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Abstract

Bilevel optimization is pivotal in machine learning applications such as hyperpa-
rameter tuning and adversarial training. While existing methods for nonconvex-
strongly-convex bilevel optimization can find an e-stationary point under Lips-
chitz continuity assumptions, two critical gaps persist: improving algorithmic
complexity and generalizing smoothness conditions. This paper addresses these
challenges by introducing an accelerated framework under Holder continuity—a
broader class of smoothness that subsumes Lipschitz continuity. We propose a
restarted accelerated gradient method that leverages inexact hypergradient estima-
tors and establishes theoretical oracle complexity for finding e-stationary points.
Empirically, experiments on data hypercleaning and hyperparameter optimization
demonstrate superior convergence rates compared to state-of-the-art baselines.

1 Introduction

Bilevel optimization is a powerful paradigm with applications in various machine learning tasks,
such as hyperparameter tuning [Franceschi et all, 2018, IMacKay et al., 2019, |Chen et all, 2024],
adversarial training [Lin et al), 2020aJb, Wang et all, 2021|, 2022], and reinforcement learning
[Kunapuli et all, 2008, [Yang et al., 2019, [Hong et all, 2023]. It involves two levels of optimization,
where the objective at the upper level depends on the solution to a lower-level optimization problem.
The general bilevel problem can be expressed as:

min f(z,y), whereY"(z)=argming(z,y). (1)
z€R yeY*(z) yERDY

In this formulation, f(z,y) denotes the upper-level objective, while g(z,y) denotes the lower-level
objective.

This study examines the nonconvex-strongly-convex framework, wherein the lower-level function
g(x, y) exhibits strong convexity with respect to y, while the upper-level function f(x) is possibly
nonconvex. In this case, the lower-level objective admits a unique solution Y*(z) = {y*(z)}. Then
Problem () is equivalent to minimizing the hyper-objective function

o(x) := f(z,y"(z)), wherey”(z) =argming(z,y).
yER%Y

As shown in|Grazzi et all [2020], [Pedregosa [2016], the hyper-gradient V() is given by:
Vo(z) = Vo f (z,y) + Vy" (@)Vy f (2,57 (2))
* * * -1 *
= Vaf (2,57 (2)) = Va9 (2,5 (@) [Vy,9 (2,5 ()] Vyf (2,y"(2)).

The goal of this paper is to find the point « such that ¢(x) is an e-stationary point, i.e., [|[Vo(z)|| < e.
For nonconvex-strongly-convex bilevel optimization, previous work [[Chen et all, 2023, Kwon et al.,
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2023, [Yang et all, 2023] primarily focuses on assuming Lipschitz continuity of V f, Vg, V?g, and
V3g, and either approximates the hyper-gradient V() or minimizes a penalty function. Approx-
imating the hyper-gradient V() requires first-order oracle access to f and second-order oracle
access to g, whereas minimizing the penalty function only requires first-order oracle access to both
f and g.

Two key open questions remain: (i) For first-order methods, it remains open whether the existing al-
gorithmic complexities for finding approximate first-order stationary points in nonconvex—strongly-
convex bilevel optimization can be further improved under high order smoothness, and (ii) whether
the Lipschitz continuity assumptions can be generalized to the Holder continuity.

1.1 Related Work

Nonconvex optimization: For unconstrained nonconvex objectives with Lipschtiz continuous gra-
dient, the classical gradient descent (GD) is known to find an e-stationary point within O(¢~2) gradi-
ent computations [Nesterov, 2013]. This rate is optimal among the first-order methods [Cartis et al.,
2010, |Carmon et all, 2020]. Under the additional assumption of Lipschitz continuous Hessians, ac-
celerated gradient descent (AGD) [Carmon et all, 2017, 12018, Jin et al., 2018] finds an e-stationary
point in O(e~7/4) evaluations. [Liand Lirl [2023] and [Marumo and Takedd [20244] further show
that AGD with restarts achieves 0(6’7/ 4) complexity for finding e-stationary points, without ad-
ditional log factors. Under the more general assumption of Holder continuity of the Hessian,
Marumo and Takedd [2024b] proposed a universal, parameter-free heavy-ball method equipped with

two restart mechanisms, achieving a complexity bound of O(Hi/@””) e—(4+31/)/(2+2u)) in terms of
function and gradient evaluations, where v € [0, 1] and H,, denote the Holder exponent and constant,
respectively.

Bilevel Optimization Methods: To approximate the hyper-gradient, gradient-based methods
contain approximate implicit differentiation (AID) [Domke, 2012, |Grazzi et all, 2020, \Ji et al.,
2021, [Huang et al., [2025, |Grazzi et al., 2020] and iterative differentiation (ITD) [Domke, 2012,
Grazzi et al!, 2020, Ji et al., 2021, |Grazzi et all,[2020,/Shaban et al.,2019]. Using the hyper-gradient
@), one can find an e-stationary point of ¢(z) within O(e~2) first-order oracle calls from f and
O(e~?) second-order oracle calls from ¢ [Ghadimi and Wang, 2018, Ji et all, 2021]. In practical
implementations, these methods typically rely on access to Jacobian or Hessian-vector product or-
acles. |[Kwon et all [2023] proposed a fully first-order method that does not require Jacobian or
Hessian-vector product oracles, and finds an e-stationary point using only first-order gradients of f
and g. Inspired by [Kwon et al. [2023]’s work, |Chen et al| [2023] proposed a method that achieves a
near-optimal convergence rate of O(e~2), which is comparable to second-order methods.

Table 1: Complexity bounds for finding e-stationary points under Lipschitz continuity assumptions.

Algorithm Ge(f, ) Gce(g, €) IV(g, €) HV(g, ¢)
AID-BiO (Ji et al. [2021]) O(k%2) O(k3¢2) O(K3e?) O(x%e2)
ITD-BiO (Ji et al. [2021]) O(Kk3e?) O(Kk%e2?) O(k*e2) O(kte?)
RAHGD (Yang et al. [2023]) O(kM1/4e=T/4) O(K13/4=T/4) O(RM/ AT/ | O(k13/1e7T/4)
F2BA(Chen et al. [2023]) O(txte™2) O(tr*e?2) \ \
Proposed method (this work) | O(£3/4x13/1e=7/4) | O(£3/4x13/4e=T/4) \ \

1.2 Our Contribution

In this paper, we propose an accelerated first-order algorithm for solving nonconvex—strongly convex
bilevel optimization problems. Our main contributions are summarized as follows:

1. We introduce an accelerated first-order method framework—originally developed for non-
convex optimization—into the setting of nonconvex—strongly convex bilevel optimization,
and consider more general Holder continuity assumptions on f and g.

2. We prove that, with a carefully designed restart condition, the iterates generated by our
proposed method remain uniformly bounded within each epoch. Based on this, we demon-
strate that the algorithm is convergent with accelerated performance.
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3. Even under the standard Lipschitz continuity setting, our method improves the first-order
oracle complexity for finding an e-stationary point of o(z) to O(£3/4k3/4e=7/4)  with-
out requiring access to second-order oracles, where ¢ and x denote the problem’s largest
smoothness and condition number. This bound improves upon previously known results,
as summarized in Table [Tl

4. Our experimental results further support the theoretical convergence guarantees.

Organization. The rest of this work is organized as follows. Section 2] delineates the assumptions
and specific algorithmic subroutines. Section [ formally presents our proposed algorithm along
with some basic lemmas. Sectiond]provides a complexity bound for finding approximate first-order
stationary points. In Section 3l we provide some numerical experiments to show the outstanding
performance of our proposed method. Section[6lconcludes the paper and discusses future directions.
Technical analyses are deferred to the appendix.

Notation. Let a,b € R? be vectors, where (a, b) represents their inner product and ||a|| denotes
the Euclidean norm. For a matrix A € R™*™, || A|| is used to denote the operator norm, which is
equivalent to the largest singular value of the matrix. Let Ge(f, €) and Ge(g, €) denote the number
of gradient evaluations with respect to f and g, respectively. Let JV (g, €) denote the number of
Jacobian-vector products V2, g(, y)v, and HV (g, €) denote the number of Hessian-vector products

V2, 9(x,y)v. The diameter R of a compact set C'is defined as R := maxy, z,ec |1 — 22]|.

2 Preliminaries

In this section, we present the key definitions and assumptions used throughout the paper.

Definition 1 (Restricted Holder Continuity). Let h be a twice differentiable function. We say that
V2h is restrictively (v, H,)-Hélder continuous with diameter R > 0 if

2h _ 2h
e s 1Y) = Vi)

” < +oo, wve01].
lz—yl<R |z —yll”

When R = +o0, we call V2h is (v, H,)-Holder continuous if v € [0,1] and H, < +oc.

We make the following assumptions on the upper-level function f and lower-level function g:

Assumption 1. We make the following assumptions:

i. The function p(x) is lower bounded.
ii. The function g(x,y) is p-strongly convex in y, and has L4-Lipschitz continuous gradients.

iti. The function g(x,y) has pg-Lipschitz continuous Hessians and is (v4, My)-Holder continuous
in its third-order derivatives.

iv. The function f(x,y) is Cy-Lipschitz continuous in y and has L g-Lipschitz continuous gradients.
v. The Hessian V2 f(x,y) is (vs, H)-Holder continuous.

vi. The mixed and second-order partial derivatives V2, f(x,y), V3, f(z,y), and V3, f(z,y) are
pf-Lipschitz continuous.

