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Abstract

Bilevel optimization is pivotal in machine learning applications such as hyperpa-1

rameter tuning and adversarial training. While existing methods for nonconvex-2

strongly-convex bilevel optimization can find an ǫ-stationary point under Lips-3

chitz continuity assumptions, two critical gaps persist: improving algorithmic4

complexity and generalizing smoothness conditions. This paper addresses these5

challenges by introducing an accelerated framework under Hölder continuity—a6

broader class of smoothness that subsumes Lipschitz continuity. We propose a7

restarted accelerated gradient method that leverages inexact hypergradient estima-8

tors and establishes theoretical oracle complexity for finding ǫ-stationary points.9

Empirically, experiments on data hypercleaning and hyperparameter optimization10

demonstrate superior convergence rates compared to state-of-the-art baselines.11

1 Introduction12

Bilevel optimization is a powerful paradigm with applications in various machine learning tasks,13

such as hyperparameter tuning [Franceschi et al., 2018, MacKay et al., 2019, Chen et al., 2024],14

adversarial training [Lin et al., 2020a,b, Wang et al., 2021, 2022], and reinforcement learning15

[Kunapuli et al., 2008, Yang et al., 2019, Hong et al., 2023]. It involves two levels of optimization,16

where the objective at the upper level depends on the solution to a lower-level optimization problem.17

The general bilevel problem can be expressed as:18

min
x∈Rdx ,y∈Y ∗(x)

f (x, y) , where Y ∗(x) = argmin
y∈R

dy

g(x, y). (1)

In this formulation, f(x, y) denotes the upper-level objective, while g(x, y) denotes the lower-level19

objective.20

This study examines the nonconvex-strongly-convex framework, wherein the lower-level function21

g(x, y) exhibits strong convexity with respect to y, while the upper-level function f(x) is possibly22

nonconvex. In this case, the lower-level objective admits a unique solution Y ∗(x) = {y∗(x)}. Then23

Problem (1) is equivalent to minimizing the hyper-objective function24

ϕ(x) := f (x, y∗(x)) , where y∗(x) = argmin
y∈R

dy

g(x, y).

As shown in Grazzi et al. [2020], Pedregosa [2016], the hyper-gradient ∇ϕ(x) is given by:25

∇ϕ(x) = ∇xf (x, y) +∇y∗(x)∇yf (x, y∗(x))

= ∇xf (x, y∗(x))−∇2
xyg (x, y

∗(x))
[
∇2

yyg (x, y
∗(x))

]−1∇yf (x, y∗(x)) .
(2)

The goal of this paper is to find the point x such that ϕ(x) is an ǫ-stationary point, i.e., ‖∇ϕ(x)‖ ≤ ǫ.26

For nonconvex-strongly-convex bilevel optimization, previous work [Chen et al., 2023, Kwon et al.,27
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2023, Yang et al., 2023] primarily focuses on assuming Lipschitz continuity of ∇f , ∇g, ∇2g, and28

∇3g, and either approximates the hyper-gradient ∇ϕ(x) or minimizes a penalty function. Approx-29

imating the hyper-gradient ∇ϕ(x) requires first-order oracle access to f and second-order oracle30

access to g, whereas minimizing the penalty function only requires first-order oracle access to both31

f and g.32

Two key open questions remain: (i) For first-order methods, it remains open whether the existing al-33

gorithmic complexities for finding approximate first-order stationary points in nonconvex–strongly-34

convex bilevel optimization can be further improved under high order smoothness, and (ii) whether35

the Lipschitz continuity assumptions can be generalized to the Hölder continuity.36

1.1 Related Work37

Nonconvex optimization: For unconstrained nonconvex objectives with Lipschtiz continuous gra-38

dient, the classical gradient descent (GD) is known to find an ǫ-stationary point withinO(ǫ−2) gradi-39

ent computations [Nesterov, 2013]. This rate is optimal among the first-order methods [Cartis et al.,40

2010, Carmon et al., 2020]. Under the additional assumption of Lipschitz continuous Hessians, ac-41

celerated gradient descent (AGD) [Carmon et al., 2017, 2018, Jin et al., 2018] finds an ǫ-stationary42

point in Õ(ǫ−7/4) evaluations. Li and Lin [2023] and Marumo and Takeda [2024a] further show43

that AGD with restarts achieves O(ǫ−7/4) complexity for finding ǫ-stationary points, without ad-44

ditional log factors. Under the more general assumption of Hölder continuity of the Hessian,45

Marumo and Takeda [2024b] proposed a universal, parameter-free heavy-ball method equipped with46

two restart mechanisms, achieving a complexity bound ofO(H1/(2+2ν)
ν ǫ−(4+3ν)/(2+2ν)) in terms of47

function and gradient evaluations, where ν ∈ [0, 1] and Hν denote the Hölder exponent and constant,48

respectively.49

Bilevel Optimization Methods: To approximate the hyper-gradient, gradient-based methods50

contain approximate implicit differentiation (AID) [Domke, 2012, Grazzi et al., 2020, Ji et al.,51

2021, Huang et al., 2025, Grazzi et al., 2020] and iterative differentiation (ITD) [Domke, 2012,52

Grazzi et al., 2020, Ji et al., 2021, Grazzi et al., 2020, Shaban et al., 2019]. Using the hyper-gradient53

(2), one can find an ǫ-stationary point of ϕ(x) within Õ(ǫ−2) first-order oracle calls from f and54

Õ(ǫ−2) second-order oracle calls from g [Ghadimi and Wang, 2018, Ji et al., 2021]. In practical55

implementations, these methods typically rely on access to Jacobian or Hessian-vector product or-56

acles. Kwon et al. [2023] proposed a fully first-order method that does not require Jacobian or57

Hessian-vector product oracles, and finds an ǫ-stationary point using only first-order gradients of f58

and g. Inspired by Kwon et al. [2023]’s work, Chen et al. [2023] proposed a method that achieves a59

near-optimal convergence rate of Õ(ǫ−2), which is comparable to second-order methods.60

Table 1: Complexity bounds for finding ǫ-stationary points under Lipschitz continuity assumptions.
Algorithm Gc(f , ǫ) Gc(g, ǫ) JV(g, ǫ) HV(g, ǫ)

AID-BiO (Ji et al. [2021]) O(κ3ǫ−2) O(κ3ǫ−2) O(κ3ǫ−2) Õ(κ3ǫ−2)
ITD-BiO (Ji et al. [2021]) O(κ3ǫ−2) O(κ4ǫ−2) Õ(κ4ǫ−2) Õ(κ4ǫ−2)
RAHGD (Yang et al. [2023]) Õ(κ11/4ǫ−7/4) Õ(κ13/4ǫ−7/4) Õ(κ11/4ǫ−7/4) Õ(κ13/4ǫ−7/4)
F2BA(Chen et al. [2023]) Õ(ℓκ4ǫ−2) Õ(ℓκ4ǫ−2) \ \

Proposed method (this work) Õ(ℓ3/4κ13/4ǫ−7/4) Õ(ℓ3/4κ13/4ǫ−7/4) \ \

1.2 Our Contribution61

In this paper, we propose an accelerated first-order algorithm for solving nonconvex–strongly convex62

bilevel optimization problems. Our main contributions are summarized as follows:63

1. We introduce an accelerated first-order method framework—originally developed for non-64

convex optimization—into the setting of nonconvex–strongly convex bilevel optimization,65

and consider more general Hölder continuity assumptions on f and g.66

2. We prove that, with a carefully designed restart condition, the iterates generated by our67

proposed method remain uniformly bounded within each epoch. Based on this, we demon-68

strate that the algorithm is convergent with accelerated performance.69
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3. Even under the standard Lipschitz continuity setting, our method improves the first-order70

oracle complexity for finding an ǫ-stationary point of ϕ(x) to Õ(ℓ3/4κ13/4ǫ−7/4), with-71

out requiring access to second-order oracles, where ℓ and κ denote the problem’s largest72

smoothness and condition number. This bound improves upon previously known results,73

as summarized in Table 1.74

4. Our experimental results further support the theoretical convergence guarantees.75

Organization. The rest of this work is organized as follows. Section 2 delineates the assumptions76

and specific algorithmic subroutines. Section 3 formally presents our proposed algorithm along77

with some basic lemmas. Section 4 provides a complexity bound for finding approximate first-order78

stationary points. In Section 5, we provide some numerical experiments to show the outstanding79

performance of our proposed method. Section 6 concludes the paper and discusses future directions.80

Technical analyses are deferred to the appendix.81

Notation. Let a, b ∈ R
d be vectors, where 〈a, b〉 represents their inner product and ‖a‖ denotes82

the Euclidean norm. For a matrix A ∈ R
m×n, ‖A‖ is used to denote the operator norm, which is83

equivalent to the largest singular value of the matrix. Let Gc(f, ǫ) and Gc(g, ǫ) denote the number84

of gradient evaluations with respect to f and g, respectively. Let JV (g, ǫ) denote the number of85

Jacobian-vector products∇2
xyg(x, y)v, and HV (g, ǫ) denote the number of Hessian-vector products86

∇2
yyg(x, y)v. The diameterR of a compact set C is defined asR := maxx1,x2∈C ‖x1 − x2‖.87

2 Preliminaries88

In this section, we present the key definitions and assumptions used throughout the paper.89

Definition 1 (Restricted Hölder Continuity). Let h be a twice differentiable function. We say that90

∇2h is restrictively (ν,Hν)-Hölder continuous with diameterR > 0 if91

Hν := sup
‖x−y‖≤R

‖∇2h(x)−∇2h(y)‖
‖x− y‖ν < +∞, ν ∈ [0, 1].

WhenR = +∞, we call ∇2h is (ν,Hν)-Hölder continuous if ν ∈ [0, 1] and Hν < +∞.92

We make the following assumptions on the upper-level function f and lower-level function g:93

Assumption 1. We make the following assumptions:94

i. The function ϕ(x) is lower bounded.95

ii. The function g(x, y) is µ-strongly convex in y, and has Lg-Lipschitz continuous gradients.96

iii. The function g(x, y) has ρg-Lipschitz continuous Hessians and is (νg,Mg)-Hölder continuous97

in its third-order derivatives.98

iv. The function f(x, y) is Cf -Lipschitz continuous in y and has Lf -Lipschitz continuous gradients.99

v. The Hessian ∇2
xxf(x, y) is (νf , Hf )-Hölder continuous.100

vi. The mixed and second-order partial derivatives ∇2
xyf(x, y), ∇2

yxf(x, y), and ∇2
yyf(x, y) are101

ρf -Lipschitz continuous.102

The assumptions employed in this study are consistent with those commonly adopted in prior lit-103

erature [Chen et al., 2023, Huang et al., 2025, Kwon et al., 2023, Yang et al., 2023]. To introduce104

Hölder continuity, we extend the Lipschitz continuity assumptions about the Hessian of f , and the105

third-order derivative of g to our assumptions (iii), (v), (vi).106

Definition 2. Under Assumption 1, we define the largest smoothness constant as107

ℓ := max {Cf , Lf , Hf , ρf , Lg, ρg,Mg} ,

and the condition number as κ := ℓ/µ.108
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Observe that problem (1) can be reformulated as:109

min
x∈Rdx , y∈R

dy

f (x, y∗(x)) , s.t. g(x, y)− g∗(x) ≤ 0, (3)

where g∗(x) = g(x, y∗(x)) is the value function. A nature penalty problem associated with prob-110

lem (3) is111

min
x∈Rdx , y∈R

dy

Lλ(x, y) := f(x, y) + λ (g(x, y)− g∗(x)) ,

where λ > 0 is a penalty parameter. This problem is equivalent to minimizing the following auxiliary112

function:113

L∗
λ(x) := Lλ (x, y

∗
λ(x)) , where y∗λ(x) = arg min

y∈Rd
Lλ(x, y). (4)

It has been proven in [Chen et al., 2023] that L∗
λ(x) and ∇L∗

λ(x) asymptotically approximate ϕ(x)114

and ∇ϕ(x), respectively, as λ is sufficiently large. Moreover, ∇L∗
λ(x) is Lipschitz continuous and115

its Lipschitz constant does not involve λ. We restate their result below for completeness.116

Lemma 1 (Chen et al. [2023, Lemma 4.1]). Under Assumption 1, for λ ≥ 2Lf/µ, we have117

i. |L∗
λ(x)− ϕ(x)| ≤ O(ℓκ2/λ),118

ii. ‖∇L⋆
λ(x)−∇ϕ(x)‖ ≤ O(ℓκ3/λ),119

iii. ∇L⋆
λ(x) is O(ℓκ3)-Lipschitz continuous.120

In the remainder of the article, we denote the Lipshitz continuous constant of ∇L∗
λ(x) in Lemma 1121

by L = O(ℓκ3) for convenience. Then we introduce a lemma showing that∇2L∗
λ(x) is restrictively122

(νf , Hν)-Hölder continuous with diameterR, where the detailed expression of Hν , depending on λ123

and D, can be found in (16) of Appendix B.1.124

Lemma 2. Under Assumption 1, for λ ≥ 2Lf/µ, ∇2L⋆
λ(x) is restrictly (νf , Hν(λ,R))-Hölder125

continuous with diameterR > 0, where126

Hν(λ,R) = O(ℓκνf ) +O(λ1−νgℓκ4+νg )R1−νf .

