practical recipes for fine-tuning expressive diffusion policies with policy-gradient-style
updates have also been proposed in DPPO (Ren et al., 2024), which enables structured on-manifold
exploration and stable long-horizon training. While effective in fine-tuning scenarios, its perfor-
mance tends to degrade when training from scratch, as off-manifold exploration becomes necessary.
FPO (McAllister et al., 2025) instead estimates policy importance ratios through an ELBO objective,
which offers a scalable approximation but introduces asymmetric estimation bias—more reliable
when the importance ratio increases than when it decreases—potentially amplifying variance and
affecting stability. To mitigate this issue, FPO typically requires larger batch sizes during updates.

Overall, prior work illustrates both the promise and the limitations of expressive generative policies
in online RL: while they expand the representable policy class, existing approaches may suffer
from unstable optimization, high computational cost, or biased approximations. PolicyFlow is an
on-policy algorithm that seeks to address these challenges without backpropagating through full

https://policyflow2026.github.io/

Published as a conference paper at ICLR 2026

generative chains, without treating diffusion as an internal Markov Decision Process as in DPPO,
and while avoiding the asymmetric bias in FPO.

2.2 PoLICY ENTROPY REGULARIZATION

Entropy regularization has long been used to encourage exploration and prevent mode collapse in re-
inforcement learning. Classical approaches show its effectiveness for categorical policies in discrete
action spaces (Mnih et al., 2016) and Gaussian policies in continuous control (Haarnoja et al., 2018).
Extending this principle to flow-based policies, however, is challenging: action log-likelihoods are
generally intractable, making entropy estimation expensive.

In principle, closed-form dynamics of entropy under continuous normalizing flows can be derived
via the divergence of the velocity field integrated along the flow path (Chen et al., 2018; Tian et al.,
2024). While theoretically sound, this requires costly divergence evaluation and path integration,
which limits scalability. More heuristic solutions have also been explored: Wang et al. (2024)
approximate entropy using Gaussian mixture models, adjusting the injected noise to diffusion output
accordingly, while Ding et al. (2024) inject uniform noise into training samples to artificially inflate
entropy. These strategies are effective in specific cases, and can be good choices when additional
computational cost is not a concern or when the range of action samples is known in advance.

Our approach introduces an implicit entropy regularizer, inspired by Brownian motion, that directly
shapes the velocity field toward entropy-increasing dynamics. This design avoids expensive log-
likelihood computation and bypasses the need for ad hoc noise heuristics. Since entropy regulariza-
tion was not explicitly addressed in methods such as FPO, our regularizer provides a principled and
lightweight alternative in flow-based policy optimization.

3 BACKGROUND

We consider a Markov Decision Process (MDP) defined by the tuple (S, A, p,r,y), where S is the
state space, A is the action space, p(s’ | s,a) denotes the transition dynamics with state s € S
and action a € A, (s, a) is the reward function, and y € [0, 1) is the discount factor. The agent’s
objective is to learn a policy 7(a|s) that maximizes the expected cumulative discounted return:

J () = Ep(rim) [Z V(s ak)] (1)
k=0

where 7 = {s, ao, 81, ay, ...} denotes a trajectory sampled from the environment under policy .

Among policy gradient algorithms, PPO has become one of the most widely adopted due to its
simplicity and empirical stability. PPO optimizes the policy by maximizing a clipped surrogate
objective (Schulman et al., 2017):

7(als) m(als)
7(als) 7i(als)

where 7(a|s) is a reference policy, ps(s) is policy’s state distribution (Schulman et al., 2015),
Ai(s,a) is the corresponding advantage function, and the clipping range ¢ is a small positive hy-
perparameter (typically in the range [0.1, 0.3]) that controls the maximum allowable deviation of the
likelihood ratio from one. This formulation prevents the updated policy from deviating too far from
the reference policy, thereby ensuring more stable learning in practice.

JO(m) = K, (s)Es(als) {min (Ax(s,a),clip (1—e 1+ e) Aﬁ(s,a)ﬂ 2)

More recently, Frans et al. (2025) showed that PPO and related algorithms can also be interpreted
under a proxy objective of the form:

j(ﬂ-) = Ep;r(s)Ew(a\s)Afr (Sa a)' 3
As long as the divergence between the resulting policy 7* = argmax, J () and the reference
policy 7 remains bounded optimizing this proxy objective guarantees monotonic improvement of
the true objective, i.e., J(7*) > J(7).

Published as a conference paper at ICLR 2026

4 PoLICY OPTIMIZATION WITH CONTINUOUS NORMALIZING FLOW

To overcome the limitations of Gaussian parameterizations, we propose to represent policies using
continuous normalizing flows. Specifically, we define a conditional flow ¢ : [0, 1] x R? x R" — RY
governed by the ordinary differential equation (ODE):

d

agat(z;s) = vi(pe(2;8);8), po(z;s) =z “)

where z € R? is a latent variable, s € R™ is the state and v : [0,1] x R? x R* — R?is a
time-dependent velocity field which can be parameterized by a neural network.

Similar to Wang et al. (2024), the policy generates actions by integrating the flow to its terminal time
and adding Gaussian noise:

a=pi(z;8)+n, z~p.(z), n~N(n;0 o). (5)
Here, the injected noise n not only facilitates exploration but also ensures compatibility with the
PPO-style surrogate objective, allowing us to naturally extend PPO’s original formulation to con-
tinuous normalizing flows. While various choices are possible for p,(z) in principle, we fol-
low common practice in generative model and choose a standard Gaussian distribution, namely

p.(z) = N(z;0,1).
This construction induces a policy distribution
n(als) = [wlalz,p.(2)dz. w(alas) =A@ o1 (ai5),0°). ©

This representation is strictly more expressive than a conventional Gaussian policy, as it can recover
simple unimodal Gaussian distributions while also modeling arbitrarily complex, multimodal, or
highly non-Gaussian action distributions.

Under this parameterization, the policy proxy objective in Eq. (3) can be rewritten as
A

which explicitly connects the flow-based policy representation with the standard objective used in
policy optimization.

