
Published as a conference paper at ICLR 2024

DIFFERENTIALLY PRIVATE SYNTHETIC DATA
VIA FOUNDATION MODEL APIS 1: IMAGES

Zinan Lin
Microsoft Research
zinanlin@microsoft.com

Sivakanth Gopi
Microsoft Research
sigopi@microsoft.com

Janardhan Kulkarni
Microsoft Research
jakul@microsoft.com

Harsha Nori
Microsoft Research
hanori@microsoft.com

Sergey Yekhanin
Microsoft Research
yekhanin@microsoft.com

ABSTRACT

Generating differentially private (DP) synthetic data that closely resembles the
original private data is a scalable way to mitigate privacy concerns in the current
data-driven world. In contrast to current practices that train customized models
for this task, we aim to generate DP Synthetic Data via APIs (DPSDA), where
we treat foundation models as blackboxes and only utilize their inference APIs.
Such API-based, training-free approaches are easier to deploy as exemplified by
the recent surge in the number of API-based apps. These approaches can also
leverage the power of large foundation models which are only accessible via their
inference APIs. However, this comes with greater challenges due to strictly more
restrictive model access and the need to protect privacy from the API provider.
In this paper, we present a new framework called Private Evolution (PE) to solve
this problem and show its initial promise on synthetic images. Surprisingly, PE
can match or even outperform state-of-the-art (SOTA) methods without any model
training. For example, on CIFAR10 (with ImageNet as the public data), we
achieve FID≤7.9 with privacy cost ϵ = 0.67, significantly improving the previous
SOTA from ϵ = 32. We further demonstrate the promise of applying PE on large
foundation models such as Stable Diffusion to tackle challenging private datasets
with a small number of high-resolution images. The code and data are released at
https://github.com/microsoft/DPSDA.

1 INTRODUCTION

Private
data

DP
Synthetic

data

Prior work:
Full model access

DP Synthetic Data via APIs (DPSDA):
Blackbox API access to pre-trained models

Figure 1: We consider the problem of gen-
erating DP synthetic data with API access
to pre-trained models without any model
training. This is in contrast to prior work
which assumes full access to pre-trained
models and requires training.

While data-driven approaches have been successful,
privacy is a major concern. For example, statistical
queries of a dataset may leak sensitive information
about individual users (Dwork et al., 2014). Entire
training samples can be reconstructed from deep learn-
ing models (Haim et al., 2022; Fredrikson et al., 2015;
Carlini et al., 2021a; 2023a;b; 2019; 2021b; Choquette-
Choo et al., 2021; Tramèr et al., 2022; Wang et al.,
2023). Differential privacy (DP) is the gold standard
in quantifying and mitigating these concerns (Dwork
et al., 2006). DP algorithms ensure that information
about individual samples in the original data cannot be
inferred with high confidence from algorithm outputs. Differentially private synthetic data is the
holy grail of DP research (Hu et al., 2023; Jordon et al., 2019; Lin et al., 2020; Beaulieu-Jones
et al., 2019; Dockhorn et al., 2022; Yin et al., 2022; Yu et al., 2021; He et al., 2022; Li et al., 2021;
Ghalebikesabi et al., 2023; Yue et al., 2022; Harder et al., 2023; 2021; Savage, 2023; Lin, 2022; Tang
et al., 2023). The goal is to generate a synthetic dataset that is statistically similar to the original
data while ensuring DP. The benefits are: (1) Thanks to the post-processing property of DP (Dwork
et al., 2014), we can use any existing non-private algorithm (e.g., training machine learning (ML)
models) as-is on the synthetic data without incurring additional privacy loss. This is more scalable
than redesigning and reimplementing every algorithm for DP. (2) Synthetic data can be shared freely
with other parties without violating privacy. This is useful in situations when sharing data is neces-
sary, such as when organizations (e.g., hospitals) want to release datasets to support open research

1

https://github.com/microsoft/DPSDA

Published as a conference paper at ICLR 2024

Pre-trained
generative
models

Private data

D
is

tr
ib

ut
io

n
(P

D
F)

Intermediate
generated data

Parent
selection

Offspring
generation

Initialization
Population

Parents

Blackbox
model
APIs

Private
samples

Figure 2: Private Evolution (PE) framework for DP synthetic data. Left: Intuition of PE. Though
private data and pre-trained generative models have very different distributions, the support of the
former is likely to be covered by the support of the latter. We gradually shift the distribution of
generated data toward private data through PE. Right: Algorithm of PE. We maintain a sample set
(population), and iteratively select the most similar ones to the private samples (parents) and mutate
them to generate the next population (offspring). The initial population and offspring are generated
with foundation model APIs. Parent selection is done in DP using private samples.