The assumptions employed in this study are consistent with those commonly adopted in prior lit-
erature [[Chen et al., 12023, [Huang et all, 2025, [Kwon et all, 2023, [Yang et all, 2023]. To introduce
Holder continuity, we extend the Lipschitz continuity assumptions about the Hessian of f, and the
third-order derivative of g to our assumptions (i), (@), (vi).

Definition 2. Under Assumption[l] we define the largest smoothness constant as
{ := max {Cf, Lf, Hf, Pf, Lg, Pg; Mg} s

and the condition number as k = £/ .
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Observe that problem () can be reformulated as:

min flz,y" (@), stglzy) —g(z) <0, 3)
z€Re | yeRey

where g*(x) = g(z,y*(x)) is the value function. A nature penalty problem associated with prob-
lem (@) is
min  Ly(z,y) := f(z,y) + A(g(z,y) — 9" (),
z€Rde | yeR¥Y

where A > 0 is a penalty parameter. This problem is equivalent to minimizing the following auxiliary
function:

Ly (x) := Ly (z,y3(x)), where y}(x) = arg HEuRr}i Ly(z,y). 4

y

It has been proven in [Chen et all, [2023] that L (z) and VL% (x) asymptotically approximate ¢(x)
and V(x), respectively, as A is sufficiently large. Moreover, V.L} (x) is Lipschitz continuous and
its Lipschitz constant does not involve A. We restate their result below for completeness.

Lemma 1 (Chen et all [2023, Lemma 4.1]). Under Assumption[l] for X\ > 2L /u, we have
i |L5(2) — p(@)] < O/,

ii. VL5 (z) = Vo(z)|| < O(Cx*/N),

iii. VLX(x) is O(¢x3)-Lipschitz continuous.

In the remainder of the article, we denote the Lipshitz continuous constant of VL3 («) in Lemma Il
by L = O(¢x?) for convenience. Then we introduce a lemma showing that V2 L% () is restrictively
(v, H,)-Holder continuous with diameter R, where the detailed expression of H,, depending on A
and D, can be found in (I6) of Appendix BT}

Lemma 2. Under Assumption[l] for X\ > 2L¢/u, V2LX(x) is restrictly (v¢, H,(\, R))-Holder
continuous with diameter R > 0, where

H,(\,R) = O(Ur"T) + O\ "Vagpttra)RI7Vs,

3 Restarted Accelerated gradient descent under General Smoothness

In this section, we present our algorithm in Algorithm [I] and discuss several of its key proper-
ties. The algorithm has a nested loop structure. The outer loop uses the accelerated gradient de-
scent (AGD) method with a restart schemes, inspired from the recently works in|Li and Lin [2023],
Marumo and Takedd [20244a]. The iteration counter k is reset to 0 when AGD restarts, whereas the
total iteration counter K is not. We refer to the period between a reset of £ and the next reset as an
epoch. We introduce a subscript ¢ to denote the number of restarts. It is important to note that the
subscript ¢ in Algorithm [I] is primarily included to facilitate a simpler convergence analysis. Pro-
vided that no ambiguity occurs, we omit the subscript ¢, which means that the iterates are within the
same epoch.

In Lines 4 and 5, we invoke AGD, which is summarized in Algorithm 2] to find estimators of
y*(wy,k) and y3 (wy ), respectively. AGD achieves linear convergence when applied to the mini-
mization of smooth and strongly convex functions g(z,-) and f(z,-) + Ag(x,-). We note that the
iteration number of inner AGD steps plays an important role in the complexity analysis. We will
provide the parameters setting for AGD subroutines in Section] In the following, we describe some
operations involved in the algorithm.

Restart Condition. Here, we focus on the iterates within a single epoch and omit the subscript ¢,
which indexes different epochs. Then we define Sy = Zle |z; — 251/, and the restart condition

(k+ 1" H2S > L2, 5)

where the constant H,, will be defined in (&) below. If (3) holds, the epoch terminates; otherwise,
it continues. We say that an epoch ends at iteration k, if S}, triggers the restart condition (3). It
is worth noting that unlike the restart condition in |Li and Lin [2023], [Yang et al! [2023], our restart
condition is independent of e.
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Algorithm 1 Restarted Accelerated gradient descent under General Smoothness (RAGD-GS)

1: Input: initial point xg ; gradient Lipschitz constant L > 0; Hessian Holder constant H,, > 0
and vy € [0, 1]; momentum parameter 6, € (0, 1); parameters o, &’ > 0,3, 5 € (0,1), {T} 1},
{7/} of AGD

2: k<« 0, K + 0,t <+ 0, Wo,0 < 0,05 Yo,—1 < 0, 20,—1 < 0

3: repeat

2tk +— AGD (9 (wt,k:7 ) s Rt k—1, Tt,k7 «, 5)

Ytk +— AGD (f (wt,ka ) + )\g (wt,/in ) y Yt k-1, ﬂ,ka 0/7 B/)

ut e < Vo f (ks Yek) + A(Vag (Wi, Yo k) — Vag (Wi ks 2ek))

T k41 € Wk — TULK

Wy k41 — Te k1 + Okt1 (Te k1 — Tik)

9: k<—k+1, K+ K+1

1. if (k+1)** H2S" > L? then

A A S

11: Tiy1,0 < Ttk

12: Yer1,-1 < 0, 2¢401,1 < 0, Wep10 < Tey10
13: k< 0,t+t+1

14: end if

15: until |VLy(w,5)| <e
16: Output: averaged solution w; j defined by (@)

Holder Constant H,. From Lemmal2l V2L (z) is restrictively (v, H, (A, R))-Holder continu-
ous with diameter R > 0. Here we choose a specific R and the corresponding H,, (A, R), denoted
by D and H,, satisfying

D=0 (A*(lfvg),((lwg)) ., H,=0 ()\Vf(lfvg)g,i3+(1+vg)w) ) (6)

The derivation of H, and D is provided in (I8) of Appendix [Cl Then VL3 (x) is restrictively
(Z/f, H,,)-Holder continuous with diameter D. In the case of Lipschitz continuity, i.e., vp =1, =1,
(@) implies H, = O(¢x°) and D = O(k~2).

Averaged Solution. Inspired by Marumo and Takeda [20244], we set 6, = £ and define

k+1
k—1
Wy, = E Pk,iWs, N
i=0
where py; = 20D W, date ;. in the followi Y T 2
Pk,i = 7(ern)- We can update @y, in the following manner: wy, = 357 Wk—1 + 77 Wk—1-

The following lemma shows that {;}*=1 and {w;}*=} are bounded within any epoch ending at

iteration k.

Lemma 3. Let Assumption[llholds, H, and D = R be given in (@), and wy, be defined in [@). For
any epoch ending at iteration k, the following holds:
max |lx; —z;|| <D, max ||w; —wg| <  max |lw; —wj;|| < D.
0<i<j<k—1 0<i<k—1 0<i<j<k—1
Condition 1 (Inexact gradients). Under Assumption[lland given o > 0, we assume that the estima-
tors yy i and z, ; satisfy the conditions

g

< -
I< o ®)

l2,i — ¥ (we,i) e, — Y (wes)

o

1< 537
2AL,

for any t-th epoch ending at iteration k, where i =0, ...,k — 1.

Remark 1. It is noteworthy that Condition[llholds in Algorithm[llas long as the inner loop iteration
number Ty j, and Tt” i are large enough. This will be formally addressed in our convergence analysis
later, in Theorem[2]

Under Condition [Tl the bias of VL (w; ) and its estimator @Lf\(w,; %) can be bounded as shown
below:
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Lemma 4 (Inexact gradients). Under Assumptionllland supposing that Condition[ll holds, we have
IVLX(wii) = VLN (wea)l| < o
for any t-th epoch ending at iteration k, where i =0, ...,k — 1.

4 Complexity Analysis

In this section, we analyze the performance of Algorithm[Il We begin in Section d.1]by presenting
several useful lemmas that rely on the boundedness of the iterates generated within a single epoch.
These results serve as key tools for our subsequent analysis. We then establish the descent property
of the objective function and derive an upper bound for |V L% (wy)| for all & > 2. Finally, in
Section4.2] we present the main complexity results for Algorithm I}

4.1 Tools for Analysis

We use the following two Hessian-free inequalities to analyze the complexity of Algorithm 11
Lemma 5. Under Assumption [Il and with X > 2L/, the following holds for any x1,. .., x,

satisfying maxi <i<j<n |2i — x;|| <Dand qu,. .., qn > 0 such that 3°;_ q; = 1:
1+Vf
n H 2
IVLAO . gis) Z%VLA ()] +l;j o agllw - ;
i=1 1<i<j<n

where H,, and D are deﬁned in (6.