. 7(alz,s)
J(7) = Ep, (5),p. () En(alzs) A7 (5, 8) = Ep(s) p. () B (alzs) *alz,s)

7 51}‘ : \
In principle, the importance ratio can be computed |
by simulating both flows ¢ and ¢ through their
ODE:s during training. However, this is often com-

. . . Reference Velocity New Velocity
utationally expensive and numerically unstable, as -
P Yy exp Y V¢(x¢38) vi(x4;8)

gradients or high memory usage during training.
Next, we describe an alternative objective that avoids
directly simulating the ODEs to compute this impor-
tance ratio during training. o ~________CUDRHELY L

I
I
|
|
I
I
I
|
. |
z Xt ¢(z;8) |
|
. . !
Brownian Regularizer |

I

/

neural ODEs may suffer from exploding/vanishing |

Now let p,,(-; w,0%) denote the Gaussian density function with mean g and variance o2. A key
observation is that the likelihood ratio between Gaussian distributions is shift-invariant, which means
m(alz,s) _ pn (2 p1(z:8),0%) pa(a— G1(%8); 0y, (28), 02)
w(alz,s) pn(a; $1(z;8),67) pn (a— ¢1(z;s); 0,62)
where 6, (z;s) = ¢1(2z;s) — P1(z; s). Directly computing d,,, (z; s) requires simulating the ODEs,
which is computationally costly. To alleviate this, we approximate the terminal shift using the
velocity variation along the following linear interpolation path:

Xt = (1 —t)Z—f—t()bl(Z;S), te [Oa 1] (9)

This approximation replaces the integral over the reference trajectory with an expectation over ¢
along the interpolation path, yielding:

®)

T(a‘Z,S) -~ Pn (a_(ﬁl(z;s);(svt(xt;S)’a-Q)
w(alz,s) PP pa(a— ¢1(25);0,62)

(10)

where p(t) = U|0, 1] and the velocity field variation d,, (x¢;8) = v¢(X¢;8) — 0¢(Xt; 8).

Published as a conference paper at ICLR 2026

Remark (Approximation Error Bound) Theoretical analysis (see Appendix A for details) shows
that this interpolation-based approximation introduces only a first-order error in the log under small
update regimes, which can be naturally enforced by the clipping range € in PPO.

=0(e). (1)

g | Po(a=@u(28):0,,(xii8).0%) | pa(a— ¢u(is); by, (2:5),07)
P pn(a— @1(258);0,62) pn(a— @1(258); 0,62)
Importantly, this approach allows us to avoid simulating the full flow trajectory and propagating

gradients along it during training, thereby maintaining computational efficiency comparable to PPO
with Gaussian policy.

Now, the velocity field v is parameterized by a neural network with parameters 6. Finally, similar to
PPO, we adopt a clipped surrogate-style objective to stabilize training:

JFIOW(Q, 0') = Ep;r(s),pz(z)Efr(a\z,s),p(t) [min (pA;r (S, a), clip (p, 1—¢1+ 6) Aﬁ-(s, a))] (12)
with approximate importance ratio
P (a— ¢1(%;8); vi(x4;8,0) — 04(x438),0°)
P (a — ¢1(z;8); 0,62)
Thus, simulation of the ODE is only required during sampling (to compute 1 (2; s)), while the train-

ing objective can be efficiently estimated along the interpolation path with velocity filed variations,
without simulating the ODE or backpropagating through the simulated flow trajectories in training.

13)

4.1 PoLICY ENTROPY REGULARIZATION

Policy entropy maximization is a long-standing technique to encourage exploration and mitigate
mode collapse in reinforcement learning. To tackle the difficulties of entropy regularization for flow-
based policies, as discussed in Sec. 2.2, we propose a novel entropy regularizer inspired by Brownian
motion. Our method differs from prior entropy regularization: instead of explicitly computing policy
entropy or heuristically injecting noise, we directly regulate the velocity field to follow an entropy-
increasing process. This perspective allows us to avoid costly log-likelihood evaluation while still
encouraging diverse exploration, shown as Fig. 1.

2 2 2 15
0 0 0 1
) -2 °
2 0 2 0o 2 2 0 2
(b) (©) (d)

o
log(1 + frequency)

-2 0
(a) ¢

Figure 1: (PointMaze-Medium-Diverse—-GDense-v3) Exploration Density Maps. (a) En-
vironment overview: the agent is initialized at the green point for each episode, and the four red
points indicate goal locations with equal rewards. (b) Exploration heatmap of PPO, showing limited
coverage due to the simple Gaussian policy. (c) Exploration heatmap of PolicyFlow without the
Brownian regularizer, which improves coverage but still leaves some regions under-explored. (d)
Exploration heatmap of PolicyFlow with the Brownian regularizer, achieving near-complete cover-
age of all feasible locations.

In Brownian dynamics, particles naturally spread toward a uniform distribution, and entropy mono-
tonically increases during the process. Although Brownian motion is defined by a stochastic differ-
ential equation, its probability path follows the classic heat equation Op;(x)/dt = V2p;(x) (Jor-
dan et al., 1998). This equation connects directly to the continuity equation dp;(x)/0t = —V -
(pe(x)ve(x)). By choosing v (x) = —Vx log p¢(x), the continuity equation recovers the heat equa-
tion, showing that entropy growth can be enforced via a carefully shaped velocity field aligned with
the negative score.

In practice, to promote flow trajectories that expand like Brownian motion rather than collapse, we
want our learned velocity field to follow the negative score of a reference flow. To obtain this score

Published as a conference paper at ICLR 2026

Algorithm 1 PolicyFlow

1: Input: initial velocity field parameters p, initial noise variance o3, initial value function pa-
rameters ¢q
2: for iteration: = 0,1,2,... do
3 Set reference parameters 0« 60;, 62 o?. The reference velocity field is & = v
4: Collect a set of trajectories D; using the reference policy 7 ;
5: for each MDP step k with state s;, do
6: Sample latent variable z; ~ p,(z) then @y = 7,
7 Compute @) = $1(2zk;sk) by simulating the ODE %aﬁt = U (Py;sk) fromt =0to 1
8: Sample noise n; ~ N(0, 62) and form action a;, = @y, + ny,
9: Execute ag, observe next state s;1 and reward 7,
10: Store transition (Sg, ag, 'k, Sk-+1, Zk, Pk) in D;
11: end for . .
12: For each step k, compute rewards-to-go R, and advantage estimates Ay, using GAE
13: forepoch=1,..., Edo

14: for each mini-batch of transitions (s, ag, Ay, zp, @) from D; do
15: Sample t;, ~ U[0, 1]
16: Or sample ¢, from the discrete time points used for numerical simulation of flow ODE
17: Compute interpolation point x;, = (1 — t)zx + trpk
18: Compute approximate importance ratio
Pk = Dn (8 — @i U, (Xe, 58k, 0) — D1, (Xe,588), 07) /pn (ak — @3 0,67%)
19: Compute the clipped surrogate objective for the mini-batch by
JFIOW =]Ek [mill(PkAk» Cllp(pk, 1-— €, 1+ E)Ak)]
20: Compute Brownian regularizer vector
Nt (th 3 Sk 9) = (1 - tk)vtk (th 3 Sk, 9) - (th — ﬁtk (th) S))
21: Compute the regularization term for the mini-batch by

d
JReg = Ek wb||77tk (thvs 9 H2 79 Z 27T60'

