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Abstract— Motion planning under sensing uncertainty is
critical for robots in unstructured environments, to guarantee
safety for both the robot and any nearby humans. Most work on
planning under uncertainty does not scale to high-dimensional
robots such as manipulators, assumes simplified geometry of
the robot or environment, or requires per-object knowledge
of noise. Instead, we propose a method that directly models
sensor-specific aleatoric uncertainty to find safe motions for
high-dimensional systems in complex environments, without
exact knowledge of environment geometry. We combine a novel
implicit neural model of stochastic signed distance functions with
a hierarchical optimization-based motion planner to plan low-
risk motions without sacrificing path quality. Our method also
explicitly bounds the risk of the path, offering trustworthiness.
We empirically validate that our method produces safe motions
and accurate risk bounds and is safer than baseline approaches.
A version of this paper has been accepted to be published at
ICRA 2024.

I. INTRODUCTION

Robots in unstructured environments must reliably plan
safe (i.e., collision-free) motions using only uncertain, noisy
sensor percepts. For robots in human-oriented environments
(e.g., home or assistive robotics), this capability is crucial—as
unsafe motions may hurt humans—and challenging, as these
robots are often high degree-of-freedom (DOF) manipulators.
Reliable safety under uncertainty requires not only producing
plans that are unlikely to collide, but also providing evi-
dence that plans are trustworthy. Moreover, for practical use,
planners need to efficiently support complex environments
without knowledge of the true environment geometry.

However, most work on motion planning under uncertainty
makes simplifying assumptions about robot or environment
geometry (e.g., point robots or environments with only known,
simple geometry) [1–5], does not scale to high DOF systems,
or places strict assumptions on the distributions of noise (e.g.,
only translational noise, segmented to individual objects or
normally distributed) [1, 6, 7].

In contrast, we introduce a method for reliable, safe motion
planning for high DOF systems under sensing uncertainty
that directly models inherent sensor noise without placing
assumptions on the environment. We propose to quantify the
aleatoric uncertainty of the sensor with an implicit model of
the stochastic signed distance fields between the robot’s links
and points in the environment, conditioned on the robot’s
configuration. By explicitly modeling this uncertainty, we
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Fig. 1. Simulated motion planning problem under sensing uncertainty.
The environment is composed of noisy points (blue spheres) to be avoided.
The robot must plan to grasp the cylinder without colliding with the table
or objects. Our method transforms a candidate path (red) into a safe path
(purple) by solving a sequence of optimization problems that account for
sensing uncertainty. Cutouts show parts of the path transformation: the arm
is pushed away from noisy regions to attain safer behavior.

can both compute safe paths given only noisy sensing and
approximately bound the remaining risk of collision.

Specifically, we contribute (1) a variational inference
perspective on modeling stochastic signed distance fields for
motion planning (inspired by [8]), used to learn (2) an implicit
neural model of sensor-specific noisy egocentric distance,
which we incorporate in (3) a novel chance-constrained
inverse kinematics (IK) formulation, allowing us to create
(4) a hierarchical planner that produces minimal risk motions
(with respect to the learned distance model and an uncertain-
ty-agnostic initial motion plan) in realistic environments. Our
learned model directly predicts distribution parameters for
noisy distance measurements to arbitrary points in the envi-
ronment, allowing it to capture the aleatoric uncertainty of the
sensor in question without assuming that noise is segmented to
the level of individual objects or requiring knowledge of object
geometry. We empirically validate that our model correctly
predicts both distance values and their uncertainty, and that our
planner finds motion plans that are both safe (i.e., minimize
risk) and reliable (i.e., the predicted risk matches or conser-
vatively upper-bounds the empirically measured probability
of collision). We further compare our planner to a commonly
used baseline and show that, despite longer planning times,
we produce significantly safer and higher-quality plans.

