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Abstract
In commonsense generation, given a set of001
input concepts, a model must generate a re-002
sponse that is not only commonsense bearing,003
but also capturing multiple diverse viewpoints.004
Numerous evaluation metrics based on form-005
and content-level overlap have been proposed006
in prior work for evaluating the diversity of a007
commonsense generation model. However, it008
remains unclear as to which metrics are best009
suited for evaluating the diversity in common-010
sense generation. To address this gap, we con-011
duct a systematic meta-evaluation of diversity012
metrics for commonsense generation. We find013
that form-based diversity metrics tend to con-014
sistently overestimate the diversity in sentence015
sets, where even randomly generated sentences016
are assigned overly high diversity scores. We017
then use an Large Language Model (LLM)018
to create a novel dataset annotated for the di-019
versity of sentences generated for a common-020
sense generation task, and use it to conduct a021
meta-evaluation of the existing diversity eval-022
uation metrics. Our experimental results show023
that content-based diversity evaluation metrics024
consistently outperform the form-based coun-025
terparts, showing high correlations with the026
LLM-based ratings. We recommend that fu-027
ture work on commonsense generation should028
use content-based metrics for evaluating the029
diversity of their outputs.030

1 Introduction031

Commonsense reasoning—the ability to make plau-032

sible assumptions about ordinary scenarios—is033

a core requirement for robust Natural Language034

Generation (NLG) systems (Lin et al., 2020). In035

the task of Generative Commonsense Reasoning036

(GCR), an NLG model is expected to generate sen-037

tences that are both quality-bearing (i.e. logically038

coherent and commonsense-aware) and diverse (i.e.039

offering varied perspectives on the same input con-040

cepts) (Liu et al., 2023a; Yu et al., 2022; Hwang041

et al., 2023).042

Set 1: 

The couple takes their dog for a walk in the park. 

The couple decided to take a walk in the park without taking their dog.             

Every evening, the couple takes a walk in the park with their dog.  

The dog enjoys when the couple takes it for a walk in the park.

                        self-BLEU-3: 0.486  VS-embed-0.5 : 2.689  

Set 2: 

A couple take their dog for a walk in the park every morning.

Every morning, the couple and their dog take a walk in the park.

Every evening, the couple takes a walk in the park with their dog.

In the park, a walk is taken every evening by the couple with their dog.

                        self-BLEU-3: 0.593   VS-embed-0.5: 1.916

Inputs: {Walk, Dog, Take, Park, Couple}

Figure 1: An example from the CommonGen (Lin et al.,
2020) dataset comparing two sets of generated sen-
tences. self-BLEU-3 indicates Set-2 to be more diverse,
which simply repeats near-identical paraphrases. In con-
trast, Vendi Score (VS)-embed-0.5 aligns well with
the notion of meaningful textual diversity.

While recent neural architectures have signifi- 043

cantly improved the quality of commonsense gener- 044

ation, reliably evaluating the diversity of generated 045

outputs remains an open challenge. Quality evalu- 046

ation typically relies on comparing generated out- 047

puts against a set of human-written reference sen- 048

tences using metrics such as BLEU (Papineni et al., 049

2002), ROUGE (Lin, 2004), or SPICE (Anderson 050

et al., 2016). A GCR method that produces outputs 051

that have a high overlap with human-written refer- 052

ence sentences is considered to be of high quality. 053

In contrast, diversity is assessed by comparing the 054

outputs among themselves. A variety of diversity 055

metrics have been proposed (Li et al., 2016; Zhang 056

et al., 2024) and can be broadly categorised into 057

two groups: form-based vs. content-based. Form- 058

based diversity metrics such as self-BLEU (Zhu 059

et al., 2018) and distinct (Li et al., 2016), measure 060

the token/word overlap between pairs of sentences 061

using n-grams, whereas content-based diversity 062

metrics such as self-CosSim (Cox et al., 2021) and 063

Vendi-Score (Friedman and Dieng, 2023) capture 064

semantic variations using sentence embeddings. 065
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A central question arises: Which diversity met-066