Figure 3: Generated samples on CIFAR10
with

(
0.67, 10−5

)
-DP. Each row corresponds

to one class. FID=7.87. See App. J for real
and generated images side-by-side.

0.125 0.25 0.5 1 2 4 8 16 32
Epsilon

0

20

40

60

80

FI
D

Ours (uncond)
Ours (cond)
DP-MEPF (uncond)
DP-MEPF (cond)
DP-GAN (uncond)
DP-Diffusion (cond)

Figure 4: FID (Heusel et al., 2017) (lower is bet-
ter) v.s. privacy cost ϵ on CIFAR10 (δ = 10−5).
(Un)cond means (un)conditional generation. Ours
achieves the best privacy-quality trade-off com-
pared to DP-MEPF (Harder et al., 2023), DP-
GAN, DP-Diffusion (Ghalebikesabi et al., 2023).

initiatives (Beaulieu-Jones et al., 2019; Lin et al., 2020). (3) Since synthetic data is DP, developers
can look at the data directly, which makes algorithm development and debugging a lot easier.

At the same time, with the recent advancement of large foundation models, API-based solutions are
gaining tremendous popularity, exemplified by the surge of GPT4-based applications. In contrast
to the traditional paradigm that trains/fine-tunes customized ML models for each application, API-
based solutions treat ML models as blackboxes and only utilize APIs1 that provide the input/output
functions of the models. In fact, many foundation models including GPT4, Bard, and DALLE2 only
provide API access without releasing model weights or code. Key reasons for the success of API-
based solutions are that APIs offer a clean abstraction of ML and are readily available and scalable.
Therefore, implementing and deploying these API-based algorithms is easier and faster even for
developers without ML expertise. Such an approach can also leverage powerful foundation models
that are only accessible through APIs. Unfortunately, SOTA DP synthetic data algorithms today are
still in the old paradigm (Ghalebikesabi et al., 2023; Li et al., 2021): they need a customized training
process for each dataset, whose implementation requires significant ML engineering efforts (§ 3.1).

Motivated from these observations, we ask the following ambitious question (Fig. 1):
Can we generate DP synthetic data using blackbox APIs of foundation models?

We treat API providers as untrusted entities so we also want to protect user privacy from them, i.e.,
the API queries we make during generation should also be DP. If successful, we can potentially
democratize the deployment of DP synthetic data in the industry similar to how API-based solutions
have facilitated other applications. This is a challenging task, however, as we do not have access to
model weights and gradients by assumption. In this paper, we conduct the first exploration of the
potential and limits of this vision on DP synthetic images. Surprisingly, we show that not only is
such a vision realizable, but that it also has the potential to match or improve SOTA training-based
DP synthetic image algorithms despite more restrictive model access. Our contributions are:

1See https://platform.openai.com/docs/introduction for examples of APIs. For exam-
ple, a text completion API can complete a text prompt using a foundation model such as GPT4. An image
variation API can produce variations of a given image using a foundation model such as DALLE2.

2

https://platform.openai.com/docs/introduction

Published as a conference paper at ICLR 2024

(1) New problem (§ 3). We highlight the importance of DP Synthetic Data via APIs (DPSDA). Such
algorithms are easy to implement and deploy and can leverage the foundation models behind APIs.
(2) New framework (§ 4). We propose Private Evolution (PE) algorithm for achieving our goal
(Fig. 2). We consider using 2 popular APIs: random generation and sample variation (i.e., generating
a sample similar to the given one).4,5 The key idea is to iteratively use private samples to vote for the
most similar samples generated from the blackbox model and ask the blackbox models to generate
more of those similar samples. We theoretically prove that the distribution of the generated samples
from PE will converge to the private distribution under some modeling assumptions (App. E). PE
only requires (existing) APIs of the foundation models, and does not need any model training.
(3) Experimental results (§ 5).2 Some key results are: (a) Surprisingly, without any training,
PE can still outperform SOTA training-based DP image generation approaches on some datasets
(Figs. 3 and 4). For example, to obtain FID≤ 7.9 on CIFAR10 dataset, PE (with blackbox access to
an ImageNet-pre-trained model) only needs ϵ = 0.67. In contrast, DP fine-tuning of an ImageNet-
pre-trained model (prior SOTA) requires ϵ = 32 (Ghalebikesabi et al., 2023).
(b) We show that PE works even when there is significant distribution shift between private and
public data. We create a DP synthetic version (with ε = 7.58) of Camelyon17, a medical dataset
for classification of breast cancer metastases, using the same ImageNet-pre-trained model. A down-
stream classifier trained on our DP synthetic data achieves a classification accuracy of 79.56% (prior
SOTA based on DP fine-tuning is 91.1% with ϵ = 10 (Ghalebikesabi et al., 2023)).
(c) We set up new challenging benchmarks that the DP synthetic image literature has not studied
before. We show that with powerful foundation models such as Stable Diffusion (Rombach et al.,
2022), PE can work with high-resolution (512x512) image datasets with a small size (100 images),
which are common in practice but challenging for current DP synthetic image algorithms.