II. PRELIMINARIES

We consider a robot with n controllable joints and configu-
ration space Q ⊆ Rn. We assume that the environment is rep-



resented by noisily measured 3D points corresponding to the
external surfaces of objects. Point clouds [9] are an example of
such a representation. These coordinates are usually computed
from depth information from, e.g., a RGB-D camera or
LiDAR, which is subject to imperfect measurements and other
sources of errors. The distance from the sensor to an object’s
surface can be modeled as a random variable with Gaussian
distribution [10]. This source of sensing uncertainty tends to
dominate in the settings we consider; the robot’s propriocep-
tion (i.e., via joint encoders) is typically much less noisy.

In “normal” motion planning, we seek a collision-free
path ρ connecting the initial robot configuration qstart ∈ Q
to a goal region Qgoal ⊂ Q, i.e., ρ : [0, 1] → Qfree,
ρ(0) = qstart, ρ(1) ∈ Qgoal. The goal of motion planning
under sensing uncertainty is to find a path that is safe
despite imperfect sensing information. More specifically,
we want a path whose probability of collision (i.e., risk of
collision) is no larger than a given threshold ∆. This problem
can be formulated as the chance-constrained optimization
problem Prob. 1:

min
q0,...,qT

f(q0:T ) (Prob. 1)

s.t. q0 = qstart, qT ∈ Qgoal,
ql ≤ qt ≤ qu, t ∈ [0, . . . , T ],

Pr

(∧
t

qt ∈ Qfree

)
≥ 1−∆, (1a)

where q0, . . . , qT are waypoints of a discretized path, f is the
objective function (e.g., to encourage smooth, short paths),
and ql and qu are lower and upper joint limits. (1a) is a
chance constraint enforcing that the probability of having
no collisions along the path remains above the threshold.
Unfortunately, this probability cannot be expressed in a
tractable form suitable for optimization.

III. RELATED WORK

A. Motion Planning under environmental uncertainty

Collision chance constraints, or constraints on the probabil-
ity that a robot’s trajectory collides with a noisy environment,
have been successfully used for safe motion planning under
uncertainty by a wide range of work. Chance constraints are
typically determinized to keep the planning problem tractable.
These deterministic reformulations are then used by either
optimization [1–3, 11] or sampling [4, 5, 12]-based motion
planners to generate provably safe trajectories. Similarly, we
also reformulate and enforce chance constraints to guarantee
a desired maximum risk of collision. For example, Blackmore
et al. [2, 11] create a disjunctive convex optimization problem
that can be solved with branch-and-bound; Luders et al.
[4] build a tree-like planner that validates states against the
reformulated constraints. Summers [5] uses a similar idea
for non-Gaussian uncertainty and moment-based ambiguity
sets of distributions. Finally, Dawson et al. [1] propose a
differentiable surrogate risk for manipulator robots and convex
obstacles under Gaussian translational uncertainty that is
guaranteed to never underestimate the true risk, enforced by

constraints in a nonlinear program. Many of these methods
rely on simplified robot shapes, e.g., point robots [2–5],
obstacle shapes, e.g., polyhedral [2, 4, 5] or convex [1, 3],
and the noise model, e.g., additive Gaussian noise on obstacle
positions [1, 2, 4]. In contrast, our method is designed for
high-DOF robots and complex, noisy scenes, where point-
robot assumptions are insufficient and strict assumptions on
the noise distribution may not hold.

When reformulating chance constraints, most methods
allocate equal risk for every waypoint and/or obstacle in
the path to make the problem tractable [2–5]. However, this
strategy can lead to overly conservative solutions, since robot
configurations that are far from noisy obstacles will still be
forced to satisfy difficult risk bounds. A few works have
considered non-uniform risk allocation, either by formulating
multi-stage optimization problems [13], iteratively penalizing
and relaxing risky waypoints from previous solutions [7], or
using differentiable surrogate risks encoded as variables in a
nonlinear optimization problem [1]. Similar to [3, 11], our
method enforces joint chance constraints by using the union
bound (Boole’s inequality) and solving a set of individual
chance constraints. However, in our method, the risk bound
of individual chance constraints for all obstacle-link pairs are
decision variables in our optimization formulation.

