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ABSTRACT

Driven by the teacher-student paradigm, knowledge distillation is one of the de
facto ways for language model compression. Recent studies have uncovered that
conventional distillation is less effective when facing a large capacity gap between
the teacher and the student, and introduced teacher assistant-based distillation to
bridge the gap. As a connection, the scale and the performance of the teacher
assistant is crucial for transferring the knowledge from the teacher to the student.
However, existing teacher assistant-based methods manually select the teacher as-
sistant, requiring many trials before identifying the optimal teacher assistant. To
this end, we propose an Automatic Distillation Schedule (AUTODISC) for large
language model compression to discover the optimal teacher assistant in only one
trial. In particular, motivated by the finding that the performance of the student
is positively correlated to the scale-performance tradeoff of the teacher assistant,
AUTODISC designs a λ-tradeoff to measure the optimality of the teacher assis-
tant. AUTODISC then yields the λ-tradeoff s of all teacher assistant candidates in
a once-for-all optimization with two approximations. The optimal teacher assis-
tant can be automatically selected by uncovering the best λ-tradeoff. AUTODISC
is evaluated with an extensive set of experiments on a language understanding
benchmark GLUE. Experimental results demonstrate the improved efficiency with
similar or even better effectiveness of our AUTODISC compared to several state-
of-the-art baselines. We further apply AUTODISC to a language model with over
one billion parameters and show the scalability of AUTODISC.

1 INTRODUCTION

Large language models (LLMs) (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019; Brown
et al., 2020; Raffel et al., 2020) achieve promising results in various downstream tasks (Wang et al.,
2019; Rajpurkar et al., 2018), but are inapplicable to those requiring limited compute or low la-
tency (Liu et al., 2021b). To fulfill the computational requirement, LLMs can be compressed via a
range of strategies such as model quantization (Zafrir et al., 2019; Bai et al., 2021), pruning (Michel
et al., 2019; Hou et al., 2020), etc., among which knowledge distillation (Sun et al., 2019; Wang
et al., 2020) is an appealing choice under the teacher-student paradigm. In knowledge distillation,
LLMs serve as teachers and are distilled to small students.

Recent advances (Mirzadeh et al., 2020) have shown that conventional distillation suffers from se-
vere performance decline when facing a large capacity gap between the teacher and the student. To
alleviate the shortcoming, teacher assistant-based distillation (Son et al., 2021) has been proposed,
where the teacher is first distilled into an teacher assistant of an intermediate scale. This teacher
assistant then serves as an alternative teacher to better transfer the knowledge to the student. While
teacher assistant-based distillation generally lifts the performance of the student (Wang et al., 2020;
Wu et al., 2021), teacher assistants of different scales and performance may lead to different students
and it is thus conjectured careful tuning is required to identify the teacher assistant that yields the
best student. To verify this, we conduct a pilot study and illustrate in Figure 1 that the performance
of the student is largely impacted by the choice of the teacher assistant. In fact, we observe in Fig-
ure 1 that the performance of the student is impacted by the teacher assistant from a perspective of
scale-performance tradeoff. However, existing studies only manually schedule the teacher assistant
(manual distillation schedule, in short MANDISC), resulting in an inefficient solution that requires
many trials to meet the optimal teacher assistant.
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Figure 1: The impact of teacher assistants of different scales and performance on the performance
of students. In the study, a BERTbase model is used as the teacher and distilled to a pruned student
(10% parameters remained) via different teacher assistants (Mirzadeh et al., 2020) on MRPC and
QQP. There are several observations: (1) The blue curve shows that the performance of the teacher
assistant degrades with the decreasing of its scale, which is obvious. (2) The green curve validates
that the performance of the student varies with different teacher assistants. (3) The red curve rep-
resents our defined quantitative measure of the scale-performance tradeoff of the teacher assistant,
which is positively correlated with the performance of the student.

To this demand, we propose an automatic distillation schedule (AUTODISC) that automatically
schedules the optimal teacher assistant in only one trial. A quantitative measure, λ-tradeoff, is de-
fined to empirically measure the scale-performance tradeoff for a given teacher assistant so that the
optimality of the teacher assistant in terms of the student performance can be determined without
trial distillation to the student. Specifically, AUTODISC is implemented in three stages. Specifi-
cation, we leverage gridding and pruning techniques (Li et al., 2017; Frankle & Carbin, 2019) to
generate a series of teacher assistant candidates of different scales and structures. Optimization,
we demonstrate that the generated candidates satisfy the incremental property and the sandwich
rule, and present two optimization approximations that yields the λ-tradeoff of the teacher assistant
candidate of each scale in a one-run optimization. Selection, we select the optimal teacher assis-
tant with the highest λ-tradeoff. It is noteworthy that our method can be flexibly extended to the
case with multiple teacher assistants by recursively applying AUTODISC. However, this work only
focuses on one teacher assistant between the teacher and student due to its sufficiency. To verify
the effectiveness of AUTODISC, we conduct experiments on a language understanding benchmark
GLUE (Wang et al., 2019) with both task-specific and task-agnostic distillation settings. Experi-
mental results exhibit the competitive performance of AUTODISC compared with an array of state-
of-the-art baselines, with significantly improved efficiency (∼5-6×) of AUTODISC compared with
that of MANDISC. Further, we apply AUTODISC to a LLM EncT5xl (Liu et al., 2021a) and show
the scalability of AUTODISC.

Our main contributions are summarized as follows:

• We investigate the impact of teacher assistants with different scales on the performance of
the student, and introduce a quantitative scale-performance tradeoff measure, λ-tradeoff,
on the teacher assistant that is positively correlated with the student performance.

• We show two properties of the specified candidates. These properties lead to a novel op-
timization framework that jointly achieves yielding λ-tradeoff s of teacher assistants of all
scales in one run. The optimization framework, together with the λ-tradeoff, enables a
one-trial distillation schedule.