rics best capture meaningful variations in common-067

sense generation, and under what conditions? For068

instance, as shown in Figure 1, given the five input069

concepts walk, dog, take, park and couple, a GCR070

method must produce sentences that contain all of071

the input concepts and their diverse commonsense072

relations. Although both Set-1 and Set-2 contain073

commonsense-making sentences covering all input074

concepts, Set-2 contains direct paraphrases or ran-075

dom word-order shuffles. Consequently, Set-2 is076

less diverse compared to Set-1. However, the form-077

based diversity metrics (e.g. self-BLEU3) assign078

high diversity scores to Set-2 than to Set-1, overes-079

timating the diversity in GCR. As we later see in080

our meta-evaluations (§ 5.3), form-based diversity081

metrics tend to assign high diversity scores even for082

randomly generated nonsensical sentences, which083

is counter-intuitive. On the other hand, content-084

based diversity metrics (e.g. VS-embed-0.5) seem085

less susceptible to such issues and correctly predict086

Set-1 to have a higher diversity than Set-2.087

We conduct a comprehensive meta-evaluation of088

covering 12 diversity metrics for GCR using three089

standard GCR datasets. For this purpose, we cre-090

ate a large-scale diversity-annotated dataset. Prior091

work studying diversity (Tevet and Berant, 2021) in092

NLG has shown difficulty in obtaining reliable di-093

versity ratings via crowdsourcing. However, Zhang094

et al. (2024) showed that LLMs could be used to095

evaluate the diversity in GCR with a moderate-level096

of agreement with linguistically trained human an-097

notators. We follow their work and create a dataset098

where an LLM provides a pairwise preference rat-099

ing for two sets of sentences covering the same100

input concepts. A human evaluation on a subset of101

our dataset shows that the LLM-based diversity rat-102

ings to be well-aligned with the human judgments103

with an average accuracy of 79.4%.104

Next, we measure the pairwise preference agree-105

ment between the LLM-based ratings and diversity106

metrics for high vs. low quality generations. We107

find that,108

1. Form-based diversity metrics produce reliable109

evaluations for high quality generations, but110

often fail to distinguish genuine diversity for111

the lower-quality generations, and112

2. Content-based metrics produce consistently113

reliable evaluations for both high and low114

quality generations.115

Our datasets/code are submitted to ARR, and 116

will be publicly released upon paper acceptance. 117

2 Related Work 118

Diversity in NLG: Diverse output generation is 119

a critical requirement for many NLG applications 120

(Tevet and Berant, 2021) such as storytelling (Li 121

et al., 2018), question generation (Pan et al., 2019) 122

and machine translation (Shen et al., 2019). Strate- 123

gies proposed for improving diversity in NLG in- 124

clude sampling methods that prune the probability 125

distribution over the next-token predictions such 126

as nucleus sampling (Holtzman et al., 2019) and 127

top-k sampling (Fan et al., 2018). Setting high tem- 128

perature for the decoder (Peeperkorn et al., 2024) 129

can sometimes increase the diversity in the gener- 130

ated output but must be done with care as it can 131

decrease the quality (Zhang et al., 2024). 132

Diversity in GCR: Diversification in GCR 133

presents an additional layer of complexity because 134

we must generate both diverse as well as common- 135

sense bearing outputs. Datasets such as Common- 136

Gen (Lin et al., 2020) and DimonGen (Liu et al., 137

2023a) provide a set of concepts and a set of sen- 138

tences that describe various commonsense relations 139

among those concepts, while ComVE (Wang et al., 140

2020) requires a GCR method to explain why a 141

given counterfactual statement (e.g., “A shark inter- 142

views a fish”) does not make commonsense. Prior 143

work in diversification for GCR has injected ex- 144

ternal knowledge from a knowledge graph (Yu 145

et al., 2022; Hwang et al., 2023), retrieved di- 146

verse sentences from an external corpora (Liu et al., 147

2023a)), or use in-context learning to instruct an 148

LLM (Zhang et al., 2024) to elicit diverse outputs. 149

However, our goal in this paper is not to propose 150

diversification methods for GCR, but to conduct 151

a meta-evaluation of existing metrics proposed in 152

prior work for evaluating the diversity of GCR. 153

Evaluating Quality in GCR: Quality metrics 154

in GCR primarily assess coherence, logical con- 155

sistency, and their correlation with human judg- 156

ments (Sai et al., 2022; Yu et al., 2022). Popular 157

metrics use n-gram overlaps (e.g. BLEU (Pap- 158

ineni et al., 2002), ROUGE (Lin, 2004)), which 159

measure the lexical overlap between a generated 160

text and a human-written reference. BLEU (Pa- 161

pineni et al., 2002), for instance, computes the 162

mean n-gram precision of a candidate sentence 163

against human-written references, while seman- 164

2



tic metrics (e.g. SPICE (Anderson et al., 2016),165

BERTScore (Zhang et al., 2020)) capture semantic166

textual similarity. BERTScore (Zhang et al., 2020)167

uses contextualised word embeddings to measure168

the semantic overlap between tokens in paired sen-169

tences. Despite their wide use, quality metrics170

alone are insufficient for evaluating NLG tasks, es-171

pecially in GCR.172

Evaluating Diversity Metrics: Our work builds173

upon studies such as Tevet and Berant (2021), who174

used human annotations to assess diversity metrics175

in NLG. There are several important distinctions176

between their work and ours:177

a) Task-specific Focus: They did not consider com-178

monsense relations in the outputs they evaluate,179

which is an important requirement in GCR.180

b) Generation Variability: They assumed the avail-181

ability adjustable decoding parameters (e.g. tem-182

perature) to control diversity. However, Zhang et al.183

(2024) showed that simply increasing temperature184

can harm the quality of commonsense generation.185

Instead, we use controlled perturbations (e.g. ran-186

dom shuffling and LLM-based paraphrasing) to187

generate outputs with varying diversity.188

c) Annotation Methodology: Whereas Tevet and189

Berant (2021) relied on crowdsourced human190

annotators—faced with low agreement and high191

cost—we leverage LLMs as reference-free anno-192

tators (Wang et al., 2023; Liu et al., 2023b; Fu193

et al., 2024). Recent studies have successfully used194

LLMs for evaluations in NLG tasks (Kocmi and Fe-195

dermann, 2023; Liu et al., 2023b) and Zhang et al.196

(2024) reported a moderate level of agreement be-197

tween human and LLM-based diversity ratings in198

GCR. Our own human evaluation confirms that199

LLM-based diversity ratings achieve 79.4% accu-200

racy with expert human annotators.201

In summary, while there has been extensive work202

on diversifying NLG outputs and evaluating qual-203

ity in GCR, the evaluation of diversity met-204

rics—especially in the context of commonsense205

generation—remains underexplored. Our work fills206

this gap by providing a systematic meta-evaluation207

of both form-based and content-based diversity208

metrics in GCR.209

3 Diversity Metrics for GCR210

In this section, we describe the diversity metrics211

used in our meta-evaluation.212

Form-based Diversity: Self-BLEU (Zhu et al., 213

2018) measures the average n-gram overlap be- 214

tween all pairs of sentences within a set.1 We use 215

self-BLEU-3/4 (i.e. n = 3, 4) in our experiments. 216

Inspired by ecology and quantum mechanics, VS 217

(Friedman and Dieng, 2023) was proposed as a 218

diversity metric in computer vision. VS is the ex- 219

ponential of the Shannon’s entropy over the eigen- 220

values of the pairwise similarity (kernel) matrix 221

of a set of sentences, computed using either the 222

n-gram overlap or sentence embeddings (see Ap- 223

pendix A for further details.) Pasarkar and Dieng 224

(2024) extended the original VS by introducing 225

an order parameter q, which adjusts its sensitiv- 226

ity to the frequency of the items. A smaller q 227

(e.g. q = 0.5) increases the sensitivity to larger 228

variances, capturing diversity more effectively in 229

imbalanced scenarios, while q = ∞ is more ro- 230

bust against the intraclass variance, focusing on the 231

most dominant features. For the form-based diver- 232

sity measurement using VS, the kernel matrix is 233

constructed using a bag-of-n grams representation. 234

Distinct-k (Li et al., 2016) calculates the ratio of 235

the unique k-grams to the total number of k-grams, 236

and is one of the widely-used metrics for evaluating 237

corpus diversity. It adjusts the bias towards gener- 238

ating longer sequences, ensuring that diversity is 239

not artificially inflated by the sentence length. Sim- 240

ilarly, Entropy-k quantifies the uniformity of the 241

k-gram distribution within the text. Higher values 242

for both Distinct-k and Entropy-k reflect greater 243

diversity. 244

Content-based Diversity: To measure diversity 245

at content level, self-CosSim (Cox et al., 2021) 246

calculates the average pairwise cosine similarity 247

between the generated sentences using their sen- 248

tence embeddings. On the other hand, Chamfer 249

Distance (Jones et al., 2006) measures diversity by 250

calculating the average of the minimum pairwise 251

distances between embeddings, reflecting proxim- 252

ity to the nearest neighbour (see Appendix B). We 253

also use VS for content-based diversity, where the 254

kernel matrix is built from sentence embeddings. 255

For consistency across metrics, we use embeddings 256

obtained via SimCSE (Gao et al., 2021). 257

4 Meta-Evaluation of Diversity Metrics 258

We propose an LLM-based annotation method for 259

creating a diversity rated dataset for our meta- 260

1We subtract self-BLEU scores by 1, such that higher
scores indicate greater pairwise diversity.
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evaluation in § 4.1, and a method to create sentence261