22: Update policy parameters (6;41,0;4+1) = arg maxg, o (J o + JRee),
23: Update value function parameters by minimizing the mean-squared error:

Dis1 = argminEx (Vy(se) — Ry)®

24: end for
25: end for
26: end for

function from the reference velocity field, we can leverage the result of Liu et al. (2025), the velocity
field and score function are explicitly related:
. 1 R
Vi log pi(xi;s) = m(tvt(xt;s) - X¢). (14)

Building on this connection, we purpose a practical entropy regularizer:

TR0, 0) = Epﬁ(sxpz(z),p(t)[wplme(xi58, 0) |3 + =2 Zlog 2mea?) } (15)

where wy, wy > 0 are tunable coefficients and

Ne(xe58,0) = (1 — H)vg(xy;s,0) — (x¢ — L0 (x4;8)). (16)

The first term (termed Brownian regularizer) in Eq. (15) encourages the learned velocity field to
align with the negative score of the reference flow, promoting expansion of trajectories and pre-
venting collapse into narrow modes. Note that we do not directly take the difference between the
velocity field and the negative score, since this would involve a factor of (1 — t) in the denominator,
which becomes problematic as ¢ — 1; 7 is defined to safely enforce alignment while avoiding this

Published as a conference paper at ICLR 2026

singularity. The second term in Eq. (15) corresponds to the entropy of the Gaussian noise n injected
at the flow terminal, enhancing stochasticity and encouraging diverse exploration. Together, these
two terms promote trajectory diversity and maintain the expressiveness of continuous normalizing
flows in modeling complex and multi-modal action distributions (see Fig. 2).

Importantly, unlike previous entropy regularizers that require computing log-likelihoods, expen-
sive divergence integration (Chen et al., 2018; Tian et al., 2024) or heuristic noise injection (Frans
et al., 2025; Wang et al., 2024), the Brownian regularizer provides a principled yet computationally
lightweight alternative.

Remark The Brownian regularizer should not be regarded as a theoretically exact derivation. In
particular, while our formulation leverages the relationship between the velocity field and score
function under rectified flows, the velocity field in our policy is not obtained via flow matching
gradients, and thus does not strictly correspond to the rectified flow dynamics.

5 EXPERIMENTS

We benchmark PolicyFlow against FPO and DPPO because both methods extend PPO to generative
policy classes that do not allow explicit likelihood evaluation. These algorithms currently represent
the SOTA in applying on-policy RL to expressive, non-Gaussian policy parameterizations. There-
fore, comparing to FPO and DPPO is essential for demonstrating the effectiveness of PolicyFlow as
a general and principled alternative for training generative policies.

We evaluate these algorithms across the benchmarks in MuJoCo Playground (Zakka et al., 2025) and
IsaacLab (Mittal et al., 2023). Using the MultiGoal environment, we test the Brownian regularizer’s
role in fully leveraging continuous normalizing flow to capture complex, multimodal distributions
and avoid mode collapse.

5.1 MULTIGOAL TEST

The MultiGoal environment, originally proposed by Haarnoja et al. (2017), is a two-dimensional
square workspace with six fixed goal locations, which we use to evaluate how the Brownian reg-
ularizer prevents mode collapse and how continuous normalizing flows enable more expressive,
multi-modal policies. We modify the dynamics to a second-order system: the state includes posi-
tion and velocity, and the action is acceleration. Full agent and environment details are provided in
Appendix C.2.

PPO DPPO FPO PolicyFlow PolicyFlow PolicyFlow
(Inject Uniform Noise) | (No Brownian Reg.) | (With Brownian Reg.)

(b) © (d
Figure 2: MultiGoal Test (Appendix C.2): sample 1000 trajectories starting at the same original
point. (a) PPO with Gaussian entropy regularization (w, = 0.001) covers only a limited set of
goals. (b,c) DPPO and FPO collapse to a small number of modes, likely because neither method
incorporates any form of entropy regularization. (d) PolicyFlow with uniform noise injection (Ding
et al., 2024) (weight 0.05) still suffers from mode collapse, concentrating on only a few modes.
(e) PolicyFlow with only Gaussian entropy regularization (w, = 0.001) partially alleviates mode
collapse. (f) PolicyFlow with the proposed Brownian regularizer (w; = 0.25) and Gaussian entropy
regularization (wy, = 0.001) achieves the most diverse and more balanced goal-reaching behaviors.

If the agent starts at the workspace center, all six goals are equidistant and rewards are symmetric, so
an optimal policy should reach each goal with roughly equal probability, reflecting the multi-modal
nature of the task. As shown in Fig. 2, PPO, which employs a Gaussian policy, can only represent
simple distributions and thus struggles to produce trajectories that reach all six goal locations. While

Published as a conference paper at ICLR 2026

FPO and DPPO utilize generative models capable of expressing more complex distributions, the lack
of an effective entropy regularization mechanism prevents the agent from learning a sufficiently
diverse set of trajectories. In contrast, PolicyFlow with the Brownian regularizer fully leverages the
expressive power of continuous normalizing flows, resulting in more balanced, multi-modal action
patterns and a higher coverage of all goals.

5.2 MUuJoCoO PLAYGROUND AND ISAACLAB BENCHMARKS

MuJoCo Playground benchmarks. We evaluate PolicyFlow against current state-of-the-art flow-
based methods on the MuJoCo Playground benchmarks, including FPO (McAllister et al., 2025) and
DPPO (Ren et al., 2024). All these methods are based on the PPO framework, so we also include
PPO as a baseline. FPO represents the policy using continuous normalizing flows (CNFs), while
DPPO uses diffusion models. The original implementations of FPO and DPPO do not include ex-
plicit entropy regularization, which can limit the diversity of the learned policies. As previously
shown in the MultiGoal test, PolicyFlow effectively preserves multi-modal behaviors and diverse
trajectories. Across the MuJoCo Playground tasks, PolicyFlow achieves performance comparable
to or exceeding FPO in most environments, outperforming DPPO, and generally matching or sur-
passing PPO. Careful examination of the training curves reveals that PolicyFlow often converges
faster, indicating higher sample efficiency and effective exploration, complementing the observa-
tions on policy diversity from the MultiGoal experiments.

The hyperparameter settings for PolicyFlow are provided in Appendix C.4. To ensure a fair compar-
ison, the hyperparameters for FPO and DPPO follow the tuned configurations from the FPO paper,
and PPO uses the default settings recommended by the MuJoCo Playground repository.