Other methods design certificates that verify that a path
is safe under a noise model. Berg et al. [14] assess path
safety by assuming a linear-quadratic controller with Gaussian
uncertainty (LQG-MP). Several candidate paths are generated
using a sampling-based planner and the best is chosen for
execution. Axelrod et al. [15] certify a path as safe for
a given level of risk if the robot’s swept volume does
not intersect a set of unsafe regions. Park and Manocha
[16] design probabilistic collision checkers for non-Gaussian
distributions, which they use in an optimization-based planner
to encourage safety. Quintero-Peña et al. [6] also handle
non-Gaussian distributions by solving a robustly formulated
sequential convex programming problem. Dai et al. [7]
generate candidate paths, propagate the uncertainty along
the path using LQG-MP and estimate the resulting risk of
collision via numerical integration. Our proposed approach
also generates risk-agnostic candidate paths which it then
transforms into safe paths by solving a sequence of convex
optimization problems.

B. Implicit Representations and Uncertainty Quantification

Recent machine learning advances have produced effi-
cient implicit neural representations of spatial information,
such as Neural Radiance Fields (NeRFs) [17] and Signed
Distance Fields [18, 19]. Robotics researchers have used
these representations to learn multi-object dynamics [20], as
manipulation planning constraints [21], to achieve reactive
robot manipulation [22] and to perform visual-only robot
navigation [23]. Beyond their compact, efficient storage [23],
these representations are advantageous for planning due to
their continuous representation of geometry [22–24] and abil-
ity to be learned directly from sensor data [25]. Recent work
has also investigated quantifying the uncertainty of a learned



Fig. 2. Our stochastic implicit neural signed distance representation uses
a) a robot configuration q and b) one noisy point x as input. c) Inputs
go through a positional encoding layer and then through 4 fully connected
layers of size 256. Finally, two separate layers of size K output the mean
and standard deviation parameters of d) each link’s distribution modeling
the noisy signed distance conditioned on q, x.

model [26–28]. Methods to estimate both aleatoric and
epistemic uncertainty have been proposed in the computer vi-
sion [8, 29, 30] and reinforcement learning [26–28] literatures.
This is important to enable the design of uncertainty-aware
algorithms for downstream tasks. For example, Shen et al. [8,
31] propose probabilistic frameworks that attempt to capture
uncertainty in a NeRF for synthetic novel view and depth-map
estimation. Similarly, our method takes a probabilistic ap-
proach to quantifying aleatoric sensing uncertainty. However,
our proposed neural representation also fuses kinematic in-
formation about a robot with spatial information to produce a
robot-configuration-conditioned probabilistic distance model.

IV. SAFE MOTION PLANNING WITH A STOCHASTIC
NEURAL REPRESENTATION

In this work, we assume that information about the envi-
ronment is captured through a sensor as noisy 3D points, akin
to a point cloud. This noise is aleatoric from the perspective
of the planner as it stems from immutable properties of
the sensor and is irreducible. We propose to quantify this
aleatoric sensing uncertainty through a stochastic implicit
neural representation that models noisy signed distances
between the environment and the robot geometry. Our neural
representation, inspired by [22], captures not only geometric
information about the environment (as in work based on
NeRFs [20, 23] or SDFs [21, 24, 25]), but also kinematic
information about the robot itself, which makes it suitable
for motion planning for manipulation. We find safe paths
despite sensing errors by using this representation in a novel
hierarchical motion planner, instead of directly attempting
to reformulate and solve Prob. 1. Our planner first finds a
candidate path using only the noisy sensed points (without
knowledge of their noise), and then uses this candidate path

and a user-provided bound on the risk of collision to compute
a safe path. The following sections describe our aleatoric
sensing representation and planning framework.