sets with different quality levels from the Common-262

Gen dataset in § 4.2.263

4.1 LLM-based Diversity Annotation264

A reliable diversity metric must align well with the265

human notion of diversity, independently of the266

quality of the generation. For example, randomly267

permuting the word order or including nonsensical268

words in a sentence are not considered by humans269

to be improving diversity. Therefore, a reliable di-270

versity metric must also not assign high diversity271

scores for such cases. However, obtaining reliable272

human diversity ratings at scale is costly. Moreover,273

Tevet and Berant (2021) showed that human diver-274

sity judgments often conflate text quality and vari-275

ety. Consequently, to conduct a large-scale meta-276

evaluation over existing diversity metrics, we elicit277

diversity ratings from an LLM. LLMs have been278

used as annotators for multiple NLG tasks (Wang279

et al., 2023; Liu et al., 2023b; Fu et al., 2024). In280

particular, Zhang et al. (2024) reported a moder-281

ate level of agreement between LLM and human282

diversity ratings in a GCR task.283

We consider two types of diversities (Tevet and284

Berant, 2021) in our annotation:285

Form-based Diversity: A diverse set of sen-286

tences must exhibit minimal lexical overlap, avoid-287

ing repetitive word usage while preserving clarity288

and fluency.289

Content-based Diversity: A diverse set of sen-290

tences must exhibit distinct semantic content cen-291

tred on the same input, ensuring that each sentence292

offers a different perspective on the topic rather293

than talking about unrelated topics.294

We follow a two-step approach to mitigate any295

choice-ordering bias (Zheng et al., 2023; Wang296

et al., 2024a,b) when eliciting a pairwise preference297

order between two sets of sentences shown to the298

annotator LLM. First, we require that the annotator299

LLM assign a numerical score (1–5), where higher300

ratings indicate stronger diversity. We repeat this301

process multiple times by randomly ordering the302

sentences in each set shown to the annotator LLM303

as well as which set is shown first in the instruction.304

We then aggregate the LLM ratings and predict the305

set with the higher rating to be the more diverse306

set in the pair. We include eight few-shot exam-307

ples rated by three human annotators following the308

same instructions as given to the annotator LLM to309

further improve the prompt.2 310

We use GPT-4o as the annotator LLM, which 311

has shown superior performance in a broad range 312

of annotation tasks.3 Moreover, we conducted a hu- 313

man evaluation using a subset of sentence set pairs 314

in our dataset to validate the LLM-based diversity 315

ratings (further details described in Appendix D). 316

From this human validation, we found that GPT-4o 317

to have a high level of agreement with human diver- 318

sity judgements with an average accuracy of 79.4%, 319

which confirms the reliability of LLM-based anno- 320

tations. An example of an LLM-based diversity 321

judgement by GPT-4o is shown in Figure 2. 322

4.2 Candidate sets 323

Diversity would be of interest only when the gener- 324

ation quality is high. Therefore, a reliable diversity 325

metric must be able to accurately evaluate the di- 326

versity of generations of varying qualities. For this 327

purpose, we propose a method to create sentence 328

sets that have varying levels of generation quality 329

to be used later in our meta-evaluations. Specifi- 330

cally, we use the CommonGen dataset (Lin et al., 331

2020) where a GCR model must generate a coher- 332

ent sentence that contains all of the input concepts, 333

reflecting their commonsense relations. We use the 334

official CommonGen test set, which includes 1,497 335

examples, each containing 3–5 input concepts on 336

average. We create sets of sentences of high and 337

low generation quality as described respectively 338

in section 4.2.1 and section 4.2.2 by prompting 339

three generator LLMs4: GPT-4-turbo (Achiam 340

et al., 2023), Llama3.1-8b (Dubey et al., 2024), 341

and Qwen 2.5-14b (Hui et al., 2024). Due to 342

space limitations, we show the detailed instruc- 343

tions provided to the generator LLMs, an empirical 344

quality evaluation, and example generations in Ap- 345

pendix C. 346

4.2.1 High-Quality Sentence Sets 347

We propose the following strategies to create sen- 348

tence sets with high generation quality. 349

Default: Note that CommonGen was developed 350

as a dataset for evaluating the quality and not diver- 351

sity of GCR methods. Therefore, it contains only 352

a small number of human-written sentences cov- 353

ering the input concepts in a test case. Moreover, 354

2Prompt shown in Appendix D.
3LLM Leaderboard
4To prevent any confusion with the GPT-4o that we used as

the annotator LLM in § 4.1, we collectively call those models
as the generator LLMs.

4

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://artificialanalysis.ai/leaderboards/models


Query:

Set 1: Step by step, she sits down to watch her father catch fish on the shore

          Step by step, she sits down and watches as her father catches fish.  

          On a sunny day, we sit by the river, watch the currents, and hope to catch some fish.   

          By the river on a sunny day, we sit and watch the currents, hoping to catch some fish.

Set 2: He sits on the dock to watch and catch fish as they swim up the steps. 

          Step by step, she sits down to watch her father catch fish on the shore. 

          On a sunny day, we sit by the river, watch the currents, and hope to catch some fish. 

           I sit on the stairs to watch the fish-catching competition as participants step forward one by one.

LLM Score   "Diversity_Set1": 3, "Diversity_Set2": 4

LLM Reason 

Set 1 has a diversity score of 3 due to noticeable redundancy. The first two sentences are nearly identical, both 

describing a step-by-step process of sitting to watch a father catch fish. The last two sentences also mirror each other, 

focusing on sitting by the river and observing currents with the hope of catching fish, offering limited exploration of the 

theme. In contrast, Set 2 scores a 4 for diversity as it introduces more varied scenarios. It includes unique elements like 

sitting on a dock to watch fish swim up steps and a fish-catching competition, enriching the theme with different 

perspectives.

Figure 2: An example of annotating for diversity using GPT-4o for two sets of sentences generated for the same
input concepts. GPT-4o assigns a higher diversity rating for Set-2, indicating it to be more diverse than Set-1. LLM
Reason is provided here for explanation purposes only and is not used in the meta-evaluation.

these human-written sentences do not adequately355

cover all possible commonsense bearing sentences356

that can be generated from the input concepts. To357

address this issue, we prompt the generator LLMs358

with the same instructions as given to the human359

annotators in CommonGen to generate four sen-360

tences for each test case. We call it the Default set361

of sentences for a test case.362

Paraphrasing: We randomly select one or more363

sentences from the Default set and instruct the364

generator LLMs to create their paraphrases. We365

then replace the non-selected sentences in each De-366

fault set with the generated paraphrase sentences.367

We expect the diversity of a set of sentences to368

decrease when we include more paraphrasing sen-369

tences. Specifically, we consider three variants370

of this method. Let the Default set contain four371

sentences {A,B,C,D}, and a A∗ be the para-372

phrase of A, selected randomly from the set. We373

then define: Para-1 = {A,A∗, B,C}, Para-2 =374

{A,A∗, B,B∗}, and Para-3 = {A,A∗, A∗∗, B}.375

4.2.2 Low-Quality Sentence Sets376

To evaluate the ability of a diversity metric to accu-377

rately distinguish genuine diversity from nonsensi-378

cal or random corruptions made to a sentence, we379

create a set of low generation quality sentences for380

each input concept set in CommonGen test dataset381

as follows.382

Nonsensical: We prompt5 the generator LLMs to 383

produce sentences that are syntactically valid and 384

include all of the input concepts, but do not make 385

any commonsense or illogical. 386

NounShuff: We run a part-of-speech tagger and 387

randomly shuffle nouns and pronouns within each 388

sentence, while leaving other words unchanged. 389

This process disrupts semantic consistency while 390

retaining some semblance of syntactic framing, 391

serving as an intermediate case of corruption. 392

RndShuff: We take each sentence from the De- 393

fault set and randomly shuffle all of the words in it 394

to produce sequences that are devoid of coherent 395

sentence structure or meaning. 396

5 Experiments 397

5.1 Settings and Evaluation Metrics 398

To obtain statistically stable diversity ratings, we 399

run the annotator LLM (i.e. GPT-4o) with the tem- 400

perature set to 0.6, and average the results over 401

five independent runs. All experiments are con- 402

ducted on two (Nvidia A6000 and 4090) GPUs 403

for Qwen2.5-14B and Llama3.1-8B models. For 404

GPT-4-turbo, we use the OpenAI API, with the 405

temperature set to 0 to increase determinism in 406

the generations. We use 1024-dimensional6 Sim- 407

5Prompt shown in Appendix C.
6huggingface.co/princeton-nlp/

sup-simcse-roberta-large
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Diversity Metric GPT-4-turbo Qwen2.5-14B Llama3.1-8B
Fo