2 BACKGROUND AND RELATED WORK

Differential Privacy (DP). We say a mechanismM is (ϵ, δ)-DP if for any two neighboring datasets
D and D′ which differ in a single entry (i.e., D′ has one extra entry compared to D or vice versa)
and for any set S of outputs ofM, we have P (M (D) ∈ S) ≤ eϵP (M (D′) ∈ S) + δ. Intuitively,
this means that any single sample cannot influence the mechanism output too much.
DP synthetic data. Given a private dataset D, the goal is to generate a DP synthetic datasetM (D)
which is statistically similar to D. One method is to train generative models from scratch on private
data (Lin et al., 2020; Beaulieu-Jones et al., 2019; Dockhorn et al., 2022) with DP-SGD (Abadi et al.,
2016), a DP variant of stochastic gradient descent. Later studies show that pre-training generative
models on public data before fine-tuning them on private data with DP-SGD (Yin et al., 2022; Yu
et al., 2021; He et al., 2022; Li et al., 2021; Ghalebikesabi et al., 2023; Yue et al., 2022) gives better
privacy-utility trade-offs due to knowledge transfer from public data (Yin et al., 2022; Ganesh et al.,
2023), smaller gradient spaces (Li et al., 2022), or better initialization (Ganesh et al., 2023). This
approach achieves SOTA results on several data modalities such as text and images. In particular,
DP-Diffusion (Ghalebikesabi et al., 2023) achieves SOTA results on DP synthetic images by pre-
training diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) on public datasets and fine-
tuning them on the private dataset. Some other methods do not depend on DP-SGD (Jordon et al.,
2019; Harder et al., 2023; 2021; Vinaroz et al., 2022; Cao et al., 2021). For example, DP-MEPF
(Harder et al., 2023) trains generative models to produce synthetic data that matches the (privatized)
statistics of the private features.

Note that all these methods obtain generative models whose weights are DP, which can then be used
to draw DP synthetic data. It is stronger than our goal which only requires DP synthetic data (Lin
et al., 2021). In this paper, we do not do any model training and only produce DP synthetic data.

3 DP SYNTHETIC DATA VIA APIS (DPSDA)
3.1 MOTIVATION

As discussed in § 2, SOTA DP synthetic data algorithms require training or fine-tuning generative
models with DP-SGD. There are some obstacles to deploying them in practice.

(1) Significant engineering effort. Deploying normal ML training pipelines is hard; deploying DP
training pipelines is even harder because most ML infrastructure is not built around this use case.

2In the experiments of this paper, we only experimented with APIs from local models where the user has
full control of the model weights and runs it in a controlled environment.

3

Published as a conference paper at ICLR 2024

Recently, there has been significant progress in making DP training more efficient (Li et al., 2021; He
et al., 2022) and easy to use (Opacus (Yousefpour et al., 2021) and Tensorflow Privacy). However,
incorporating them in new codebases and new models is highly non-trivial. For example, Opacus
requires us to implement our own per-sample gradient calculator for new layers. Common layers and
loss functions that depend on multiple samples (e.g., batch normalization) are often not supported.
(2) Inapplicability of API-only models. It may be appealing to take advantage of the powerful
foundation models in DP synthetic data generation. However, due to the high commercial value of
foundation models, many companies choose to only release inference APIs of the models but not
the weights or code. Examples include popular models such as DALLE 2 (Ramesh et al., 2022) and
GPT 3/4 (Brown et al., 2020; OpenAI, 2023) from OpenAI and Bard from Google. In such cases,
existing training-based approaches are not applicable.3

In contrast, DP synthetic data approaches that only require model inference APIs could potentially
be deployed more easily, as they do not require ML or DP expertise to conduct modifications inside
the model and require minimal modifications when switching to a different model (as long as they
support the same APIs). In addition, such an approach is compatible with both the models running
locally and the models behind APIs.