• We validate the effectiveness and efficiency of the AUTODISC. Our results of a language
model with over one billion parameters show the scalability of our approach. To our best
knowledge, our work is the first one exploring the distillation of true LLMs.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

We formally define the problem of AUTODISC. Assuming we have a teacher (T , st,mt) that should
be distilled to a student (S, ss,ms), the goal is to find a teacher assistant (A, sa,ma) such that the
student performance can be maximized when distilling the teacher to the student via the teacher
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Figure 2: An overview of AUTODISC by contrasting it to MANDISC, where one arrow denotes
a distillation step. AUTODISC uses only one trial while MANDISC uses many trials to discover
the optimal teacher assistant. Specification: The scales and structures of candidates are specified
by gridding the scale and pruning the structure of the teacher. Optimization: Candidates are sub-
sampled and assembled into a sandwich-like model, and optimized in an once-for-all optimization.
Selection: The candidate with the best λ-tradeoff measure is selected, thus the student is distilled.

assistant (i.e., T → A → S). Here the first, second and third elements in a tuple denote the model
structure, the scale, and the performance respectively. It is straightforward that the scale and the
performance of the teacher assistant are bounded by the teacher and the student, i.e., ss ≤ sa ≤
st and ms ≤ ma ≤ mt. Ideally, we are seeking a teacher assistant with small scale and high
performance so that the best student can be realized. However, the scale-performance tradeoff is
not easy to measure. To empirically quantify scale-performance balance, we first introduce a new
tradeoff measure below:

Definition 1 (λ-tradeoff ) The λ scale-performance tradeoff measure of a teacher assistant
(A, sa,ma) is defined as ta = ma/mt + λ · (1− sa/st), where λ ∈ [0, 1].

It is clear that the value of λ-tradeoff is bounded by 1 + λ · (1 − ss/st) when the teacher assistant
can achieve the performance of the teacher (ma = mt) with the student scale (sa = ss). However,
in practice, this is impossible as smaller models usually lead to lower performance as shown by the
blue curves in Figure 1. We further observe that the λ-tradeoff (red curves) of the teacher assistant
is positively correlated with the performance of the student (green curves). Theoretically, due to the
linear property of the λ-tradeoff and the concave property of the teacher assistant scale-performance
correlation, there should always be one and only one maximum value of λ-tradeoff. Therefore, the
problem can be reformulated as finding an optimal teacher assistant with the maximum value of
λ-tradeoff :

(A∗, s∗a,m
∗
a) = argmax

A,sa,ma

ta = argmax
sa

( argmax
A︸ ︷︷ ︸

Specification

( argmax
ma

ta )︸ ︷︷ ︸
Optimization

)

︸ ︷︷ ︸
Selection

(1)

Based on the above reformulation, our methodology can be decomposed into three main stages:
specification, optimization, and selection. Essentially, during specification, a set of teacher assistant
candidates are generated of different scales. Then the performance metric of teacher assistant of
each scale is obtained through a one-run optimization. These two stages form a feasible region for
the above reformulation. Finally, the optimal teacher assistant A∗ is selected with a linear program-
ming of the feasible region during selection. After the discovery of the optimal teacher assistant, the
teacher assistant can subsequently be distilled to the expected student. An overview of the method-
ology is given in Figure 2.
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2.2 SPECIFICATION

Gridding. Theoretically, one needs to generate candidates at every possible scale to find the optimal
solution. However, it is impossible to enumerate all possibilities in a continuous space. Therefore,
we discretize the candidate scales into n discrete values, {A = (Ak, sak

,mak
) | ∆sa = (st −

ss)/n}, with equal slicing between the teacher scale and student scale.

Pruning. For candidates at each scale, there are still an infinite number of possible structures, e.g.,
different combinations of width and depth. A number of approaches have been proposed to iden-
tify a good structure at a scale, including dynamic search (Hou et al., 2020), layer dropping (Fan
et al., 2020) and pruning (Michel et al., 2019). In this work, we adopt pruning to assign struc-
tures Ak to the candidates due to its known advantages in knowledge distillation (Xia et al., 2022).
Concretely, following previous work (Michel et al., 2019), the pruning starts with the least impor-
tant parameters/features based on their importance scores, which are approximated by masking the
parameterized structures. The technical details of our pruning are supplied in Appendix A.

Essentially, gridding positions the scales of candidates between the scales of the teacher and student
with equal intervals and pruning assigns candidates with pruned structures.

2.3 OPTIMIZATION

A straightforward solution to unearth the optimality of each candidate is exhaustively measuring the
student performance distilled from each, e.g., MANDISC. λ-tradeoff offers a chance to measure the
optimality without actual distillation. However, the memory footprints and the computational costs
apparently can also be extremely large considering the number of candidates. To reduce the memory
overhead and the computation complexity, we introduce two effective approximations, parameter-
sharing and sandwich-optimization, so that the λ-tradeoff s of all candidates at different scales can
be yielded in a once-for-all optimization. The feasibility of the approximations are guarded by the
following two Properties.

Property 1 (Incremental Property) For two candidates Ai and Aj in the teacher assistant candi-
date set A, if si < sj , then we have Ai ⊂ Aj .

This incremental property is an outcome of the pruning approach (Li et al., 2017; Frankle & Carbin,
2019), which essentially tells that among all candidates obtained from the specification, the structure
of a candidate at a smaller scale is a subset of the structure for a candidate at a larger scale.

Remark 1 The incremental property affirms that a larger candidate can result in a smaller one by
continuously pruning less significant parameters, which enables these candidates to be assembled
into one sandwich-like model in a parameter-sharing fashion. The memory scale of the sandwich-
like model is exactly that of the largest candidate.

Property 2 (Sandwich Rule) For two candidates Ai and Aj from candidate set A, if si < sj , then
we have ms ≤ mi ≤ mj ≤ mt.

The sandwich rule (Yu & Huang, 2019; Cai et al., 2020) states that the performance of a candidate is
bounded by the best performance of a larger candidate and a smaller one, due to the subset structure.
Therefore, a candidate can be optimized by alternatively distilling its larger and smaller candidates,
without direct distillation.