rm

self-BLEU-3 48.4 50.7 52.7
self-BLEU-4 49.0 51.9 53.0
VS-ngram-0.5 49.2 57.7 56.1
VS-ngram-1 49.0 57.8 56.2
VS-ngram-inf 47.5 58.9 56.5
Distinct-4 64.0 69.0 61.7
Entropy-2 62.9 74.0 62.5

C
on

te
nt

Chamfer 80.6 78.9 71.9
self-cosSim 76.9 80.0 71.9
VS-Embed-0.5 80.7 80.8 73.2
VS-Embed-1 79.3 81.1 73.1
VS-Embed-inf 76.0 79.9 71.9

Table 1: Meta-evaluation of the accuracy of the diversity
metrics on the CommonGen test dataset with each of
the generator LLMs.

CSE (Gao et al., 2021) sentence embeddings for408

all content-based diversity metrics.409

We define the accuracy of a target diversity met-410

ric as the percentage of pairwise decisions that411

agree with those of the annotator LLM. For ex-412

ample, given a pair of sentence sets (S1,S2), if413

both the annotator LLM and the target diversity414

metric consider S1 to be more diverse than S2, it is415

counted as a correct prediction. To prevent diversity416

evaluations from being influenced by the quality417

of the sentence sets, we ensure that both sentence418

sets in a pair to have the same generation quality419

(i.e. both sets must be either high quality or low420

quality). Moreover, to ensure meaningful compar-421

isons, we filter out any sentence set pairs where the422

annotator LLM’s average diversity ratings differ by423

less than 0.5. After this filtering step, the resulting424

sentence pair sets generated with GPT-4-turbo,425

Llama3.1-8B, and Qwen-2.5-14B and used for426

evaluations contain, respectively, 1414, 1916, and427

1864 instances.428

5.2 Meta-Evaluation of Diversity Metrics429

Table 1 shows the accuracy of form-based (top430

group) vs. content-based (bottom group) GCR di-431

versity metrics on the CommonGen dataset. We432

observe that content-based diversity metrics-—-433

specifically self-cosSim, Chamfer, and VS-Embed434

variants—consistently achieve higher accuracy435

than form-based diversity metrics such as the436

corpus-level diversity metrics (e.g. Entropy, Dis-437

tinct) or the n-gram-based diversity metrics (e.g.438

self-BLEU, VS-n-gram variants) across all gener-439

ator LLM outputs. In particular, VS-Embed-0.5440

and VS-Embed-1 consistently report the best ac-441

curacy, suggesting that content is more important442

than form when evaluating diversity in GCR. Form-443

Diversity Metric ComVE DimonGen

Fo
rm

self-BLEU-3 77.3 59.7
self-BLEU-4 76.9 59.4
VS-ngram-0.5 76.7 60.0
VS-ngram-1 77.0 59.8
VS-ngram-inf 77.2 58.8
Distinct-4 73.8 62.2
Entropy-2 74.2 62.2

C
on

te
nt

Chamfer 77.0 67.8
self-cosSim 76.4 66.6
VS-Embed-0.5 77.4 67.2
VS-Embed-1 76.8 67.6
VS-Embed-inf 76.4 66.6

Table 2: Accuracy of diversity metrics on ComVE and
DimonGen datasets.

based metrics primarily focus on lexical overlap, 444

overlooking the deeper semantic nuances that char- 445

acterise the diversity. Although Entropy and Dis- 446

tinct reflect some aspects of overall lexical variety 447

and frequency distributions, they fail to capture 448

semantic richness. Even when these metrics some- 449

times outperform self-BLEU, they still fall short of 450

content-based metrics. 451

To ensure our findings generalise beyond 452

CommonGen, we extend the meta-evaluation to 453

two additional commonsense generation datasets: 454

ComVE (Wang et al., 2020) and DimonGen (Liu 455

et al., 2023a). ComVE requires a GCR method 456

to explain why a counterfactual statement is non- 457

sensical, while DimonGen focuses on generating 458

diverse sentences describing relationships between 459

two given concepts. Both tasks require outputs that 460

are diverse and commonsense-bearing. Zhang et al. 461

(2024) provide three sets of generated sentences for 462

each dataset, along with a pre-evaluation of output 463

quality. We compare each pair of sentence sets gen- 464

erated for the same input using the diversity ratings 465

returned by our annotator LLM (i.e. GPT-4o), and 466

contrast these with the diversity scores produced 467

by each target metric, as shown in Table 2. 468

Consistent with the trends observed on Common- 469

Gen, content-based metrics (e.g. VS-Embed-0.5, 470

Chamfer) consistently achieve the highest agree- 471

ment with GPT-4o on both ComVE and Dimon- 472

Gen. For example, VS-Embed-0.5 performs best 473

on ComVE, whereas Chamfer excels on Dimon- 474

Gen. Although form-based metrics show compet- 475

itive accuracies on the ComVE dataset, their per- 476

formance drops on DimonGen. These findings 477

confirm that content-based metrics offer a more 478

reliable and consistent approach for evaluating 479
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Figure 3: Inter-annotator agreement (measured using Cohen’s Kappa) between two diversity metrics when used to
make pairwise preference orderings for sentence sets generated for the same input concepts in CommonGen test
cases. Agreement with the annotator LLM (i.e. GPT-4o) is also shown.