BallInCup CartpoleBalance CheetahRun FingerSpin
1.0 0.8 1
0.81 0.6 1
N 0.5 0.4
2
X 0.2 0.2 %
- 0.0+ 0.0 === 7 e
5 0 8 16 24
ag) WalkerWalk
a4 1.04 1.04
O
3 0.8 0.8
2
3 0.5 0.51
M 0.2 0.2
0'07\ T T T 0'07\ : \ : T T
0 8 16 24 0 8 16 24
---- FPO —— PPO DPPO —— PolicyFlow

Figure 3: Learning curves on MuJoCo Playground benchmarks. Plots show mean episodic reward
with standard error (y-axis) over environment steps (x-axis, total 30M steps), averaged over 5 ran-
dom seeds.

IsaacLab benchmarks. We further evaluate PolicyFlow on the IsaacLab benchmarks, a suite of
robotics environments spanning locomotion, manipulation, and navigation. IsaacLab is a recently
developed and rapidly growing framework maintained by NVIDIA, designed specifically for large-
scale robot learning. Its high simulation fidelity, strong engineering support, and increasing popu-
larity in the robotics community make it an ideal testbed for assessing the performance of RL al-
gorithms. In this benchmark, we compare PolicyFlow only against PPO. Although FPO and DPPO
are state-of-the-art generative policy approaches, neither of them includes IsaacLab tasks in their
original benchmark suites, and directly adapting their publicly released code to the IsaacLab en-
vironment stack requires substantial engineering effort and nontrivial environment re-integration.
Therefore, we use the PPO implementation from RSL-RL as our baseline, following the official
IsaacLab hyperparameter configurations. PolicyFlow uses almost identical hyperparameters to PPO
(see Appendix C.3), except for additions required by our entropy regularization mechanism. Full
parameter details are provided in Appendix C.3. As shown in Table 1 and Fig. 5 in Appendix C.3,
PolicyFlow achieves asymptotic performance that consistently matches or surpasses PPO across all
tasks. Since PolicyFlow learns a time-dependent velocity field rather than a direct action mapping,
the optimization problem is inherently more complex, which can lead to slower early-stage learning.

Published as a conference paper at ICLR 2026

Table 1: Terminal training episodic rewards across IsaacLab benchmarks.

Method Lift-Cube Navigation Open-Drawer Quadcopter Anymal-D G1 H1 Go2
PPO 153.14+3.0 3.5+03 99.8+1.7 141.84+0.5 245+0.1 254+1.2 29.3+0.9 27.9+0.3
PolicyFlow 154.6 +0.6 4.24+0.1 99.14+0.7 141.0+£0.09 24.6 0.2 30.0+ 1.1 27.34+0.2 27.440.9
p-value 0.32 0.0027 0.41 0.099 0.26 0.00026 0.0069 0.33

Training time per iteration. We compare the per-iteration training time of PolicyFlow and PPO
on IsaacLab environments, which reflects the computational cost of a single training step. As shown
in Table 2, when the model parameters are roughly comparable to PPO, PolicyFlow increases per-
iteration training time by less than 50% for the first six IsaacLab environments. Even when embed-
ding dimensions are increased up to eightfold, the computational cost remains below twice that of
PPO, demonstrating that PolicyFlow is efficient in practice.

Table 2: Per-iteration training time of PPO and PolicyFlow on IsaacLab benchmarks, averaged over
50 iterations on an RTX 5090 GPU.

Environment Lift-Cube Navigation Open-Drawer Quadcopter ~Anymal-D G1 H1 Go2
Embedding Dimensions (Time / Observation) 64 64 64 64 64 256 512 512
PPO (ms) 43.0+16.1 369+63 813+ 14.7 378+ 138 4124134 669+144 634+155 639+157
PolicyFlow (ms) 57.7+£208 5414101 1041+165 55.6+153 57.1+157 90.6+123 11554173 111.5+15.1

Remark We do not provide a direct comparison with FPO or DPPO because the implementations
of these algorithms in the FPO open-source codebase are based on JAX, whereas PolicyFlow is
implemented in PyTorch. Conducting a direct comparison across different deep learning frameworks
could lead to unreliable results, so we focus the analysis on PPO, which is implemented in the same
Jframework and provides a fair baseline.

5.3 SENSITIVITY TO CLIPPING RANGE PARAMETER

Our proposed approximation Eq. (13) of the importance ratio introduces an approximation error that
is theoretically bounded by the clipping range ¢, as shown in Appendix A. A smaller € yields a tighter
bound and therefore reduces the approximation error; however, it also limits the effective update step
size in policy optimization, which may slow down policy improvement. To empirically verify this
trade-off, we conduct a sensitivity analysis in the IsaacLab ANYmal-D environment by evaluating
four clipping ranges, ¢ € {0.1,0.2,0.3,0.4}, each with five random seeds. The results shown
as Fig. 4a confirm our theoretical insight: smaller clipping ranges lead to lower approximation error
but hinder learning progress due to overly conservative updates. Across all IsaacLab benchmarks,
we adopt € = 0.2 as the default clipping range, which aligns with the official PPO configuration
provided by IsaacLab.

5.4 SENSITIVITY TO NETWORK INITIALIZATION AND TIME SAMPLING STRATEGY

We also investigate how different network initialization strategies affect performance. A com-
mon choice for MLPs network is the Glorot initialization (Glorot & Bengio, 2010), which samples
weights from a Gaussian distribution with an appropriate variance. Alternatively, one may initialize
all network parameters to zero. In our study, we compare three initialization schemes in the IsaacLab
ANYmal-D environment: (i) GI: standard Glorot initialization, (ii) GI+ZOL: Glorot initialization
with the output layer additionally set to zero, and (iii) ZI: full zero initialization for all parameters.
As shown in Fig. 4b, the Glorot initialization with a zeroed output layer achieves the best empirical
performance. Therefore, this scheme is adopted for initializing our models across all benchmark
experiments.

In addition, time sampling is required to estimate the expectation over time ¢ in the objective func-
tion Eq. (12). We evaluate several time—sampling strategies in the IsaacLab Navigation environment:
(i) USC: Uniform sampling from the continuous interval [0, 1]; (i) USD: Uniform sampling from
the discrete ODE simulation time grid {0, 0.05,0.1,...,0.95,1.0}; and (iii) Multi-USD: sampling
multiple time points ¢ for each state—action sample, with each ¢ drawn uniformly from the same
discrete grid. The results are shown in Fig. 4c. Overall, these three time—sampling strategies lead to
only minor performance differences. Therefore, USD is used as the default choice in all benchmark
experiments. Multi-USD is generally not recommended, as it introduces additional computational
overhead without clear benefits.