3.2 PROBLEM FORMULATION

We now give a formal statement of DPSDA. We first define a core primitive for DP synthetic data.
DP Wasserstein Approximation (DPWA). Given a private dataset Spriv = {xi : i ∈ [Npriv]} with
Npriv samples (e.g., images), a distance function d(·, ·) between samples and some p ≥ 1, the goal
is to design an (ϵ, δ)-DP algorithmM that outputs a synthetic dataset Ssyn = {x′

i : i ∈ [Nsyn]}with
Nsyn samples (as a multiset) whose distance to Spriv, Wp(Spriv, Ssyn), is minimized. Here Wp is
the Wasserstein p-distance w.r.t. the distance function d(·, ·) (see App. B for the definition).
DPSDA. We want to solve DPWA whereM is given blackbox access to foundation models trained
on public data via APIs.1 API queries should also be (ϵ, δ)-DP as API providers cannot be trusted.

In some applications, besides the raw samples xi, we may also care about some auxiliary information
such as class labels of images. In such cases, we may write Spriv = {(xi, yi) : i ∈ [Npriv]} (and
Ssyn = {(x′

i, y
′
i) : i ∈ [Nsyn])}) where yi (and y′i) is the auxiliary information of i-th sample.

When the distance function d(·, ·) is ℓ2 (in the sample space), DPWA is closely related to DP Clus-
tering (Ghazi et al., 2020; Su et al., 2016; Balcan et al., 2017) and DP Heatmaps (Ghazi et al., 2022).
But a direct application of them does not work in our setting; see App. H for more discussions.

3.3 SCOPE OF THIS WORK

Data type. In this paper, we instantiate the above framework on images. We consider both uncon-
ditional (i.e., no yi) and conditional generation (e.g., yi can be image categories such as cats/dogs).
APIs. In our algorithm design and experiments, we use 2 APIs, both of which are either directly
provided in the APIs of popular models (e.g., DALLE 2,4 Stable Diffusion5) or can be easily imple-
mented by adapting current APIs (e.g., using appropriate text prompts in GPT APIs1):
(1) RANDOM API (n) that randomly generates n samples. Some APIs accept condition information
such as text prompts in text-to-image generation,4,5 which we omit in the notation for simplicity.
(2) VARIATION API (S) that generates variations for each sample in S. For images, it means to gen-
erate similar images to the given one, e.g., with similar colors or objects.4,5 Some APIs also support
setting the variation degree: VARIATION API (S, v), where larger v indicates more variation.6

4 PRIVATE EVOLUTION (PE)
Foundation models have a broad and general model of our world from their extensive training data.
Therefore, we expect that foundation models can generate samples close to private data with non-

3Some companies also provide model fine-tuning APIs, e.g., https://platform.openai.com/
docs/guides/fine-tuning. However, they do not support DP fine-tuning and do not provide gradi-
ents. Also, uploading sensitive data to these APIs controlled by other companies can lead to privacy violations.

4See https://platform.openai.com/docs/guides/images/usage.
5See https://huggingface.co/docs/diffusers/api/pipelines/stable_

diffusion/overview.
6If this is not implemented, we can simply compose the VARIATION API v times to achieve it.

4

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/images/usage
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

Published as a conference paper at ICLR 2024

negligible probability. The challenge is that by naively calling the APIs, the probability of drawing
such samples is quite low. We need a way to guide the generation towards private samples.
Inspired by evolutionary algorithms (EA) (Davis, 1987) (App. C), we propose Private Evolution
(PE) framework for generating DP synthetic data via APIs. See Fig. 2 for the intuition behind PE.
The complete algorithm is in Alg. 1. Below, we discuss the components in detail.
Algorithm 1: Private Evolution (PE)

Input : Private samples: Spriv = {xi}
Npriv

i=1
Number of iterations: T
Number of generated samples: Nsyn

Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

Output: Synthetic data: Ssyn

1 S1 ← RANDOM API (Nsyn)
2 for t← 1, . . . , T do
3 histogramt ← DP NN HISTOGRAM (Spriv, St, σ,H) // See Alg. 2
4 Pt ← histogramt/sum(histogramt) // Pt is a distribution on St

5 S′
t ← draw Nsyn samples with replacement from Pt // S′

t is a multiset
6 St+1 ← VARIATION API (S′

t)

7 return ST

Algorithm 2: DP Nearest Neighbors Histogram (DP NN HISTOGRAM)

Input : Private samples: Spriv

Generated samples: S = {zi}ni=1
Noise multiplier: σ
Threshold: H
Distance function: d (·, ·)

Output: DP nearest neighbors histogram on S

1 histogram← [0, . . . , 0]
2 for xpriv ∈ Spriv do
3 i = argminj∈[n] d (xpriv, zj)
4 histogram[i]← histogram[i] + 1

5 histogram← histogram+N (0, σIn) // Add noise to ensure DP
6 histogram← max (histogram−H, 0) // ‘max’, ‘-’ are element-wise
7 return histogram

Initial population (Line 1). We use RANDOM API to generate the initial population. If there is
public information about the private samples (e.g., they are dog images), we can use this information
as prompts to the API to seed a better initialization.