Remark 2 The sandwich rule allows us to sub-sample η out of all n (η ≤ n) filling-like candidates
and conduct sandwich-optimization over the sampled candidates, which substantially reduces the
computational cost.

With the two approximations, we reduce the memory footprints of all candidates to a distinguished
one with the largest scale. The computational costs are also largely reduced with the sub-sampling.
Finally, we formulate the distillation objectives for task-specific distillation (TSD) and task-agnostic
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distillation (TAD) respectively as below:

LTSD =

η∑
i=1

CE(yT ,yAi) +

l∑
j=1

MSE(Xj
T ,X

j
Ai

)

 (2)

LTAD =

η∑
i=1

h∑
j=1

(
KL(QRj

T ,
QRj

Ai
) + KL(KRj

T ,
KRj

Ai
) + KL(V Rj

T ,
V Rj

Ai
)
)

(3)

where MSE, CE and KL stand for mean squared error, cross entropy and kullback-leibler divergence
respectively. Xj is the intermediate output of the j-th layer within totally l layers, y is the final
prediction. As is taken from MiniLMv2 (Wang et al., 2021), QRj is the query relation matrix of
the j-th head within totally h attention heads from the last layer, likewise KRj and V Rj are the
key and value relation matrices. Since heads can be pruned for a teacher assistant candidate, an
additional self-attention module is employed as the last layer for TAD. The teacher assistants with
the best performance at different scales can be obtained after the above sandwich-optimization. The
unsampled teacher assistants can be retrieved based on the larger teacher assistant from the sampled
pool using the shared parameters.

2.4 SELECTION

The intuition for imposing the teacher assistant is to adequately sacrifice teacher scale for student
performance, where the adequacy should be assured by retaining teacher assistant performance as
much as possible. In other words, a good teacher assistant is the one at a small scale yet with
nice performance. As observed in the pilot study, the λ-tradeoff measure is positively correlated
with the final student performance and thus is directly used as the selection criterion. The optimal
teacher assistant can be identified by selecting the candidate with the best tradeoff measure. The
optimal teacher assistant is then distilled to the expected student again following above distillation
objectives. Note that the tradeoff measure is also dependent on λ. However, we empirically find that
the optimal solution of AUTODISC is relatively stable with a wide range of λ, and we fix λ to 0.2 in
all our experiments. More discussion on the impact of λ is provided in the experiments.

3 EXPERIMENTS

3.1 SETUP

Datasets and Metrics We conduct experiments on a language understanding benchmark
GLUE (Wang et al., 2019). The GLUE originally consists of two sequence classification tasks, SST-
2 (Socher et al., 2013) and CoLA (Warstadt et al., 2019), with seven sequence-pair classification
tasks, i.e., MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP, MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), RTE (Bentivogli et al., 2009) and WNLI (Levesque et al.,
2012). We exclude WNLI and CoLA due to the evaluation inconsistency (in other words, com-
pressed LMs get dramatically worse results while original LMs get much better ones as found out
in (Xia et al., 2022)) and use the other seven tasks for evaluation. Following the work in BERT (De-
vlin et al., 2019), we report F1 on MRPC and QQP, Spearman Correlation scores (Sp Corr) on
STS-B, and Accuracy (Acc) on other tasks. Macro average scores (Average) over these seven tasks
are computed for overall performance. Results on development sets are reported. We also adopt
Wikipedia for pretraining in task-agnostic disitllation. The detailed statistics, maximum sequence
lengths, and metrics of GLUE and Wikipeida are supplied in Appendix B.

Implementation Details Experiments are carried out on BERTbase (Devlin et al., 2019) and
EncT5xl (Liu et al., 2021a). EncT5 is a language model which achieves competitive performance
as T53b (Raffel et al., 2020) on GLUE with a nearly encoder-only T5 (incorporated with a decoder
layer). Our task-specific experiments are carried out on either one Nvidia A100 for EncT5xl or
one Nvidia V100 for BERTbase, and η is set to 9 according to our empirical investigation. On the
other hand, the task-agnostic experiments are carried out on eight Nvidia A100s with BERTbase
only1. The pre-training is armed with a dynamic masking strategy (Liu et al., 2019). η is set to

1We are not able to make it work for EncT5xl and there is no existing guidance as of now.
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Table 1: The results of task-specific distillation upon BERTbase. The best and second best results are
boldfaced and underlined. Training time is included for our methods.

Model (Training time) FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

BERTbase 10.9G 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7

BERT4L-KD (Hinton et al., 2015) 3.6G 89.6 86.9 86.4 86.1 77.7/77.7 85.1 65.3 81.9
BERT4L-PKD (Sun et al., 2019) 3.6G 89.9 87.6 86.4 86.0 77.7/77.7 85.0 65.3 82.0
BERT4L-CKD (Park et al., 2021) 3.6G 89.6 87.2 86.4 86.2 77.7/77.9 85.0 64.6 81.8
DynaBERT30% (Hou et al., 2020) 3.3G 90.3 87.4 87.2 86.6 81.5/81.8 89.1 66.1 83.7
BERT30%-FT (Li et al., 2017) 3.3G 91.9 88.5 87.2 87.7 82.0/82.6 89.5 69.0 84.8
BERT30%-KD (Hinton et al., 2015) 3.3G 92.0 88.9 86.8 87.8 82.2/82.7 89.9 68.2 84.8
BERT30%-LTSD (2.5h) 3.3G 91.9 89.5 86.4 88.0 82.5/82.8 89.9 68.6 84.9
BERT2L-KD (Hinton et al., 2015) 1.8G 86.8 82.5 46.8 83.7 73.5/73.1 79.6 58.1 73.0
BERT2L-PKD (Sun et al., 2019) 1.8G 86.7 82.4 46.8 83.7 73.4/73.0 79.7 57.4 72.9
BERT2L-CKD (Park et al., 2021) 1.8G 86.4 82.3 48.6 83.6 73.3/73.0 79.1 56.7 72.9
DynaBERT15% (Hou et al., 2020) 2.2G 89.1 85.1 84.7 84.3 78.3/79.0 86.6 61.4 81.1
BERT15%-FT (Li et al., 2017) 1.6G 89.9 87.1 85.6 86.1 79.9/80.1 85.7 63.9 82.3
BERT15%-KD (Hinton et al., 2015) 1.6G 89.9 88.6 85.1 86.2 79.8/80.2 85.6 63.9 82.4
BERT15%-LTSD (2.3h) 1.6G 90.1 88.9 85.1 86.5 80.0/80.2 86.0 65.3 82.8

w/ MANDISC (40.0h) 1.6G 89.8 87.7 85.4 86.9 81.0/80.1 86.1 68.2 83.2
w/ AUTODISC (7.9h) 1.6G 89.8 88.2 85.8 86.6 80.3/79.9 87.3 68.2 83.3