3 Restarted Accelerated gradient descent under General Smoothness127

In this section, we present our algorithm in Algorithm 1 and discuss several of its key proper-128

ties. The algorithm has a nested loop structure. The outer loop uses the accelerated gradient de-129

scent (AGD) method with a restart schemes, inspired from the recently works in Li and Lin [2023],130

Marumo and Takeda [2024a]. The iteration counter k is reset to 0 when AGD restarts, whereas the131

total iteration counter K is not. We refer to the period between a reset of k and the next reset as an132

epoch. We introduce a subscript t to denote the number of restarts. It is important to note that the133

subscript t in Algorithm 1 is primarily included to facilitate a simpler convergence analysis. Pro-134

vided that no ambiguity occurs, we omit the subscript t, which means that the iterates are within the135

same epoch.136

In Lines 4 and 5, we invoke AGD, which is summarized in Algorithm 2, to find estimators of137

y∗(wt,k) and y∗λ(wt,k), respectively. AGD achieves linear convergence when applied to the mini-138

mization of smooth and strongly convex functions g(x, ·) and f(x, ·) + λg(x, ·). We note that the139

iteration number of inner AGD steps plays an important role in the complexity analysis. We will140

provide the parameters setting for AGD subroutines in Section 4. In the following, we describe some141

operations involved in the algorithm.142

Restart Condition. Here, we focus on the iterates within a single epoch and omit the subscript t,143

which indexes different epochs. Then we define Sk =
∑k

i=1 ‖xi−xi−1‖2, and the restart condition144

(k + 1)4+νfH2
νS

νf

k > L2, (5)

where the constant Hν will be defined in (6) below. If (5) holds, the epoch terminates; otherwise,145

it continues. We say that an epoch ends at iteration k, if Sk triggers the restart condition (5). It146

is worth noting that unlike the restart condition in Li and Lin [2023], Yang et al. [2023], our restart147

condition is independent of ǫ.148
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Algorithm 1 Restarted Accelerated gradient descent under General Smoothness (RAGD-GS)

1: Input: initial point x0,0; gradient Lipschitz constant L > 0; Hessian Hölder constant Hν > 0
and νf ∈ [0, 1]; momentum parameter θk ∈ (0, 1); parameters α, α′ > 0, β, β′ ∈ (0, 1), {Tt,k},{

T ′
t,k

}

of AGD

2: k ← 0, K ← 0, t← 0, w0,0 ← x0,0, y0,−1 ← 0, z0,−1 ← 0
3: repeat
4: zt,k ← AGD(g (wt,k, ·) , zt,k−1, Tt,k, α, β)

5: yt,k ← AGD
(

f (wt,k, ·) + λg (wt,k, ·) , yt,k−1, T
′
t,k, α

′, β′
)

6: ut,k ← ∇xf (wt,k, yt,k) + λ (∇xg (wt,k, yt,k)−∇xg (wt,k, zt,k))
7: xt,k+1 ← wt,k − 1

Lut,k

8: wt,k+1 ← xt,k+1 + θk+1 (xt,k+1 − xt,k)
9: k ← k + 1, K ← K + 1

10: if (k + 1)4+νfH2
νS

νf

k > L2 then
11: xt+1,0 ← xt,k

12: yt+1,−1 ← 0, zt+1,−1 ← 0, wt+1,0 ← xt+1,0

13: k ← 0, t← t+ 1
14: end if
15: until ‖∇Lλ(w̄t,k)‖ ≤ ǫ
16: Output: averaged solution w̄t,k defined by (7)

Hölder Constant Hν . From Lemma 2, ∇2L⋆
λ(x) is restrictively (νf , Hν(λ,R))-Hölder continu-149

ous with diameter R > 0. Here we choose a specific R and the corresponding Hν(λ,R), denoted150

by D and Hν , satisfying151

D = O
(

λ−(1−νg)κ−(1+νg)
)

, Hν = O
(

λνf (1−νg)ℓκ3+(1+νg)νf

)

. (6)

The derivation of Hν and D is provided in (18) of Appendix C. Then ∇2L∗
λ(x) is restrictively152

(νf , Hν)-Hölder continuous with diameter D. In the case of Lipschitz continuity, i.e., νf = νg = 1,153

(6) implies Hν = O(ℓκ5) and D = O(κ−2).154

Averaged Solution. Inspired by Marumo and Takeda [2024a], we set θk = k
k+1 and define155

w̄k =

k−1∑

i=0

pk,iwi, (7)

where pk,i =
2(i+1)
k(k+1) . We can update w̄k in the following manner: w̄k = k−1

k+1 w̄k−1 +
2

k+1wk−1.156

The following lemma shows that {xi}k−1
i=0 and {wi}k−1

i=0 are bounded within any epoch ending at157

iteration k.158

Lemma 3. Let Assumption 1 holds, Hν and D = R be given in (6), and w̄k be defined in (7). For159

any epoch ending at iteration k, the following holds:160

max
0≤i≤j≤k−1

‖xi − xj‖ ≤ D, max
0≤i≤k−1

‖wi − w̄k‖ ≤ max
0≤i≤j≤k−1

‖wi − wj‖ ≤ D.

Condition 1 (Inexact gradients). Under Assumption 1 and given σ > 0, we assume that the estima-161

tors yt,i and zt,i satisfy the conditions162

‖zt,i − y∗(wt,i)‖ ≤
σ

2λLg
, ‖yt,i − y∗λ(wt,i)‖ ≤

σ

4λLg
, (8)

for any t-th epoch ending at iteration k, where i = 0, . . . , k − 1.163

Remark 1. It is noteworthy that Condition 1 holds in Algorithm 1 as long as the inner loop iteration164

number Tt,k and T ′
t,k are large enough. This will be formally addressed in our convergence analysis165

later, in Theorem 2.166

Under Condition 1, the bias of ∇L∗
λ(wt,k) and its estimator ∇̂L∗

λ(wt,k) can be bounded as shown167

below:168
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Lemma 4 (Inexact gradients). Under Assumption 1 and supposing that Condition 1 holds, we have169

‖∇L∗
λ(wt,i)− ∇̂L∗

λ(wt,i)‖ ≤ σ

for any t-th epoch ending at iteration k, where i = 0, . . . , k − 1.170

4 Complexity Analysis171

In this section, we analyze the performance of Algorithm 1. We begin in Section 4.1 by presenting172

several useful lemmas that rely on the boundedness of the iterates generated within a single epoch.173

These results serve as key tools for our subsequent analysis. We then establish the descent property174

of the objective function and derive an upper bound for ‖∇L∗
λ(wk)‖ for all k ≥ 2. Finally, in175

Section 4.2, we present the main complexity results for Algorithm 1.176

4.1 Tools for Analysis177

We use the following two Hessian-free inequalities to analyze the complexity of Algorithm 1.178

Lemma 5. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x1, . . . , xn179

satisfying max1≤i≤j≤n ‖xi − xj‖ ≤ D and q1, . . . , qn ≥ 0 such that
∑n

q=1 qi = 1:180

‖∇L∗
λ(

n∑

i=1

qixi)−
n∑

i=1

qi∇L∗
λ(xi)‖ ≤

Hν

1 + νf




∑

1≤i<j≤n

qiqj‖xi − xj‖2




1+νf
2

,

where Hν and D are defined in (6).181

Lemma 6. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x and x′ satisfying182

‖x− x′‖ ≤ D:183

L∗
λ(x)− L∗

λ(x
′) ≤ 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉+ 2Hν

(1 + νf )(2 + νf )(3 + νf )
‖x− x′‖2+νf ,

where Hν and D are defined in (6).184

To analyze the behavior of L∗
λ(·) in one epoch, we define the potential function Φk as follows,185

following Marumo and Takeda [2024a]:186

Φk := L∗
λ (xk) +

θ2k
2

(
1

2L
‖∇L∗

λ (xk−1) + L(xk − xk−1)‖2 +
L

2
‖xk − xk−1‖2

)

. (9)

The following lemma shows that Φk is a decreasing sequence if ‖xk − xk−1‖ and σ are sufficiently187

small.188

Lemma 7. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Then we have189

Φk+1 − Φk ≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 + θk − 2

4
L‖xk+1 − xk‖2

− θ2k
4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖. (10)

Lemma 8. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Then the decrease value190

of L∗
λ(·) in one epoch satisfies:191

L∗
λ(xk)− L∗

λ(x0) ≤−
LSk

32k
+

kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖. (11)

Lemma 8 shows that, if we use exact gradient ∇L∗
λ(x), the objective function value L∗

λ(x) always192

decreases as long as Sk > 0. The following lemma provide an upper bound on the gradient norm.193

Lemma 9. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. The following is true194

when k ≥ 2:195

min
1≤i<k

‖∇L∗
λ(w̄i)‖ ≤ σ + cL

√

Sk−1/k3,

where c = 2
√
6 + 27.196
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4.2 Main results197

In the following proposition, we show that the iteration complexity of the outer loop is bounded.198

Proposition 1. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Let c = 2
√
6 + 27199

as defined in Lemma 9, and define ∆λ = L∗
λ(x0,0)−minx∈Rdx L∗

λ(x). Let200

(α, β) = (
1

Lg
,

√
Lg −

√
µ

√
Lg +

√
µ
), (α′, β′) = (

1

2λLg
,

√
4Lg −

√
µ

√
4Lg +

√
µ
),

θk =
k

k + 1
and σ =

1

64c+ 1
ǫ.

(12)

Algorithm 1 terminates within201

O
(

∆λλ
νf (1−νg)

(2+2νf ) ℓ
2+νf
2+2νf κ

6+4νf+νf νg

(2+2νf ) ǫ
− 4+3νf

2+2νf

)

total iterations, outputting w̄t,k satisfying ‖∇L∗
λ(w̄t,k)‖ ≤ ǫ. Moreover, Algorithm 1 terminates202

within203

O
(

∆λλ
1−νg

(2−νf )(1+νf ) ℓ
1

1+νf κ
8−3νf

(2−νf )(1+νf ) ǫ
− 2+νf

2+2νf

)

epochs.204

We present the complexity analysis of our algorithm, aiming to establish its guarantee for finding an205

O(ǫ)-stationary point of Problem (1).206

Theorem 1. Suppose that both Assumption 1 and Condition 1 hold. Define ∆ = ϕ(x0,0) −207

minx∈Rdx ϕ(x). Let λ = max(O(κ),O(ℓκ3)/ǫ,O(ℓκ2)/∆) and set the other parameters as speci-208

fied in (12), Algorithm 1 terminates within209

O
(

∆ℓ
2+2νf−νf νg

2+2νf κ
6+7νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

iterates, outputting w̄t,k satisfying ‖∇ϕ(w̄k)‖ ≤ 2ǫ. Moreover, Algorithm 1 terminates within210

O
(

∆ℓ
1+νf−νf νg

1+νf κ
3+4νf−2νf νg

1+νf ǫ
− 2+2νf−νf νg

1+νf

)

epochs.211

When νf = νg = 1, Theorem 1 shows that within O
(
∆ℓ3/4κ11/4ǫ−7/4

)
outer iterations and212

O(∆ℓ1/2κ5/2ǫ−3/2) epochs, the algorithm will find an O(ǫ)-stationary point. It is better than the213

corresponding result in Yang et al. [2023], Chen et al. [2023], as shown in Table 1.214

Remark 2. Throughout the proof, we only use the restricted Hölder and Lipschitz properties, where215

restricted Lipschitz continuity can be defined analogously to Definition 1. Therefore, the assumption216

on global Lipschitz and Hölder smoothness in Assumption 1 can be relaxed to restricted smoothness.217

To make Condition 1 hold, it suffices to run AGD for a sufficiently large number of iterations, which218

only introduces a logarithmic factor to the total complexity. This gives the following result.219

Theorem 2. Suppose that Assumption 1 holds. In the t-th epoch, we set the inner-loop iteration220

numbers Tt,k and T ′
t,k according to (44), (45), (46), and (47) in Appendix D. We then run Algo-221

rithm 1 with the parameters specified in Theorem 1. Under these settings, all yt,k and zt,k satisfy222