Lemma 6. Under Assumption[lland with \ > 2L / i, the following holds for any x and ' satisfying
o — /]| < D:

2H,
1+ Vf)(2 + l/f)(3 + Uf)

1
Li(x) = L3(2") < 5(VLA(2) + VLA(2), 2 —a') + g Saach

|z — x
where H,, and D are defined in ().

To analyze the behavior of L}(-) in one epoch, we define the potential function ®; as follows,
following Marumo and Takeda [2024a]:

6‘2
b (SEIVE (o) + Lo~ mu )P+ Sl =i P) .

The following lemma shows that @, is a decreasing sequence if ||z, — x;—1|| and o are sufficiently
small.

Lemma 7. Suppose that Assumption[l) Condition[l] and X > 2L ¥ /e hold. Then we have

(I)k = L)\ (.Tk) + =

2H 2+v H easd
q) _ q) < _ - 2+Vf v f v 9 2
k+1 k <[lzr — zr_1]| ((1+1/f)(2+1/f)(3+1/f) k 1+ vy k
2H2 0,7 07, + 0, —2
+ ||$k — wk71||2+2uf 1+ Vf)2 kL + = 4 LkaH a xk||2
S NVL@RIP + 3 + ollensa — ol 10

Lemma 8. Suppose that Assumption[l]l Condition[ll and X\ > 2Ly /11 hold. Then the decrease value
of L} (+) in one epoch satisfies:

Li(ex) = L3 (20) < = 55 +f+aZsz+1—xz|| (11)

Lemma [8] shows that, if we use exact gradient VL3 (x), the objective function value L} (z) always
decreases as long as S, > 0. The following lemma provide an upper bound on the gradient norm.

Lemma 9. Suppose that Assumption[l) Condition[ll and X\ > 2L/ hold. The following is true

when k > 2:
121%6 VL3 (@;)]| < o+ eLy/Sk—1/k3,
<i

where ¢ = 2¢/6 + 27.
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4.2 Main results

In the following proposition, we show that the iteration complexity of the outer loop is bounded.
Proposition 1. Suppose that Assumption[]) Condition[l} and X\ > 2Ly /1 hold. Let ¢ = 2v/6 + 27
as defined in Lemma[Q and define Ay = L% (x0,0) — mingcga. L (z). Let
(@.8)= (1 VL) () = (g, VeV
Ly \/Ly+ it 2ALy" \/ALg + /i (12)
k

0:7 d = .
FTrr1 " 7T Gdera”

Algorithm [l terminates within
vi(l—vg) 24vp  G+dvpdvrrg 443
O A)\)\ (FF2vp) g2F2vy o7 (FH2vp) o 2H2vy

total iterations, outputting Wy y, satisfying ||V L5 (W )| < e. Moreover, Algorithm [Il terminates
within

1—vg 1 8—3v 2+z/f
O (AAA(2Uf)(1+Uf)Z1+Uf H(2—Vf)(1+Uf) 6_ 2+2uf>
epochs.

We present the complexity analysis of our algorithm, aiming to establish its guarantee for finding an
O(e)-stationary point of Problem (T)).

Theorem 1. Suppose that both Assumption [I| and Condition [ hold. Define A = ¢(z00) —
mingcpa. ©(z). Let A\ = max(O(k), O((k?) /e, O(¢x?)/A) and set the other parameters as speci-
fied in (), Algorithm[ll terminates within

2+2uf—ufug 6+7uf72uf1/g _4+4ufuf1/g>

O (Af 2+2vy K 2+2vy € 2+2vy

iterates, outputting wy i, satisfying |Vp(wy)| < 2e. Moreover, Algorithm[Il terminates within

1+uf—uf1/g 3+4Vf—21/f1/g 2+2uf—uf1/g)

O (Ag 1+vy K 1+vyg € 1+vy

epochs.

When vy = v, = 1, Theorem [I] shows that within O (A€3/ 4p11/4e=1/ %) outer iterations and

O(AL25/2673/2) epochs, the algorithm will find an O(¢)-stationary point. It is better than the
corresponding result in|Yang et al! [2023],Chen et al! [2023], as shown in Table [Tl

Remark 2. Throughout the proof, we only use the restricted Holder and Lipschitz properties, where
restricted Lipschitz continuity can be defined analogously to Definition[ll Therefore, the assumption
on global Lipschitz and Holder smoothness in Assumption[Il can be relaxed to restricted smoothness.

To make Condition[dlhold, it suffices to run AGD for a sufficiently large number of iterations, which
only introduces a logarithmic factor to the total complexity. This gives the following result.

Theorem 2. Suppose that Assumption [Il holds. In the t-th epoch, we set the inner-loop iteration
numbers Ty . and T, according to @4, @), @), and @) in Appendix Dl We then run Algo-
rithm Il with the parameters specified in Theorem[ll Under these settings, all y; i, and z i, satisfy
Condition[ll Moreover, the total first-order oracle complexity is

- 2+21/f71/fug 7+8uf—2ufz/g 4+4uf7ufz/g
O <A€ 2+2vy K 2F2vy 6_ 2+2vy ) ,

and when vy = v, = 1, the first-order oracle complexity is @) (AZ3/4K13/46_7/4).

We defer the proof to Appendix [DI Under the Holder continuity assumption, to the best of our
knowledge, we are the first to propose a method that finds an e-stationary point. Furthermore, under
the Lipschitz continuity assumption, our approach outperforms all existing methods in the literature,
as the proposed method RAGD-GS relies solely on first-order oracle information.
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5 Numerical Experiment

This section compares the performance of the proposed method with several existing methods, in-
cluding RAHGD [Yang et al. [2023], BA (Ghadimi and Wang [2018]), AID (Jietal! [2021]), ITD
(Jietal. [2021]) and F2BA [Chen et al! [2023]. For the bilevel approximation (BA) method in-
troduced in |Ghadimi and Wang [2018], we implement a conjugate gradient approach to compute
Hessian-vector products since the original work doesn’t specify this computational detail. We refer
to this modified version as BA-CG to distinguish it from other algorithm. Our experiments were
conducted on a PC with Intel Core i7-13650HX CPU (2.60GHz, 20 cores), 24GB RAM, and the
platform is 64-bit Windows 11 Home Edition (version 26100).

5.1 Data Hypercleaning

Data hypercleaning (Franceschi et al. [2017];/Shaban et al.! [2019]) is a bilevel optimization problem
aimed at cleaning noisy labels in datasets. The cleaned data forms the validation set, while the rest
serves as the training set. The problem is formulated as:

1
i W*(N\), ) = E -1 TW*(\)a;
)\Iélﬂélf\lftr f( ( ) ) ‘Dval| (z1,y:)ED Og(yl ( )x)
TiyYi val

1

—a(\i) log(y Wa;) + C|[W]?,
(z4,yi)EDy

s.t. W*(\) = argmin
Werdy xda | Drel

where D, and D,, are the training and validation sets, respectively, W is the weight matrix of the
classifier, o(+) is the sigmoid function, and C,. is a regularization parameter. In our experiments, we
follow [Franceschi et al| [2017] and set C,. = 0.001.

For MNIST |[LeCun et all [[1998], we used |Dy| = 20,000 training samples (partially noisy) and
|Dyar] = 5,000 clean validation samples, with corruption rate p indicating the ratio of noisy labels
in the training set. In Figures[lland 2l inner and outer learning rates are searched over {0.001, 0.01,
0.1, 1, 10, 100}. For all methods except BA, inner GD/AGD steps are from {50, 100, 200, 500}; for
BA, we choose GD steps from { [c(k + 1)1/*] : ¢ € {0.5,1,2,4}} as in|Ghadimi and Wang [2018].
For F?BA and our method, ) is selected from {100, 300, 500, 700}. The results, shown in Figures[I]
and 2] demonstrate that our proposed method achieves acceleration effects comparable to those in
Yang et all [2023], and outperforms all other methods.

-—- RAGD-GS -—- RAGD-GS
17.5 —— AID-BiO VSN e RAHGD
150 BA-CG 150 —— AID-BiO

—+— ITD-BiO BA-CG
12.5 e-- RAHGD 125 —+— ITD-BiO

—— F2BA —— F2BA

Train Loss
-
o
o

Train Loss
-
o
o

251 = 2.5
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
running time (s) running time (s)
Figure 1: Corruption rate p = 0.2 Figure 2: Corruption rate p = 0.4

5.2 Hyperparameter Optimization

Hyperparameter optimization is a bilevel optimization task aimed at minimizing the validation
loss. We compare our proposed algorithms with baseline algorithms on the 20 Newsgroups
dataset [Grazzi et all, [202(0], which consists of 18,846 news articles divided into 20 topics, with
130,170 sparse tf-idf features. The dataset is split into training, validation, and test sets with sizes
|Dy| = 5,657, |Dya| = 5,657, and |Dest| = 7,532, respectively. The optimization problem is
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formulated as:

LY Lt e )

min ——
AERP  |Dyy|
(z4,Y:) EDya

1
st. w'(\) = argminD— Z L(w;zi,yi) + 5=
wezexr [Duf (24,9:) €Dy J=1k=1

For the evaluation in Figure 3] inner and outer learning rates are selected from {0.001, 0.01,
0.1, 1, 10, 100}, and GD/AGD steps from {5, 10, 30, 50}. For BA, we choose GD steps from
{[e(k + 1)1/ﬂ :c € {0.5,1,2,4}} as in|Ghadimi and Wang [2018]. For F2BA and our method, A
is chosen from {100, 300, 500, 700}. As shown in Figure 3l our proposed method exhibits perfor-
mance comparable to that of |[Yang et all [2023], while significantly outperforming other competing
algorithms by converging faster and reaching a lower test loss.