Published as a conference paper at ICLR 2026

30 25

25
- 520 E
@ 20] <)
E 215 2
Q
15 ~ ~
L 210 2
= B g
g10
= 5 & ° iy

012 017 ——u
00 05 1.0 1.5 20 0 2 4 6 10! 102 103
Training Iterations (x103) Training Iterations (x103) Training Iterations (log scale)

(a) Clipping Range Comparison (b) Different Initialization (c) Time Sampling Strategy

Figure 4: Ablation studies on key components of PolicyFlow.

5.5 DIFFERENT CHOICES OF INTERPOLATION PATH

In the preceding sections, we adopted the same Table 3: Terminal training episodic rewards using
interpolation path as rectified flow. However, different interpolation paths.
prior work on flow matching has explored alter- ™ path/ Eny

- g) X ANYmal-D MultiGoal

native 1nterpol'a't10n strategies. Table 4 summa- o 216102 8.79 1002
rizes two additional choices beyond rectified- Stochastic-Interpolant Path ~ 24.7 £+ 0.2 8.22+0.18
flow path. We evaluate these interpolation paths ~ TrigFlow Path 24.5+£0.1 8.74+0.03

on one IsaacLab locomotion task and the Multi-
Goal test, keeping all agent settings identical except for the interpolation scheme and its correspond-
ing Brownian regularizer. As shown in Table 3, all three paths achieve nearly identical converged
episodic rewards on the ANYmal-D locomotion task, whereas TriFlow path and rectified-flow path
yield better performance than stochastic-interpolant path on the MultiGoal test. The slightly lower
performance of the stochastic-interpolant path may be due to our use of an approximate relation-
ship between the score function and the velocity field along this interpolation, rather than an exact
equality. See Appendix B for the details of this approximation.

Table 4: Different interpolation paths for flow matching

Method / Interpolation Formula Relationship between Score and Velocity Field
Rectified Flow (Liu et al., 2022) (1 —t)Vxlogp:(x) = tve(x) — x

x¢ = (1—t)xo+tx1, tel0,1]

Stochastic Interpolant (Albergo et al., 2023) (2(t — 3)* + 3) Vxlogpe(x) = tvi(x) — x
xt = (1 —t)xo +tx1++/2t(1 —¢t)h, ¢t €[0,1], h ~ N(0,1)

TrigFlow (Lu & Song, 2024) cos(t)Vx log pi(x) = sin(t) ve(x) — cos(t) x

x¢ = cos(t) xo +sin(t)x1, te€ (0,5

6 CONCLUSION AND FUTURE WORKS

In this work, we proposed PolicyFlow, an on-policy reinforcement learning algorithm that integrates
continuous normalizing flows with PPO-style optimization. By approximating importance ratios
via velocity field variations along interpolation paths, PolicyFlow eliminates the need for costly
path-wise backpropagation while maintaining stability and efficiency. In addition, our purposed
Brownian regularizer provides a principled yet lightweight way to mitigate mode collapse and en-
courage diverse exploration. Through extensive experiments on MultiGoal, IsaacLab, and MuJoCo
Playground, PolicyFlow consistently matches or outperforms PPO and the SOTA methods FPO and
DPPO. In particular, results on MultiGoal showcase PolicyFlow’s ability to capture complex multi-
modal action distributions. Looking forward, PolicyFlow offers a versatile foundation for bridging
generative modeling and reinforcement learning. While different interpolation paths show promise
in practice, though their formal validation and theoretical implications remain to be explored. Other
promising directions include fine-tuning flow-matching policies, extending PolicyFlow to offline RL
and broader generative modeling tasks, and exploring its connection to diffusion models by incorpo-
rating score-based objectives. Finally, developing a more comprehensive theoretical understanding
of PolicyFlow may further inspire algorithmic improvements and strengthen its applicability in real-
world decision-making.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide detailed algorithm descriptions in Sec. 4 and Algorithm 1, full hyperparameter settings
in Appendix C, and MultiGoal environment configurations in Appendix C.2. Our implementation
builds upon the public PPO implementations in RSL-RL and SKRL. Most results are averaged over
multiple random seeds, and our conclusions remain reliable under randomness.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Chen-Hao Chao, Chien Feng, Wei-Fang Sun, Cheng-Kuang Lee, Simon See, and Chun-Yi Lee.
Maximum entropy reinforcement learning via energy-based normalizing flow. Advances in Neural
Information Processing Systems, 37:56136-56165, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Zixuan Chen, Mazeyu Ji, Xuxin Cheng, Xuanbin Peng, Xue Bin Peng, and Xiaolong Wang. Gmt:
General motion tracking for humanoid whole-body control. arXiv preprint arXiv:2506.14770,
2025.

Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak. Extreme parkour with legged
robots. In 2024 IEEFE International Conference on Robotics and Automation (ICRA), pp. 11443—
11450. IEEE, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via g-weighted variational policy optimization.
Advances in Neural Information Processing Systems, 37:53945-53968, 2024.

Shutong Ding, Ke Hu, Shan Zhong, Haoyang Luo, Weinan Zhang, Jingya Wang, Jun Wang, and
Ye Shi. Genpo: Generative diffusion models meet on-policy reinforcement learning. arXiv
preprint arXiv:2505.18763, 2025.

Albert Einstein. Uber die von der molekularkinetischen theorie der wirme geforderte bewegung von
in ruhenden fliissigkeiten suspendierten teilchen. Annalen der physik, 4, 1905.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bing-Yi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. arXiv preprint arXiv:2405.20555, 2024.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
policy improvement operator. arXiv preprint arXiv:2505.23458, 2025.

Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Jun-
shan Zhang, and Iman Soltani. Vita: Vision-to-action flow matching policy. arXiv preprint
arXiv:2507.13231, 2025.

11

Published as a conference paper at ICLR 2026

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633-638, 2025.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. Pmlr, 2018.

Junzhe He, Chong Zhang, Fabian Jenelten, Ruben Grandia, Moritz Béicher, and Marco Hutter.
Attention-based map encoding for learning generalized legged locomotion. Science Robotics,
10(105):eadv3604, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. pig 5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker—
planck equation. SIAM journal on mathematical analysis, 29(1):1-17, 1998.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36:67195—
67212, 2023.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Kun Lei, Huanyu Li, Dongjie Yu, Zhenyu Wei, Lingxiao Guo, Zhennan Jiang, Ziyu Wang, Shiyu
Liang, and Huazhe Xu. R1-100: Performant robotic manipulation with real-world reinforcement
learning. arXiv preprint arXiv:2510.14830, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv
preprint arXiv:2505.05470, 2025.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825-22855. PMLR, 2023.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen

Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

12

Published as a conference paper at ICLR 2026

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740-3747, 2023. doi:
10.1109/LRA.2023.3270034.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937. PmLR, 2016.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
2773027744, 2022.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via g-score matching. arXiv preprint arXiv:2312.11752, 2023.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on robot learning, pp. 91-100.
PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Clemens Schwarke, Mayank Mittal, Nikita Rudin, David Hoeller, and Marco Hutter. Rsl-rl: A
learning library for robotics research. arXiv preprint arXiv:2509.10771, 2025.