Condition 1. Moreover, the total first-order oracle complexity is223

Õ
(

∆ℓ
2+2νf−νf νg

2+2νf κ
7+8νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

,

and when νf = νg = 1, the first-order oracle complexity is Õ
(
∆ℓ3/4κ13/4ǫ−7/4

)
.224

We defer the proof to Appendix D. Under the Hölder continuity assumption, to the best of our225

knowledge, we are the first to propose a method that finds an ǫ-stationary point. Furthermore, under226

the Lipschitz continuity assumption, our approach outperforms all existing methods in the literature,227

as the proposed method RAGD-GS relies solely on first-order oracle information.228
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5 Numerical Experiment229

This section compares the performance of the proposed method with several existing methods, in-230

cluding RAHGD Yang et al. [2023], BA (Ghadimi and Wang [2018]), AID (Ji et al. [2021]), ITD231

(Ji et al. [2021]) and F2BA Chen et al. [2023]. For the bilevel approximation (BA) method in-232

troduced in Ghadimi and Wang [2018], we implement a conjugate gradient approach to compute233

Hessian-vector products since the original work doesn’t specify this computational detail. We refer234

to this modified version as BA-CG to distinguish it from other algorithm. Our experiments were235

conducted on a PC with Intel Core i7-13650HX CPU (2.60GHz, 20 cores), 24GB RAM, and the236

platform is 64-bit Windows 11 Home Edition (version 26100).237

5.1 Data Hypercleaning238

Data hypercleaning (Franceschi et al. [2017]; Shaban et al. [2019]) is a bilevel optimization problem239

aimed at cleaning noisy labels in datasets. The cleaned data forms the validation set, while the rest240

serves as the training set. The problem is formulated as:241

min
λ∈RNtr

f(W ∗(λ), λ) =
1

|Dval|
∑

(xi,yi)∈Dval

− log(y⊤i W
∗(λ)xi)

s.t. W ∗(λ) = argmin
W∈R

dy×dx

1

|Dtr|
∑

(xi,yi)∈Dtr

−σ(λi) log(y
⊤
i Wxi) + Cr‖W‖2,

where Dtr and Dval are the training and validation sets, respectively, W is the weight matrix of the242

classifier, σ(·) is the sigmoid function, and Cr is a regularization parameter. In our experiments, we243

follow Franceschi et al. [2017] and set Cr = 0.001.244

For MNIST LeCun et al. [1998], we used |Dtr| = 20,000 training samples (partially noisy) and245

|Dval| = 5,000 clean validation samples, with corruption rate p indicating the ratio of noisy labels246

in the training set. In Figures 1 and 2, inner and outer learning rates are searched over {0.001, 0.01,247

0.1, 1, 10, 100}. For all methods except BA, inner GD/AGD steps are from {50, 100, 200, 500}; for248

BA, we choose GD steps from {
⌈
c(k + 1)1/4

⌉
: c ∈ {0.5, 1, 2, 4}} as in Ghadimi and Wang [2018].249

For F2BA and our method, λ is selected from {100, 300, 500, 700}. The results, shown in Figures 1250

and 2, demonstrate that our proposed method achieves acceleration effects comparable to those in251

Yang et al. [2023], and outperforms all other methods.252
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Figure 1: Corruption rate p = 0.2
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Figure 2: Corruption rate p = 0.4

5.2 Hyperparameter Optimization253

Hyperparameter optimization is a bilevel optimization task aimed at minimizing the validation254

loss. We compare our proposed algorithms with baseline algorithms on the 20 Newsgroups255

dataset [Grazzi et al., 2020], which consists of 18,846 news articles divided into 20 topics, with256

130,170 sparse tf-idf features. The dataset is split into training, validation, and test sets with sizes257

|Dtr| = 5,657, |Dval| = 5,657, and |Dtest| = 7,532, respectively. The optimization problem is258
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formulated as:259

min
λ∈Rp

1

|Dval|
∑

(xi,yi)∈Dval

L(w∗(λ);xi, yi)

s.t. w∗(λ) = argmin
w∈Rc×p

1

|Dtr|
∑

(xi,yi)∈Dtr

L(w;xi, yi) +
1

2cp

c∑

j=1

p
∑

k=1

exp(λk)w
2
jk,

For the evaluation in Figure 3, inner and outer learning rates are selected from {0.001, 0.01,260

0.1, 1, 10, 100}, and GD/AGD steps from {5, 10, 30, 50}. For BA, we choose GD steps from261

{
⌈
c(k + 1)1/4

⌉
: c ∈ {0.5, 1, 2, 4}} as in Ghadimi and Wang [2018]. For F2BA and our method, λ262

is chosen from {100, 300, 500, 700}. As shown in Figure 3, our proposed method exhibits perfor-263

mance comparable to that of Yang et al. [2023], while significantly outperforming other competing264

algorithms by converging faster and reaching a lower test loss.265

0 10 20 30 40 50 60 70
running time  (s)

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

RAGD-GS
AID-BiO
BA-CG
ITD-BiO
RAHGD
F2BA

(a) Test loss v.s. running time
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0.0 0.5 1.0 1.5 2.0 2.5
# oracle calls 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

RAGD-GS
AID-BiO
BA-CG
ITD-BiO
RAHGD
F2BA

(d) Test accuracy v.s. oracle calls

Figure 3: Results of test loss and test accuracy evaluated on the test set.

6 Conclusion266

This work introduces an accelerated first-order method framework for solving nonconvex-strongly267

convex bilevel optimization problems, extending techniques from nonconvex optimization to a268

broader setting under generalized Hölder continuity assumptions on both the upper-level and lower-269

level objectives. We show that, with a carefully designed restart condition, the iterates remain uni-270

formly bounded within each epoch, ensuring both stability and convergence. In addition, we provide271

first-order oracle complexity bounds along with rigorous error analysis and convergence guarantees.272

Our theoretical results are further supported by empirical evidence, demonstrating the effectiveness273

and robustness of the proposed algorithm. An important open question is whether a fully first-order274

method can find an ǫ-approximate second-order stationary point without using ǫ-dependent parame-275

ters, which we leave for future work.276
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A Notations for Tensors358

We adopt the tensor notation from Kolda and Bader [2009]. For a three-way tensor X ∈ R
d1×d2×d3 ,359

the entry at (i1, i2, i3) is denoted by [X ]i1,i2,i3 . The inner product between X and Y is defined as360

〈X ,Y〉 :=
∑

i1,i2,i3

[X ]i1,i2,i3 [Y]i1,i2,i3 .

The operator norm is361

‖X‖ := sup
‖x1‖=‖x2‖=‖x3‖=1

〈X , x1 ◦ x2 ◦ x3〉,

where [x1 ◦x2 ◦x3]i1,i2,i3 := [x1]i1 [x2]i2 [x3]i3 . This definition generalizes the matrix spectral norm362

and the Euclidean norm for vectors to three-way tensors. Let X ∈ R
d1×d2×d3 be a three-way tensor,363

and let A ∈ R
d′

1×d1 be a matrix. The mode-1 product of X and A, denoted by X ×1A ∈ R
d′

1×d2×d3 ,364

is defined component-wise as365

[X ×1 A]i′1,i2,i3 :=

d1∑

i1=1

Ai′1,i1
Xi1,i2,i3 .

Mode-2 and mode-3 products, denoted by X ×2B and X ×3C, are defined analogously for matrices366

B ∈ R
d′

2×d2 and C ∈ R
d′

3×d3 , respectively. Moreover, the operator norm satisfies the submultiplica-367

tive property under mode-i multiplication:368

‖X ×i A‖ ≤ ‖A‖ · ‖X‖, for i = 1, 2, 3.

B Proof of lemmas in Section 2369

Lemma B.1 (Lemma B.2 by Chen et al. [2023]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that370

‖y⋆λ(x)− y⋆(x)‖ ≤ Cf

λµ .371

Lemma B.2 (Lemma B.5 by Chen et al. [2023]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that372

‖∇y⋆(x)−∇y⋆λ(x)‖ ≤ D2/λ, where373

D2 :=

(
1

µ
+

2Lg

µ2

)(

Lf +
Cfρg
µ

)

= O
(
κ3
)
.

Lemma B.3 (Lemma B.6 by Chen et al. [2023]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that374

‖∇y∗(x)‖ ≤ Lg/µ, ‖∇y⋆λ(x)‖ ≤ 4Lg/µ.375

This implies that y∗(x) is (Lg/µ)-Lipschitz continuous, y∗λ(x) is (4Lg/µ)-Lipschitz continuous.376

Lemma B.4. Under Assumption 1, for λ ≥ 2Lf/µ, we have377

‖∇2y⋆(x)−∇2y⋆λ(x)‖ ≤
D4

λνg
,

where378

D4 :=
2ρg
µ2

(
µ

2Lf
)1−νg

(

1 +
Lg

µ

)2(

Lf +
Cfρg
µ

)

+
14LgρgD2

µ2
(

µ

2Lf
)1−νg

+
50L2

g

µ3

(

ρf (
µ

2Lf
)1−νg +Mg(

Cf

µ
)νg

)

=O(κ4+νg ).

Proof. We begin by differentiating the identity379

∇2
xyg (x, y

∗(x)) +∇y∗(x)∇2
yyg (x, y

∗(x)) = 0

with respect to x. This yields380

∇3
xxyg (x, y

∗(x)) +∇3
yxyg (x, y

∗(x))×1 ∇y∗(x) +∇2y∗(x)×3 ∇2
yyg (x, y

∗(x))

+∇3
xyyg (x, y

∗(x))×2 ∇y∗(x) +∇3
yyyg (x, y

∗(x))×1 ∇y∗(x)×2 ∇y∗(x) = 0.
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Rearranging terms to isolate∇2y∗(x), we obtain381

∇2y∗(x)

=−
(
∇3

xxyg (x, y
∗(x)) +∇3

yxyg (x, y
∗(x))×1 ∇y∗(x)

)
×3

[
∇2

yyg (x, y
∗(x))

]−1

−∇3
xyyg (x, y

∗(x))×2 ∇y∗(x)×3

[
∇2

yyg (x, y
∗(x))

]−1

−∇3
yyyg (x, y

∗(x))×1 ∇y∗(x)×2 ∇y∗(x)×3

[
∇2

yyg (x, y
∗(x))

]−1
.

(13)

Analogously, we have382

∇2y∗λ(x)

=−
(
∇3

xxyLλ (x, y
∗
λ(x)) +∇3

yxyLλ (x, y
∗
λ(x))×1 ∇y∗λ(x)

)
×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1

−∇3
xyyLλ (x, y

∗
λ(x))×2 ∇y∗λ(x)×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1

−∇3
yyyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1
.

(14)

Next, we estimate the difference between the corresponding third-order derivatives in the original383

and penalized problems. To begin with, we observe that384

∥
∥
∥
∥
∥
∇3

xxyg (x, y
∗(x))−

∇3
xxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥
≤Mg ‖y∗λ(x)− y∗(x)‖νg +

ρf
λ

=
ρf
λ

+Mg

(
Cf

λµ

)νg

.

Similarly, for the mixed partial derivative and its contraction with∇y∗(x), we have385

∥
∥
∥
∥
∥
∇3

yxyg (x, y
∗(x))×1 ∇y∗(x)−

∇3
yxyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)
λ

∥
∥
∥
∥
∥

≤‖∇y∗(x)−∇y∗λ(x)‖
∥
∥∇3

yxyg (x, y
∗(x))

∥
∥+ ‖∇y∗λ(x)‖

∥
∥
∥
∥
∥
∇3

yxyg (x, y
∗(x))−

∇3
yxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥

≤ρgD2

λ
+

4Lg

µ

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

.

Furthermore, we control the error in the third-order term involving two contractions:386

∥
∥
∥
∥
∥
∇3

yyyg (x, y
∗(x))×1 ∇y∗(x)×2 ∇y∗(x)−

∇3
yyyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)

λ

∥
∥
∥
∥
∥

≤ ‖∇y∗(x)‖
∥
∥∇3

yyyg (x, y
∗(x))

∥
∥ ‖∇y∗(x)−∇y∗λ(x)‖

+ ‖∇y∗λ(x)‖
∥
∥∇3

yyyg (x, y
∗(x))

∥
∥ ‖∇y∗(x)−∇y∗λ(x)‖

+ ‖∇y∗λ(x)‖2
∥
∥
∥
∥
∥
∇3

xxyg (x, y
∗(x))−

∇3
xxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥

≤ 5LgρgD2

λµ
+

16L2
g

µ2

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

.
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Combining the above inequalities, we are now ready to bound the difference between the second387

derivatives:388

∥
∥∇2y∗(x)−∇2y∗λ(x)

∥
∥

≤ρg
(

1 +
Lg

µ

)2
∥
∥
∥
∥
∥
∥

[
∇2

yyg (x, y
∗(x))

]−1 −
[

∇2
yyLλ (x, y

∗
λ(x))

λ

]−1
∥
∥
∥
∥
∥
∥

+

(

7LgρgD2

λµ
+

25L2
g

µ2

(
ρf
λ

+Mg

(
Cf

λµ

)νg
))

∥
∥
∥
∥
∥
∥

[

∇2
yyLλ (x, y

∗
λ(x))

λ

]−1
∥
∥
∥
∥
∥
∥

≤ 2ρg
λµ2

(

1 +
Lg

µ

)2(

Lf +
Cfρg
µ

)

+
14LgρgD2

λµ2
+

50L2
g

µ3

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

≤D4

λνg
.