A. Stochastic Neural Implicit Signed Distance Representation

Koptev et al. [22] propose an implicit neural representation
that models the signed distance between each robot link
and arbitrary points in space. The neural representation
learns Γ : Q × R3 → RK comprising K related mappings
Γk : Q× R3 → R. Each Γk(q, x) is the minimum distance
function for the k-th robot link (1 ≤ k ≤ K), evaluated at
the 3D point x when the robot is in configuration q. This
representation is useful for motion planning for manipulation
due to 1) representing distances to arbitrary points in the
workspace without depending on specific geometry and 2) its
gradients point away from obstacles in configuration space.

Inspired by this representation, we propose to learn a
distribution over signed distance functions modeled as the
random variable S, such that the distance between each
robot link and points in the workspace is modeled as a
Gaussian random variable. We want to learn the posterior of S
conditioned on a training set T consisting of a finite collection
of robot configurations qi, 3D points xi and per-link noisy
signed distance values dki , i.e., T = {

(
{dki }Kk=1, qi, xi

)
}Ni=1.

We formulate the problem using a Bayesian approach [8]
to compute the posterior Pr (S|T ). Note that explicitly
computing this posterior is intractable since it would require
the computation of the evidence i.e., the marginal density
of the observations. Instead, we approximate it using varia-
tional inference (VI), where a parametric distribution ψθ(S)
approximates the true distribution. The goal of VI is to
find the parametric distribution that is closest to the true
distribution, measured via their KL divergence [32]. As the
KL divergence is not computable because it requires the
evidence, VI typically optimizes the evidence lower bound
(ELBO) [32]. For our problem, the VI formulation is:

min
θ

Eψθ(S) log

(
ψθ(S)

p (S)

)
︸ ︷︷ ︸

KL-divergence prior

−Eψθ(S) log (Pr (T | S))︸ ︷︷ ︸
Log likelihood

(2a)

where the first term is the KL divergence between ψθ and a
prior p(S) on the signed distance field, to encourage densities
close to the prior, and the second term is the negative training
set likelihood over the approximate posterior ψθ, which will
choose parameters θ that best explain the observed data.

We assume that ψθ can be factored as the product of
independent Gaussian densities, ψkθ (d|q, x), representing the
distance functions for each robot link k. This assumption
simplifies our analysis and allows us to efficiently solve the
VI problem, but introduces additional conservatism to our
chance-constrained formulation (see Sec. IV-C). We mitigate
the impact of this conservatism by dynamically allocating the
risk for each link at each timestep while still satisfying the
joint risk threshold. These densities are jointly modeled as a
neural network, Γ(q, x), that outputs the parameters of ψθ,
{µ1, σ1, . . . , µK , σK} (see Fig. 2 for network architecture).
The second term in Eq. (2a) is computed in closed form using



Algorithm 1: Chance-Constrained Hierarchical Mo-
tion Planner

input : qstart,Qgoal,Ξ,∆
output: ρs, ∆T−1

1 ρc ← MotionPlan (qstart,Qgoal,Ξ);
2 ∆0 ← ∆, qs0 ← qc0;
3 for j ← 0, . . . , T − 1 do
4 if (∆q, δ, γ) ←CCIKOPT (qcj+1, q

s
j ,∆j) then

5 qs(j+1) ← qsj +∆q;
6 ∆j+1 ← ∆j − γ;
7 else
8 break;
9 if j < T − 1 then

10 return false;
11 return [qs0, . . . , q

s
T ],∆T−1;

the likelihood of the Gaussian distribution. For the first term
we assume that (similar to ψθ) the prior can be factored as a
product of Gaussians, pk(d) with parameters {µpk, σ

p
k, }. The

KL divergence between these distributions can be computed
analytically as:

KL (ψθ(S)||p (S)) =
K∑
k=1

∑
x∈R3

∑
q∈Q

KL
(
ψkθ (S|x, q)||pk (S)

)
≈

K∑
k=1

∑
i

σ2
k,i + (µpk,i − µk,i)2

2σpk,i
2 − log σk,i

In practice, we use a fixed number of samples to remove the
dependency of the approximate posterior on x and q.