Fitness function (Line 3 or Alg. 2). We need to evaluate how useful each sample in the population is
for modeling the private distribution. Our idea is that, if a sample in the population is surrounded by
many private samples, then we should give it a high score. To implement this, we define the fitness
function of a sample x as the number of private samples whose nearest neighbor in the population is
x. A higher fitness value means that more private samples are closest to it. More details are below:
(1) Distance function (Line 3, Alg. 2). To define “nearest neighbor”, we need a distance function
that measures the similarity of two samples. A naive way is to use ℓ2 distance d (x, z) = ∥x− z∥2,
where x is from the private dataset and z is from the population. However, it is well-known that ℓ2
distance on pixel space is not a good metric for images. For example, a small shift of an object can
result in a high ℓ2 distance. We therefore compute the ℓ2 distance in the embedding space:

d (x, z) = ∥Φ (x)− Φ (z)∥2 (1)
where Φ is a network for extracting image embeddings such as inception embedding (Szegedy et al.,
2016) or CLIP embedding (Radford et al., 2021).
(2) Lookahead. The above approach gives high scores to the good samples in the current pop-
ulation. However, as we will see later, these good samples will be modified through VARIA-
TION API for the next population. Therefore, it is better to “look ahead” to compute the dis-
tance based on the modified samples as if they are kept in the population. We modify Eq. (1) to

5

Published as a conference paper at ICLR 2024

compute the distance between the embedding of x and the mean embedding of k variations of z:
d (x, z) =

∥∥∥Φ (x)− 1
k

∑k
i=1 Φ

(
zi
)∥∥∥

2
, where k is called lookahead degree, and z1, . . . , zk are vari-

ations of z obtained via VARIATION API.
(3) Noise for DP (Line 5, Alg. 2). Because this step utilizes private samples, we need to add noise to
ensure DP. We add i.i.d. Gaussian noise from N (0, σ). The privacy analysis is presented in § 4.3.
(4) Thresholding (Line 6, Alg. 2). When the number of generated samples is large, the majority of
the histogram will be DP noise added above. To make the signal-noise ratio larger, we set a threshold
H to each bin of the histogram. Similar ideas have been used in DP set union (Gopi et al., 2020).
In summary, we called the above fitness function DP Nearest Neighbors Histogram. Note that it is
not the traditional “histogram” on a continuous space that requires binning. Instead, it is a histogram
built on the generated samples: the value of i-th bin means the (privatized) number of private samples
whose nearest neighbor among the generated ones is the i-th sample. See App. A for related work.

Parent selection (Line 5). We sample from the population according to the DP Nearest Neighbors
Histogram so that a sample with more private samples around is more likely to be selected.

Offspring generation (Line 6). We use VARIATION API to get variants of the parents as offsprings.

Please see App. E for the convergence analysis of PE.

4.1 CONDITIONAL GENERATION

The above procedure is for unconditional generation. To support conditional generation, i.e., each
generated sample is associated with a label such as an image class (e.g., cats v.s. dogs), we take
a simple approach: we repeat the above process for each class of samples in the private dataset
separately. See Alg. 3 for the full algorithm.

4.2 GENERATING UNLIMITED NUMBER OF SAMPLES

Our algorithm in Alg. 1 is preset with a fixed number of generated samples Nsyn. What if
users want more samples afterward? In prior training-based methods (Ghalebikesabi et al., 2023),
this is easy to achieve: one can draw an arbitrary number of samples from the trained gen-
erative models without additional privacy cost. In this section, we want to highlight that PE
can also do that, again with API access only. We can simply generate an unlimited number
of samples by calling variation API multiple times, each with the generated dataset as input:
[VARIATION API (Ssyn) , . . . ,VARIATION API (Ssyn)]. In 5.1.3, we will see that this simple algo-
rithm is sufficient to provide more useful samples for downstream applications.

4.3 PRIVACY ANALYSIS

Unlike the analysis of DP-SGD which requires complicated DP composition theorems (e.g., Gopi
et al. (2021); Mironov (2017)) due to subsampling, PE does not have subsampling steps and there-
fore the privacy analysis is rather straightforward. The DP guarantee of the unconditional version
of PE (Alg. 1) can be reasoned as follows:
• Step 1: The sensitivity of DP Nearest Neighbors Histogram (Lines 1 to 4 in Alg. 2). Each pri-

vate sample only contributes one vote. If we add or remove one sample, the resulting histogram
will change by 1 in the ℓ2 norm. Therefore, the sensitivity is 1.

• Step 2: Regarding each PE iteration as a Gaussian mechanism. Line 5 adds i.i.d. Gaussian
noise with standard deviation σ to each bin. This is a standard Gaussian mechanism (Dwork
et al., 2014) with noise multiplier σ.