⊔⊓389

Lemma B.5. Under Assumption 1, for λ ≥ 2Lf/µ, the mappings∇y∗(x) and∇y∗λ(x) are Lipschitz390

continuous with constants
(

1 +
Lg

µ

)2
ρg

µ and
(

1 +
4Lg

µ

)2 (
2ρg

µ +
ρf

Lf

)

, respectively.391

Proof. Recall that392

∇y∗λ(x) = −∇2
xyLλ (x, y

∗
λ(x))

[
∇2

yyLλ (x, y
∗
λ(x))

]−1
,

and393

∇y∗(x) = −∇2
xyg (x, y

∗(x))
[
∇2

yyg (x, y
∗(x))

]−1
.

By (13) and (14), we can obtain the Lipschitz constants of∇y∗(x) and∇y∗λ(x) by directly bounding394

‖∇2y∗(x)‖ and ‖∇2y∗λ(x)‖. Specifically, we have395

‖∇2y∗(x)‖ ≤ 1

µ

(

ρg + ρg
Lg

µ
+ ρg

Lg

µ
+ ρg

(
Lg

µ

)2
)

=
ρg
µ

(

1 +
Lg

µ

)2

,

‖∇2y∗λ(x)‖ ≤
2

λµ
(ρf + λρg)

(

1 + 2
4Lg

µ
+

(
4Lg

µ

)2
)

≤
(

1 +
4Lg

µ

)2(
2ρg
µ

+
ρf
Lf

)

.

Here we use Lemma B.3, λ ≥ 2Lf/µ, ‖∇3
xxyg(x, y)‖ ≤ ρg , ‖∇3

xyyg(x, y)‖ ≤ ρg ,396

‖∇3
yyyg(x, y)‖ ≤ ρg , ‖∇2

yyg(x, y)‖ ≥ µ, ‖∇2
yyLλ(x, y)‖ ≥ 1

2λµ, ‖∇3
xxyf(x, y)‖ ≤ ρf ,397

‖∇3
xyyf(x, y)‖ ≤ ρf and ‖∇3

yyyf(x, y)‖ ≤ ρf .398

⊔⊓399

B.1 Proof of Lemma 2400

Proof. We decompose ∇2L∗
λ(x) into two components:401

∇2L∗
λ(x) = A(x) +B(x),

where402

A(x) = ∇2
xxf (x, y∗λ(x)) +∇y∗λ(x)∇2

yxf (x, y∗λ(x))

and403

B(x) =λ
(
∇2

xxg (x, y
∗
λ(x))−∇2

xxg (x, y
∗(x))

)

+ λ
(
∇y∗λ(x)∇2

yxg (x, y
∗
λ(x))−∇y∗(x)∇2

yxg (x, y
∗(x))

)
.
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To analyze the variation of A(x), we observe:404

‖A(x1)−A(x2)‖
≤‖∇2

xxf (x1, y
∗
λ(x1))−∇2

xxf (x2, y
∗
λ(x2)) ‖

+ ‖∇y∗λ(x1)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x2, y
∗
λ(x2)) ‖

≤‖∇2
xxf (x1, y

∗
λ(x1))−∇2

xxf (x2, y
∗
λ(x2)) ‖

+ ‖∇y∗λ(x1)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x1, y
∗
λ(x1)) ‖

+ ‖∇y∗λ(x2)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x2, y
∗
λ(x2)) ‖

≤Hf (1 +
4Lg

µ
)νf ‖x1 − x2‖νf +

4Lg

µ
ρf (1 +

4Lg

µ
)‖x1 − x2‖

+ (1 +
4Lg

µ
)2(

2ρg
µ

+
ρf
Lf

)Lf‖x1 − x2‖

≤Hf (1 +
4Lg

µ
)νf

︸ ︷︷ ︸

C1

‖x1 − x2‖νf

+

(
4Lg

µ
ρf (1 +

4Lg

µ
) + (1 +

4Lg

µ
)2(

2ρg
µ

+
ρf
Lf

)Lf

)

︸ ︷︷ ︸

C2

D1−νf ‖x1 − x2‖νf . (15)

The first step applies the triangle inequality. The second step relies on the (νf , Hf )-Hölder continu-405

ity of∇2
xxf , the bound ∇2

yxf(·, ·) � Lf , and Lemma B.2. Here, C1 = O(ℓκνf ), C2 = O(ℓκ3).406

Next, we evaluate ∇B(x) by differentiating:407

∇B(x) =λ
(
∇3

xxxg (x, y
∗
λ(x))−∇3

xxxg (x, y
∗(x))

)

+ λ
(
∇3

yxxg (x, y
∗
λ(x))×1 ∇y∗λ(x)−∇3

yxxg (x, y
∗(x))×1 ∇y∗(x)

)

+ λ
(
∇3

xyxg (x, y
∗
λ(x))×2 ∇y∗λ(x)−∇3

xyxg (x, y
∗(x))×2 ∇y∗(x)

)

+ λ
(
∇3

yyxg (x, y
∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)−∇3

yyxg (x, y
∗(x))×1 ∇y∗(x)×2 ∇y∗(x)

)

+ λ
(

∇2y∗λ(x)×3

[
∇2

yxg (x, y
∗
λ(x))

]⊤ −∇2y∗(x)×3

[
∇2

yxg (x, y
∗(x))

]⊤)
.

To bound the Lipschitz constant of B(x), we control ‖∇B(x)‖ as follows:408

‖∇B(x)‖ ≤λ‖∇3
xxxg(x, y

∗(x))−∇3
xxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yxxg(x, y

∗(x))−∇3
yxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗λ(x)−∇y∗(x)‖‖∇3
yxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
xyxg(x, y

∗(x))−∇3
xyxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)−∇y∗λ(x)‖‖∇3
xyxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yyxg(x, y

∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖
+ λ‖∇y∗λ(x)‖‖∇3

yyxg(x, y
∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖

+ λ‖∇y∗(x)‖2‖∇3
yyxg(x, y

∗(x))−∇3
yyxg(x, y

∗
λ(x))‖

+ λ‖∇2y∗(x)‖‖∇2
yxg(x, y

∗(x))−∇2
yxg(x, y

∗
λ(x))‖

+ λ‖∇2y∗(x)−∇2y∗λ(x)‖‖∇2
yxg(x, y

∗
λ(x))‖.
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Using the smoothness and Hölder continuity assumptions on g, as well as bounds from Lemma B.1,409

Lemma B.2, and Lemma B.4, we arrive at:410

‖∇B(x)‖ ≤λMg

(
Cf

λµ

)νg
(

1 +
Lg

µ

)2

+ (2 +
5Lg

µ
)λρg

D2

λ

+ λρg

(
Cf

λµ

)(

1 +
Lg

µ

)2
ρg
µ

+ λLg
D4

λνg

=λ1−νgMg

(
Cf

µ

)νg
(

1 +
Lg

µ

)2

+ (2 +
5Lg

µ
)ρgD2

+ ρg

(
Cf

µ

)(

1 +
Lg

µ

)2
ρg
µ

+ λ1−νgLgD4.

Denote the entire right-hand side as C3 = O(λ1−νgℓκ4+νg ). Finally, we estimate the restricted411

Hölder constant of ∇2L∗
λ(x):412

‖∇2L∗
λ(x1)−∇2L∗

λ(x2)‖
‖x1 − x2‖νf

≤‖A(x1)−A(x2)‖
‖x1 − x2‖νf

+
‖B(x1)−B(x2)‖
‖x1 − x2‖νf

≤C1 + (C2 + C3)‖x1 − x2‖1−νf

≤C1 + (C2 + C3)R1−νf .

Define413

Hν(λ,R) := C1 + (C2 + C3)R1−νf = O(ℓκνf ) +O(λ1−νgℓκ4+νg )R1−νf . (16)

Thus, ∇2L⋆
λ(x) is restrictively (νf , Hν(λ,R))-Hölder continuous with diameter R. In the case414

νf = 1 and νg = 1, this implies ∇2L⋆
λ(x) is O(ℓκ5)-Lipschitz continuous. ⊔⊓415

C Proof of lemmas in Section 3416

C.1 AGD subroutines417

Algorithm 2 AGD(h, z0, T, α, β)

1: Input: objective function h(·); start point z0; iteration number T ≥ 1; step-size α > 0; momen-
tum parameter β ∈ (0, 1)

2: z̃0 ← z0
3: for t = 0, . . . , T − 1 do
4: zt+1 ← z̃t − α∇h (z̃t)
5: z̃t+1 ← zt+1 + β (zt+1 − zt)
6: end for
7: Output: zT

This method boasts an optimal convergence rate as shown below:418

Lemma C.1 (Nesterov [2013], Section 2). Running Algorithm 2 on an ℓh-smooth and µh-strongly419

convex objective function h(·) with α = 1/ℓh and β =
(√

κh − 1
)
/
(√

κh + 1
)

produces an output420

zT satisfying421

‖zT − z∗‖2 ≤ (1 + κh)

(

1− 1√
κh

)T

‖z0 − z∗‖2,

where z∗ = argminz h(z) and κh = ℓh/µh denotes the condition number of the objective h.422

C.2 Proof of Lemma 3423

Proof. Consider an epoch ending at iteration k ≥ 2. By applying the Cauchy–Schwarz inequality424

to the restart condition (5), we obtain425

max
0≤i≤j≤k−1

‖xi − xj‖ ≤
k−1∑

i=1

‖xi − xi−1‖ ≤
√

kSk−1 ≤ (
L

Hν
)

1
νf . (17)
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This implies that the diameter of conv({xi}k−1
i=0 ) is less than ( L

Hν
)

1
νf . By solving a system of equa-426

tions:427 {

R = 3( L
Hν

)
1
νf ,

Hν(λ,R) = Hν ,
(18)

where Hν(λ,R) is defined in (16). We have428

Hν = O
(

λνf (1−νg)ℓκ3+(1+νg)νf

)

, R = O
(

λ−(1−νg)κ−(1+νg)
)

. (19)

Denote this specific R by D. The boundedness of {xi}k−1
i=1 has been ensured by (17). From line 8429

in Algorithm 1, we have430

‖wi+1 − wi‖ ≤ (1 + θi+1)‖xi+1 − xi‖+ θi‖xi − xi−1‖ ≤ 2‖xi+1 − xi‖+ ‖xi − xi−1‖.
The last inequality holds due to θk ∈ (0, 1). So431

max
0≤i<k

‖wi − w̄k‖ ≤ max
0≤i≤j<k

‖wi − wj‖ ≤ 3 max
0≤i≤j<k

‖xi − xj‖ ≤ D,

where w̄k is defined in (7). The first inequality holds because w̄k ∈ conv({wi}k−1
i=0 ), and the maxi-432

mum diameter of the convex hull is attained by a pair of its vertices.433

⊔⊓434

C.3 Proof of Lemma 4435

Proof. Consider the exact gradient of L∗
λ(·):436

∇L∗
λ(wt,k) = ∇xf (wt,k, y

∗
λ(wt,k)) + λ (∇xg (wt,k, y

∗
λ(wt,k))−∇xg (wt,k, y

∗(wt,k))) ,

and the inexact gradient estimator used by Algorithm 1:437

∇̂L∗
λ(wt,k) = ∇xf (wt,k, yt,k) + λ (∇xg (wt,k, yt,k)−∇xg (wt,k, zt,k)) .

By the triangle inequality, the Lipschitz continuity assumptions in Condition 1, and the condition438

Lf ≤ 1
2λµ ≤ λLg , we obtain:439

‖∇L∗
λ(wt,k)− ∇̂L∗

λ(wt,k)‖
≤Lf‖yt,k − y∗λ(wt,k)‖+ λLg‖yt,k − y∗λ(wt,k)‖+ λLg‖zt,k − y∗(wt,k)‖
=(Lf + λLg)‖yt,k − y∗λ(wt,k)‖+ λLg‖zt,k − y∗(wt,k)‖
≤(Lf + λLg) ·

σ

4λLg
+ λLg ·

σ

2λLg

≤σ

2
+

σ

2
= σ.

⊔⊓440

D Proof of lemmas in Section 4441

Lemma D.1. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x and x′:442

L∗
λ(x)− L∗

λ(x
′) ≤ 〈∇L∗

λ(x
′), x− x′〉+ L

2
‖x− x′‖2.