3.0 -—- RAGD-GS
—— AID-BiO 07
2,51 BA-CG 0.6 ,:‘
b —+— ITD-BiO >
)\ %05
ﬁ i --e-- RAHGD go
J_|_l 2.0 —e— F2BA Soa
7] <
© 203 —— AID-BiO
15 2 BA-CG
0.2 —+— ITD-BiO
o1 --e-- RAHGD
1.0 : —— F2BA
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
running time (s) running time (s)
(a) Test loss v.s. running time (b) Test accuracy v.s. running time
3.0 ——- RAGD-GS
—— AID-BiO 07
2501 BA-CG 06
—+— ITD-BiO >
@ --e-- RAHGD © 05
S20 F2BA 3
= Qo4 -—- RAGD-GS
2 203 —— AID-BiO
15 < BA-CG
\ 02 —+— ITD-BiO
S o1 --s-- RAHGD
1.0 ‘"w—.-..u..,_‘__,““_'_w_’_'_'_.__‘ . —— F2BA
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
# oracle calls 1eo # oracle calls 1eo
(c) Test loss v.s. oracle calls (d) Test accuracy v.s. oracle calls

Figure 3: Results of test loss and test accuracy evaluated on the test set.

6 Conclusion

This work introduces an accelerated first-order method framework for solving nonconvex-strongly
convex bilevel optimization problems, extending techniques from nonconvex optimization to a
broader setting under generalized Holder continuity assumptions on both the upper-level and lower-
level objectives. We show that, with a carefully designed restart condition, the iterates remain uni-
formly bounded within each epoch, ensuring both stability and convergence. In addition, we provide
first-order oracle complexity bounds along with rigorous error analysis and convergence guarantees.
Our theoretical results are further supported by empirical evidence, demonstrating the effectiveness
and robustness of the proposed algorithm. An important open question is whether a fully first-order
method can find an e-approximate second-order stationary point without using e-dependent parame-
ters, which we leave for future work.
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A Notations for Tensors

We adopt the tensor notation from Kolda and Bader [2009]. For a three-way tensor X’ € R xdzxds
the entry at (i1, 42, 43) is denoted by [X];, 4, .;,. The inner product between X and Y is defined as

<Xay> = Z [X]i17i2,i3[y]i1-,i2,i3'

11,12,%3
The operator norm is
HX” = sup <X7I1 OI20I3>7
lz1ll=llzsll=llzs]=1
where 10220230, 15,45 1= [%1)iy [®2]i, [€3]i,. This definition generalizes the matrix spectral norm

and the Euclidean norm for vectors to three-way tensors. Let X € R 42X be a three-way tensor,

and let A € R% %% be a matrix. The mode-1 product of X and A, denoted by X x; A € Rd1xd2xds
is defined component-wise as

&
(X X1 Al gy = D Ay iy Xiinsi-

i1=1
Mode-2 and mode-3 products, denoted by X’ X B and X x 3 C, are defined analogously for matrices

B € R%*4d2 and C' € R%* 45 respectively. Moreover, the operator norm satisfies the submultiplica-
tive property under mode-¢ multiplication:

1, All < Al &, fori=1,2,3.

B Proof of lemmas in Section

Lemma B.1 (Lemma B.2 by(Chen et all [2023]). Under Assumptionll] for X > 2L/, it holds that
Ct
[yx(2) =y (@)l < 5%

Lemma B.2 (Lemma B.5 by(Chen et all [2023]). Under Assumptionll] for X > 2L/, it holds that
IVy*(x) = Vyi(2)|| < Da/A where

1 2L
Dy = (+2g> (Lf+cfpg) =0 (K*).
oo I

Lemma B.3 (Lemma B.6 by(Chen et all [2023]). Under Assumptionll] for X > 2L/, it holds that
IVy* (@)l < Lo/ V3 (@) < 4Lg/p.

This implies that y*(z) is (L4 /p)-Lipschitz continuous, y5 () is (4L, /u)-Lipschitz continuous.
Lemma B.4. Under Assumption[l] for \ > 2L /i, we have

D
192" () = V23] < 12
where
2pg , B \1- Ly Cyp 14LypgDa, vy
Dy = g 1-vy, 1 g L g grg 1-v,
! M2(2Lf) ( " u) ) T (QLf)
5012 U C
T g(p L N=ve g fl’_q)
= (G ()
=0(k179).

Proof. We begin by differentiating the identity
Viy9 (@,y" (@) + Vy* (2) V3,9 (z,y" () = 0
with respect to z. This yields
Viaayd (@,97(2)) + Vg (2,57 (2) x1 Vy*(2) + V2y" (2) x5 V5,9 (2,57 (2))
+ V9 (@57 (2) X2 Vy* (@) + V0 (2,5 () x1 Vy*(2) x2 Vy*(2) = 0.

12



81 Rearranging terms to isolate V2y*(z), we obtain

V2t (x)
= — (V3,0 (@5 (@) + V3,0 (25" (x) x1 Vy* (@) x5 [V2,9 (z.y"(x)] )
) X2 Vy* (2) x5 [V2,9 (2, 5% (@))]
) X1 Vy* (2) x2 Vy'* (2) x3 [V2,9 (2,57 (@)] .

— Va9 (25" ()
- Vyyyg (:L‘, Y (x)

ss2  Analogously, we have

VZ *(.’I})
= (TP (000 + Vi B (030 21 V@) 5 [T o]
— V3, L (2,95(2)) x2 Vyi(x) x3 [V2, L (2,935(2))]

— VoI (@, 95(2)) X1 Vi (z) X2 Vyi(z) xs [Vi, Ly (x’y;ﬂ\(x))]*l .

383 Next, we estimate the difference between the corresponding third-order derivatives in the original
ss4 and penalized problems. To begin with, we observe that

b Vi (@, 03(2)
Hvizym,y(x)) -

* wiNwe L Pf_ P Cr\"
< My lo3(e) — o @ + 5 = B 40, ()

3

o<}

5 Similarly, for the mixed partial derivative and its contraction with Vy*(z), we have

vgg/aryLk (I’y:k\(x)) X1 Vyf\(x)
A

||V2xyg (z,y"(2)) x1 Vy* (z) -

<[IVy*(2) = V@) [|[Viayg (@, 5" (@)|| + I VY3 ()
pyDa AL, Cy

<fo2 M, .

=3 T (/\ " (Au

sss Furthermore, we control the error in the third-order term involving two contractions:

< |IVy* (@) ||V,
+IVyi @) [|V5

Viay (2,5 () =

V3D (2,55(2)) H
A

VoL (2,43 (%) X1 Vi3 (x) x2 Vi3 (x)
A

Vw9 (2,57 (@) x1 Vy* (2) x2 V(@) —

w9 (@ (x))” IVy* (z) — Vyx (o)

|
V3., Lo (2,93 (@) H
A

L.o.D 16L>2 Y
< 5Lgypg Do + 29 (pf + M, (Cf> ) )
Ap 7 A Ap

+ VIR @) | Vieyg (2,97 (2)) -

13
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400
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402

403

Combining the above inequalities, we are now ready to bound the difference between the second
derivatives:

[V2y* (@) = V23 (=)

V2, Ly (2, y;<x>>1 -
A

+ TLgpg D2 +25L{2; p7f+M ﬁ v szLA (z,yx5(2))
AL 12 A I\ M\ A

2pg Ly ’ Crpg 14Lgpy Do 50[’527 Pf Cr\"”
<ZPo (14 29) (L Br 4o, (2L
_)\HQ( +u) ) e e T

<pg (1 + L:)z (V2,9 (2,57 (2))] " —

a

Lemma B.5. Under Assumptionlll for X\ > 2L/ u, the mappings Vy*(x) and Vy3 () are Lipschitz

2 2
continuous with constants (1 + %) %’ and (1 + %) (2% + Z—’;), respectively.

Proof. Recall that

Vyi(@) = =V2, Ly (2,95(2)) [V2, Lx (2,55 (2)]
and
Vy*(z) = V2,9 (x,y" () [Vi,9 (@, y"(2))]

By (13)) and (14}, we can obtain the Lipschitz constants of Vy*(x) and Vy5 (z) by directly bounding
[V2y*(z)|| and || V?y;(z)|. Specifically, we have

1 L L L\*\ »p Ly\?
VA @l < oot pem b peT e ( g) =2 (1+g> 7
IV2y™ ()] < <g g A . p

. 9 AL, (4L, AL N\? (204 . py
9 < —= e
IVER@l < 5oy 4+ w) (122 (S22 ) )< (e =2 ) (S 72

Here we use Lemma B3l A\ > 2L;/u, Vi, g9(z,9)ll < pg Ve, 0@y < pg
V3,9l < pg. Ve, 9@ )l = o Ve, La(z,y)| = 3w Vi, fl@y)l < pf.
IV2,,f(@y)ll < pgand [V, f(z,y)] < py.