Antonio Serrano-Mufioz, Dimitrios Chrysostomou, Simon Bggh, and Nestor Arana-Arexolaleiba.
skrl: Modular and flexible library for reinforcement learning. Journal of Machine Learning Re-
search, 24(254):1-9, 2023. URL http://jmlr.org/papers/v24/23-0112.html.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. arXiv preprint
arXiv:2405.06672, 2024.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
optimal transport. arXiv preprint arXiv:2302.00482, 2(3), 2023.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183-54204, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa, and
Pieter Abbeel. Mujoco playground: An open-source framework for gpu-accelerated robot learn-
ing and sim-to-real transfer., 2025. URL https://github.com/google—deepmind/
mujoco_playground.

13

http://jmlr.org/papers/v24/23-0112.html
https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground

Published as a conference paper at ICLR 2026

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935-110971,
2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. arXiv preprint arXiv:2503.04975, 2025.

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs), specifically ChatGPT-5, were used for two purposes: (1) to aid
with grammar checking, language polishing, and ensuring formatting consistency; and (2) for re-
trieval and discovery tasks, such as finding relevant related work. No content, ideas, or scientific
claims were generated or altered by LLMs.

A ERROR ANALYSIS OF THE POLICYFLOW OBJECTIVE APPROXIMATION

We start from the flow parameterization of the policy, derive a variational expression for the terminal
shift, and introduce an interpolation path approximation. We then rigorously analyze the induced
error, showing it to be first-order, and justify the approximation’s validity within the PPO framework.

A.1 VARIATIONAL FORMULA FOR THE TERMINAL SHIFT

Let the two flows, generated from random vectors, satisfy
Oe(z8) = ve(pe(z;8);8), (17)
G1(2z;8) = 0y (Pi(z38);8), (18)

with the initial condition yo(2z;s) = Po(z;s) = z. Set the terminal shift as d,,(z;s) := ¢¢(z;s) —
1(z; s) and the velocity field variation as d,, (x;s) := v(x;8) — 0¢(x;8).
Linearizing v, around the reference trajectory ¢, yields the variational equation

5§Ot = Jt(stpt + (Syt (¢t7 S)7 Wlth (54‘00 = O7 (19)

where the Jacobian is defined as J; := Ox0:(x;s)

X=p¢

Let ®(1,¢) be the fundamental matrix of ®(7,t) = J,®(r,t) with ®(¢,t) = I. Then, the exact
terminal shift is

1
5,0 (2:5) = / B(1,6)5,, ($1(z:5); 5)d. 20)

A.2 INTERPOLATION PATH APPROXIMATION AND ERROR ANALYSIS

We approximate the complex integral in Eq. (20) using a simpler linear interpolation path:
x,:=(1—t)z+to1(z;s), te€]0,1). (21)

The approximation for the terminal shift is 5% = fol v, (x¢; s)dt. The error of this approximation

is £ = d,, — d,,. We decompose this error into two components:

E= / (@(1,1) —)6, (1)t + / (50, (1) — 8ur (1))t . 22)

By Es

Assume the following:

14

Published as a conference paper at ICLR 2026

(A1) The velocity field 9 is C! in x with a uniformly bounded Jacobian, ||J;|| < L.

(A2) The velocity variation d,,, is uniformly bounded, ||d,, (x;s)|| < €, and is Lipschitz in x with
constant Ls = O(e) uniformly in (¢,s). The assumption on Ls is justified as the variation
itself stems from a small policy update of size e.

The first error term, E, arises from approximating the fundamental matrix ®(1, ¢) with the identity
matrix I. Since | ®(1,t) — I|| = O(1) and ||, || = O(e), the magnitude of this term is:

1 1
(2N S/O [@(L,8) = I - |60, (¢2)[|dt :/0 O(1) - O(e)dt = O(e). (23)

The second error term, E5, comes from replacing the true trajectory ¢, with the linear path x;. The
path deviation ||¢; — x;|| is generally O(1). Given the Lipschitz assumption on &, :

1 1
£ < [Lallé - xilde = [0(0)- 0(1)de = O(e), (24)
0 0

Since both error components are first-order, the total approximation error is also first-order. We thus
correct the conclusion from the main text:

1
50 (2:5) = /0 5o (x038)dt + O(e). 25)

A.3 FIRST-ORDER ERROR OF THE LIKELIHOOD RATIO

Letn := a — ¢1(2z;8), u := 0y, (2;8), and 0 := fol v, (x¢;8)dt. From Eq. (25), we have u =
a+ O(e).

A Taylor expansion of the Gaussian log-density shows that a first-order error in the mean leads to a
first-order error in the log-likelihood:

oz (057,0) ~ o (. 0%) = (U)o = (0) 0. o)

g

Using Jensen’s inequality, we have

1
log p, (n; @, %) 2/ log pn (n; 6y, (x¢38), 0%) dt = E,p) [log pn(n; 6y, (x438),0%)] . (27)

0
Thus,
Epr) [log pn(n; 8y, (x438),0%)] = log pa(n;u,0%) = O(e). (28)
Consequently, the error in the log of the importance ratio is first-order:
P (130, (x438), 0%) pa(n;u,0?)
E 1 ! —log———————==| = O(e). 29
p(t) |: og pn(n, 0’ 6'2) og Dn (n’ O, 6’2) (6) ()

While this is a weak bound of the importance ratio error, it is sufficient to ensure the algorithm’s
practical effectiveness when using the PPO-style surrogate objective for policy improvement. A first-
order approximation error means that for small updates, the gradient computed with the approximate
objective is a close match to the gradient from the exact objective. The PPO-style clipping mecha-
nism inherently restricts the update size e, which minimizes the impact of this linear error term and
preserves the stability of training. Therefore, the approximation remains a valid and computationally
efficient method for optimizing continuous normalizing flow policies.