B. Chance-Constrained Hierarchical Planning

We propose a hierarchical motion planner to generate safe
robot motions, described in Alg. 1. First, an off-the-shelf
motion planner [33–37] is used to find a candidate path
ρc in the noisy sensed environment Ξ (line 1). For each
waypoint of ρc (line 3), we solve a chance-constrained IK
problem (CCIKOPT, line 4) to compute the motion to the
next waypoint. We use the pose of the robot’s end-effector at
qcj+1 as a soft constraint for the j-th IK problem, encouraging
solutions close to the original path. We accumulate the risk
allocated to each waypoint to ensure that it does not exceed
the bound ∆ for the total path (line 6). Each IK problem is
allowed up to the full remaining risk available, and returns
an upper bound on the risk allocated to the corresponding
waypoint. This method can be seen as using ρc as guidance
for the sequence of IK problems, while flexibly accommodates
the allowable risk bounds to compute a safe path, ρs. We
extend the IK formulation of [22] to the chance-constrained

IK setting in Prob. 2:

min
∆q,δ

∆qTQ∆q + δ⊤Dδ (Prob. 2)

s.t. ql ≤ qsj +∆q ≤ qu

FK(qsj ) + J⊤(qsj )∆q = FK(qcj+1) + δ

Pr

∧
r,k

−∇Γ⊤
k,r∆q ≤ Γk,r − rr

 ≥ 1−∆j (3a)

with decision variables ∆q and δ. ∆q corresponds to the
robot motion between qsj and qsj+1; δ is a vector of slack
variables that provide flexibility on the pose of the end-
effector. We minimize a quadratic function of the decision
variables to encourage small motions that end close to the
end-effector pose from ρc. Constraint (3a) is the joint chance
constraint requiring the risk of collision to remain under a
given threshold ∆j for all robot links 1 ≤ k ≤ K and noisy
points 1 ≤ r ≤ R, modeled as spheres of radius rr. In its
deterministic version [22], these constraints force ∆q to align
with −∇Γr,k (the negative gradient of the signed distance
with respect to q) when Γk,r = Γk(q

s
j , xr) − rr becomes

small, i.e., when the robot gets too close to an obstacle. In
our approach, Γk,r are random Gaussian variables, and we
enforce that the probability that this constraint is satisfied is
above a given threshold. Next we describe our reformulation
of the constraint to make the problem tractable.

C. Reformulation of the Chance-Constrained IK Problem

For simplicity, let x⊤ = [∆q⊤, δ⊤], A = diag([Q, D]),
B = [J⊤(qsj ), −I], c⊤k,r = [−∇Γ⊤

k,r, 0], gk,r = Γk,r − rr,
and b = FK(qcj+1) − FK(qsj ). Note that, here, ∇Γk,r is the
deterministic gradient of the stochastic SDF Γk,r, evaluated
at q. We also use the following facts:
(4a) Pr (

∧
iAi) ≥ 1 − p ⇐⇒ Pr

(∨
i Āi

)
≤ p,

(4b) Pr (
∨
iAi) ≤ p ⇐=

∑
i Pr (Ai) ≤ p,

(4c)
∑
i Pr (Ai) ≤ p⇐= Pr (Ai) ≤ pi, ∀i,

∑
i pi ≤ p.

We rewrite (3a) in simplified notation, then apply (4a-c):

Pr

(∧
r

∧
k

c⊤k,rx ≤ gk,r

)
≥ 1−∆j ,

⇐=
∑
r

Pr

(∨
k

c⊤k,rx ≥ gk,r

)
≤ ∆j , (4a-b)

⇐=
∑
k

Pr
(
c⊤k,rx ≥ gk,r

)
≤ yr ∀r,

∑
r

yr ≤ ∆j , (4b-c)

⇐= Pr
(
c⊤k,rx ≥ gk,r

)
≤ γk,r ∀r, k,

∑
k,r

γk,r ≤ ∆j , (4c)

= Pr
(
c⊤k,rx ≤ gk,r

)
≥ 1− γk,r ∀r, k,

∑
r,k

γk,r ≤ ∆j

where γk,r is the risk allocated to link k and point r. By prop-
erties of the Gaussian CDF [38], we know Pr