GPT-4-turbo Qwen2.5-14b Llama3.1-8b

Diversity Metric High Low High Low High Low

Fo
rm

self-BLEU-3 73.5 27.6 68.4 35.3 66.6 39.8
self-BLEU-4 72.0 30.0 67.1 38.7 64.3 42.5
VS-ngram-0.5 73.7 28.8 69.7 47.2 66.5 46.5
VS-ngram-1 73.4 28.8 69.5 47.6 66.6 46.8
VS-ngram-inf 71.0 27.8 69.7 48.0 67.0 46.8
Distinct-4 61.7 65.9 58.6 79.4 56.3 66.6
Entropy-2 59.2 65.9 57.0 88.5 49.6 74.4

C
on

te
nt

Chamfer 80.2 80.8 67.5 88.9 73.6 70.4
self-cosSim 72.3 80.7 71.7 87.2 74.4 69.6
VS-Embed-0.5 80.2 81.1 72.3 88.2 76.9 69.8
VS-Embed-1 77.7 80.6 73.0 88.1 76.9 69.5
VS-Embed-inf 71.2 80.7 71.5 87.3 74.4 69.6

Table 3: Accuracy of diversity metrics across different
levels of quality in sentence sets, generated by three
generator LLMs. The content-based diversity metrics
consistently perform better than the form-based metrics.

text diversity, especially in diverse commonsense480

generation tasks. While form-based metrics have481

close alignment with content-based metrics on the482

ComVE dataset, their performance is not always483

consistent (see Appendix F).484

5.3 Diversity Metrics and Generation Quality485

In Table 3, we conduct a meta-evaluation of di-486

versity metrics for their ability to reliably estimate487

diversity in both high and low quality generations.488

We see that form-based metrics perform partic-489

ularly well when the generation quality is high,490

however, their accuracy drops drastically (even be-491

low 40%) for low quality sets, demonstrating their492

sensitivity to inherent noise in the n-gram over-493

laps. In contrast, content-based metrics maintain494

consistently high accuracy, regardless of genera-495

tion quality. In particular, VS-Embed-0.5 and VS-496

Embed-1 approach or exceed 70% accuracy in all497

comparisons, even for shuffled or nonsensical sce- 498

narios, demonstrating statistically significant im- 499

provements (Appendix E) over form-based metrics. 500

We treat each diversity metric as an annotator 501

that provides a preference ordering for diversity be- 502

tween two sentence sets, and we measure their pair- 503

wise agreements. We use Cohen’s Kappa (shown 504

in Figure 3) for this purpose, which is known to 505

be less sensitive to class imbalance, and more re- 506

flective of true, non-random agreement. For high 507

quality sets, most metrics achieve fair to substan- 508

tial levels of agreement, reflecting strong consis- 509

tency. However, agreements vary considerably 510

in low quality sets. Content-based metrics such 511

as Chamfer, self-cosSim, and VS-Embed variants 512

exhibit near-perfect agreement with each other 513

and maintain Kappa values exceeding 0.6 with 514

GPT-4o. Conversely, form-based metrics (e.g. self- 515

BLEU) show poor agreement with GPT-4o in low 516

quality sets with negative Kappa values indicating 517

that the observed agreement between these form- 518

based metrics is lower than would be expected by 519

chance. Moreover, the agreements between form- 520

and. content-based metrics remain low, underscor- 521

ing fundamental differences in how these metrics 522

measure diversity. Notably, Distinct-4 and Entropy- 523

2—although also use n-grams—are less likely to 524

overemphasise repeated phrases or minor word 525

swaps and show a moderate level of agreement 526

with content-based metrics even for low quality 527

sets. 528

Table 4 shows the average diversity score re- 529

ported by each metric over the sets of sentences 530

generated from GPT-4-turbo according to the high 531

and low quality preserving methods described in 532
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Form-based Diversity⇑ Content-based Diversity⇑

Method self-BLEU-3 self-BLEU-4 VS-ngram-0.5 VS-ngram-1 VS-ngram-inf Distinct-4 Entropy-2 self-CosSim Chamfer VS-Embed-0.5 VS-Embed-1 VS-Embed-inf

High quality candidate sets

Default 79.53 87.63 3.90 3.79 2.60 93.04 9.52 26.81 20.09 2.67 2.01 1.26
Para-1 73.37 81.86 3.86 3.72 2.48 90.60 9.42 22.04 12.44 2.35 1.76 1.20
Para-2 64.24 73.98 3.80 3.62 2.38 90.93 9.60 20.03 3.09 2.08 1.60 1.18
Para-3 63.32 71.88 3.77 3.57 2.26 89.90 9.66 17.50 9.54 2.08 1.55 1.15

Low quality candidate sets

Nonsensical 80.96 89.79 3.90 3.81 2.60 90.26 9.12 42.02 35.18 2.59 2.63 2.52
NounShuff 89.06 95.19 3.93 3.87 2.77 98.06 9.82 28.83 22.53 2.77 2.09 1.28
RndShuff 96.75 99.05 3.95 3.89 2.84 99.94 10.23 27.57 21.34 2.72 2.04 1.27

Table 4: Average diversity score of each metric on sentence sets generated using the methods described in § 4.2.

(a) Distribution of self-BLEU-3 scores (b) Distribution of Chamfer scores

Figure 4: Distribution of diversity scores for self-BLEU-3 (form-based) and Chamfer Distance (content-based) for
Default and Paraphrased high-quality sentence sets. In self-BLEU-3, the two distributions have a high overlap,
whereas in Chamfer they are well-separated. This indicates that the Chamfer metric can better distinguish more
diverse Default sentence sets from the less diverse Paraphrased sentence sets than self-BLEU-3.

§ 4.2. For the high quality candidates, as expected,533

we see that the diversity decreases from the Default534

set as we paraphrase more sentences, as measured535

by all metrics. We also find that, on average, all536

metrics assign higher diversity scores to low quality537

generations than to high quality generations. This538

is because a random set of sentences could appear539

to be diverse, covering distinct topics, at both the540

form and content. This observation highlights an541

important limitation of existing GCR diversity eval-542

uation metrics: diversity should not be evaluated543

without considering quality. A promising future re-544

search direction would be to develop an evaluation545

metric for GCR that simultaneously incorporates546

both quality and diversity aspects.547

Figure 4 compares the distribution of diversity548

scores assigned by self-BLEU-3 (form-based) ver-549

sus Chamfer (content-based) for 200 randomly550

sampled sentence sets from Default and Para-551

phrased (using Para-2) high-quality candidate552

sets. Sentence sets in Paraphrased are constructed553

to be less diverse compared to those in Default. We554

use Kernel Density Estimation (Rosenblatt, 1956)555

to interpolate the distributions from the frequency556

histograms. We see that the two distributions for557

self-BLUE-3 in Figure 4a to have a high over- 558

lap, demonstrating its inability to correctly sep- 559

arate high diversity generations in Default from 560

the less diverse generations in Paraphrased. On 561

the other hand, the two distributions for Chamfer 562

in Figure 4b exhibit a relatively smaller overlap, 563

indicating that Chamfer assigns relatively higher 564

diversity scores to the sentence sets in Default than 565

those in Paraphrased. 566

6 Conclusion 567

We presented a comprehensive meta-evaluation 568

of diversity metrics for commonsense generation, 569

revealing that content-based metrics consistently 570

align with human judgments while form-based met- 571

rics tend to overestimate diversity, especially in 572

low-quality generations. Our experiments across 573

multiple datasets demonstrate that metrics such as 574

VS-Embed and Chamfer provide a more robust and 575

reliable assessment of semantic diversity. These 576

findings underscore the importance of incorporat- 577

ing content-level analysis in evaluating common- 578

sense generation. Future research should build on 579

these insights to further enhance the robustness and 580

interpretability of GCR. 581
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7 Limitations582