“;

—_

B.1 Proof of Lemma[2
Proof. We decompose V2 L3 () into two components:
V2L}(z) = A(z) + B(x),
where
A(z) = Vi, f (2,95(2)) + VYA (@) Vi, f (2,y3(2))

and

B(x) =\ (V3.9 (z,45(2)) — Viug (z,y"(2)))

+ A (Vyr () Va9 (2,93(2) = Vy* (2) V9 (2, 3% (2))) -

14



a04 To analyze the variation of A(z), we observe:

[A(z1) — A(z2)||
<IV2,f (21, 95(21)) — me(l’%i‘/)\( 2)) ||
+ IV (@) Vi, f (1, 43(21)) — Vyi(22) Vi, f (22,535 (22)) |
<IVEf (21,95 (21)) — xxf(zQ’yA( 2)) |
+ [IVyx(21) Vi, f (21, y3 (1)) — Vyi(e2) Vi, f (21, y3 (1)) |
+ | Vyr(22) Vi, f (whyx(wl)) yi(ﬂcz)vygﬂf (2,93 (22)) |
1+

4L,

sH;(1+— )”f||961—5f72||”er )Ilwl—wzl\
4L 2
+ (1 =L %’})Lfnxl —
4L,
SHp(1+ —2)" |loy — 22|
w
N———
C1
4L, 4L, 4Ly 5 2py  py -
+ T4+ =)+ (14+ —2)* (=2 4+ ZL)Ly ) DV ||z — o (15)
(Bo2osr+ 22y (4 S22 4 21 ) D11y — o

Ca

05 The first step applies the triangle inequality. The second step relies on the (v, Hs)-Holder continu-
a6 ity of V3, f, the bound V2, f(-,-) < Ly, and Lemma[B2l Here, C; = O(¢x*7), Cy = O({K?).

a7 Next, we evaluate V B(z) by differentiating:

VB(z) =X (V.9 (z,y5(x) — Vi,.g (z,y" (x )))

+ A (Ve (2, 43(2) X1 Vyi(2) = Vi 00 (2,47 () x1 Vy* ()

+ A (Viye (2, 43(2) X2 Vyi(2) — Vi, .9 (2, 4" () x2 Vy*(2))

+ A (V5,09 (2,95 () x1 Vyi(2) X2 Vyi(2) = Vi 0 (2,97 (2)) X1 Vy* (2) X2 Vy*(2))
+ 0 (V253(@) s [V3ag (0, 93(0)] | = V2" (2) xs [V3g (@,y7(@))] ).

s0s  To bound the Lipschitz constant of B(z), we control ||V B(x)]| as follows:

IVB ()| <AIVZeeg(@,y"(2)) = Vieaa(z,y3(2))l]

+ VY (2 )IIHVymg(w y*(x)) = Vi .9(z,y3 (@)
+ Vi (@) = Vy* (@) [V eeg (2, 3 () |

+ A[Vy* (x)IIHszxg(x y*(x)) — Vi,.9(z,yx ()]
+ VY (2) = Vi (@) [[[1V3,.9(, 3 ()|

+ MV @)1V 9 (2, v (@) | Vi (z) — Vy* ()]
+ VYL @)V e9(z,y* @) VY (z) — Vy* (@)
+ VY (@) |11V ye9(, v (2) = Vi, 9(2, 93 (@) |
+ A V2y *(w)l\llvymg(m y*(2)) — Vig(z, y3(2)]]
+ AV (z) = V2 (@) 1V, 9 (2, y3 (@)

15
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Using the smoothness and Holder continuity assumptions on g, as well as bounds from Lemma[B.]
Lemma[B2] and Lemma[B4] we arrive at:

C;-)”g( Lg>2 5L, . D
VB(z)|| <AM, | — 1+ —= 24+ —)A\pg—
w5 <, ( X 2) 2+ 2oy,

A
D
+/\pg< )( g) %JMLQATj

Cy L,\? 5L
o ()" () oo L

C Ly\?
+ Py <f> <1 + 9> P9 4 N0, Dy.
u w) o n

Denote the entire right-hand side as C3 = O(A'""s/x?*s). Finally, we estimate the restricted
Hoélder constant of V2L (z):

IV2L5 (1) = VL3 (w2)|| _ | A(z1) = Ax2)|l | [|B(x1) = B(za)|
|z1 — 22" =l — e |21 — 22"
<Cj + (02 + 03)”371 — xng_yf
<Ci+ (CQ + C3)R1_Vf.

Define

H,(\,R) :=C1 + (Cy + C3)R¥™YF = O(Uk"T) + ON T appttva)RI7Vr (16)
Thus, V2LX(x) is restrictively (v, H, (), R))-Holder continuous with diameter R. In the case
vy = 1and v, = 1, this implies V2L () is O(¢x°)-Lipschitz continuous. O

C Proof of lemmas in Section

C.1 AGD subroutines

Algorithm 2 AGD (h, 20, T, «, B)

1: Input: objective function h(-); start point z¢; iteration number T' > 1; step-size o > 0; momen-
tum parameter 3 € (0, 1)
Zo + 20
fort=0,...,7T—1do
241 Zt — aVh (Zt)
Zii1 4 Zeg1 + B (o1 — 2t)
end for
Output: zp

AR A R

This method boasts an optimal convergence rate as shown below:

Lemma C.1 (Nesterov [2013], Section 2). Running Algorithm[2 on an £ -smooth and py,-strongly
convex objective function h(-) with« = 1/£p, and B = (.//ﬁh — 1) / (,/K;h + 1) produces an output
zr satisfying
1 \7
2 * |12
— (1 1— — —

where z* = arg min, h(z) and kp, = €,/ uy, denotes the condition number of the objective h.

C.2 Proof of Lemma

Proof. Consider an epoch ending at iteration k£ > 2. By applying the Cauchy—Schwarz inequality
to the restart condition (3), we obtain

k—1
L
max s — 2| <D o — 2| < VESp < () (17)
=1

0<i<j<k—1 y
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This implies that the diameter of conv({z; f;ol) is less than (HL) . By solving a system of equa-

tions: )
R=3(z)", (18)
H,(\,R)=H,,

where H,(\, R) is defined in (T6). We have
HV =0 ()\”f(l_’/g)gﬁg""‘(l""’/g)’/f) , R =0 (A_(l_yg),i—(l""Vg)) . (19)
Denote this specific R by D. The boundedness of {z; } has been ensured by (I7). From line 8
in Algorithm[Il we have
[wivr —will < 1+ Oip1)||lzivr — @il + illws — zioa |l < 20@igr — @il + (|2 — zia].
The last inequality holds due to 65 € (0,1). So

max |lw; —wg| < max ||wl w;ll <3 max ||x1 — x| <D,
0<i<k 0<i<j< 0<i<j<

where wy, is defined in (7). The first inequality holds because 1wy, € conv({w;}*=7), and the maxi-
mum diameter of the convex hull is attained by a pair of its vertices.

O

C.3 Proof of Lemmad

Proof. Consider the exact gradient of L} (-):
VL (W) = Vaf (Wi, yx(wer)) + A (Vag (Wi, Yz (we k) — Vag (Wi, ¥ (wik)))

and the inexact gradient estimator used by Algorithm [T}

ﬁLj(wt,k) = Vaof (Wek, Yy k) + A (Vg (Wek, Yrk) — Vag (Wek, 2ek)) -
By the triangle inequality, the Lipschitz continuity assumptions in Condition [I} and the condition
Ly < AA\p < ALy, we obtain:

IVLS (wek) = VLS (we,r)|
<Lgllyew — yx(wer) | + ALgllyer — yx(wer)ll + ALgllzer — v (we k)l
=(Ly + /\Lg)llyt k= Y (W) + ALgllzek =y (we )|

g
<(Ly+ AL,) - 4)\L + AL, 9 N
g
L0,
2 2

D Proof of lemmas in Section 4]
Lemma D.1. Under Assumption[lland with X > 2L/, the following holds for any x and x’:
L
L3(z) = LA(@) < (VLA(@'), 2 =) + Sl — /]

D.1 Proof of Lemmal[3

Proof. Letx = Z?zl g;x;. Since L} is twice differentiable, we have
1
VLi(z;) — VL (%) = V2LA(Z) (2 — ) + / (VAL (7 + t(z; — 7)) — VELL(7))(z; — T) dt.
0
Computing the weighted average sum, we have

> VL (x;) — VL3 (2 qu/ V2L (7 + t(w; — ) — VELL(2))(z; — Z) dt
i=1

17



446

447
448
449

450

451
452

453

454

455

and

VL () — VIL(F) gz /HVQL* Hai — 7)) — VL) i — 2] dt

<X /H e — 2 Y 31 e

= s — 2|
B S5 (- al?) ©
= ; Nz —
1+l/f pot qz q2 3
1—v 1+l/f
H n 2 n 9 2
< v . M, — T
S 1+Vf (;%) (;%I i H )
T4y
H 2
v 2
= DD @l — )
L+vy 1<i<j<n

The second inequality holds due to ||z; — Z|| < maxi<;<j<n ||z; — 2;|| < D, Lemma 2] and

equation (&). The last inequality uses Holder inequality. The last equality holds due to Z ¢ =1
and 337 gillzs — ZI° = X1 <icjcn @il — 251 0
D.2 Proof of Lemmal6l

Proof.