BERT10%-FT (Li et al., 2017) 1.1G 88.2 84.8 84.7 84.4 77.6/77.3 84.3 65.3 80.8
BERT10%-KD (Hinton et al., 2015) 1.1G 88.2 87.6 84.0 84.4 77.6/77.4 84.3 67.2 81.3
BERT10%-LTSD (1.9h) 1.1G 88.8 87.8 84.0 84.6 77.6/77.5 84.9 66.4 81.5

w/ MANDISC (37.7h) 1.1G 89.0 88.2 84.8 84.8 78.3/77.8 85.3 66.8 81.9
w/ AUTODISC (7.0h) 1.1G 89.1 88.4 85.4 84.9 78.2/78.6 86.3 68.2 82.4

BERT5%-FT (Li et al., 2017) 0.5G 85.4 82.8 84.1 82.6 72.5/73.3 81.7 63.9 78.3
BERT5%-KD (Hinton et al., 2015) 0.5G 85.6 84.0 83.8 82.5 72.6/73.2 81.6 63.2 78.3
BERT5%-LTSD (1.3h) 0.5G 85.4 85.5 83.9 82.7 73.0/73.4 82.7 63.2 78.7

w/ MANDISC (33.8h) 0.5G 86.1 87.0 84.1 83.8 73.7/73.6 82.9 65.7 79.6
w/ AUTODISC (6.9h) 0.5G 86.9 87.6 84.8 83.5 72.7/74.5 84.0 66.8 80.1

1 to substantially reduce computational burden. The number of relation heads is set to 32 since
we use deep relation distillation as the task-agnostic distillation objective. Other implementation
details are supplied in Appendix C. Generally, the sampling is performed from candidates at scales
{100%, 95%, 90%, . . . , 10%, 5%}.

Baselines We compare our model with several state-of-the-art baselines. BERT*L,
MiniLMv2*L;*H, and TinyBERT*L;*H denote methods via dropping layers and hidden dimensions,
while DynaBERT*%, BERT*%, and EncT5*% represent structured pruning with either local ranking
or our global ranking (see Appendix A).

• Conventional Distillation: FT (Li et al., 2017) indicates direct fine-tuning after pruning.
KD (Hinton et al., 2015), PKD (Sun et al., 2019) and CKD (Park et al., 2021) are methods
with different objectives, i.e., KD directly distills logits, PKD distills both logits and hid-
den states and CKD distills token and layer relations. DynaBERT (Hou et al., 2020) uses
structured pruning with a local ranking in each layer. MiniLMv2 (Wang et al., 2021) is
distilled with the deep relation alignment. TinyBERT (Jiao et al., 2020) is distilled with a
combination of various feature distillations.

• Teacher Assistant-based Distillation: MANDISC manually selects the best teacher as-
sistant among available trials. TA (Wang et al., 2020) is specifically incorporated with
MiniLMv2 for task-agnostic distillation.

3.2 MAIN RESULTS

Results of Task-specific Distillation Table 1 presents the comparison results of different methods
on task-specific distillation at four student scales. The highlighted rows are the results from this
work, where LTSD denotes the student directly obtained from distillation and AUTODISC denotes
the student with additional distillation using the optimal teacher assistant. There are several obser-
vations: First, LTSD achieves the best performance among all conventional distillation methods,
while AUTODISC further improves the model and obtains similar or even better results compared to
MANDISC. This validates the improved performance of AUTODISC for automatically identifying a
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Table 2: The results of task-agnostic distillation upon BERTbase. The best and second best results are
boldfaced and underlined. TA stands for teacher assistant. The results of TinyBERT are reproduced
based on their released checkpoints without data augmentation for a fair comparison. Training time
is included for our methods.

Model (Train time) FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

BERTbase 10.9G 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7

MiniLMv24L;384H (Wang et al., 2021) 0.9G 90.0 88.6 87.2 86.1 80.0/80.3 87.9 67.2 83.4
w/ TA (Wang et al., 2020) 0.9G 90.0 88.5 87.3 86.3 80.1/80.7 88.0 66.4 83.4

BERT10%-FT (Li et al., 2017) 1.1G 84.6 83.1 83.8 84.5 75.3/75.4 83.2 56.7 78.3
BERT10%-LTSD 1.1G 90.7 89.0 87.0 85.9 78.4/78.2 86.0 66.4 82.7
BERT10%-LTAD (∼1d) 1.1G 92.0 90.1 87.9 86.6 80.0/80.3 88.0 67.2 84.0

w/ MANDISC (∼20d) 1.1G 91.5 90.3 87.8 86.6 80.0/80.1 88.6 67.2 84.0
w/ AUTODISC (∼4d) 1.1G 91.4 90.0 87.5 86.6 79.8/80.0 88.0 67.2 83.8