B RELATIONSHIP BETWEEN SCORE AND VELOCITY FIELD FOR
STOCHASTIC INTERPOLANTS

Consider the stochastic interpolant used in flow matching:

x¢ =tx1 + (1 —t)xo +y(t)z, X0 ~po, X1 ~ p1, 2~ N(0,1). (30)

15

Published as a conference paper at ICLR 2026

Albergo et al. (2023) derive the relationship between the score function Vy log p:(x;) along the
interpolation path and the velocity field v:(x;) used in conditional flow matching (see Eq. (2.27) in
their work):
ve(x¢) = Ve(x¢) — Y(t) Y(t) Vx log pe(xe), (3D

where

Te(xt) = E¢[x1 — %0 | tx1 + (1 — t)x0 + 7(t)z = x4] - (32)
In general, obtaining a closed-form expression for v;(x;) is intractable, which prevents an exact
analytic relationship between the score function and the velocity field under a stochastic interpolant.
However, when ~(¢) = 0, the interpolant reduces to the deterministic path of rectified flows, for
which the relationship becomes explicit. This motivates approximating o (x;) using the determinis-
tic identity:
(1 —1t) Vxlogps(xt) + x4

t

Substituting this approximation into the expression for vy (x;) gives an approximate relationship
between the stochastic velocity field and the score:

(1 —t) Vxlogps(xt) + x4
t
Finally, choosing the commonly used stochasticity schedule

v(t) = 2(1 — t)t, (35)

yields the expressions summarized in Table 4.

Ty(x¢) =

(33)

vg(Xy) = —Y(t) (t) Vx log pe(x¢). (34)

C EXPERIMENTAL DETAILS

Our algorithm builds upon the open-source frameworks SKRL (Serrano-Mufioz et al., 2023) and
RSL-RL (Schwarke et al., 2025). Specifically, we inherit the implementation of the flexible replay
buffer from SKRL and integrate it with the framework of the PPO implementation provided by
RSL-RL.

C.1 MODEL ARCHITECTURE

The model used in PolicyFlow is based on a flow network that maps
noise inputs to actions, conditioned on state or other context. The
model comprises four main components: ‘

vi(Zt, S)

Flow Network (MLP): A multi-layer perceptron that predicts the MLP ’
velocity with noised actions and time and observation embedding ? A

as inputs. Ty K—){}(—\
Timestep Embedding (FourierEmbedding): Uses a fixed set of TeniiEe Lo
frequencies to encode the scalar noise / time step into a high- Embedding Embedding
dimensional representation. The embedding is computed as Tt Ts

temy = MLP ([cos(27 f;t), sin (27 f;1)]/%)
which allows the model to better capture temporal dependencies.

Observation Embedding (LinearLayer): A linear layer that embeds observation vectors into a
fixed-dimensional space, which is added to the timestep embedding to modulate the flow network
outputs.

Learnable Variance: It’s the same as that in Gaussian policy parametrization in PPO.
C.2 MULTIGOAL SETUPS
The MultiGoal environment is a two-dimensional square workspace designed to evaluate the ability

of agents to learn multimodal and balanced goal-reaching behaviors. Six fixed goals are placed
evenly on a circle centered at the origin, with equal distance to the starting position. At the beginning

16

Published as a conference paper at ICLR 2026

of each episode, the agent is randomly initialized within the workspace and must learn to reach the
nearest goal as efficiently as possible.

The environment is modeled as a second-order system: the state consists of both position and ve-
locity, and the action corresponds to a 2D acceleration vector. The reward is composed of two com-
ponents: a distance-based term encouraging the agent to approach the nearest goal, and an action
penalty discouraging excessive control inputs. By combining these terms, the environment provides
a consistent evaluation of both goal-reaching accuracy and control efficiency.

The Table 5 and Table 6 summarize the main environment configuration parameters and the defini-
tions of state, observation, and reward functions.

The agent configurations for the MultiGoal task are summarized in Table 7 and Table 8. Both
PolicyFlow and PPO share common hyperparameters such as learning rate, discount factor, GAE
parameter, and clipping settings. Compared to PPO, PolicyFlow introduces an additional term,
Brownian regularization loss, while PPO employs a standard Gaussian entropy regularizer.

Table 5: MultiGoal environment configuration

Parameter Value
Maximum episode length 50

Action clipping range [-5.0,5.0]
Integration timestep (dt) 0.1
Check wall collisions True
Workspace z-limits [-8.0, 8.0]
Workspace y-limits [-8.0, 8.0]
Number of goals 6

Goal radius 5.0

Goal center [0.0, 0.0]
Distance reward scale 1.0
Action penalty scale 0.01

Table 6: MultiGoal Environment: State/Observation and Reward Functions

Component Description / Formula

Observation / State

State vector s s = [z,y, va, vy]

Actor / Critic observation Oactor = Ocritic = S

Action

Action a 2D acceleration: a = [ag, ay] (clipped to [—5, 5])

Reward Functions

Distance reward Taisunce = exp(—0.3dp;,) + exp(—0.1d2,,),
where dyin = min; ||p — g || is the distance to the nearest goal
8i

Action penalty Tacion = —0.01 |a|?

Total reward Ttotal = T'distance + T'action

17

Published as a conference paper at ICLR 2026

Table 7: PPO and PolicyFlow hyperparameter configurations for MultiGoal

Parameter PolicyFlow PPO
Desired KL divergence 0.01 0.01
Learning rate 2x 1074 2x 1074
Discount factor ~ 0.99 0.99

GAE X\ 0.95 0.95
Time-limit bootstrap True True
Mini-batches 4 4
Learning epochs 5 5
Gaussian entropy loss scale 0.001 0.001
Brownian regularization loss scale 0.25 —

Ratio clip € 0.2 0.2

Clip predicted values True True

Value clip 0.2 0.2

Value loss scale 1.0 1.0
Timesteps of second-order Runge-Kutta 12

integration

Actor hidden layers [256, 128, 64] [256, 128, 64]
Critic hidden layers [256, 128, 64] [256, 128, 64]
Actor/Critic activation Mish Mish
Number of parallel environments 1024 1024
Rollouts per environment 24 24

Table 8: Hyperparameter settings for Flow Matching Policy Optimization (FPO) on the MultiGoal
environment.

Parameter Value
Timesteps of Euler integration 12
Time embedding dimension 8
Samples number per action 8
Average losses before exponentiation True
Use discretized timesteps in training True
Clipping epsilon for ratio update 0.05
Training batch size 1024
Discount factor 0.99
Maximum steps per episode 50
Learning rate 1x 1074
Number of parallel environments 4096
Mini-batches per update 32
Total environment steps 1.2 x 108
Learning epochs 16
GAE parameter A 0.95
Value loss scale 0.25
Actor hidden layers [256, 128, 64]
Critic hidden layers [256, 128, 64]
Actor/Critic activation Mish

18

Published as a conference paper at ICLR 2026

C.3 IsAACLAB

Isaac-Lift-Cube-Franka
60

Isaac-Navigation-Flat-Anymal-C Isaac-Open-Drawer-Franka

Isaac-Quadcopter-Direct

1004

T (R i T |
/ 12011
120 20 75+
{ 80
80 _40 50
40
40 —— PPO -60 25+ ol
2 PolicyFlow i
o 0 T T T T 780 T T T T 07\ T T T T T T T
G% 0.0 20 40 6.0 0.0 2.0 40 6.0 0.0 20 40 6.0 0.0 20 40 6.0
~
5 Isaac-Velocity-Flat-Anymal-D Isaac-Velocity-Rough-G1 Isaac-Velocity-Rough-H1 Isa%g-Velocity-Rough-Unitree—GoZ
2 - 30 30 =
‘8, 20 -
M 20 204 20
10
10
10 1
o 10
0
0
-10 | 07
~10 ‘ ¥ -10
00 20 40 6.0 00 20 40 6.0 00 20 40 60 00 20 40 6.0

Training Iterations (x10%)

Figure 5: Learning curves (PolicyFlow v.s. PPO) on IsaacLab benchmarks. Plots show mean
episodic reward with standard error (y-axis) over training iterations (x-axis), averaged over 5 ran-

dom seeds.