D.1 Proof of Lemma 5443

Proof. Let x̄ =
∑n

i=1 qixi. Since L∗
λ is twice differentiable, we have444

∇L∗
λ(xi)−∇L∗

λ(x̄) = ∇2Lλ(x̄)(xi − x̄) +

∫ 1

0

(∇2L∗
λ(x̄+ t(xi − x̄))−∇2L∗

λ(x̄))(xi − x̄) dt.

Computing the weighted average sum, we have445

n∑

i=1

qi∇L∗
λ(xi)−∇L∗

λ(x̄) =

n∑

i=1

qi

∫ 1

0

(∇2L∗
λ(x̄+ t(xi − x̄))−∇2L∗

λ(x̄))(xi − x̄) dt

17



and446
∥
∥
∥
∥
∥

n∑

i=1

qi∇L∗
λ(xi)−∇L∗

λ(x̄)

∥
∥
∥
∥
∥
≤

n∑

i=1

qi

∫ 1

0

∥
∥∇2L∗

λ(x̄+ t(xi − x̄))−∇2L∗
λ(x̄)

∥
∥ ‖xi − x̄‖ dt

≤
n∑

i=1

qi

∫ 1

0

Hν ‖t(xi − x̄)‖νf ‖xi − x̄‖ dt

=
Hν

1 + νf

n∑

i=1

qi ‖xi − x̄‖1+νf

=
Hν

1 + νf

n∑

i=1

q
1−νf

2
i

(

qi ‖xi − x̄‖2
) 1+νf

2

≤ Hν

1 + νf

(
n∑

i=1

qi

) 1−νf
2
(

n∑

i=1

qi ‖xi − x̄‖2
) 1+νf

2

=
Hν

1 + νf




∑

1≤i<j≤n

qiqj ‖xi − xj‖2




1+νf
2

.

The second inequality holds due to ‖xi − x̄‖ ≤ max1≤i≤j≤n ‖xi − xj‖ ≤ D, Lemma 2 and447

equation (6). The last inequality uses Hölder inequality. The last equality holds due to
∑n

i=1 qi = 1448

and
∑n

i=1 qi‖xi − x̄‖2 =
∑

1≤i<j≤n qiqj‖xi − xj‖2. ⊔⊓449

D.2 Proof of Lemma 6450

Proof.

L∗
λ(x)− L∗

λ(x
′)− 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉

=

∫ 1

0

〈∇L∗
λ (tx+ (1− t)x′) , x− x′〉 − 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉 dt

=

∫ 1

0

〈∇L∗
λ(tx+ (1− t)x′)− t∇L∗

λ(x)− (1− t)∇L∗
λ(x

′), x− x′〉 dt

≤
∫ 1

0

‖∇L∗
λ(tx+ (1− t)x′)− t∇L∗

λ(x)− (1− t)∇L∗
λ(x

′)‖ ‖x− x′‖dt

≤ Hν

1 + νf

∫ 1

0

(
t(1− t)1+νf + (1− t)t1+νf

)
‖x− x′‖2+νf dt

=
2Hν

(1 + νf )(2 + νf )(3 + νf )
‖x− x′‖2+νf .

The last inequality follows from Lemma 5 by setting n = 2, (x1, x2) = (x, x′), and (q1, q2) =451

(t, 1− t).452

⊔⊓453

D.3 Proof of Lemma 7454

Proof. Let455

Pk := 〈∇L∗
λ(xk−1), xk − xk−1〉.

From Lemma D.1, we have456

L∗
λ(xk+1)− L∗

λ(wk) ≤〈∇L∗
λ(wk), xk+1 − wk〉+

L

2
‖xk+1 − wk‖2

=− 1

L
〈∇L∗

λ(wk), ∇̂L∗
λ(wk)〉+

1

2L
‖∇̂L∗

λ(wk)‖2. (20)
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From Lemma 6 and Lemma 3, it follows that ‖wk − xk‖ ≤ ‖xk − xk−1‖ ≤ D and457

L∗
λ(wk)− L∗

λ(xk) ≤
1

2
〈∇L∗

λ(wk) +∇L∗
λ(xk), wk − xk〉

+
2Hν

(1 + νf )(2 + νf )(3 + νf )
‖wk − xk‖2+νf . (21)

By summing inequalities (20) and (21), we evaluate the expression as follows458

L∗
λ(xk+1)− L∗

λ(xk)

≤1

2
〈∇L∗

λ(wk) +∇L∗
λ(xk), wk − xk〉+

2Hνθ
2+νf

k

(1 + νf )(2 + νf )(3 + νf )
‖xk − xk−1‖2+νf

− 1

L
〈∇L∗

λ(wk), ∇̂L∗
λ(wk)〉+

1

2L
‖∇̂L∗

λ(wk)‖2. (22)

To evaluate the first term on the right-hand side, we decompose it into four terms:459

〈∇L∗
λ(wk) +∇L∗

λ(xk), wk − xk〉
= 2〈∇L∗

λ(wk), wk − xk〉
︸ ︷︷ ︸

(A)

+ θk〈∇L∗
λ(xk−1), wk − xk〉

︸ ︷︷ ︸

(B)

−θk〈∇L∗
λ(xk), wk − xk〉

︸ ︷︷ ︸

(C)

−〈∇L∗
λ(wk) + θk∇L∗

λ(xk−1)− (1 + θk)∇L∗
λ(xk), wk − xk〉

︸ ︷︷ ︸

(D)

.

Let n = 2, q1 = 1/(1 + θk), q2 = θk/(1 + θk) in Lemma 5, we have460

∥
∥
∥
∥
∇L∗

λ(xk)−
1

1 + θk
∇L∗

λ(wk)−
θk

1 + θk
∇L∗

λ(xk−1)

∥
∥
∥
∥

≤ Hν

1 + νf

(
θk

(1 + θk)2
‖wk − xk−1‖2

) 1+νf
2

=
Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf . (23)

Now, we proceed to evaluate (A), (B), (C) and (D) respectively.461

(A) =
1

L
‖∇L∗

λ(wk)‖2 + L‖wk − xk‖2 − L‖(wk − xk)−
1

L
∇L∗

λ(wk)‖2

=
1

L
‖∇L∗

λ(wk)‖2 + θ2kL‖xk − xk−1‖2 − L

∥
∥
∥
∥
(xk+1 − xk) +

(
1

L
∇̂L∗

λ(wk)−
1

L
∇L∗

λ(wk)

)∥
∥
∥
∥

2

=
1

L
‖∇L∗

λ(wk)‖2 + θ2kL‖xk − xk−1‖2 − L‖xk+1 − xk‖2

− 1

L

∥
∥
∥∇̂L∗

λ(wk)−∇L∗
λ(wk)

∥
∥
∥

2

− 2〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉,

(B) =θ2k〈∇L∗
λ(xk−1), xk − xk−1〉 = θ2kPk,

(C) =− θkPk+1 + θk〈∇L∗
λ(xk), xk+1 − wk〉

=− θkPk+1 −
θk
L
〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉,

(D) ≤ 2Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf .
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Here we use equality 2〈a, b〉 = 1
L‖a‖2 + L‖b‖2 − L

∥
∥b− 1

La
∥
∥
2
, xk+1 = wk − 1

L∇̂L∗
λ(wk), wk =462

xk + θk(xk − xk−1) and (23). Plugging the evaluations into (22), we have463

L∗
λ(xk+1)− L∗

λ(xk) ≤
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k ‖xk − xk−1‖2+νf

+
θ2kL

2
‖xk − xk−1‖2 −

L

2
‖xk+1 − xk‖2

−〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉

+
θ2k
2
Pk −

θk
2
Pk+1 +

Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf

− θk
2L
〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉. (24)

Next, to bound the last term on the right-hand side of (24), by triangle inequality and (23), we have464

∥
∥
∥(1 + θk)∇L∗

λ(xk)− ∇̂L∗
λ(wk)

∥
∥
∥

≤‖(1 + θk)∇L∗
λ(xk)−∇L∗

λ(wk)‖+
∥
∥
∥∇̂L∗

λ(wk)−∇L∗
λ(wk)

∥
∥
∥

≤σ + θk ‖∇L∗
λ(xk−1)‖+

2Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf .

Squaring both sides yields465

‖(1 + θk)∇L∗
λ(xk)− ∇̂L∗

λ(wk)‖2

=(1 + θk)
2‖∇L∗

λ(xk)‖2 + ‖∇̂L∗
λ(wk)‖2 − 2(1 + θk)〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉

≥(1 + θk)
2‖∇L∗

λ(xk)‖2 − 2(1 + θk)〈∇L∗
λ(xk), ∇̂L∗

λ(wk)〉,
and466

(

σ + θk ‖∇L∗
λ(xk−1)‖+

2Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf

)2

≤θk(1 + θk)‖∇L∗
λ(xk−1)‖2 + 2(1 + θk)

(

σ2 +
4H2

ν

(1 + νf )2
θ
1+νf

k ‖xk − xk−1‖2+2νf

)

.

Here we use the inequalities (a + b)2 ≤ (1 + 1
θk
)a2 + (1 + θk)b

2 and (a + b)2 ≤ 2(a2 + b2).467

Rearranging the terms yields468

−〈∇L∗
λ(xk), ∇̂L∗

λ(wk)〉 ≤σ2 +
θk
2
‖∇L∗

λ(xk−1)‖2 +
4H2

ν

(1 + νf )2
θ
1+νf

k ‖xk − xk−1‖2+2νf

− 1 + θk
2
‖∇L∗

λ(xk)‖2.

By plugging this bound into (24): we obtain469

L∗
λ(xk+1)− L∗

λ(xk) ≤
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k ‖xk − xk−1‖2+νf

+
θ2kL

2
‖xk − xk−1‖2 −

L

2
‖xk+1 − xk‖2

−〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉

+
θ2k
2
Pk −

θk
2
Pk+1 +

Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf

+
θ2k
4L
‖∇L∗

λ(xk−1)‖2 +
2H2

ν

(1 + νf )2
θ
2+νf

k

L
‖xk − xk−1‖2+2νf

− (1 + θk)θk
4L

‖∇L∗
λ(xk)‖2 +

θkσ
2

2L
. (25)
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Considering (9), (25) and θk ≤ 1, we have470

Φk+1 − Φk ≤L∗
λ(xk+1)− L∗

λ(xk) +
θ2k+1

2

(

Pk+1 +
1

2L
‖∇L∗

λ (xk) ‖2 + L‖xk+1 − xk‖2
)

− θ2k
2

(

Pk +
1

2L
‖∇L∗

λ (xk−1) ‖2 + L‖xk − xk−1‖2
)

≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 − θk

2
Pk+1

+
θ2k+1 − θk(1 + θk)

4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖.

From Young’s inequalities and θ2k+1 − θk ≤ 0, we have471

−Pk+1 = −〈∇L∗
λ(xk), xk+1 − xk〉 ≤

1

2L
‖∇L∗

λ(xk)‖2 +
L

2
‖xk+1 − xk‖2.

Finally, we derive the inequality below:472

Φk+1 − Φk ≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 + θk − 2

4
L‖xk+1 − xk‖2

− θ2k
4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖.

⊔⊓473

D.4 Proof of Lemma 8474

Proof. Summing Lemma 7 from i = 0, . . . , k − 1 and telescoping yields475

Φk − Φ0 =

k−1∑

i=0

(Φi+1 − Φi)

≤
k−1∑

i=0

(

‖xi − xi−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

i +
Hν

1 + νf
θ

3+νf
2

i

)

+ ‖xi − xi−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

i

L
+

θ2i+1 + θi − 2

4
L‖xi+1 − xi‖2

− θ2i
4L
‖∇L∗

λ(xi)‖2 +
σ2

2L
+ σ‖xi+1 − xi‖

)

≤
k−1∑

i=0

‖xi − xi−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
Hν

1 + νf
θ

3+νf
2

k−1

)

+

k−1∑

i=0

‖xi − xi−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k−1

L
+

θ2k + θk−1 − 2

4
L

k−1∑

i=0

‖xi+1 − xi‖2

− θ20
4L
‖∇L∗

λ(xi)‖2 +
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖
)

. (26)

The second inequality holds due to {θk} is non-decreasing and non-negative. Moreover, by the476

definition of Φk in (9) , we have477

Φk − L∗
λ(xk) =

θ2k
2

(
1

2L
‖∇L∗

λ (xk−1) + L(xk − xk−1)‖2 +
L

2
‖xk − xk−1‖2

)

≥ 0,

Φ0 − L∗
λ(x0) =

θ20
4L
‖L∗

λ(x0)‖2 ≥ 0.

(27)

(28)
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From Power-Mean Inequality, we have478

k−1∑

i=0

‖xi − xi−1‖2+νf ≤ S
2+νf

2

k−1 ,

k−1∑

i=0

‖xi − xi−1‖2+2νf ≤ S
1+νf

k−1 . (29)

Substituting (27), (28), and (29) into (26), we obtain479

L∗
λ(xk)− L∗

λ(x0) ≤ S
2+νf

2

k−1

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
Hν

1 + νf
θ

3+νf
2

k−1

)

+ S
1+νf

k−1 ·
2H2

ν

(1 + νf )2
·
θ
2+νf

k−1

L
+

θ2k + θk−1 − 2

4
LSk

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.