The experiments conducted in this paper were lim-583

ited to English, a morphologically limited lan-584

guage. Although we would like to extend our585

meta-evaluation to other languages, we were lim-586

ited by the lack of availability of commonsense587

reasoning datasets for languages other than En-588

glish. In particular, CommonGen (Lin et al., 2020),589

ComVE (Wang et al., 2020), and DimonGen (Liu590

et al., 2023a) datasets are specifically designed for591

evaluating diversified commonsense reasoning only592

in English. We note however that both form- and593

content-based diversity metrics considered in our594

work are not limited to English, and can be easily595

extended to other languages with suitable tokenis-596

ers or multilingual sentence embedding models.597

For example, a single Kanji character in languages598

such as Japanese or Chinese can carry meaning599

on its own, and even n-gram overlap measures de-600

fined over character sequences can capture some601

level of meaning retention between a generated602

and a reference set of sentences. Therefore, we603

believe it would be important to conduct similar604

meta-evaluation for the diversity metrics in com-605

monsense generation for other languages before se-606

lecting an appropriate evaluation metric. We hope607

that the methodology we propose in this paper will608

be exemplary in such future work.609

Our work evaluates diversity metrics primar-610

ily within GCR tasks. The candidate sets used611

in this study were pre-evaluated for quality us-612

ing official scripts (for CommonGen) or prior613

work (for ComVE and DimonGen). We use614

three LLMs as our generative models, a closed615

model (GPT4-turbo) and two open-source models616

(Llama3.1-8B and Qwen2.5-14B) to promote the617

reproducibility of our results, which are reported618

using multiple publicly available benchmarks. Of619

course, there is a large number of LLMs being de-620

veloped, trained on different pre-train data composi-621

tions, architectures, parameter sizes and fine-tuned622

for a plethora of tasks. It is practically impossible623

to conduct all available LLMs in a conference pa-624

per due to the sheer number and the computational625

costs.626

We used GPT-4o as the sole LLM-based diver-627

sity annotator. Although the prompts and instruc-628

tions are adaptable to other models, we chose629

GPT-4o due to its superior performance in a range630

of NLG tasks. Moreover, in our human evaluation,631

conducted over a subset of the GPT-4o rated sen-632

tence sets, human judges found those annotations 633

to be of high accuracy (i.e. 79.4% accuracy as 634

shown in § D.1). Therefore, we consider GPT-4o 635

to offer a scalable and robust alternative for anno- 636

tating diversity in sentence sets. However, using 637

LLMs that are comparable or superior to GPT-4o 638

could further validate our findings. 639

8 Ethical Concerns 640

All experiments conducted in this study use pub- 641

licly available datasets, CommonGen, ComVE, and 642

DimonGen. To the best of our knowledge no per- 643

sonally identifiable information is included in those 644

datasets and no ethical issues have been reported. 645

The human annotators who participated in our eval- 646

uation were over 18 years old adults and have given 647

informed consent to use their diversity annotations 648

for academic research purposes. 649

It is noteworthy that LLMs have been reported 650

to encode social biases such as gender or racial 651

biases (Kaneko and Bollegala, 2021; Nangia et al., 652

2020; Kaneko et al., 2022). Although we evaluated 653

quality and diversity of the generations made by 654

LLMs in this work, we have not evaluated how so- 655

cial biases are reflected in their generations. There- 656

fore, it is important to also evaluate the social biases 657

in the diverse LLM generations before a diversifi- 658

cation method for GCR is deployed in an NLG 659

application. 660
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λ1, λ2, . . . , λn. Then, VS is given by (1).901

V S = exp

(
−

n∑
i=1

λi log λi

)
(1)902

The VS could be interpreted as the effective num-903

ber of dissimilar elements in a sample. This for-904

mulation corresponds to a special case where the905

order q = 1. However, it has the limitation that it906

could not handle imbalanced datasets where rare907

elements might be under-represented. To address908

these challenges, the VS has been generalised to in-909

clude different orders q (Pasarkar and Dieng, 2024)910

as given by (2).911

V Sq = exp

(
1

1− q
log

n∑
i=1

λq
i

)
(2)912

Here, q allows users to control the sensitivity to rare913

(or common) elements, where q < 1 corresponds to914

high sensitivity to rare elements. The special case915

of q = inf forces VS to capture the most dominant916

elements, making it highly sensitive to redundant917

elements.918

B Chamfer Distance919

Chamfer Distance (CD) is a geometric metric com-920

monly used to compute the dissimilarity between921

two sets of points with embeddings. Given two sets922

of sentence embeddings A = {a1, a2, . . . , am}923

and B = {b1, b2, . . . , bn}, CD is defined in (3).924

CD(A,B) =
1

|A|
∑
a∈A

min
b∈B

∥a− b∥22

+
1

|B|
∑
b∈B

min
a∈A

∥b− a∥22,
(3)925

This metric captures how well each sentence em-926

bedding in one set is approximated by the closest927

embedding in the other set.928

C Generating Candidate Sets929

In this section, we describe further details regard-930

ing the high and low quality candidate set gen-931

eration process. We use three generator LLMs932

for this purpose: GPT-4-turbo (Achiam et al.,933

2023), Llama3.1-8b (Dubey et al., 2024), and934

Qwen 2.5-14b (Hui et al., 2024).935

To generate the Default set of sentences for each936

set of input concepts in the CommonGen test cases,937

we instruct each generator LLM separately with the938

Instruction
Given a set of specific words, write four short and simple sentences 
that contains all the required words. The sentence should describe a 
common scene in daily life, and the concepts should be used in a 
natural way. 

Example:
“Concepts”:{concept_set},
“Sentences”: {sentence_set}   

Input:
“Concepts”:{concept_set},

Figure 5: The prompt used to instruct generator LLMs
to produce the Default set of sentences.

Instruction
For each provided sentence, paraphrase it, ensuring that the original 
meaning is preserved and that all required keywords are included in 
the paraphrase. You could apply following methods to paraphrase. 

• Passive Voice: Convert sentences from active to passive voice, 
focusing on the recipient of the action.

• Change of Tense: Adjust the verb tense within the sentence. 
This could involve changing from present to past, past to future, 
or any other tense modifications appropriate to the context.

• Synonym Replacement: Replace words in the sentence with 
their synonyms except the provided keywords. Care must be 
taken to ensure that the synonyms fit naturally within the 
context of the sentence and maintain the original meaning.

Examples
“Concepts”: {concepts set}
“Original_sentences”: {original sentences}
“Paraphrases“{paraphrased_sentences}

Input:
“Concepts”: {concepts set}
“Original_sentences”: {original sentences}

Figure 6: The prompt used to instruct generator LLMs
to produce the Paraphrased set of sentences.

Instruction
Given a set of specific concepts, write four sentences that are 
nonsensical and conflict with commonsense in daily life. Each 
sentence mush contain all the required words. 

Example:
“Concepts”: {concept_set}
“Sentences”: {nonsensical_sentences}
  
Input:
“Concepts”: {concept_set}

Figure 7: The prompt used to instruct generator LLMs
to produce the Nonsensical set of sentences.

prompt shown in Figure 5. To generate the para- 939

phrase of a given sentence for the Para-1, Para-2 940

and Para-3 sets, we instruct the generator LLMs 941

with the prompt shown in Figure 6. The instruc- 942

tion to generate nonsensical sentences is shown in 943

Figure 7. 944

An example of the candidate sets of high and low 945

quality sentences generated by the different high 946

and low quality operations are shown in Table 5. 947

C.1 Quality Evaluation 948

Before evaluating the diversity of each candidate 949

set, we first assess their quality using the official 950

metrics proposed by Lin et al. (2020) based on 951

GPT-4o for evaluating LLM generations. Based on 952

these metrics, we classify the candidate sets into 953
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Input concepts {dog, throw, frisbee, catch}

High-quality candidate sets

Default "The dog catches the frisbee after I throw it."
"I throw the frisbee and the dog tries to catch it."
"Every time I throw the frisbee, the dog catches it eagerly."
"Watching the dog catch the frisbee after I throw it brings joy."