TinyBERT4L;312H (Jiao et al., 2020) 0.6G 88.3 88.5 84.3 84.0 77.0/77.4 82.5 63.5 80.7
MiniLMv23L;384H (Wang et al., 2021) 0.7G 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5

w/ TA (Wang et al., 2020) 0.7G 89.8 85.9 86.0 85.5 77.6/78.5 86.8 66.1 82.0
BERT5%-FT (Li et al., 2017) 0.5G 84.1 82.4 81.8 83.7 74.4/74.9 82.5 57.0 77.6
BERT5%-LTAD (∼1d) 0.5G 90.9 89.4 87.7 85.8 79.2/79.8 87.3 65.7 83.2

w/ MANDISC (∼20d) 0.5G 90.1 89.7 87.4 85.6 79.3/79.7 87.1 67.9 83.4
w/ AUTODISC (∼4d) 0.5G 89.3 89.7 87.4 85.9 79.2/79.4 86.9 69.7 83.4

good teacher assistant. Notably, for further smaller BERT3%, the improvement still holds, as sup-
plied in Appendix D. Second, conventional distillations generate reasonable results at large student
scale 30% but fail to maintain the student performance at small scale 15% (with extremely worse
results at scales 10% and 5% which are not included). Nonetheless, AUTODISC consistently out-
performs the baselines at all scales. Additional comparisons of practical inference measurement are
supplied in Appendix E. Third, pruning based models perform much better compared to the layer
dropping methods, e.g., BERT15%-KD achieves much higher score than FLOPs-matched BERT2L-
KD, which verifies the effectiveness of pruning approach in knowledge distillation. Moreover, we
discover the global ranking strategy surpasses the local ranking one by comparing BERT15%-LTSD

to FLOPs-matched DynaBERT15%. We speculate the narrow structures induced by the local ranking
strategy are not effective for rather small students. The distributions of example pruned structures
are supplied in Appendix F.

Results of Task-agnostic Distillation We also apply AUTODISC to task-agnostic distillation and
report the results in Table 2. The first glimpse is that LTAD surpasses LTSD, indicating the deep
relation alignment is more suitable for task-agnostic distillation. Surprisingly, we discover that the
pruned structures can boost the performance of MiniLMv2, i.e., BERT-LTAD, and establish a new
state-of-the-art for conventional task-agnostic distillation. Another interesting observation is that
teacher assistant-based distillations do not improve the performance over conventional distillations
until the scale is reduced to 5%, indicating that conventional distillations are already promising
choices on task-agnostic distillations. Nonetheless, we still argue the applicability of AUTODISC to
task-agnostic distillation for a performance guarantee. Note that TinyBERT is less effective without
data augmentation, and its results with data augmentation are supplied in Appendix G.

Results of Large-scale Distillation As is shown in Table 3, we conduct a similar comparison on
a true LLM, EncT5xl, with over one billion parameters. The very first results of a true LLM also
exhibit an akin trend as the one in BERTbase. And the results on a moderate BERTlarge are supplied in
Appendix H. We therefore conclude that the scalability of AUTODISC is also compelling. Reversely,
the results of AUTODISC on small LMs are supplied in Appendix I.

3.3 ANALYSES

Scale-performance Tradeoff To validate the existence of scale-performance tradeoff, we use
teacher assistants at different scales for MANDISC and plot performance variations of these sched-
ules upon BERTbase in Figure 3(a). It can be seen that reducing the scale can lead to performance
improvement until a certain scale, after which performance degradation is witnessed. Almost all
manual schedules underperform the automatic one. We attribute the inferiority of manual schedules
to improper scale-performance tradeoffs, as concentrating only on either scale or performance will
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Table 3: The results of task-specific distillation upon EncT5xl. The best and second best results are
boldfaced and underlined. Training time is included for our methods.

Model (Train time) FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

EncT5xl 155.9G 96.9 95.1 92.3 90.0 90.7/90.9 95.0 88.5 92.4

EncT510%-FT (Li et al., 2017) 15.6G 91.6 87.1 86.7 87.9 81.9/87.0 66.1 91.6 83.8
EncT510%-KD (Hinton et al., 2015) 15.6G 92.2 86.8 86.6 87.9 83.6/83.8 88.1 63.5 84.1
EncT510%-LTSD (2.3h) 15.6G 94.5 90.2 87.4 87.9 84.7/84.1 90.8 67.5 85.9

w/ MANDISC (42.1h) 15.6G 94.6 90.5 88.0 88.1 86.2/85.1 91.5 70.4 86.8
w/ AUTODISC (8.4h) 15.6G 94.6 91.5 87.8 87.3 85.9/85.0 91.1 72.2 86.9

EncT55%-FT (Li et al., 2017) 7.8G 90.1 84.8 84.7 86.5 78.0/78.2 83.9 62.8 81.1
EncT55%-KD (Hinton et al., 2015) 7.8G 89.9 85.1 85.4 86.6 79.4/79.6 84.2 55.6 80.7
EncT55%-LTSD (2.0h) 7.8G 92.9 88.0 83.4 85.4 79.6/80.0 87.0 58.8 81.9

w/ MANDISC (36.3h) 7.8G 93.0 88.0 83.9 86.5 81.2/81.6 88.1 67.5 83.7
w/ AUTODISC (7.8h) 7.8G 93.8 89.8 85.3 86.7 82.9/82.7 89.2 64.6 84.4
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Figure 3: Scale-performance tradeoff studies by distilling the teacher to a student at 5% scale.
The blue curve represents the performance of teacher assistants at different scales. The green curve
represents the performance of MANDISC using these teacher assistants. The red curve represents the
value of the scale-performance tradeoff measure. The brown dashed line represents the performance
of AUTODISC. On the other hand, the brown, orange, and purple bars represent the performance of
AUTODISC using one, two, and three teacher assistants.

give rise to a trivial solution with pareto optimality (Sener & Koltun, 2018; Lin et al., 2019). The
overall phenomenon implies the existence of scale-performance tradeoff. Similar phenomenon is
also observed in EncT5, which is supplied in Appendix J. One may note that AUTODISC does not
achieve the best performance, which is expected as MANDISC exhaustively searches for the teacher
assistant at all scales. However, AUTODISC is able to automatically identify a reasonably good
teacher assistant in a much more efficient manner compared to MANDISC.