Li(z) — Ly(2') — %(VL}‘(I) + VL3 (2),z — 2)
1
:/O (VL (tz + (1 — t)2) ,o — 2') — %(VL;(x) + VLY (), z — 2y dt
= /01(VL§(tx + (1 —=t)2") —tVL(z) — (1 —t)VL(2'),z — 2’y dt

1
§/ VLA (tx + (1 — t)a'") — tVLi(x) — (1 — ) VL ()| ||z — 2’| d¢t
0

H, !
_1+Vf

(1 — )" 4+ (1= )t ) (| — 2/ [|PTr dt
2H,

T+ +rnB+ry)

The last inequality follows from Lemma B by setting n = 2, (z1,22) = (x,2’), and (g1, q2) =
(t,1—1).

lw — ||+

O
D.3 Proof of Lemmal/7l
Proof. Let
Pk = <VL§($1€_1), T — l‘k_1>.
From Lemmal[D.1] we have
* * * L 2
LX(zh41) = LX(wr) S(VLX(we), @1 = k) + 5 llekrs — wil]
1 - 1 .
= = TAVEX(wk), VLA (wi)) + 57 VIR (wi)|* (20)

18



457 From Lemmal6land Lemmal[3] it follows that ||wy — zx|| < |2k — 2k—1]| < D and

L’;\(wk) L)\(l‘k) <VL* (wk) + VL)\(J}]C) Wy — .Z‘k>

2H, ”t
+ Wi — T v, 21
Qo) @+ )3+ o e = 2l @b

458 By summing inequalities (20) and 1), we evaluate the expression as follows

L*($k+1) — L3 (xx)

2H, 0,
VL VL . Yk — e ||PTY
< )\(wk)+ )\(xk) Wg — xk>+ (1+Vf)(2+yf)(3+l/f)”xk Tk 1||

(VL3 (wr), VL] (w)) + iII@LK(wk)H?

el

(22)
459 To evaluate the first term on the right-hand side, we decompose it into four terms:

(VLA (wr) + VL (2k), wi — k)
= 2<VL§\(wk),wk — :Ek> +9k<VL§\(Ik_1),wk — Ik>
1) (B)

—9k<VL§\(xk),w;€ — $k> —<VL§\(’LU]€) + ekVLK(xk_l) — (1 + ek)VLi(l‘]f), Wi — xk> .
)

(D)

w0 Letn=2,q =1/(1+6),q =0;/(1+ 6) in Lemmal3] we have

VLR @0 - o Vi) -

Tk
1+ 6

14vy

< v < k || |2)
=71 Y (1 ek)2 Wk Tk—1

H, v s
9 2 — Tp_ v 23
1+1/f lzw — xr—1]| (23)

461 Now, we proceed to evaluate (A), (B), (C) and (D) respectively.

Lo los
(A) = IVLA () I* + Lllwy = 2 ])* = Ll (i = 2x) = 7 VL (wi)|*

2
1 *
= IVLR (i) + 07 Lllzx — w1 * —

1. 1
R A (O

1 *
=7 IVL; (wi)||? + 03 Ll|ak — wp—1]® — Lllzgsr — ol

2 N
-7 HVLA (wp) — VL’g(wk)H — a1 — o, VL (wr) — VL (w)),

(B) =0R(VL}(xk—1), 2k — k1) = 04 Pp,
(C) = = Ox Pry1 + Ox (VLY (1), Thy1 — wi)

0 N
= = OxPer = (VIS (), VIR (wn)),

2H, s
(D) S50, |l — 2 |77

_1+I/f

19



462 Here we use equality 2(a,b) = +al|* + L||b]|* — 2 Tht1 = Wk — %@Li(wk) Wy, =
463wk + Op(zp — z—1) and @3). Plugging the evaluations 1nto (IZ[), we have

2H 24v
v 0 f _ B 2+vy
(1+vp)2+vp)(3+ yf) e Nk = @il
92
+7||33k - T— 1|| - *||33k+1 - $k||
—(@pq1 — xn, VL (wi) — VL (wy))

02 0 H, vy
+E2P— =Pt + v —0, % |k — xk,1|\2+”f

Li(wg11) — Ly (2x) <

D (VL ), VL () 24)

462 Next, to bound the last term on the rlght-hand side of (24), by triangle inequality and 23)), we have
|+ 00V L (0) = VL3 )|

< 11+ 00 VL3 () = VL3 (wn)| + |[ VL3 () = VI3 ()

2H, v

< 9 L* _ 9 2 _ B 1+1/f_
<o+ O IVES )l + 0™ o — el

465 Squaring both sides yields
11+ 08) VLR (2x) — VLE (wi)|®
=(1+61)° VL3 () |I* + VL3 (wi)|* = 2(1 + 6k (VLS (24), VL3 (wi)
>(1+61)° VLY () 1P = 2(1 + 06 (VL3 (), VLY (wr),

466 and
2H, m 2
(o 00 IV Z )+ 38 o = a7
* 2 2 AH7 1+vy 2+4-2v5
<Ok(1+0k)[VLA(zr-1)[|" +2(1 + k) | 0~ + mak [ze — 21 :

47 Here we use the inequalities (a + b)* < (1 + z-)a® + (1 4 64)b® and (a + b)* < 2(a® + b%).
468 Rearranging the terms yields
* 2 ok 0 * 4H3 v v
~(VL3 (), VL3 (we)) <0® + TN VLS (o) I+ 7= gy Nl — e P72
1+ l/f)
1+ Ok

IVLS ()|

a69 By plugging this bound into (@4): we obtain

2H 2bu :
Li(x — Li(z) < Y O g — 2 q 12T
)\( k+1) >\( k) _(1+Vf)(2+yf)(3+yf) k ” k k 1H
92 L
+7||xk -z |® - Sz = i )?

—(@ps1 — 2k, VL (wi) — VL3 (wy))

92 9 H 3tvy
FEp = P 0, || — @ | T
2 2 1+ vy
9,3 2H2 0
L v k _ _ 24-2v
(1+9k)9k 9 9k0'2
- ||\VL} —_ 25
0 7 5 ) 2 + 22 25)

20



470

471

472

473

474

475

Considering @), 23) and ), < 1, we have

2

2

0 1
Dy — Op <Li(wpr1) — Li(ap) + 5 (Pk+1 + ﬁHVLK (k) I” + Ll wpsr — $k||2>

92 N
% (Pt SEIVER @) P + Lo - ol
2H, v H, v
<||lwg — o |2 i+ ! 0y *
(1—|—Z/f)(2+l/f)(3+l/f) 1—|—l/f
L. 2H2 0T 02— 6
+ ok =z [P L kL + k+12 Pria

07,1 — Oc(1+6)
4L
From Young’s inequalities and 67, — 6 < 0, we have

N L
—Pi1 = —(VL (), Thy1 — k) < ||VLA(5%)||2 *||xk+1 -z

+ollzrrr — k-

2
VL 2
VL (zx)||” + 5+ 5T

— 2L
Finally, we derive the inequality below:
2HV 2w HV 3+vy
Bpyq — Op <||lwp — zpq ||PT ! 0, 2
br1 = i Sl =z ((1+uf)(2+uf)(3+uf) K T+ *
2H2 07TV 0, + 0 —2
+ ka _ xk_1||2+2uf (1 — )2 kL + k+1 1 L”mk—&-l _ xk”Q
0]% * 2 2
= 2 VLA =e)l” + ﬁ +olzrr — k-
D.4 Proof of LemmaS]
Proof. Summing Lemma[/lfrom i = 0,. ..,k — 1 and telescoping yields
k-1
O — Do =Y (Pif1 — Dy)
i=0

2HV 24v Hu Stvy
< i Li— vy gsTrs Y g2

2 2+4vy -
Tl — e 2 G Ol +6: =2
A+vp)? L 1

Llwipy — i

02 9 2
T IVER @I + 57 + ol — i)

k—1
2H 24 H 3+'”f
< i — x| - 0, 0, 2
*Eg”x el (T Th
k—

92+l/f

— 1+vs)? L

92
- v+ 2 +02me xlu)

L 2H2 0V g2 +9k =
Z\Iwz—mz 1P+ T s — Z i1 — i
=0

(26)

476 The second inequality holds due to {Gk} is non-decreasmg and non-negative. Moreover, by the

477

definition of ®;, in Q) , we have

92 L )
HVL/\ (zh-1) + L(zp — p—1)|? §||xk —z_1)? ) >0,

Oy — Li(z1) = o

* 92 *
Do — L3 (z0) = ﬁHLx(on)Hz > 0.