Applying the restart condition (5) and noting that Sk−1 ≤ Sk, we further obtain480

L∗
λ(xk)− L∗

λ(x0) ≤
(

2

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
1

1 + νf
θ

3+νf
2

k−1

)

· LSk

k2+
νf
2

+
2

(1 + νf )2
θ
2+νf

k−1 ·
LSk

k4+νf
+

θ2k + θk−1 − 2

4
LSk

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.

Since 0 ≤ νf ≤ 1, and481

(
7

3
θ
2+νf

k−1 + θ
3+νf

2

k−1

)

· 1

k2+
νf
2

+
θ2k + θk−1 − 2

4
≤ − 1

32k
, ∀k ≥ 1,

we obtain482

L∗
λ(xk)− L∗

λ(x0) ≤ LSk

((
7

3
θ
2+νf

k−1 + θ
3+νf

2

k−1

)

· 1

k2+
νf
2

+
θ2k + θk−1 − 2

4

)

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖

≤ − LSk

32k
+

kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.

⊔⊓483

D.5 Proof of Lemma 9484

Proof. Define485

Zk =

k−1∑

i=0

k−1∏

j=i+1

θj =
k + 1

2
,

so that pk,i =
1
Zk

∏k−1
j=i+1 θj . From definition (7), we have:486

k−1∑

i=0

pk,i∇̂L∗
λ(wi) =

k−1∑

i=0

pk,iL(wi − xi+1)

=

k−1∑

i=0

pk,iL(θi(xi − xi−1)− (xi+1 − xi))

=

k−1∑

i=0

L (pk,i−1(xi − xi−1)− pk,i(xi+1 − xi))

= −Lpk,k−1(xk − xk−1).
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From w̄k ∈ conv({wi}k−1
i=0 ), Lemma 3 and Lemma 5, we have487

‖∇L∗
λ(w̄k)‖ ≤

∥
∥
∥
∥
∥

k−1∑

i=0

pk,i∇L∗
λ(wi)

∥
∥
∥
∥
∥
+

Hν

1 + νf




∑

0≤i<j<k

pk,ipk,j ‖wi − wj‖2




1+νf
2

≤σ + Lpk,k−1‖xk − xk−1‖+
Hν

1 + νf




∑

0≤i<j<k

pk,ipk,j‖wi − wj‖2




1+νf
2

≤σ +
L

Zk
‖xk − xk−1‖+

Hν

(1 + νf )Z
1+νf

k




∑

0≤i<j<k

‖wi − wj‖2




1+νf
2

. (30)

Here we use inequality pk,i ≤ pk,k−1 = 1/Zk = 2/(k + 1) for all 0 ≤ i < k. Regarding the last488

term in (30), we have489

‖wi − wj‖

≤‖wi − xi‖+
j−1
∑

l=i+1

‖xl − xl−1‖+ ‖wj − xj−1‖

= ‖xi − xi−1‖+
j−1
∑

l=i+1

‖xl − xl−1‖+ 2 ‖xj − xj−1‖

≤
(

12 +

j−1
∑

l=i+1

12 + 22

)1/2( j
∑

l=i

‖xl − xl−1‖2
)1/2

=
√

j − i+ 4

(
j
∑

l=i

‖xl − xl−1‖2
)1/2

.

The above inequalities hold by the triangle inequality, 0 ≤ θk ≤ 1 and Cauchy–Schwarz inequality,490

respectively. Then491

∑

0≤i<j<k

‖wi − wj‖2 ≤
∑

0≤i<j<k

j
∑

l=i

(j − i+ 4) ‖xl − xl−1‖2

=

k−1∑

l=0





l∑

i=0

k−1∑

j=l

(j − i+ 4)



 ‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

=
k + 7

2

k−1∑

l=0

(l + 1)(k − l) ‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

≤ k + 7

2

k−1∑

l=0

(k + 1)2

4
‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

=
(k − 1)(k + 5)2

8

k−1∑

l=0

‖xl − xl−1‖2 ≤
(k − 1)(k + 5)2

8
Sk. (31)

Plugging (31) into (30), we have492

‖∇L∗
λ(w̄k)‖ ≤ σ +

L

Zk
‖xk − xk−1‖+

Hν

1 + νf
(1/Zk)

1+νf

(
(k − 1)(k + 5)2

8

) 1+νf
2

S
1+νf

2

k .

(32)
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Then for k ≥ 2, combing with (32), we have493

(
k−1∑

i=1

Z2
i

)

min
1≤i<k

‖∇L∗
λ(w̄i)‖

≤
k−1∑

i=1

Z2
i ‖∇L∗

λ(w̄i)‖

≤σ
k−1∑

i=1

Z2
i +

k−1∑

i=1

(

LZi‖xi − xi−1‖+
Hν

1 + νf
(1/Zi)

νf−1(
(i− 1)(i+ 5)2

8
)

1+νf
2 S

1+νf
2

i

)

≤σ
k−1∑

i=1

Z2
i + L

√

Sk−1(
k−1∑

i=1

Z2
i )

1/2 +
Hν

1 + νf

k−1∑

i=1

(1/Zi)
νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2 S

(1+νf )/2
k−1

≤σ
k−1∑

i=1

Z2
i + L

√

Sk−1(
k−1∑

i=1

Z2
i )

1/2 +
L
√

1/k4+νf

1 + νf

∑

(
2

i+ 1
)νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2 S

1
2

k−1

=σ
k−1∑

i=1

Z2
i + L

√

Sk−1

(

(
k−1∑

i=1

Z2
i )

1/2 +

√

1/k4+νf

1 + νf

∑

(
2

i+ 1
)νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2

)

.

Notice that Zk = k+1
2 and k3

12 ≤
∑

Z2
i ≤ k3

6 , we have494

min
1≤i<k

‖∇L∗
λ(w̄i)‖ ≤ σ + L

√

Sk−1

(

(
∑k−1

i=1 Z2
i )

1/2 +

√
1/k4+νf

1+νf

∑
( 2
i+1 )

νf−1( (i−1)(i+5)2

8 )(1+νf )/2

)

(
∑k−1

i=1 Z2
i

)

≤ σ + L
√

Sk−1

k
3
2√
6
+
√

1

k4+νf

∑k−1
i=1

9
2 i

5
2+

νf
2

k3/12

≤ σ + cL
√

Sk−1/k3,

where c is a constant, c = 2
√
6+27. The last inequality holds due to

∑k−1
i=1 i

5
2+

νf
2 ≤ 1

2k
7
2+

νf
2 . ⊔⊓495

D.6 Proof of Proposition 1496

Proof. Consider an epoch ends at iteration k and ignore the subscript t. If w̄k is not an ǫ-first-order497

stationary point and k ≥ 2, from Lemma 9, we have:498

ǫ ≤ σ + cL
√

Sk−1/k3 ≤ σ + cL
√

Sk/k3.

If k = 1, σ + cL
√

Sk/k3 = σ + cL‖x1 − x0‖ = σ + c‖∇̂L∗
λ(x0)‖ ≥ ǫ. Here we set σ = 1

64c+1ǫ,499

the above inequality is500

Sk ≥
ǫ2k3

(
c+ 1

64

)2
L2

, ∀ k ≥ 1. (33)

From (33), We have501

σ
√

kSk =
1

64c+ 1
ǫ
√

kSk ≤
LSk

64k
, (34)

502

kσ2

2L
≤ k

2L

1

642
L2Sk

k3
≤ LSk

2× 642k
. (35)

From restart condition (5), we have503

Sk >

(
L2/k4+νf

H2
ν

)1/νf

. (36)
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Then we can bound Sk as:504

Sk = S

4+3νf
4+4νf

k S

νf
4+4νf

k ≥ L− 3
2

(
64ǫ

64c+ 1

) 4+3νf
2+2νf

k2H
− 1

2+2νf
ν .

From Lemma 8, (34) and (35), in this epoch, decrease of L∗
λ(x) is505

L∗
λ(x0)− L∗

λ(xk) ≥
LSk

32k
− kσ2

2L
− σ

√

kSk ≥
LSk

100k

≥ 1

100
L− 1

2

(
64ǫ

64c+ 1

) 4+3νf
2+2νf

kH
− 1

2+2νf
ν .

Sum above inequality over all epochs and denote the number of total iterates as K, we have506

K ≤ 100∆λL
1
2H

1
2+2νf
ν

(
64c+ 1

64ǫ

) 4+3νf
2+2νf

. (37)

As a result, we can denote the expression in the right side of (37) as Kmax. Substitute Hν =507

λνf (1−νg)O
(
ℓκ3+(1+νg)νf

)
and L = O(ℓκ3) for (37), we have508

K ≤ O
(

∆λλ
νf (1−νg)

(2+2νf ) ℓ
2+νf
2+2νf κ

6+4νf+νf νg

(2+2νf ) ǫ
− 4+3νf

2+2νf

)

. (38)

We can also bound Sk as:509

Sk = S

2+νf
2+2νf

k S

νf
2+2νf

k ≥ L−1

(
64ǫ

64c+ 1

) 2+νf
1+νf

kH
− 1

1+νf
ν .

From Lemma 8, (34), (35), in this epoch, decrease of L∗
λ(x) is510

L∗
λ(x0)− L∗

λ(xk) ≥
LSk

32k
− kσ2

2L
− σ

√

kSk

≥ LSk

100k

≥ 1

100

(
64ǫ

64c+ 1

) 2+νf
1+νf

H
− 1

1+νf
ν . (39)

Sum above inequalities over all epochs, we have511

T ≤ 100∆λ

(
64c+ 1

64ǫ

) 2+νf
1+νf

H
1

1+νf
ν . (40)

Substitute Hν = λνf (1−νg)O
(
ℓκ3+(1+νg)νf

)
and L = O(ℓκ3) for (40), we have512

T ≤ O
(

∆λλ
νf (1−νg)

(1+νf ) ℓ
1

1+νf κ
3+(1+νg)νf

(1+νf ) ǫ
− 2+νf

1+νf

)

. (41)

⊔⊓513

D.7 Proof of Theorem 1514

Proof. From Lemma 1, we have ‖∇L∗
λ(x) − ∇ϕ(x)‖ ≤ O(ℓκ3)/λ. From Lemma 1, we have515

|L∗
λ(x) − ϕ(x)| ≤ O(κ2)/λ. Denote the number of total iterates as K, from Proposition 1, the516

following holds:517

‖∇ϕ(w̄k)‖ ≤ ‖∇L∗
λ(w̄k)−∇ϕ(w̄k)‖+ ‖∇L∗

λ(w̄k)‖ ≤ 2ǫ.

Substitute (38) and (41) with λ = max(O(κ),O(ℓκ3)/ǫ,O(ℓκ2)/∆), the theorem is proved. ⊔⊓518
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D.8 Proof of Theorem 2519

Lemma D.2. Consider the t-epoch generated by Algorithm 1 and ending at iteration k, we claim520

that for any t and its corresponding k, we can find some constant C to satisfy:521

‖∇Lλ (wt,k−1)‖2 ≤ C.

Proof. For the t-epoch except the last epoch, w̄t,k is not an ǫ-first-order stationary point. Since522

L∗
λ(x) has L-Lipschitz continuous gradient, we have523

L∗
λ (xk+1) ≤ L∗

λ (wk) + 〈∇L∗
λ (wk) , xk+1 − wk〉+

L

2
‖xk+1 − wk‖2

≤ L∗
λ (wk)−

1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

,

where we use xk+1 = wk − 1
L∇̂L∗

λ(wk). We also have524

L∗
λ (xk) ≥ L∗

λ (wk) + 〈∇L∗
λ (wk) , xk − wk〉 −

L

2
‖xk − wk‖2 .