Sufficiency of One Teacher Assistant To examine whether one teacher assistant is sufficient, we
insert more than one teacher assistant to AUTODISC and present the results in Figure 3(b). It is
clear that there is no obvious performance gain when applying more than one teacher assistant (two
and three) in schedules. Therefore, we alternatively choose to use only one teacher assistant in
AUTODISC for training efficiency based on the sufficiency. The conclusion still holds for EncT5,
which is supplied in Appendix J.

Impact of Candidate Sampling We then study the impact of the sandwich-optimization in AU-
TODISC by varying the number of sampled candidates η, and measuring the training cost and the
student performance. From Table 4, we show the assembled sandwich together with sub-sampled
fillings brings acceptable performance detriment and efficiency gain. In comparison with MANDISC
which we conduct 10 trials with different teacher assistants, AUTODISC with just one candidate is
able to achieve similar performance with much less training time.

Impact of λ To show λ-tradeoff is robust on the value of λ, we vary λ within {0.1,0.2,0.3}. It can
be seen from Table 5 that the performance of AUTODISC is relatively stable with different values of
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λ. Moreover, we offer a λ-independent solution using a negative derivative of performance to scale
as the tradeoff measure, which yields slightly worse results, as supplied in Appendix K.

Table 4: The efficacy of approximations upon
distilling BERTbase to BERT10%.

Model Train time Average

BERT10%-LTSD 1.9h 81.5
w/ MANDISC 37.7h 81.9
w/ AUTODISC (η=1) 3.5h 82.1
w/ AUTODISC (η=3) 4.3h 81.9
w/ AUTODISC (η=6) 6.5h 81.9
w/ AUTODISC (η=9) 7.0h 82.4

Table 5: The impact of λ-tradeoff upon distill-
ing BERTbase to BERT10%.

Model Average

BERT10%-LTSD 81.5
w/ MANDISC 81.9
w/ AUTODISC (λ=0.1) 82.1
w/ AUTODISC (λ=0.2) 82.4
w/ AUTODISC (λ=0.3) 81.8

4 RELATED WORK

Language Model Language models (LMs) (Devlin et al., 2019; Raffel et al., 2020) are widely
adopted in various natural language tasks (Bao et al., 2020; Zhang et al., 2020). Typical LMs consist
of a stack of transformer (Vaswani et al., 2017) encoder/decoder layers. Each encoder layer has two
modules. The first is a self-attention module, and the second is a feed-forward module. A residual
connection is employed around each of these modules, with a layer normalization placed either in
(pre-norm) or out of (post-norm) the connection (Xiong et al., 2020). Each decoder layer addition-
ally has a cross-attention module between the self-attention and feed-forward modules. While LMs
exhibit excellent performance in various downstream tasks, their scales impede the deployment in
real-world applications. Therefore, it is an important research problem of learning compact language
models from the large ones. In our work, we aim to make LMs deployable via model compression.

Model Pruning Inspired by the idea that not all parameters contribute equally to the overall perfor-
mance of a model, model pruning (Han et al., 2015) is widely adopted to waive the parameters with
little impact. Model pruning spans from unstructured pruning (Frankle & Carbin, 2019; Louizos
et al., 2018; Sanh et al., 2020; Chen et al., 2020) to structured pruning (Michel et al., 2019; Hou
et al., 2020; Li et al., 2017; Xia et al., 2022; Lagunas et al., 2021). Unstructured pruning prunes
parameters at neuron level referring to parameter magnitude (Han et al., 2015; Louizos et al., 2018)
or learning dynamics (Sanh et al., 2020), while structured pruning (Michel et al., 2019; Xia et al.,
2022) prunes parameters at module level relying on parameter sensitivity to performance. Although
unstructured pruning enjoys a finer-grained pruning, it can only fit specialized devices. In contrast,
structured pruning generally fits modern acceleration devices. In our work, we adopt structured
pruning for deriving the structures of candidates for its benefits for distillation. Pruning also offers
an opportunity to optimize the efficiency of our method due to its merits (Li et al., 2017; Frankle &
Carbin, 2019; Yu & Huang, 2019; Cai et al., 2020).

5 CONCLUSIONS

In this paper, we propose AUTODISC to automatically identify an effective teacher assistant for
teacher assistant-based distillation, bridging the large capacity gap between the teacher and student
in only on trial in contrast to MANDISC. Based on the largely-neglected observation that scale-
performance tradeoff of the teacher assistant is of great importance to the performance of the student,
we introduce a λ-tradeoff measure that quantifies the scale-performance tradeoff of the teacher
assistant, and show that it is positively correlated with the student performance. To compute the
measures for possible teacher assistant candidates, we leverage gridding and pruning to specify these
candidates and achieve a once-for-all optimization for these candidates based on two properties.
The best teacher assistant is selected according to the λ-tradeoff value. Comprehensive experiments
demonstrate the improved performance and applicability of AUTODISC. Experimental results of a
language model over one billion parameters show the scalability of AUTODISC.
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A TECHNICAL DETAILS OF PRUNING

Concretely, following previous work (Michel et al., 2019), the pruning always starts with the least
important parameters/features, which are identified according to importance scores. The importance
scores are approximated by first masking the parameterized structures. µ(i), ν(i), and ξ(j) denote
the mask variables respectively for a self-attention head, optionally a cross-attention head, and a
feed-forward neuron, such that for an intermediate input X and potentially an encoder-produced
input E:

Z◦ = SelfAttention◦(X) =

h∑
i

µ(i)softmax(XW
(i)
Q W

(i)⊤
K X⊤)XW

(i)
V W

(i)
O , (4)

Z◦ = CrossAttention◦(Z◦,E) =

h∑
i

ν(i)softmax(Z◦W
(i)
Q′W

(i)⊤
K′ E⊤)EW

(i)
V ′W

(i)
O′ , (5)

X̃◦ = FeedForward◦(Z◦) =

d∑
j

ξ(j)g(Z◦W
(j)
1 )W

(j)
2 , (6)

where potential bias terms (e.g., linear bias and position bias) are omitted, i means i-th head among
h heads, j means j-th intermediate neuron among d neurons, and g is an activation function. We
initialize all mask variables to ones to preserve the original structure at the very beginning.