21
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478 From Power-Mean Inequality, we have

k—1
v v 1+v
Z i = i |47 < Sk 10 Z s — @i [[PF27 < Sk:f- (29)
i=0
479 Substituting @7), @8), and 29) into 28), we obtam
vy 2H, oty | H,
L3 — L3 <SS, 2 U S
/\(xk) )\(1‘0) = PE_1 <(1+Vf)(2+yf)(3+yf) k—1 + 1—|—V k—1 )
°H2 0TV 92 49, —2
Sl+l/f . v k=1 k LS
ok (1+yf)2 L 4 g

JF 57 +UZ”$H—1 — i

430 Applying the restart condition (3) and noting that Sy,_1 < Sk, we further obtain
2 24 1 2w LS}
Li(zg) — L (z0) < g ——— g2 ). 2
Mow) = Iifwo) < ((1+Vf)(2+Vf)(3+Vf) L Ly M) g
2 24 LS, 02 +0,_1 —2
0 f. k
N (1—|—u )2 ke T 4

LSy,

+ — +UZ [@ir1 — @il

481 Since 0 < vy < 1, and

T otv +"f 1 02 + Op_1—2 1
07+ 4 g R k <—— VE>1
(3 0k g2+ * 4 - 32k’ -

482 'We obtain

* * 7 v +Uf 1 02 +6, 1—2
L/\(ajk)—L)\(.’L‘o)SLSk(<392+ f+9k 1 ) k2+i + & Z ! )

+ BYa +UZ i1 — 2]
LSk kO’
< - 32k UZ lziy1 — x|

483 O

484 D.5 Proof of Lemmal9]

485 Proof. Define
k-1 k—1

-3 1] o-44

1=0 j=1i+1
ass  sothatpy; = 1 HJ —;+1 0. From definition (7)), we have:
k—1

Zpk ZVL)\ wz Zpk:z xiJrl)

=0

= ipk,iL<9i(xi — 1) — (Tip1 — )

= ZL (Prji—1(®i — 1) — Pryi(Tip1 — 24))
= *ka,k—l(xk - mk—1)~

22



487 From wy, € conv({w;};), Lemma[3and Lemma[] we have

I+uy
k-1
* [ — * HV 2
IVL5 (@)l < ||D pri VIS (wi)|| + T D pripk llwi — wj|
i=0 ' \o<i<j<k
1+Vf
2
H,
<o+ Lpije-allze — wi-all + 77 D prapnllwi —wylf?
F \o<i<j<k
1+Vf
L H, i
<o+ —llzr — || + ————- Z [|w; — w;|? ) (30)
Zi (L+vp)z, ™ 0<i<j<k

ss8  Here we use inequality py; < prr—1 = 1/Zy = 2/(k+ 1) forall 0 < i < k. Regarding the last
4g0  term in (30), we have

[[wi — wy |
Jj—1
<lwi — zill + Y Mo — @il 4wy — 254
l=i+1
7j—1

=||zi — @il + Z |z — 21l + 2 [|2; — 25—

I=it1
Jj—1 J

< (12—1- Z 12—1-22) (Zm —1‘1—1|2>
=i

1/2

j—it4 (ZHJJZ—’JZ 1||) :

l=i+1
490 The above inequalities hold by the triangle inequality, 0 < 65 < 1 and Cauchy—Schwarz inequality,
491 respectively. Then

1/2 1/2

S G i) o -

2
Yo llwi—wyl <
0<i<j<k 0<i<j<k l=i
k—1 l k-1 k—1
=S XSG+ ) o=l =4 o — @
1=0 \i=0 j=I 1=0
k—1 —
k+7
= o S+ Dk =D e = ma P =43 o — @i
=0 =0
k—1
k+ 72 (k+1
S R P *4Z|\fﬂl*$l P
=0
(k= )k +5)* = _ (k=1 (k+5)?
= S anﬁxl 1% < —Sk. 31)
492 Plugging (1) into (30), we have
1+vy
. L H, 14, ((E=1)(k+5)2\ * 2«
IVES (o) <o+ - Hwﬂﬂﬁ)“(‘g s

(32)
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93 Then for k > 2, combing with (32), we have

k—1
Z?| mi L (w;
() in Izscon

k—1

<Y ZAIVL ()]

i=1

k—1 k—1 H
SO’;Z? + ; <LZz|CCZ — $¢_1H + 1 i

—(1/Z:)" N
vs

k—1

S S i—1)(i +5)?
<o ZPHLVSa (Yo Z)' + &Z(l/zi)”fl((l)w)

i=1

8

k—1 k—1 , :
Ly/1/kAvs 2 4, (i=1)(i +5)2 vy 1
< E 2 / E 2\1/2 E vp=1 N0 N Y] N5+ g3
>0 e Zz +L Sk—l(i:1 Z’L) + (Z+1) ( ) S

1—|—l/f

i —1)(i+5)2 vy 1tvs
R

k—1 k—1 T, Y 2 14,
g;zhLM((;zf)W e Y= e BN )

1+Uf 8

404 Notice that Z, = %L and ’1“ <> 72 < B we have

1= 1+vy

((Z
min [|VL}(@;)|| < 0 + L/ Sk-1

S(1+Vf)/2

k—1

k— 1/ i1/ (G—1)(i+5)2 v
A 11 Ziz)l/z V1/ETTS Z(z—%l) ¢ 1(( 1)é+5) )(1+ f)/2)

i<k (xi z2)

95+
4+Vf211§

f+
<o+ Ly\/Sk_1 /12

<o+ cL V Sk—l/kga

495 where c is a constant, ¢ = 2v/6 4+ 27. The last inequality holds due to Z Lis+

496 D.6 Proof of Proposition[I]

497 Proof. Consider an epoch ends at iteration £ and ignore the subscript ¢. If wy, is not an e-first-order

498 stationary point and k > 2, from Lemma[J] we have:

€ <o+ cl\/Sk_1/k3 <o+ cL\/Si/k3.

w9 Ik =1,0+cL\/Sk/k® =0+ cL|z1 — x0| = 0 + ¢| VL% (x0)|| > €. Here we set 0 =

s00 the above inequality is

2]{33
S > % V> 1.
(C+ 674) L2

501 From (33]), We have

o\ kS, = o eV kS < LiSkv

64c + 1 ~ 64k
ko? E 1 58Sk LSy,
< — 22 <

9L ~ 206427 k3 T 2 x 642k
503 From restart condition (3)), we have
L2 /Ay \ Ve
S > (/) |

H

24

1

64cr16

(33)

(34)

(35)

(36)



504

505

506

507
508

509

510

511

512

513

514

515
516
517

518

Then we can bound S}, as:

443v

4+31/f Vf — J 1
I¥dvy ~Atdvy _3 64e 2+2vy “ 2720
Sy =8 g > 73 K2H,
L A (T
From Lemmal[8] (34) and (33)), in this epoch, decrease of L% (z) is
LSk kO'Q LSk
L3 — L3 > kS, > ——
Mao) = La(we) 2350 = 5 —oVESk 2 1550
4+31/f )
1 64e 22wy ~ 37307
> _— kH, .
=100 (64(: n 1)

Sum above inequality over all epochs and denote the number of total iterates as K, we have

4+43v

!
64c+ 1 227
64e '

As a result, we can denote the expression in the right side of (37) as Kp.,. Substitute H, =
A =v) O (£x3+47a)vs) and L = O(¢k3) for (37D, we have

1
K < 100A L2 H, ™ < (37)

vi(l—vg) 24vy  Gtdvptrprg  443vp
K S O (A)\)\ (2+21/f) £2+2Vf K (2+21/f) € 2+21/f> . (38)
We can also bound S, as:
24v
2+4vy vy i 1
¥, 27207 _ 64e T4y S
Sp =288 > 7! kH, "7
k k k - 64c+ 1
From Lemmal[§] (34), (33), in this epoch, decrease of L} (z) is
Lt (o) — L () > 2 o %S
APO) T BT =30 T o T TV R
LS,
>____
— 100k
2oy
1 64¢ A T
> H, . 39
=100 <64c—|—1) (39
Sum above inequalities over all epochs, we have
6hc+1\ T
T+vy 1
T < 100A, [ 226+ A (40)
64¢
Substitute H,, = A"/ (1770 O (¢k3+(14v9)v1) and L = O(¢x?) for @D), we have
vi(l—vg) 1 34+(14vg)vy  24vy
T < 10) <A)\)\ OFvp) pTvy o~ OFvp) ¢ 1+1/f> (41)
O

D.7 Proof of Theorem[]

Proof. From Lemma [l we have ||VL3(z) — Vo(z)| < O(x*)/A. From Lemma[ll we have
|L3(z) — ¢(z)] < O(k?)/X. Denote the number of total iterates as K, from Proposition [Tl the
following holds:

IV(wi)|| < [IVLi(@r) = V(g + VL3 (we)| < 2¢.
Substitute (38) and @I) with A = max(O(k), O(¢x3) /e, O(£x?)/A), the theorem is proved. O
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519

520
521

522
523

524

525

526

527

D.8 Proof of Theorem[2]

Lemma D.2. Consider the t-epoch generated by Algorithm[ll and ending at iteration k, we claim
that for any t and its corresponding k, we can find some constant C to satisfy:

VL (wek—1)]l, < C.