Combining the above inequalities leads to525

L∗
λ (xk+1)− L∗

λ (xk)

≤− 〈∇L∗
λ (wk) , xk − wk〉+

L

2
‖xk − wk‖2 −

1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

=L 〈xk+1 − wk, xk − wk〉+
〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
L

2
‖xk − wk‖2

− 1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

=
L

2

(

‖xk+1 − wk‖2 + ‖xk − wk‖2 − ‖xk+1 − xk‖2
)

+
〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
L

2
‖xk − wk‖2 −

1

L

(

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

≤L ‖xk − wk‖2 −
L

2
‖xk+1 − xk‖2 +

〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

L

〈

∇̂L∗
λ (wk) ,∇L∗

λ (wk)
〉

(a)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

=L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

2L

(

‖∇L∗
λ (wk)‖2 +

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

−
∥
∥
∥∇L∗

λ (wk)− ∇̂L∗
λ (wk)

∥
∥
∥

2
)

(b)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

− 1

4L
‖∇L∗

λ (wk)‖2 +
3

4L

∥
∥
∥∇L∗

λ (wk)− ∇̂L∗
λ (wk)

∥
∥
∥

2

(c)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 −

1

4L
‖∇L∗

λ (wk)‖2 + σ ‖xk − xk−1‖+
3

4L
σ2,

where we use ‖xk − wk‖ = θk ‖xk − xk−1‖ ≤ ‖xk − xk−1‖ in
(a)

≤ , the triangle inequality in
(b)

≤526

and Lemma 4 in
(c)

≤ .527
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Summing over the above inequality, and using x0 = x−1, we have528

L∗
λ (xk)− L∗

λ (x0)

≤ L

2

k−2∑

i=0

‖xi+1 − xi‖2 −
1

4L

k−1∑

i=0

‖∇L∗
λ (wi)‖2 + σ

k−1∑

i=0

‖xi − xi−1‖+
3

4L
σ2k

(d)

≤ L

2

k−2∑

i=0

‖xi+1 − xi‖2 −
1

4L

k−1∑

i=0

‖∇L∗
λ (wi)‖2 + σ

√
k − 1

√
√
√
√

k−2∑

i=0

‖xi+1 − xi‖2 +
3

4L
σ2k

(e)

≤ L

2
Sk−1 −

1

4L
‖∇L∗

λ (wk−1)‖2 + σ
√

kSk−1 +
3

4L
σ2k

(f)

≤ L

2

(
L

Hν

) 2
νf

− 1

4L
‖∇L∗

λ (wk−1)‖2 + σ((L/Hν)
1
νf ) +

3

4L
σ2k

(g)

≤ L

2

(
L

Hν

) 2
νf

− 1

4L
‖∇L∗

λ (wk−1)‖2 + σ((L/Hν)
1
νf ) +

3LSk

4× 642k
, (42)

where we use the Cauchy–Schwarz inequality in
(d)

≤ , non-negativity of norm in
(e)

≤ , the restart condi-529

tion (5) in
(f)

≤ and (35) in
(g)

≤ . For the last term in (42), we have530

Sk

k
≤ Sk−1

k
+
‖xk − xk−1‖2

k
(a)

≤
(

L

Hν

)2/νf

+
‖xk − xk−1‖2

k

(b)

≤
(

L

Hν

)2/νf

+
1

k

∥
∥
∥
∥
wk−1 − xk−1 −

1

L
∇̂L∗

λ(wk−1)

∥
∥
∥
∥

2

(c)

≤
(

L

Hν

)2/νf

+
2

k
‖wk−1 − xk−1‖2 +

2

kL2

∥
∥
∥∇̂L∗

λ(wk−1)
∥
∥
∥

2

(d)

≤
(

L

Hν

)2/νf

+
8

k
D2 +

4

kL2
‖∇L∗

λ(wk−1)‖2 +
4σ2

L2
,

where we use the restart condition (5) in
(a)

≤ , xk = wk−1− 1
L∇̂L∗

λ(wk−1) in
(b)

≤ , Lemma 3 in
(c)

≤ and531

Lemma 4 in
(d)

≤ . Combined with (42), we obtain532

L∗
λ (xk)− L∗

λ (x0)

≤
(
1

2
+

3

4× 642

)

L

(
L

Hν

) 2
νf

+
3L

4× 642

(
8

k
D2 +

4σ2

L2

)

−
(

1

4L
− 3

642L

)

‖∇L∗
λ (wk−1)‖2 + σ((L/Hν)

1
νf )

(43)

We claim that for any t-th epoch ending at iteration k, we can find some constant C to satisfy:533

‖∇Lλ (wt,k−1)‖2 ≤ C.

Otherwise, (43) shows that L∗
λ (wt,k) can go to −∞, which contradicts to minx∈Rdx ϕ(x) > −∞534

in Assumption 1 and |L∗
λ(x)− ϕ(x)| ≤ O(ℓκ2/λ) in Lemma 1. ⊔⊓535

With the help of Lemma D.2, we provide the proof of Theorem 2.536
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Proof. We firstly show the boundedness of ‖y∗(wt,0)‖. Suppose that the t-epoch ends at iteration k,537

we have538

‖y∗(wt+1,0)− y∗(w0,0)‖
≤‖y∗(xt,k)− y∗(wt,k−1)‖+ ‖y∗(wt,k−1)− y∗(wt,0)‖+ ‖y∗(wt,0)− y∗(w0,0)‖

≤Lg

µ
‖xt,k − wt,k−1‖+

Lg

µ
‖wt,k−1 − wt,0‖+ ‖y∗(wt,0)− y∗(w0,0)‖

≤Lg

µ
(
C + σ

L
+D) + ‖y∗(wt,0)− y∗(w0,0)‖.

The first inequality holds due to triangular inequality, the second inequality holds due to y∗(x) is539

Lg/µ-Lipschitz continuous and the last inequality holds due to Lemma 4 and Lemma D.2. Then we540

have541

‖y∗(wt,0)‖ ≤‖y∗(wt,0)− y∗(w0,0)‖+ ‖y∗(w0,0)‖

≤‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)t

≤‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)T,

where T is the total number of epochs. We can set {Tt,i, T
′
t,i} as follows: let542

Tt,i =

⌈

2

√

Lg

µ
log

√

1 +
Lg

µ

(

1 + 2λ
L2
g

σµ
(
C + σ

L
+ 5D)

)⌉

,

T ′
t,i =

⌈

2

√

4Lg

µ
log

√

1 +
4Lg

µ

(

1 + 16λ
L2
g

σµ
(
C + σ

L
+ 5D)

)⌉

(44)

(45)

for i ≥ 1, and543

Tt,i =

⌈

2

√

Lg

µ
log

√

1 +
Lg

µ

(

‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)T

)
2λLg

σ

⌉

,

T ′
t,i =

⌈

2

√

4Lg

µ
log

√

1 +
4Lg

µ

(

‖y∗(w0,0)‖+
4Lg

µ
(
C + σ

L
+D)T

)
4λLg

σ

⌉

(46)

(47)

for i = 0, where T is the total number of epochs. From Theorem 1, we know that544

T ≤ O(∆ℓ
1+νf−νf νg

1+νf κ
3+4νf−2νf νg

1+νf ǫ
− 2+2νf−νf νg

1+νf ).

Then we prove (8) holds for zt,i by induction. For i = 0, by the definition of Tt,0 in (46), we have545

‖zt,0 − y∗(wt,0)‖ ≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,0/2‖zt,−1 − y∗(wt,0)‖

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,0/2‖y∗(wt,0)‖

≤ σ

2λLg
.
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From Lemma C.1, if i ≥ 1, we have546

‖zt,i − y∗(wt,i)‖ ≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2‖zt,i−1 − y∗(wt,i)‖

(a)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2 (‖y∗(wt,i)− y∗(wt,i−1)‖+ ‖zt,i−1 − y∗(wt,i−1)‖)

(b)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
Lg

µ
‖wt,i − wt,i−1‖+

σ

2λLg

)

(c)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
2Lg

µ
‖xt,i − xt,i−1‖+

Lg

µ
‖xt,i−1 − xt,i−2‖+

σ

2λLg

)

(d)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
Lg

µ
(
C + σ

L
+ 5D) + σ

2λLg

)

(e)

≤ σ

2λLg
,

where the inequality
(a)

≤ follows from the triangle inequality,
(b)

≤ uses the inductive hypothesis and547

the fact that y∗(x) is Lg/µ-Lipschitz continuous,
(c)

≤ holds by the definition wt,i = xt,i + θi(xt,i −548

xt,i−1),
(d)

≤ applies Lemma 3 and Lemma D.2, and
(e)

≤ follows from (44). Therefore, by mathematical549

induction, we conclude that (8) holds for all zt,i with {Tt,i} defined in (44),(46). Similarly, we can550

prove that (8) holds for yt,i with T ′
t,i defined in (45), (47). So all yt,i and zt,i satisfy Condition 1.551

The total first-order oracle complexity is
∑

t,i Tt,i, i.e.,552

Õ
(

∆ℓ
2+2νf−νf νg

2+2νf κ
7+8νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

.

When νf = νg = 1, the first-order oracle complexity is Õ
(
∆ℓ3/4κ13/4ǫ−7/4

)
.553

⊔⊓554
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NeurIPS Paper Checklist555

The checklist is designed to encourage best practices for responsible machine learning research, ad-556

dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove557

the checklist: The papers not including the checklist will be desk rejected. The checklist should558

follow the references and follow the (optional) supplemental material. The checklist does NOT559

count towards the page limit.560

Please read the checklist guidelines carefully for information on how to answer these questions. For561

each question in the checklist:562

• You should answer [Yes] , [No] , or [NA] .563

• [NA] means either that the question is Not Applicable for that particular paper or the564

relevant information is Not Available.565

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).566

The checklist answers are an integral part of your paper submission. They are visible to the567

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it568

(after eventual revisions) with the final version of your paper, and its final version will be published569

with the paper.570

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-571

ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]572

" provided a proper justification is given (e.g., "error bars are not reported because it would be too573

computationally expensive" or "we were unable to find the license for the dataset we used"). In574

general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased575

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your576

best judgment and write a justification to elaborate. All supporting evidence can appear either in the577

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,578

in the justification please point to the section(s) where related material for the question can be found.579

IMPORTANT, please:580

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-581

list",582

• Keep the checklist subsection headings, questions/answers and guidelines below.583

• Do not modify the questions and only use the provided macros for your answers.584

1. Claims585

Question: Do the main claims made in the abstract and introduction accurately reflect the586

paper’s contributions and scope?587

Answer: [Yes]588

Justification: The abstract and introduction clearly state the paper’s main contributions, in-589

cluding the development of provably convergent algorithms for nonconvex-strongly convex590

bilevel problems under general smoothness assumptions. These claims are supported by the591

theoretical results in Section 4 and the experimental validations in Section 5, aligning well592

with the scope of the paper.593

Guidelines:594

• The answer NA means that the abstract and introduction do not include the claims595

made in the paper.596

• The abstract and/or introduction should clearly state the claims made, including the597

contributions made in the paper and important assumptions and limitations. A No or598

NA answer to this question will not be perceived well by the reviewers.599

• The claims made should match theoretical and experimental results, and reflect how600

much the results can be expected to generalize to other settings.601

• It is fine to include aspirational goals as motivation as long as it is clear that these602

goals are not attained by the paper.603
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2. Limitations604

Question: Does the paper discuss the limitations of the work performed by the authors?605

Answer: [Yes]606

Justification: We discuss the limitations and future directions of our work, please refer to607

Section 6.608

Guidelines:609

• The answer NA means that the paper has no limitation while the answer No means610

that the paper has limitations, but those are not discussed in the paper.611

• The authors are encouraged to create a separate "Limitations" section in their paper.612

• The paper should point out any strong assumptions and how robust the results are to613

violations of these assumptions (e.g., independence assumptions, noiseless settings,614

model well-specification, asymptotic approximations only holding locally). The au-615

thors should reflect on how these assumptions might be violated in practice and what616

the implications would be.617

• The authors should reflect on the scope of the claims made, e.g., if the approach was618

only tested on a few datasets or with a few runs. In general, empirical results often619

depend on implicit assumptions, which should be articulated.620

• The authors should reflect on the factors that influence the performance of the ap-621

proach. For example, a facial recognition algorithm may perform poorly when image622

resolution is low or images are taken in low lighting. Or a speech-to-text system might623

not be used reliably to provide closed captions for online lectures because it fails to624

handle technical jargon.625

• The authors should discuss the computational efficiency of the proposed algorithms626

and how they scale with dataset size.627

• If applicable, the authors should discuss possible limitations of their approach to ad-628

dress problems of privacy and fairness.629

• While the authors might fear that complete honesty about limitations might be used by630

reviewers as grounds for rejection, a worse outcome might be that reviewers discover631

limitations that aren’t acknowledged in the paper. The authors should use their best632

judgment and recognize that individual actions in favor of transparency play an impor-633

tant role in developing norms that preserve the integrity of the community. Reviewers634

will be specifically instructed to not penalize honesty concerning limitations.635

3. Theory assumptions and proofs636

Question: For each theoretical result, does the paper provide the full set of assumptions and637

a complete (and correct) proof?638

Answer: [Yes]639

Justification: We provide the full set of assumptions and complete, rigorous proofs for all640

lemmas, propositions, and theorems. The formal statements are presented in Section 3 and641

Section 4, with detailed proofs included in the Appendix.642

Guidelines:643

• The answer NA means that the paper does not include theoretical results.644

• All the theorems, formulas, and proofs in the paper should be numbered and cross-645

referenced.646

• All assumptions should be clearly stated or referenced in the statement of any theo-647

rems.648

• The proofs can either appear in the main paper or the supplemental material, but if649

they appear in the supplemental material, the authors are encouraged to provide a650

short proof sketch to provide intuition.651

• Inversely, any informal proof provided in the core of the paper should be comple-652

mented by formal proofs provided in appendix or supplemental material.653

• Theorems and Lemmas that the proof relies upon should be properly referenced.654