• Step 3: Regarding the entire PE algorithm as T adaptive compositions of Gaussian mech-
anisms, as PE is simply applying Alg. 2 T times sequentially.

• Step 4: Regarding the entire PE algorithm as one Gaussian mechanism with noise multi-
plier σ/

√
T . It is a standard result from Dong et al. (2022) (see Corollary 3.3 therein).

• Step 5: Computing DP parameters ϵ and δ. Since the problem is simply computing ϵ and δ
for a standard Gaussian mechanism, we use the formula from Balle & Wang (2018) directly.

For the conditional version of PE (Alg. 3), since it does the unconditional version for each class
separately (discussed in § 4.1), adding or removing one sample will only influence the results of one
class. For that class, the impact due to the added/removed sample is also bounded, as seen in the
privacy analysis above. Therefore, Alg. 3 is also DP. In fact, we can show that the privacy guarantee
of Alg. 3 is the same as Alg. 1, and it protects the labels of samples in the same level as DP-SGD
(Ghalebikesabi et al., 2023). Please refer to App. D for more details.

6

Published as a conference paper at ICLR 2024

This privacy analysis implies that releasing all the (intermediate) generated sets S1, . . . , ST also sat-
isfies the same DP guarantees. Therefore PE provides the same privacy even from the API provider.

5 EXPERIMENTS
In § 5.1, we compare PE with SOTA training-based methods on standard benchmarks to understand
its promise and limitations. In § 5.2, we present proof-of-concept experiments to show how PE
can utilize the power of large foundation models. We did (limited) hyper-parameter tunings in the
above experiments; following prior DP synthetic data work (Yu et al., 2021; Ghalebikesabi et al.,
2023), we ignore the privacy cost of hyper-parameter tuning. However, as we will see in the ablation
studies (§ 5.3 and App. N), PE stably outperforms SOTA across a wide range of hyper-parameters,
and the results can be further improved with better hyper-parameters than what we used. Detailed
hyper-parameter settings and more results such as generated samples and their nearest images in the
private dataset are in Apps. J to L.

5.1 COMPARISONS TO STATE-OF-THE-ART

Public information. We use standard benchmarks (Ghalebikesabi et al., 2023) which treat Ima-
geNet (Deng et al., 2009) as public data. For fair comparisons, we only use ImageNet as public
information in PE: (1) Pre-trained model. Unlike the SOTA (Ghalebikesabi et al., 2023) which
trains customized diffusion models, we simply use public ImageNet pre-trained diffusion models
(pure image models without text prompts) (Nichol & Dhariwal, 2021). RANDOM API and VARIA-
TION API are implemented using the same pre-trained model (see App. J). (2) Embedding (Eq. (1)).
We use ImageNet inception embedding (Szegedy et al., 2016). PE is not sensitive to embedding
choice though and we get good results even with CLIP embeddings (Fig. 41 in App. N).

Baselines. We compare with DP-Diffusion (Ghalebikesabi et al., 2023), DP-MEPF (Harder et al.,
2023), and DP-GAN (Harder et al., 2023; Goodfellow et al., 2020). DP-Diffusion (Ghalebikesabi
et al., 2023) is the current SOTA that achieves the best results on these benchmarks. Baseline results
are taken from their paper.

0.25 0.50 0.75 1.00
Num of Generated Samples 1e6

75.0

77.5

80.0

82.5

85.0

87.5

Te
st

 A
cc

ur
ac

y

Ours (ε=3.34)
Ours (ensemble) (ε=3.34)
DP-Diffusion (ε= 10)
DP-Diffusion (ensemble) (ε= 10)

Figure 5: Downstream classification accu-
racy (higher is better) on CIFAR10 (δ =
10−5). The baseline results are taken from
Ghalebikesabi et al. (2023). Two ”ensemble”
lines are from ensembles of 5 classifiers. The
other two lines show the average accuracy of
5 independently trained classifiers with error
bars. Our PE achieves better accuracy across
almost all settings with smaller privacy costs.

Outline. We test PE on private datasets that are
either similar to or differ a lot from ImageNet in
§ 5.1.1 and 5.1.2. We demonstrate that PE can gener-
ate an unlimited number of useful samples in § 5.1.3.
We show that PE is computationally cheaper than
train-based methods in App. P.

5.1.1 MODERATE
DISTRIBUTION SHIFT (IMAGENET→ CIFAR10)
We treat CIFAR10 (Krizhevsky et al., 2009) as pri-
vate data. Given that both ImageNet and CIFAR10
are natural images, it is a relatively easy task for PE
(and also for the baselines). Figs. 3 to 5 show the
results. Surprisingly, despite the fact that we con-
sider strictly more restrictive model access and do
not need training, PE still outperforms the SOTA
training-based methods. Details are below.