Para-1 "After the frisbee is thrown by me, it is caught by the dog."
"The dog catches the frisbee after I throw it."
"I throw the frisbee and the dog tries to catch it."
"Every time I throw the frisbee, the dog catches it eagerly."

Para-2 "I throw the frisbee and the dog tries to catch it."
"The frisbee is thrown by me, and the dog attempts to catch it."
"Every time I throw the frisbee, the dog catches it eagerly."
"The frisbee is eagerly caught by the dog each time it is thrown by me."

Para-3 "Every time I throw the frisbee, the dog catches it eagerly."
"The frisbee is eagerly caught by the dog each time it is thrown by me."
"Eagerly, the frisbee is caught by the dog every time it is thrown by me."
"Watching the dog catch the frisbee after I throw it brings joy."

Low-quality candidate sets

Nonsensical "The frisbee decided to throw the dog sky-high so it could catch the stars."
"At midnight, every dog gathers to catch the moon while humans throw frisbees into dreams."
"The dog threw a party where frisbees were invited to catch sounds and dances."
"During breakfast, the dog learned to throw sunlight so that the frisbee could catch and store it."

NounShuff "The frisbee catches the it after I throw dog."
"dog throw the it and the frisbee tries to catch I."
"Every I frisbee throw the time, the it catches dog eagerly."
"Watching the dog catch the I after frisbee throw it brings joy."

RndShuff "catches I dog frisbee it throw the the after."
"I to catch throw dog tries and the it frisbee the."
"the dog I the it frisbee, throw eagerly every time catches."
"the frisbee the catch throw joy I after Watching brings dog it."

Table 5: An example of candidate sets generated by the different high and low quality operations for an input
concept set selected from the CommonGen test dataset.

high-quality and low-quality groups using the over-954

all quality score. The quality metrics are defined as955

follows:956

Length: the number of words on average in the957

generated sentences.958

Coverage: the percentage of examples where all959

given concepts are covered by LLM outputs.960

Win_Tie: the percentage of examples where GPT-961

4o prefers the model outputs over the human-962

written references (or there is a tie).963

Overall Score: the product of scores on Coverage,964

and Win_Tie Rate.965

From Table 6, Table 7 and Table 8, we see that966

the Default generation achieves the best quality967

among the candidate sets and the outputs generated 968

by GPT-4-turbo has the best quality among the 969

three models. Therefore, we use GPT-4-turbo to 970

show the result in the main paper. GPT-4-turbo 971

also has higher win_tie rate compared with human 972

preference. However, as the number of paraphrases 973

increases (e.g. in Para-2 and Para-3), the Win_Tie 974

decreases. This suggests that the CommonGen 975

evaluator implicitly considers diversity as part of 976

its quality evaluation, even though diversity is not 977

explicitly mentioned in the evaluation instructions. 978

Additionally, the coverage rate declines as the num- 979

ber of paraphrases increases. This highlights that 980

generating diverse outputs while maintaining high 981

coverage remains a challenge for LLMs, even for 982

state-of-the-art models like GPT-4-turbo. 983
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D LLM-based Diversity Evaluation984

We use GPT-4o as the Diversity Annotator LLM985

for evaluating the diversity in a given set of sen-986

tences. Prior work using LLMs for rating NLG987

tasks have shown that GPT-4o to demonstrate988

stronger correlations with human ratings (Liu et al.,989

2023b; Bai et al., 2024). Moreover, as described in990

§ D.1, in a human evaluation over a subset of our991

dataset showed that GPT-4o to have a high agree-992

ment with human diversity preferences.993

The prompt that we use to obtain diversity rat-994

ings from GPT-4o is shown in Figure 8. This995

prompt instructs GPT-4o to adhere to commonsense996

constraints (i.e. nonsensical outputs should not be997

interpreted to be genuinely “diverse”). We instruct998

GPT-4o to score each set’s diversity according to999

a five-point scale, from highly redundant (1) to1000

low redundancy across a wide range of aspects (5).1001

We also require that GPT-4o consider thematic co-1002

herence among the sentences in a given set, when1003

evaluating for their diversity such that they all cover1004

the same set of input concepts.1005

Few-shot Prompting: In-context Learning (ICL)1006

has proven to be an effective strategy for improv-1007

ing text generation and evaluation in many NLG1008

tasks (Brown et al., 2020; Dong et al., 2022). Con-1009

sequently, to guide GPT-4o towards human-like1010

diversity judgments, we create a set of human-1011

labelled examples illustrating how diverse (or non-1012

diverse) outputs should be rated. Specifically, we1013

asked three linguistically trained annotators to inde-1014

pendently evaluate the diversity of 70 sentence sets.1015

Each set comprises of four sentences generated by1016

the same model from the same input concepts. The1017

human annotators followed the same diversity cri-1018

teria, already described in § 4.1. Specifically, each1019

annotator is instructed to:1020

1. Assign a 1–5 diversity rating to each sentence1021

set.1022

2. Rank the sets (if they shared the same input)1023

with their diversity preference. This ranking1024

resolves ties when two sets receive the same1025

numerical score.1026

Finally, we select the top 8 sentence set pairs with1027

the highest agreement among the human annotators1028

as the few-shot examples to be included in our1029

prompt to GPT-4o.1030

For each pair of candidate sentence sets, we1031

query GPT-4o five times, each time randomly shuf-1032

Method Length Coverage Win_Tie Overall

Default 12.9 86.5 58.7 50.8
Para-1 12.9 83.1 56.5 47.0
Para-2 13.8 75.6 43.6 32.9
Para-3 14.4 75.1 38.5 28.9

Nonsensical 15.1 95.4 1.3 1.3
NounShuff 12.9 85.2 4.9 4.2
RndShuff 12.9 79.6 0.3 0.2

Table 6: Comparison of length, coverage, win-tie per-
centage, and overall performance across different meth-
ods for the GPT-4-turbo’s candidate sets generation.