4. Experimental result reproducibility655
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Question: Does the paper fully disclose all the information needed to reproduce the main656

experimental results of the paper to the extent that it affects the main claims and/or conclu-657

sions of the paper (regardless of whether the code and data are provided or not)?658

Answer: [Yes]659

Justification: We provide all necessary details to reproduce our main experimental results,660

including dataset descriptions, evaluation metrics and algorithmic settings in Section 5.661

Guidelines:662

• The answer NA means that the paper does not include experiments.663

• If the paper includes experiments, a No answer to this question will not be perceived664

well by the reviewers: Making the paper reproducible is important, regardless of665

whether the code and data are provided or not.666

• If the contribution is a dataset and/or model, the authors should describe the steps667

taken to make their results reproducible or verifiable.668

• Depending on the contribution, reproducibility can be accomplished in various ways.669

For example, if the contribution is a novel architecture, describing the architecture670

fully might suffice, or if the contribution is a specific model and empirical evaluation,671

it may be necessary to either make it possible for others to replicate the model with672

the same dataset, or provide access to the model. In general. releasing code and data673

is often one good way to accomplish this, but reproducibility can also be provided via674

detailed instructions for how to replicate the results, access to a hosted model (e.g., in675

the case of a large language model), releasing of a model checkpoint, or other means676

that are appropriate to the research performed.677

• While NeurIPS does not require releasing code, the conference does require all sub-678

missions to provide some reasonable avenue for reproducibility, which may depend679

on the nature of the contribution. For example680

(a) If the contribution is primarily a new algorithm, the paper should make it clear681

how to reproduce that algorithm.682

(b) If the contribution is primarily a new model architecture, the paper should describe683

the architecture clearly and fully.684

(c) If the contribution is a new model (e.g., a large language model), then there should685

either be a way to access this model for reproducing the results or a way to re-686

produce the model (e.g., with an open-source dataset or instructions for how to687

construct the dataset).688

(d) We recognize that reproducibility may be tricky in some cases, in which case au-689

thors are welcome to describe the particular way they provide for reproducibility.690

In the case of closed-source models, it may be that access to the model is limited in691

some way (e.g., to registered users), but it should be possible for other researchers692

to have some path to reproducing or verifying the results.693

5. Open access to data and code694

Question: Does the paper provide open access to the data and code, with sufficient instruc-695

tions to faithfully reproduce the main experimental results, as described in supplemental696

material?697

Answer: [Yes]698

Justification: We provide the full implementation of our proposed method along with de-699

tailed instructions to reproduce the main experimental results in the supplementary materi-700

als. This includes code, environment setup, data generation procedures, and run commands.701

Guidelines:702

• The answer NA means that paper does not include experiments requiring code.703

• Please see the NeurIPS code and data submission guidelines704

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-705

tails.706

• While we encourage the release of code and data, we understand that this might not707

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not708

including code, unless this is central to the contribution (e.g., for a new open-source709

benchmark).710
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• The instructions should contain the exact command and environment needed to run711

to reproduce the results. See the NeurIPS code and data submission guidelines712

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.713

• The authors should provide instructions on data access and preparation, including how714

to access the raw data, preprocessed data, intermediate data, and generated data, etc.715

• The authors should provide scripts to reproduce all experimental results for the new716

proposed method and baselines. If only a subset of experiments are reproducible, they717

should state which ones are omitted from the script and why.718

• At submission time, to preserve anonymity, the authors should release anonymized719

versions (if applicable).720

• Providing as much information as possible in supplemental material (appended to the721

paper) is recommended, but including URLs to data and code is permitted.722

6. Experimental setting/details723

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-724

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the725

results?726

Answer: [Yes]727

Justification: We specify all the training and test details in Section 5.728

Guidelines:729

• The answer NA means that the paper does not include experiments.730

• The experimental setting should be presented in the core of the paper to a level of731

detail that is necessary to appreciate the results and make sense of them.732

• The full details can be provided either with the code, in appendix, or as supplemental733

material.734

7. Experiment statistical significance735

Question: Does the paper report error bars suitably and correctly defined or other appropri-736

ate information about the statistical significance of the experiments?737

Answer: [No]738

Justification: Although the paper does not report error bars or statistical significance tests,739

we have verified that the results are stable across different random seeds.740

Guidelines:741

• The answer NA means that the paper does not include experiments.742

• The authors should answer "Yes" if the results are accompanied by error bars, confi-743

dence intervals, or statistical significance tests, at least for the experiments that support744

the main claims of the paper.745

• The factors of variability that the error bars are capturing should be clearly stated (for746

example, train/test split, initialization, random drawing of some parameter, or overall747

run with given experimental conditions).748

• The method for calculating the error bars should be explained (closed form formula,749

call to a library function, bootstrap, etc.)750

• The assumptions made should be given (e.g., Normally distributed errors).751

• It should be clear whether the error bar is the standard deviation or the standard error752

of the mean.753

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-754

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of755

Normality of errors is not verified.756

• For asymmetric distributions, the authors should be careful not to show in tables or757

figures symmetric error bars that would yield results that are out of range (e.g. negative758

error rates).759

• If error bars are reported in tables or plots, The authors should explain in the text how760

they were calculated and reference the corresponding figures or tables in the text.761

8. Experiments compute resources762
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Question: For each experiment, does the paper provide sufficient information on the com-763

puter resources (type of compute workers, memory, time of execution) needed to reproduce764

the experiments?765

Answer: [Yes]766

Justification: We provide sufficient information on the computer resources used for all767

experiments, including compute workers, memory and time of execution. Please refer to768

Section 5 for full information.769

Guidelines:770

• The answer NA means that the paper does not include experiments.771

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,772

or cloud provider, including relevant memory and storage.773

• The paper should provide the amount of compute required for each of the individual774

experimental runs as well as estimate the total compute.775

• The paper should disclose whether the full research project required more compute776

than the experiments reported in the paper (e.g., preliminary or failed experiments777

that didn’t make it into the paper).778

9. Code of ethics779

Question: Does the research conducted in the paper conform, in every respect, with the780

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?781

Answer: [Yes]782

Justification: Our research complies with the NeurIPS Code of Ethics in all respects. All783

ethical guidelines and considerations were carefully followed throughout the study. The784

experiments are conducted using publicly available datasets and standard computing re-785

sources.786

Guidelines:787

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.788

• If the authors answer No, they should explain the special circumstances that require a789

deviation from the Code of Ethics.790

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-791

eration due to laws or regulations in their jurisdiction).792

10. Broader impacts793

Question: Does the paper discuss both potential positive societal impacts and negative794

societal impacts of the work performed?795

Answer: [No]796

Justification: The paper discuss both potential positive societal impacts and negative soci-797

etal impacts of the work performed. This work is theoretical and focuses on algorithmic798

developments in bilevel optimization. However, we acknowledge that future applications799

of this line of work could have societal consequences, which should be carefully considered800

in those contexts.801

Guidelines:802

• The answer NA means that there is no societal impact of the work performed.803

• If the authors answer NA or No, they should explain why their work has no societal804

impact or why the paper does not address societal impact.805

• Examples of negative societal impacts include potential malicious or unintended uses806

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations807

(e.g., deployment of technologies that could make decisions that unfairly impact spe-808

cific groups), privacy considerations, and security considerations.809

• The conference expects that many papers will be foundational research and not tied810

to particular applications, let alone deployments. However, if there is a direct path to811

any negative applications, the authors should point it out. For example, it is legitimate812

to point out that an improvement in the quality of generative models could be used to813

generate deepfakes for disinformation. On the other hand, it is not needed to point out814
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that a generic algorithm for optimizing neural networks could enable people to train815

models that generate Deepfakes faster.816

• The authors should consider possible harms that could arise when the technology is817

being used as intended and functioning correctly, harms that could arise when the818

technology is being used as intended but gives incorrect results, and harms following819

from (intentional or unintentional) misuse of the technology.820

• If there are negative societal impacts, the authors could also discuss possible mitiga-821

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,822

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from823

feedback over time, improving the efficiency and accessibility of ML).824

11. Safeguards825

Question: Does the paper describe safeguards that have been put in place for responsible826

release of data or models that have a high risk for misuse (e.g., pretrained language models,827

image generators, or scraped datasets)?828

Answer: [NA]829

Justification: We do not release any data or models that have a high risk for misuse (e.g.,830

pretrained language models, image generators, or scraped datasets).831

Guidelines:832

• The answer NA means that the paper poses no such risks.833

• Released models that have a high risk for misuse or dual-use should be released with834

necessary safeguards to allow for controlled use of the model, for example by re-835

quiring that users adhere to usage guidelines or restrictions to access the model or836

implementing safety filters.837

• Datasets that have been scraped from the Internet could pose safety risks. The authors838

should describe how they avoided releasing unsafe images.839

• We recognize that providing effective safeguards is challenging, and many papers do840

not require this, but we encourage authors to take this into account and make a best841

faith effort.842

12. Licenses for existing assets843

Question: Are the creators or original owners of assets (e.g., code, data, models), used in844

the paper, properly credited and are the license and terms of use explicitly mentioned and845

properly respected?846

Answer: [Yes]847

Justification: All external assets used in this paper, such as datasets and code packages, are848

properly cited with appropriate references.849

Guidelines:850

• The answer NA means that the paper does not use existing assets.851

• The authors should cite the original paper that produced the code package or dataset.852

• The authors should state which version of the asset is used and, if possible, include a853

URL.854

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.855

• For scraped data from a particular source (e.g., website), the copyright and terms of856

service of that source should be provided.857

• If assets are released, the license, copyright information, and terms of use in the pack-858

age should be provided. For popular datasets, paperswithcode.com/datasets has859

curated licenses for some datasets. Their licensing guide can help determine the li-860

cense of a dataset.861

• For existing datasets that are re-packaged, both the original license and the license of862

the derived asset (if it has changed) should be provided.863

• If this information is not available online, the authors are encouraged to reach out to864

the asset’s creators.865

13. New assets866
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Question: Are new assets introduced in the paper well documented and is the documenta-867

tion provided alongside the assets?868

Answer: [NA]869

Justification: The paper does not introduce or release any new datasets, codebases, or pre-870

trained models.871

Guidelines:872

• The answer NA means that the paper does not release new assets.873

• Researchers should communicate the details of the dataset/code/model as part of their874

submissions via structured templates. This includes details about training, license,875

limitations, etc.876

• The paper should discuss whether and how consent was obtained from people whose877

asset is used.878

• At submission time, remember to anonymize your assets (if applicable). You can879

either create an anonymized URL or include an anonymized zip file.880

14. Crowdsourcing and research with human subjects881

Question: For crowdsourcing experiments and research with human subjects, does the pa-882

per include the full text of instructions given to participants and screenshots, if applicable,883

as well as details about compensation (if any)?884

Answer: [NA]885

Justification: We do not introduce any human subject.886

Guidelines:887

• The answer NA means that the paper does not involve crowdsourcing nor research888

with human subjects.889

• Including this information in the supplemental material is fine, but if the main contri-890

bution of the paper involves human subjects, then as much detail as possible should891

be included in the main paper.892

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-893

tion, or other labor should be paid at least the minimum wage in the country of the894

data collector.895

15. Institutional review board (IRB) approvals or equivalent for research with human896

subjects897

Question: Does the paper describe potential risks incurred by study participants, whether898

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)899

approvals (or an equivalent approval/review based on the requirements of your country or900

institution) were obtained?901

Answer: [NA]902

Justification: We do not introduce any human subject.903

Guidelines:904

• The answer NA means that the paper does not involve crowdsourcing nor research905

with human subjects.906

• Depending on the country in which research is conducted, IRB approval (or equiva-907

lent) may be required for any human subjects research. If you obtained IRB approval,908

you should clearly state this in the paper.909

• We recognize that the procedures for this may vary significantly between institutions910

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the911

guidelines for their institution.912

• For initial submissions, do not include any information that would break anonymity913

(if applicable), such as the institution conducting the review.914

16. Declaration of LLM usage915

Question: Does the paper describe the usage of LLMs if it is an important, original, or916

non-standard component of the core methods in this research? Note that if the LLM is used917

only for writing, editing, or formatting purposes and does not impact the core methodology,918

scientific rigorousness, or originality of the research, declaration is not required.919
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Answer: [NA]920

Justification: No large language models (LLMs) were used in the core methods or any key921

components of this research, so no specific declaration regarding LLM use is required.922

Guidelines:923

• The answer NA means that the core method development in this research does not924

involve LLMs as any important, original, or non-standard components.925

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)926

for what should or should not be described.927
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