Sample quality. Fig. 4 shows the trade-off between
privacy cost and FID, a popular metric for image
quality (Heusel et al., 2017). For either conditional or unconditional generation, PE outperforms
the baselines significantly. For example, to reach FID≤ 7.9, Ghalebikesabi et al. requires ϵ = 32,
Harder et al. cannot achieve it even with infinity ϵ, whereas our PE only needs ϵ = 0.67.
Downstream classification accuracy. We train a downstream WRN-40-4 classifier (Zagoruyko &
Komodakis, 2016) from scratch on 50000 generated samples and test the accuracy on CIFAR10 test
set. This simulates how users would use synthetic data, and a higher accuracy means better utility.
Fig. 5 shows the results (focus on the left-most points with num of generated samples = 50000
for now). Harder et al. (2023) achieves 51% accuracy with ϵ = 10 (not shown). Compared with
the SOTA (Ghalebikesabi et al., 2023), PE achieves better accuracy (+6.1%) with less privacy cost.
Further with an ensemble of 5 classifiers trained on the same data, PE is able to reach an accuracy of
84.8%. For reference, the SOTA DP classifier pre-trained on ImageNet (without DP) and fine-tuned
on CIFAR10 (with DP) (De et al., 2022) achieves 94.8% and 95.4% accuracies with epsilon=1 and

7

Published as a conference paper at ICLR 2024

Real Generated (
(
9.92, 3 · 10−6

)
-DP, FID=10.66)

Figure 6: Real and generated images from Camelyon17. More in App. K.

2 respectively. It is not surprising that DP classifiers outperform PE (and other DP synthetic data
approaches) on classification tasks, as DP classifiers are targeted at and optimized for a single task
whereas DP synthetic data is general-purpose.

The above results suggest that when private and public images are similar, PE is a promising frame-
work given its better privacy-utility trade-off and the API-only requirement.

5.1.2 LARGE DISTRIBUTION SHIFT (IMAGENET→ CAMELYON17)
Next, we consider a hard task for PE, where the private dataset is very different from ImageNet. We
use Camelyon17 dataset (Bandi et al., 2018; Koh et al., 2021) as private data which contains 302436
images of histological lymph node sections with labels on whether it has cancer (real images in
Figs. 6 and 22). Despite the large distribution shift, training-based methods can update the model
weights to adapt to the private distribution (given enough samples). However, PE can only draw
samples from APIs as is.

We find that even in this challenging situation, PE can still achieve non-trivial results. Following
Ghalebikesabi et al. (2023), we train a WRN-40-4 classifier from scratch on 302436 generated sam-
ples and compute the test accuracy. We achieve 80.33% accuracy with (10.00, 3 · 10−6)-DP. Prior
SOTA (Ghalebikesabi et al., 2023) is 91.1% with (10, 3 · 10−6)-DP. Random guess is 50%. Fig. 6
(more in Fig. 21) shows that generated images from PE are very similar to Camelyon17 despite that
the pre-trained model is on ImageNet. Fig. 23 further shows how the generated images are gradually
moved towards Camelyon17 across iterations.

Why PE works under large distribution shifts. Even though the diffusion model is trained on nat-
ural images, the support of the generated distribution spans the entire sample space. PE is effective in
guiding the model to generate samples from the region that is low-density in the original pre-trained
distribution but high-density in the private distribution. See App. K for more explanations.

Limitation. These results demonstrate the effectiveness of PE. But when public models that are
similar to private data are not available and when there is enough private data, the traditional training-
based methods are still more promising at this point if the privacy-utility trade-off is the only goal.
However, given the benefit of API-only assumption and the non-trivial results that PE already got, it
is worth further exploiting the potential of PE in future work. Indeed, we expect these results can be
improved with further refinement of PE (App. N).

5.1.3 GENERATING UNLIMITED NUMBER OF SAMPLES
We use the approach in § 4.2 to generate more synthetic samples from § 5.1.1 and train classifiers
on them. The results are in Fig. 5. Similar as Ghalebikesabi et al. (2023), the classifier accuracy
improves as more generated samples are used. With an ensemble of 5 classifiers, we reach 89.13%
accuracy with 1M samples. This suggests that PE has the same capability as training-based methods
in generating an unlimited number of useful samples.