Table 9: Common hyperparameter settings for PPO and PolicyFlow used in the all IsaacLab bench-

marks

Parameter

PPO

PolicyFlow

Timesteps of second-order Runge—Kutta

integration

Number of parallel environments
Learning rate adaptive
Desired KL target

GAE parameter A
Time-limit bootstrap
Mini-batches per update
Learning epochs

Ratio clip €

Clip predicted values
Value clip

Value loss scale
Gradient norm clip
Actor/Critic activation

Table 10: Variable hyperparameter settings for PPO and PolicyFlow on three IsaacLab benchmarks.

P Lift-Cube-Franka Navigation-ANYmal-C Quadcopter-Direct
arameter

PPO PolicyFlow PPO PolicyFlow PPO PolicyFlow
Actor/Critic hidden layers [256,128,64] [256,128,64] [128,128] [128,128] [64,64] [128,128]
Initial learning rate 1x 1074 1x 1074 1x107% 1x107® B5x107* 5x1074
Discount factor ~y 0.98 0.98 0.99 0.99 0.99 0.99
Gaussian entropy coefficient w, 0.006 0.004 0.005 0.0025 0.01 0.005
Brownian regularizer coefficient wy, - 0.002 - 0.0025 - 0.005
Time/Observation embedding dim - 64 - 64 - 64
Rollouts per environment 24 24 8 8 24 24

19

Published as a conference paper at ICLR 2026

Table 11: Variable hyperparameter settings for PPO and PolicyFlow on three IsaacLab benchmarks.

Flat-ANYmal-D Rough-H1 Rough-Unitree-Go2

Parameter

PPO PolicyFlow PPO PolicyFlow PPO PolicyFlow
Actor/Critic hidden layers [128,128,128] [128,128,128] [512,256,128] [512,256,128] [512,256,128] [512,256,128]
Initial learning rate 1x1073 1x 1073 1x1073 1x1073 1x 1073 1x1073
Discount factor ~ 0.99 0.99 0.99 0.99 0.99 0.99
Gaussian entropy coefficient w,, 0.005 0.0025 0.01 0.005 0.01 0.008
Brownian regularizer coefficient wg - 0.0025 - 0.005 - 0.002
Time/Observation embedding dim - 64 - 512 - 512
Rollouts per environment 24 24 24 24 24 24

Table 12: Variable hyperparameter settings for PPO and PolicyFlow on two IsaacLab benchmarks.

Open-Drawer-Franka Rough-G1

Parameter

PPO PolicyFlow PPO PolicyFlow
Actor/Critic hidden layers [256,128,64] [256,128,64] [512,256,128] [512,256,128]
Initial learning rate 5x 1074 5x 1074 1x 1073 1x1073
Discount factor 0.99 0.99 0.99 0.99
Gaussian entropy coefficient w 0.001 0.0008 0.008 0.002
Brownian regularizer coefficient w;, ~— — 0.0002 - 0.006
Time/Observation embedding dim - 64 - 256
Rollouts per environment 96 96 24 24

C.4 MulJoCo PLAYGROUND

Table 13: Common hyperparameters for PolicyFlow across MuJoCo Playground benchmarks.

Parameter Value
Discount factor ~ 0.995
GAE parameter A 0.95
Time-limit bootstrap True
Learning rate adaptive False
Mini-batches per update 4
Learning epochs 16
Clip predicted values False
Value loss scale 0.25
Timesteps of second-order Runge—Kutta integration 12

Actor hidden layers

Critic hidden layers

Actor/Critic activation

Number of parallel environments
Rollouts per environment

[32, 32, 32,32]

[256, 256, 256, 256, 256]

SiLU
1024
24

Table 14: Variable hyperparameters for PolicyFlow on MuJoCo Playground benchmarks (1/2).

P . WalkerWalk FingerSpin BalllnCup CartpoleBalance FishSwim
Learning rate 1x1073 5x107° 3x107* 5x107° 3x 1074
Gaussian entropy coefficient w 0.001 0.01 0.002 0.001 0.008
Brownian regularizer coefficient wyg, 0.001 0.001 0.001 0.0001 0.002
Ratio clip € 0.2 0.2 0.2 0.01 0.2
Gradient norm clip 1.0 10.0 1.0 0.5 5.0

20

Published as a conference paper at ICLR 2026

Table 15: Variable hyperparameters for PolicyFlow on MuJoCo Playground benchmarks (2/2).

P FingerTurnHard FingerTurnEasy = CheetahRun ReacherEasy = ReacherHard
Learning rate 4x107% 3x 1074 3x 1074 3x 1074 3x 1074
Gaussian entropy coefficient w 0.006 0.002 0.002 0.002 0.002
Brownian regularizer coefficient wp, 0.001 0.001 0.001 0.001 0.001
Ratio clip € 0.2 0.05 0.05 0.05 0.05
Gradient norm clip -1.0 10.0 10.0 5.0 5.0

21

	Introduction
	Related Work
	Flow/Diffusion-Based Representations of RL Policies
	Policy Entropy Regularization

	Background
	Policy Optimization with Continuous Normalizing Flow
	Policy Entropy Regularization

	Experiments
	MultiGoal Test
	MuJoCo Playground and IsaacLab Benchmarks
	revisionSensitivity to Clipping Range Parameter
	revisionSensitivity to Network Initialization and Time Sampling Strategy
	Different Choices of Interpolation Path

	Conclusion and Future Works
	Error Analysis of the PolicyFlow Objective Approximation
	Variational Formula for the Terminal Shift
	Interpolation Path Approximation and Error Analysis
	First-Order Error of the Likelihood Ratio

	Relationship between Score and Velocity Field for Stochastic Interpolants
	Experimental Details
	Model Architecture
	MultiGoal Setups
	IsaacLab
	MuJoCo Playground