Proof. For the t-epoch except the last epoch, w, j is not an e-first-order stationary point. Since
L% () has L-Lipschitz continuous gradient, we have

L
L3 (k1) < L3 (wr) + (VLY (wr) ,2gr = we) + 5 [|2ags — wi])”

2

)

< 15 (o) — 7 (VIS (), VI3 (i)} + 5 [ VT3 ()|

where we use zp11 = wi — %VLj(wk). We also have

L
L} (z1) > L} (wi) + (VL] (wg) , o — wi) — 5 ek — will” .

Combining the above inequalities leads to
LY (why1) — L (k)
* L 2 1 * - 1 va Bl 2
< — (VL (wi) o —we) + 5 = wil* = = (V3 (wi) . VLS (we)) + 57 || VES ()|

S ok * L
=L {xp11 — Wk, Tk — Wk) + <VL,\ (w) — VL3 (wg) ,xp — wk> + 3 lxx — wk||2
1
L

L N
= (Iows = wll® + llax = wel® = o = 2ell®) + (VIS (wi) = VLS (wi) 2 — wi)

2wl T (VL () VIS (i) ) + o [V )|

(VIS (wr), VLS ()} + 5 925 ()|

2 L 2 - * 1 S ok 2
<Lz —wil? = 5 llzeer = @l + (VI3 (we) = VI3 (we) san = we) + 7 || VL (w)|

1

7 (VLA (wo), VL3 (wi))

(a) L e *
Lo = wi-al® = 5 e — ol + [ VL3 () = VL ()| - llow = 2
1 va Bl 2 1 * & T
L N
Lo = wx-al]® = 5 lowss = anll® + | VI3 (we) = VL (o) - o = el
1 S ok 2 1 * 2 S ok 2 * AN 2
+ Ve | - 57 (WLA (wn) P+ [ V25 (wo)| = |[VL3 (w) = VLS () )
) 2 L 2 v *
<L — el = 5 loeer =2l + | VIS (wr) = VL3 ()| -l = axa
1 * 2 3 * e 2
— 2 VLS ()P + - || V3 (wn) = VIS ()|
©) L 1 . 3
<Lllax = oxal® = 5 lonen — 2l = o7 VLS i)l + o llox — il + 707,

4L

(a) (b)

where we use ||z — wi|| = Ok ||zr — zr-1]] < ||zr — zk—1]] in <, the triangle inequality in <
(©
and Lemmal]in <.
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528

529

530

531

532

533

534
535

536

Summing over the above inequality, and using o = x_1, we have

k—2
L *
§§Z||xi+1_$i” 4LZHVL w;) H +UZH5EZ Ti— 1||+
=0 i=0
(d) Lk 2 k—1
3 2l =’ = g S IVE )l +ovE T anm il +
()L * 2 3 2
2Sk 1_T||VLA (wp—1)||" + o kSk—l‘FEU k
2
OL{L\7 1 PR
< — | — - — * v —
25 ()" - VB I+ oL/ H)T) + o
2
@L(L\% 1 L 3LSy
< — | = — —||VL} _ L/H,)"s —_— 42
22 ()7~ IVER )+ o)) + @)

(d) (e)
where we use the Cauchy—Schwarz inequality in <, non-negativity of norm in <, the restart condi-

(f)
tion (3) in < and (33) in § . For the last term in (@2)), we have

Sk Skf N ||3?k—$k 112
k
g o ka—xk 1§
H, k
b L 2/l/f 1 2
S (I’L,) Hwk 1 — Tk— 1—EVL,\(U)1¢ 1)
(c) L 2/”f 2
< 2 s — el + g [VER k)|

kL?

402

2/vy 8 2 9
+ oD b VIS )P+

k

&=

(d) <
<
. ()

a (¢)
where we use the restart condition ) in <, x, = wi_1 — %VL (wg_1) in <, Lemma[lin < and

(d)
LemmaMlin <. Combined with @2), we obtain

L3 () = L3 (o)

2
1 3 L \vr 3L 8,2 402
<= - Z
_<2+4><642>L<H,,> T i or (zP * L2> 43)
13 . N
o <4L - 642L> HVL)\ (wk—l)H +U((L/H ))

We claim that for any ¢-th epoch ending at iteration &, we can find some constant C' to satisfy:

IV Ly (we 1), < C.

Otherwise, @3) shows that L} (w ;) can go to —oo, which contradicts to min,cga. ¢(x) > —00
in Assumption[lland | L% (2) — ()| < O(¢x*/\) in Lemmal[ll 0

With the help of Lemma[D.2] we provide the proof of Theorem 2l
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537 Proof. We firstly show the boundedness of ||y* (w;,)||. Suppose that the t-epoch ends at iteration k,
538 we have

ly" (wit1,0) — ¥ (wo,0)ll
<Ny (en) — " (wer—0) || + 1y (e k—1) — y™ (we0) || + 1y (we,0) — y* (wo,0)]|

L L
ngllxt,k — w1l + fllwt,k—l = wiol + [ly* (we,0) =y (wo,0)|

+ D)+ ly* (we,0) — y*(wo,0)]-

539 The first inequality holds due to triangular inequality, the second inequality holds due to y*(z) is
ss0 Ly /p-Lipschitz continuous and the last inequality holds due to LemmaHland Lemma[D.2] Then we
541 have

™ (we0)ll <lly* (we,0) — y* (wo,0)ll + [ly* (wo,0)ll

L, CH+o
< - D
Iy (o)l + Z1(—52 + D)t
Ly C+o

<Ily* (wo, o)H+7( +D)T,

L

sa2 where T is the total number of epochs. We can set {7} ;, T} ; } as follows: let

L/ 1og,/1+<1+2A 9 CZU+5D)>—‘, (44)
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s44  for ¢ = 0, where T is the total number of epochs. From Theorem[Il we know that

s43 for¢ > 1, and
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545 Then we prove (8) holds for z; ; by induction. For i = 0, by the definition of T} o in (6)), we have
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s46  From LemmalC.1] if ¢ > 1, we have
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(a) (b)
s47  where the inequality < follows from the triangle inequality, < uses the inductive hypothesis and

(c)
s4¢  the fact that y*(x) is L, /p-Lipschitz continuous, < holds by the definition wy ; = x;; + 0;(z¢; —

(d) . (e) .
sa9 x4,-1), < applies Lemma[3and Lemma[D.2] and < follows from (4). Therefore, by mathematical
ss0 induction, we conclude that (8) holds for all z; ; with {T} ;} defined in @4)),6). Similarly, we can
ss1 prove that (8) holds for y; ; with T} ; defined in @3), @7). So all y;; and 2, satisfy Condition [II

552 The total first-order oracle complexity is > i Lta, 1€,

~ 2+2uf—ufug 7+8uf—2ufug 74+4Vf—l/fl/g
O Ag 2+2vyf K 2+2vyp € 2+2vp .

553 When vy = v, = 1, the first-order oracle complexity is O (A¢3/4x13/4¢=7/4).
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list"',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions, in-
cluding the development of provably convergent algorithms for nonconvex-strongly convex
bilevel problems under general smoothness assumptions. These claims are supported by the
theoretical results in Section ] and the experimental validations in Section[3] aligning well
with the scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.
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2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and future directions of our work, please refer to
Section

Guidelines:

The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and complete, rigorous proofs for all
lemmas, propositions, and theorems. The formal statements are presented in Section [3|and
Sectiond] with detailed proofs included in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details to reproduce our main experimental results,
including dataset descriptions, evaluation metrics and algorithmic settings in Section 3

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the full implementation of our proposed method along with de-
tailed instructions to reproduce the main experimental results in the supplementary materi-
als. This includes code, environment setup, data generation procedures, and run commands.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

e Please see the Neur[PS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in Section[3
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Although the paper does not report error bars or statistical significance tests,
we have verified that the results are stable across different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources used for all
experiments, including compute workers, memory and time of execution. Please refer to
Section 3 for full information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics in all respects. All
ethical guidelines and considerations were carefully followed throughout the study. The
experiments are conducted using publicly available datasets and standard computing re-
sources.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer:

Justification: The paper discuss both potential positive societal impacts and negative soci-
etal impacts of the work performed. This work is theoretical and focuses on algorithmic
developments in bilevel optimization. However, we acknowledge that future applications
of this line of work could have societal consequences, which should be carefully considered
in those contexts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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11.

12.

13.

that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models that have a high risk for misuse (e.g.,
pretrained language models, image generators, or scraped datasets).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this paper, such as datasets and code packages, are
properly cited with appropriate references.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new datasets, codebases, or pre-
trained models.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: We do not introduce any human subject.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not introduce any human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: No large language models (LLMs) were used in the core methods or any key
components of this research, so no specific declaration regarding LLM use is required.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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