(
a⊤b ≤ c

)
≥

p ⇐⇒ aT b−µc+σcϕ−1(p) ≤ 0 for c ∼ N (µc, σ
2
c ), where

ϕ−1 is the inverse CDF of the standard normal distribution.
Thus, we can write the following deterministic reformulation



for (3a):

c⊤k,rx− µk,r − rr + σk,rϕ
−1(γ̄k,r) ≤ 0 ∀k, r (5)∑

k,r

(1− γ̄k,r) ≤ ∆j (6)

where γ̄k,r = 1−γk,r . In order to mitigate the conservatism
introduced by assuming independent distance function densi-
ties and the use of the union bound we intelligently allocate
the risk (complement) thresholds γ̄k,r for each waypoint so
that configurations and robot links that are closer to noisy
obstacles are assigned more risk than those that are far. This
is in contrast to manually setting these thresholds e.g., by
using uniform allocation [2, 3, 15] which would make most
of our problems infeasible. This variable risk feature has been
introduced before as risk allocation [1, 7, 13]. To increase
the chances of finding feasible paths that satisfy the risk
threshold ∆ we follow two strategies: 1) we allow each
chance-constrained IK problem to use the maximum amount
of residual risk up to that point by accumulating the risk
along waypoints of the path and 2) we ask each IK problem to
minimize the amount of used risk. We achieve this by letting
γ̄k,r be decision variables in our optimization problems at
the cost of solving harder optimization problems:

min
x,γ̄

x⊤Ax+ h⊤γ̄ (Prob. 3)

s.t. xl ≤ x ≤ xu

γ̄l ≤ γ̄ ≤ γ̄u

Bx = b

c⊤k,rx− µk,r − rr + σk,rϕ
−1(γ̄k,r) ≤ 0 ∀k, r∑

r,k

(1− ¯γk,r) ≤ ∆j

To solve Prob. 3 we propose two approaches namely Log
PWL and NLP. In the former, we provide a conservative
reformulation of (5) by noting that, for 0.5 ≤ x < 1,√
π/8 log (x/(1− x)) ≥ ϕ−1(x), allowing:

(5)⇐= c⊤k,rx− µk,r + σk,r

√
π

8
log

(
γ̄k,r

1− γ̄k,r

)
≤ 0 (7)

which requires the risk variables to be in 0 < γk,r ≤
0.5. This restriction is reasonable in our context since we
are interested in paths with low collision risk. Using (6)
and (7) instead of (3a) allows us to solve the problem using
efficient tools that approximate the log using piecewise linear
functions. The latter directly solves the problem using tools
for nonlinear programming such as interior point methods,
with no additional approximations. The linear term on the
objective function minimizes the amount of risk allocated
to the j-th waypoint. It is not hard to prove that both
formulations are convex in the domain of interest, allowing
us to globally minimize (with respect to Γ and ρc) the risk
of ρs if a solution can be found.

V. EVALUATION AND RESULTS

We evaluate our proposed approach on a n = 8 DOF
Fetch robot with K = 11 links, corresponding to those in

the kinematic chain of its end effector (including the torso
and fingers). We use PyBullet [39] for collision checking,
PyTorch [40] for neural network training, OMPL’s Python
bindings [41] for planning and Gurobi [42] and IPOPT [43]
as our optimizers. All experiments were conducted on an
Intel i7-12700K CPU and a RTX2080Ti GPU.

A. Implicit Neural Representation

We parameterize our implicit stochastic distance model as a
feed-forward neural network (Fig. 2c). For a n-DOF robot, the
network takes an input tensor of size 3 ∗ (n+ 3) comprising
the n values of the robot configuration concatenated with the
3 coordinates of the environment point, as well as the sine
and cosine of these values. These trigonometric components
serve as a form of positional encoding similar to that used
in standard neural radiance fields [17]. The network has a
shared core of four fully connected 256-wide layers with
rectified linear unit (ReLU) activation. For a robot with K
links, the output of these layers is used (independently) with
one additional fully connected layer of size 256×K to predict
the mean distance from the environment point to each link’s
geometry, as well as with another fully connected layer of
size 256×K and a softplus layer of size K to predict the
standard deviation of these distances.