fling the ordering of the sentences presented to 1033

GPT-4o as well as the pairwise ordering of the two 1034

sets to mitigate any biases resulting from position 1035

of the candidates within the prompt. We average 1036

the five predicted diversity ratings per sentence set 1037

and determine the set with the higher mean rating 1038

as the more diverse one. 1039

D.1 Human Verification 1040

To assess the reliability of our LLM-based diver- 1041

sity annotation, we randomly selected 70 pairs of 1042

high-quality sentence sets and asked five linguis- 1043

tically trained annotators (graduate students and 1044

academics trained in linguistic annotation tasks) to 1045

choose their preferred set based on the same diver- 1046

sity criteria used by the LLM. We then compared 1047

the human annotations with the LLM’s preferences. 1048

To measure the agreement, we calculated the 1049

pairwise accuracy between each human annotator’s 1050

judgments and the LLM annotator’s decisions for 1051

all pairs. The average pairwise accuracy across all 1052

annotators was then computed to represent the over- 1053

all agreement. The resulting agreement of 79.4% 1054

demonstrates that our LLM-based annotations pro- 1055

vide an accurate and reliable alternative to human 1056

diversity judgments. 1057

Tevet and Berant (2021) highlighted that evaluat- 1058

ing text diversity is challenging for crowdsourced 1059

human annotators, as judgments can be influenced 1060

by individual biases or lack of linguistic training. 1061

Consistent with this observation, we calculated 1062

Fleiss’ Kappa to measure agreement among the 1063

five human annotators. The resulting Kappa value 1064

of 0.45 indicates a moderate level of agreement 1065

among the human annotators, suggesting the diffi- 1066

culty of the task. 1067
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Task Description:

You are presented with two sets of sentences, Set 1 and Set 2. Each set contains sentences around a common theme. Your task is 

to evaluate each set based on their adherence to commonsense (quality) and their diversity, focusing particularly on redundancy 

within the sets. Subtle differences in reasoning or approach should also be recognized. The sentence sets should be cohesive 

around the same theme, and diversity should be considered in terms of exploring different aspects of that theme.

Important Notes:

It is crucial to pay close attention to which sentences are in Set 1 and which are in Set 2 when making your evaluations. Do not 

assume any set is superior by default in quality or diversity.

Evaluate each set independently based on its own content. 

Diversity Evaluation Criteria:

1. Low Redundancy: Sentences should exhibit low lexical and semantic similarity.

2. Degree of Redundancy: Sets with more paraphrased sentences or repetitive themes have lower diversity.

3. Comprehensive Diversity: The sentences in the sets should enrich the theme without compromising realism and common sense.

Diversity Scoring Guidelines (for each set):

5 Points: Sentences explore a wide range of aspects of the theme with low redundancy.

4 Points: Sentences cover different aspects of the theme with minimal redundancy.

3 Points: Sentences have some diversity but noticeable redundancy.

2 Points: Sentences are mostly repetitive with limited exploration of the theme.

1 Point: Sentences are highly redundant with almost no diversity.

Output:

Based on the above criteria, assign a separate score for quality and diversity to each set, ranging from 1 to 5 points.

Examples:

"Set 1": {Sentence Set 1} "Set 2": {Sentence Set 2}

"Diversity_Score_Set1": {score}, "Diversity_Score_Set2": {score}

Figure 8: Instructions provided to GPT-4o for scoring and comparing two sentence sets. The instructions specify
a five-point diversity scale ranging from highly redundant (score = 1) to wide range of aspects with minimal
redundancy (score = 5). We also emphasise commonsense consistency and thematic relevance in the instruction.
The prompt concludes with a request for a concise output format containing the final scores.

Method Length Coverage Win_Tie Overall

Default 13.8 62.0 44.0 27.3
Para-1 14.3 55.9 38.5 21.5
Para-2 15.0 46.2 30.4 14.0
Para-3 15.6 46.9 27.1 12.7

Nonsensical 18.4 73.8 1.4 1.0
NounShuff 13.8 60.9 3.7 2.2
RndShuff 13.8 55.7 0.1 0.1

Table 7: Comparison of length, coverage, win_tie per-
centage, and overall performance across different meth-
ods for Qwen2.5-14B’s candidate sets generation.

E Confidence Intervals1068

To measure statistical significance for the accuracy1069

scores reported by the different diversity evaluation1070

metrics on the CommonGen dataset, we compute1071

the 95% binomial confidence intervals using the1072

Clopper-Pearson test (Clopper and Pearson, 1934)1073

as shown in Figure 9 for all test cases. Addition-1074

ally, Figure 11 and Figure 10 present confidence1075

Method Length Coverage Win_Tie Overall

Default 15.3 60.7 30.1 18.3
Para-1 15.4 57.8 26.4 15.2
Para-2 15.9 57.8 23.9 13.8
Para-3 17.5 55.7 21.4 11.9

Nonsensical 17.1 78.6 2.7 18.1
NounShuff 15.3 59.5 2.9 1.8
RndShuff 15.3 55.6 0.1 0.1

Table 8: Comparison of length, coverage, win_tie per-
centage, and overall performance across different meth-
ods for the Llama3.1-8B model’s candidate sets genera-
tion.

intervals for the high-quality and low-quality can- 1076

didate subsets, respectively. The bars in blue rep- 1077

resent form-based metrics, while the green bars 1078

correspond to content-based metrics. Across all fig- 1079

ures, content-based metrics such as VS-Embed-0.5 1080

and Chamfer consistently exhibit higher accura- 1081

cies with narrower confidence intervals, highlight- 1082

ing their robustness. In contrast, form-based met- 1083
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Figure 9: Binomial confidence intervals are super-
imposed for the accuracies reported by the diversity
metrics on the all candidate sentence sets on the Com-
monGen test dataset
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Figure 10: Binomial confidence intervals are super-
imposed for the accuracies reported by the diversity
metrics on the low generation quality candidate sen-
tence sets on the CommonGen test dataset.

rics such as self-BLEU show lower accuracies and1084

wider intervals, especially in low-quality scenarios.1085

These results emphasise the reliability of content-1086

based metrics for evaluating meaningful diversity1087

in GCR tasks.1088

F Further Experiments on ComVE1089

To explore the performance of diversity metrics for1090

low quality sentences, we generated low-quality1091

sentence sets on the ComVE dataset, including1092

Nonsensical, NounShuff and RndShuff sentence1093

sets based on the highest-quality generated set by1094

Qwen2.5-14B generator LLM. We also use GPT-4o1095

as the annotator LLM, and prompt it to provide1096

pairwise diversity judgements to a given pair of1097

sentence sets, resulting in 1,936 test cases. The1098

accuracy of each diversity metric is shown in Ta-1099

ble 9. We see a clear performance gap between1100

form-based and content-based metrics in this set-1101
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Figure 11: Binomial confidence intervals are super-
imposed for the accuracies reported by the diversity
metrics on the high generation quality candidate sen-
tence sets on the CommonGen test dataset

Diversity Metric Accuracy

Fo
rm

self-BLEU-3 21.7
self-BLEU-4 20.5
VS-ngram-0.5 34.7
VS-ngram-1 34.7
VS-ngram-inf 35.2
Distinct-4 29.3
Entropy-2 24.0

C
on

te
nt

Chamfer 38.8
self-cosine 38.4
VS-Embed-0.5 38.5
VS-Embed-1 38.5
VS-Embed-inf 38.4

Table 9: Accuracy of diversity metrics using low-quality
sentence sets generated from the ComVE dataset. We
see that form-based metrics perform worse compared to
the content-based metrics.

ting as well. While content-based metrics achieve 1102

the highest accuracy, form-based metrics, such as 1103

self-BLEU, consistently underperform. This exper- 1104

iment further shows the limitations of form-based 1105

diversity metrics in capturing meaningful diversity. 1106
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