Then expected absolute gradients over either fine-tuning or pre-training data gives the important
scores:

I(i)µ = E(x,y)∼D

∣∣∣∣∂L(x, y)∂µ(i)

∣∣∣∣ , I(i)ν = E(x,y)∼D

∣∣∣∣∂L(x, y)∂ν(i)

∣∣∣∣ , I(j)ξ = E(x,y)∼D

∣∣∣∣∂L(x, y)∂ξ(j)

∣∣∣∣ , (7)

where (x, y) is a data point and L is the task-specific loss for task-specific models or the language
modeling loss for pre-trained models. E represents expectation. The absolute value of gradient for
a mask indicates how large the impact of pruning the corresponding structure is, thus implying how
important the structure is.

Intuitively, we take a global ranking, in contrast to a local one as in other literature (Hou et al., 2020),
for the structures of the same type (i.e., attention head or feed-forward element) from all stacking
layers for pruning preference, before which we also normalize the importance scores for same-type
structures in a layer with ℓ2 norm, as suggested by Molchanov et al. (2017), for a balanced pruning.
Therefore, for each candidate, we separately prune attention heads and feed-forward elements to
the scale so that we reach a qualified structure. For the sake of a corner case that all structures
in a module are pruned, we skip the module by feeding the input as the output. While we can
alternate to an quite recent pruning method (Xia et al., 2022) exploiting both coarse-grained and
fine-grained strategies for state-of-the-art performance, we argue that our framework is agnostic to
pruning methods and keep the pruning method simple.

B DATASET STATISTICS

We conduct experiments on seven datasets. The detailed statistics, maximum sequence lengths, and
metrics for datasets we use are shown in Table 6, where the Wikipedia corpus used for pretraining
is also attached.

C ADDITIONAL IMPLEMENTATION DETAILS

The summary of hyperparameters for both task-specific and task-agnostic distillation is shown in
Table 7. We will be releasing our code and scripts in the final version for exact reproducibility.

D ADDITIONAL RESULTS UPON BERTBASE

We further conduct experiments on extremely small scale student model, i.e., BERT3%. The results
are shown in Table 8.
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Table 6: The statistics, maximum sequence lengths, and metrics.
Dataset #Train exam. #Dev exam. Max. length Metric

SST-2 67K 0.9K 64 Accuracy
MRPC 3.7K 0.4K 128 F1
STS-B 7K 1.5K 128 Spearman Correlation
QQP 364K 40K 128 F1
MNLI-m/mm 393K 20K 128 Accuracy
QNLI 105K 5.5K 128 Accuracy
RTE 2.5K 0.3K 128 Accuracy

Wikipedia 35M - 128 -

Table 7: The hyperparameters for both task-specific and task-agnostic distillation. The learning rate
is searched within different grids for BERTbase and EncT5xl.

Hyperparameter Task-specific Distillation Task-agnostic Distillation

Batch Size {16,32} 8×128=1024
Optimizer AdamW AdamW
Learning Rate {1e-5, 2e-5, 3e-5}/{1e-4, 2e-4, 3e-4} 3e-4
Training Epochs 10 5
Early-stop Epochs 5 -
Warmup Proportion 0.1 0.01
Weight Decay 0.01 0.01
Sampling Number η 9 1

E INFERENCE MEASUREMENT

Since FLOPs only offers theoretical inference compute, we additionally provide throughput for em-
pirical inference compute of each model with throughput (i.e., processed tokens per micro second)
in Table 9. The test environment is established by feeding 32×128 tokens to models. The amount
of decomposed parameters is also attached for a reference.

F PRUNED STRUCTURE DISTRIBUTIONS

We give the distributions of example pruned structures in Figure 4, which exactly show what pruned
LMs consist of. While pruned BERTbase tends to preserve bottom and middle layers, pruned EncT5xl
tends to preserve bottom layers. Meanwhile, neurons in feed-forward layers are more likely to be
pruned than heads in attention layers, owing to the centrality of the attention module within an
transformer layer.

G DATA AUGMENTATION FOR TINYBERT

We compare TinyBERT with and without data augmentation as in Table 10. The results with data
augmentation are retrieved from the original paper, since the augmented data is not publicly avail-
able. The results demonstrate that TinyBERT is largely supported with data augmentation for good
performance.

H RESULTS UPON BERTLARGE

We show extended results of AUTODISC on BERTlarge for readers’ interest in Table 11. Consistent
patterns have been observed as in BERTbase.

15



Under review as a conference paper at ICLR 2023

Table 8: Additional results of task-specific distillation upon BERTbase.
Model FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

BERT3%-LTSD 0.3G 85.2 83.6 81.9 82.1 71.9/72.7 81.9 57.4 77.1
w/ MANDISC 0.3G 85.6 85.0 82.7 82.7 72.7/72.8 82.0 59.6 77.9
w/ AUTODISC 0.3G 85.9 85.7 83.6 83.1 72.9/73.6 81.9 58.1 78.1

Table 9: Inference compute measurement.
Model FLOPs Throughput Trm params Emb params

BERTbase 10.9G 55.7tokens/ms 85.7M 23.8M
BERT10% 1.1G 278.2tokens/ms 9.1M 23.8M
BERT5% 0.5G 412.9tokens/ms 4.9M 23.8M

BERTlarge 38.7G 17.9tokens/ms 303.3M 31.8M
BERT10% 3.9G 104.1tokens/ms 31.3M 31.8M
BERT5% 1.9G 154.2tokens/ms 16.3M 31.8M

EncT5xl 155.8G 4.8tokens/ms 1275.1M 32.9M
EncT510% 15.6G 38.8tokens/ms 127.4M 32.9M
EncT55% 7.8G 64.0tokens/ms 64.0M 32.9M

I RESULTS OF SMALL-SCALE DISTILLATION

When AUTODISC is applied to small MiniLM12;384H and BERTmini as shown in Table 12, AU-
TODISC can reversely affect the performance of conventional distillation. Contrarily, MANDISC
can still improve or at least retain the performance. However, it is less necessary to compress small
LMs.