We generate a dataset of noisy distance samples from
a simulated sensor to train the distance model. Similarly
to Koptev et al. [22], we sample a set of robot configurations
(Q) uniformly at random. For each configuration, we sample
a set of environment points uniformly at random (PR), a
set of environment points near to each link (PN ) and a set
of environment points inside each link (PI ). We compute
the true shortest distance between each point and link
using PyBullet. We then simulate a set of noisy sensor
measurements (NS) with mean at the true distance for each
environment point and a fixed standard deviation (σ). In
our experiments, |Q| = 3000, |PR| = 500, |PN | = K ∗ 10,
|PI | = K ∗ 20, |NS| = 50, and σ = 2 cm. This results in
a total of 2.49 million sampled points, each of which has 50
noisy distance samples. Empirically, this dataset is roughly
balanced between points in collision and points in free space.

We train the model on the collected dataset for 500 epochs
with an Adam [44] optimizer, learning rate of 1× 10−4, and
batch size of 512. We verify its performance by predicting
distance distributions between robot links and a set of
randomly generated 3D points from the waypoints of 1000
discretized paths. The gripper link shows an average error
of 1 cm for mean and 3.7mm for standard deviation while
the elbow attains 0.7mm and 0.3mm, respectively. Fig. 3
shows the predicted and true distribution parameters for one
path, one randomly selected point and these two robot links.

B. Safe Motion Planning with Implicit Neural Representation

We evaluate our proposed approach on a set of simulated
tabletop manipulation problems generated using MOTION-
BENCHMAKER [45]. The Fetch robot needs to plan to
grasp an object, avoiding collisions with the table and
obstacles upon it (Fig. 1). We create 50 problems by randomly



Fig. 3. Comparison between true and predicted probability distribution
parameters (top: mean; bottom: standard deviation) for the distance between
robot links and a randomly generated point in space for the Gripper (left)
and Elbow (right) links along a path of 500 waypoints. Note that (despite
the visual gap) the error in standard deviation is small, below 1mm.

perturbing the positions (±2.5cm in x, y, z) and orientations
(±15◦) of the objects of a nominal scene and the relative
pose of the robot’s base (±10cm in x, y, z and ±90◦) with
respect to the table. The environment is represented as a
point cloud-like set of noisy 3D spheres of different radii that
covers the (unknown to the planner) collision geometries of
all objects. We assume that the table’s geometry is noise-free
while the objects on top are noisily sensed, per Sec. V-A. Note
that these problems were designed by Chamzas et al. [45]
to be challenging and “realistic” from the motion planning
perspective and require the robot to plan long, elaborate paths
that need to avoid the table and then dodge collisions with
the objects on top.

We compare the performance and safety of our approach
with a commonly used baseline: inflating the environment’s
geometry to encourage the computation of paths that maintain
larger clearance and have therefore less chances of colliding.
We inflate each sphere by increasing its radius by 20%, 40%,
or 60%. We also include results of 0% inflation as a baseline
to show the performance of a planner that is unaware of the
sensing uncertainty. Motion plans for all baselines, as well as
the candidate paths used by our method, are computed using
RRT-Connect [35], with the environment represented as a
union of spheres centered at each sensed workspace point.

We estimate the risk of collision for each computed path
using Monte-Carlo sampling with 20, 000 samples, where
each sample draws sphere poses from the noisy sensed dis-
tribution. For our method, we also show the guaranteed path-
wise risk bound (Risk Bound) and estimated risk of collision
of the candidate path before optimization (Initial Risk). All
problems have a maximum number of 15 attempts to find any
valid (i.e., collision-free with respect to the inflated obstacles,
for the baselines) plan. The results are shown in Fig. 4.