J VARYING SCHEDULES FOR ENCT5

Performance variations among possible schedules for EncT5 are displayed in Figure 5, where the
existence of scale-performance tradeoff and sufficiency of one teacher assistant can be verified.

K NEGATIVE DERIVATIVE-TRADEOFF

As mentioned in the main paper, although λ-tradeoff is able to provide stable tradeoff measurement,
it is dependent on the value of λ. To eliminate this dependency, we design a new measure, negative
derivative-tradeoff, which computes the negative derivative of performance to scale at each candidate
scale as: ta = limδ→0

−(ma+δ−ma)
sa+δ−sa

. In the discrete case, tai
=

−(mai+1
−mai

)

∆sa
. The idea of

the measure is basically derived from saving the performance from a potentially significant drop.
However, first-order estimation can lead to a high estimation variance and can be further tuned with
second-order or so for better performance. The comparison results using λ-tradeoff and ND-tradeoff
are shown in Table 13. It can be seen from the table that AUTODISC-ND also achieves comparable
results.
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(a) 12-layer BERTbase.
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(b) 24-layer EncT51.5. Layer indices lager than 24 denote modules from the one-layer decoder
(i.e., two more attention modules and one more feed-forward modules).

Figure 4: The distributions of example pruned structures. The structures are derived with MRPC
dataset.

Table 10: The results of TinyBERT with and without DA.
Model FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

TinyBERT4L;312H (Jiao et al., 2020) 0.6G 88.3 88.5 84.3 84.0 77.0/77.4 82.5 63.5 80.7
w/ DA (Jiao et al., 2020) 0.6G 92.7 90.2 86.3 87.1 82.8/82.8 88.0 65.7 84.5

MiniLMv23L;384H (Wang et al., 2021) 0.7G 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5
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Table 11: The results of task-specific distillation upon BERTlarge.
Model FLOPs SST-2 MRPC STS-B RTE Average

BERTbase 10.9G 93.8 91.5 87.1 71.5 86.0

BERT10%-LTSD 1.1G 88.8 87.8 84.0 66.4 81.8
w/ MANDISC 1.1G 89.0 88.2 84.8 66.8 82.2
w/ AUTODISC 1.1G 89.1 88.4 85.4 68.2 82.7

BERT5%-LTSD 0.5G 85.4 85.5 83.9 63.2 79.5
w/ MANDISC 0.5G 86.1 87.0 84.1 65.7 80.7
w/ AUTODISC 0.5G 86.9 87.6 84.8 66.8 81.5

BERTlarge 38.7G 94.2 92.5 90.1 75.5 88.1

BERT10%-LTSD 3.9G 90.4 88.1 87.0 66.1 82.9
w/ MANDISC 3.9G 90.6 88.9 87.1 67.2 83.4
w/ AUTODISC 3.9G 90.5 88.8 87.8 66.1 83.3

BERT5%-LTSD 1.9G 89.2 85.7 85.8 61.4 80.5
w/ MANDISC 1.9G 90.4 86.0 85.7 62.8 81.2
w/ AUTODISC 1.9G 89.6 87.4 87.3 61.4 81.4

EncT5xl 155.9G 96.9 95.1 92.3 88.5 93.2

EncT510%-LTSD 15.6G 94.5 90.2 87.4 67.5 84.9
w/ MANDISC 15.6G 94.6 90.5 88.0 70.4 85.9
w/ AUTODISC 15.6G 94.6 91.5 87.8 72.2 86.5

EncT55%-LTSD 7.8G 92.9 88.0 83.4 58.8 80.8
w/ MANDISC 7.8G 93.0 88.0 83.9 67.5 83.1
w/ AUTODISC 7.8G 93.8 89.8 85.3 64.6 83.4

Table 12: The results of task-specific distillation upon small LMs.
Model FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

MiniLM12L;384H 2.72G 92.1 90.9 88.6 87.2 83.0/83.3 90.7 72.9 86.1

MiniLM10%-LTSD 0.26G 87.8 87.1 85.6 84.3 77.2/78.4 84.8 66.4 81.5
w/ MANDISC 0.26G 88.2 88.2 86.3 84.7 77.8/79.2 85.2 65.7 81.9
w/ AUTODISC 0.26G 87.6 86.0 86.5 84.4 77.8/78.6 84.4 64.6 81.3

BERTmini 0.60G 87.5 86.4 85.3 85.0 76.1/77.2 84.5 66.8 81.1

BERT10%-LTSD 0.04G 83.3 83.8 81.6 81.6 66.3/71.4 82.7 58.8 76.2
w/ MANDISC 0.04G 83.8 84.1 80.7 82.0 66.4/71.6 82.9 58.1 76.2
w/ AUTODISC 0.04G 83.3 82.9 80.6 81.1 67.4/71.3 82.8 58.5 76.0
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Figure 5: Performance comparisons among various schedules for EncT5. The dots represent perfor-
mance variations using either one or two teacher assistants for MANDISC. The triangles represent
performance resulting from AUTODISC using one teacher assistant. The rectangles represent per-
formance resulting from AUTODISC using two teacher assistants.
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Table 13: The results of negative derivative-tradeoff upon BERTbase.
Model FLOPs SST-2 MRPC STS-B RTE Average

BERTbase 10.9G 93.8 91.5 87.1 71.5 86.0

BERT10%-LTSD 1.1G 88.8 87.8 84.0 66.4 81.8
w/ MANDISC 1.1G 89.0 88.2 84.8 66.8 82.2
w/ AUTODISC-λ 1.1G 89.1 88.4 85.4 68.2 82.7
w/ AUTODISC-ND 1.1G 89.8 87.9 85.4 66.4 82.4

BERT5%-LTSD 0.5G 85.4 85.5 83.9 63.2 79.5
w/ MANDISC 0.5G 86.1 87.0 84.1 65.7 80.7
w/ AUTODISC-λ 0.5G 86.9 87.6 84.8 66.8 81.5
w/ AUTODISC-ND 0.5G 86.8 86.0 84.9 66.8 81.1
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