We note that the uncertainty-unaware planner produces
paths with the highly variable risk of collision (an average
of 60%), which is likely unacceptable for safety-critical
applications. For higher parameter values of the inflated
baseline, the estimated risk of collision decreases as expected
due to a larger Q-space obstacle region that encourages larger
clearance with the true geometry. However, there is no clear
relation between the inflation increase and the drop in risk
which makes the baselines difficult to tune when a desired
level of risk is required (see also Table I). Additionally,
we note that success rate (not shown here) for the baseline
methods started dropping significantly as the inflation ratio

Fig. 4. Estimated CDF of the risk accumulated by each method.
Method EE Disp. (m) Path Length (rad.) Path Risk (%) Planning Time (s)

Inflated 0% 2.32 ± 0.82 7.91 ± 2.53 60 ± 33 3.51 ± 10.42

Inflated 20% 2.39 ± 0.76 8.34 ± 2.74 48 ± 29 3.61 ± 9.55

Inflated 40% 2.33 ± 0.79 8.27 ± 2.86 42 ± 26 5.85 ± 13.73

Inflated 60% 2.38 ± 0.85 8.57 ± 3.18 28 ± 25 5.69 ± 12.95

Proposed (Log PWL) 2.17 ± 0.62 6.76 ± 2.27 0.95 ± 1.82 31.31 ± 30.07

Proposed (NLP) 2.21 ± 0.47 7.12 ± 1.86 0.03 ± 0.09 67.73 ± 40.31

Table I. Path quality metric mean and standard deviation for each method.

increased, suggesting a potential limit on minimum risk that
they can attain for these problems. We give our planner a
maximum allowable risk bound of 10% and ask it to return
the minimum risk for each waypoint. Our proposed approach
can compute paths with significantly lower risk for most
problems, starting from risky candidate paths.

For each problem and method we also compute the path
length and end-effector displacement as path quality metrics,
as well as the time taken by the planner. The results are
summarized in Table I. The table shows mean and standard
deviation for each method over all 50 problems. The large
values of path length and end-effector displacement are
evidence of the high complexity of the computed paths due
to the challenging motion planning problems. Our method
finds paths with lowest end-effector displacement and path
length, which is the result of the minimization of motion
displacement in our planner. However, our method has
planning times that are larger than the baselines. This is due
to the large number of link-point pairs at each waypoint along
the path—often hundreds or thousands—that create hard
optimization problems. Despite this, it is noteworthy that our
method can find paths with the lowest collision risk among
the baselines without sacrificing path quality. It is noteworthy
that our method that uses an NLP solver is capable of finding
paths with much lower risk than the one using a the log
approximation at the cost of increased planning time.

VI. CONCLUDING REMARKS

This paper presents a novel approach to planning under
sensing uncertainty for high DOF robots that reliably computes
safe paths without strong assumptions on the true environment
geometry. Our planner relies on an implicit neural represen-
tation trained to capture aleatoric uncertainty arising from the



robot’s sensor. Our representation does not place assumptions
on the environment but instead directly approximates signed
distance distributions between the robot and points in space,
conditioned on robot configurations. We further show how
this representation can be integrated with a hierarchical
planner to compute paths with guaranteed bounds on the
probability of collision (up to the quality of the model). We
have experimentally validated the merits of our approach on
challenging, realistic manipulation motion planning problems
to show that our method is capable of finding safe paths
despite sensing uncertainty without reducing path quality. As
future work we will investigate how to further reduce the
need for conservative over-approximations in our approach,
since this will allow us to solve more tightly constrained
motion planning problems, such as robots reaching into
shelves and tight boxes. We will also seek to reduce the
time taken by our method, in part by applying intelligent
constraint subset selection heuristics [46] to simplify the
optimization problems, as well as by applying specialized loss
functions for learning SDFs, such as enforcing the Eikonal
equation. Finally, we will further investigate the need to
consider the epistemic uncertainty coming from our neural
representation for planning, a problem that has recently gained
much attention in machine learning [28].
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