We also see two interesting phenomena: (1) The gap between PE and DP-Diffusion diminishes as
more samples are used. We hypothesize that it is due to the limited improvement space: As shown
in Ghalebikesabi et al. (2023), even using an ImageNet pre-trained classifier, the best accuracy DP-
Diffusion achieves is close to the best points in Fig. 5. (2) The benefit of PE is more evident over
ensembling, especially when having more generated samples. We hypothesize it is due to different
ways of generating more samples. In Ghalebikesabi et al. (2023), the newly generated samples are
from the same distribution as the first 50000 samples. In contrast, the newly generated samples in
PE are from a different distribution (see § 4.2), which could be more diverse and therefore are more
beneficial for ensembling approaches.

5.2 MORE CHALLENGING BENCHMARKS WITH LARGE FOUNDATION MODELS

We demonstrate the feasibility of applying PE on large foundation models with Stable Diffusion
(Rombach et al., 2022).

Data. Ideally we want to experiment with a dataset that has no overlap with Stable Diffusion’s
training data.7 We take the safest approach: we construct two datasets with photos of the author’s

7The training set of Stable Diffusion is public. However, it is hard to check if a public image or its variants
(e.g., cropped, scaled) have been used to produce images in it. Therefore, we resort to our own private data.

8

Published as a conference paper at ICLR 2024

Real Generated ((6.62, 10−3)-DP) Real Generated ((6.62, 10−3)-DP)

Figure 8: Real & generated images from Cat Cookie (left) and Cat Doudou (right). More in App. L.

two cats that have never been posted online. Each dataset has 100 512x512 images. Such high-
resolution datasets with a small number of samples represent a common need in practice (e.g., in
health care), but are challenging for DP synthetic data: to the best of our knowledge, no prior
training-based methods have reported results on datasets with a similar resolution or number of
samples. The dataset is released at https://github.com/microsoft/DPSDA as a new
benchmark. See App. L for all images.

0.5 1.0 1.5 2.0 2.5
Epsilon

10

20

30

FI
D

270M parameters
100M parameters

Figure 7: Ablation studies on the pre-trained
model. Both are public diffusion models
trained on ImageNet (Nichol & Dhariwal,
2021). The 270M network is conditional,
whereas the 100M network is unconditional.

API implementation. We use off-the-shelf Stable
Diffusion APIs (see App. L).

Results. We run PE for these two datasets with the
same hyperparameters. Fig. 8 show examples of
generated images for each of the cat datasets. We
can see that Private Evolution correctly captures the
key characteristics of these two cats. See App. L for
all generated images.

5.3 ABLATION STUDIES

Pre-trained network. Fig. 7 shows the results with
two different ImageNet pre-trained networks: one is
larger (270M) with ImageNet class labels as input;
the other one is smaller (100M) without label input (see App. I for implementation details). In
all experiments in § 5.1, we used the 270M network. Two takeaways are: (1) The 270M network
(trained on the same dataset) improves the results. This is expected as larger and more powerful
models can learn public distributions better. This suggests the potential of PE with future foundation
models with growing capabilities. (2) Even with a relatively weak model (100M), PE can still
obtain good results that beat the baselines (though with a slower convergence speed), suggesting the
effectiveness of PE.

More ablation studies on the lookahead degree k, the number of generated samples Nsyn, the thresh-
old H , and the embedding network are in App. N, where we see that PE obtains good results across a
wide range of hyper-parameters, and the main results can be improved with better hyper-parameters.

6 LIMITATIONS AND FUTURE WORK

Algorithms. (1) We did not take the number of API calls into account when optimizing PE. One
future work is to optimize the number of API calls along with privacy-utility tradeoffs. (2) We
considered two APIs: RANDOM API and VARIATION API. It is interesting to consider PE variants
that leverage the large set of APIs.4,5 (3) When the distributions of private data and foundation
models are too different, PE achieved non-trivial classification results, but was still worse than SOTA
(§ 5.1.2). It is interesting to understand the limits of PE and explore potential improvements. (4) PE
requires an embedding network (Eq. (1)) that projects the samples into a space for measuring the
similarity between samples. While for images there are plenty of open-source embedding networks
to choose, it may not be the case for other modalities. (5) Recent papers show the phenomenon
of Model Autophagy Disorder (MAD), where repeatedly training the next generative model using
synthetic data from the previous one can result in degraded sample quality (Alemohammad et al.,
2023). While PE also repeatedly uses synthetic data to create new synthetic data in the main loop
(Alg. 1), it is different in two aspects: (a) Instead of purely relying on the synthetic data, PE utilizes
the signals from private data to guide the generation; (b) PE does repeated inference instead of
repeated training. It would be interesting to study the MAD effect in the context of PE. (6) Solving
DPSDA in the Local/Shuffle DP model and in federated learning settings.
Applications. (1) New privacy-preserving vision applications that were previously challenging but
are now possible due to PE’s capability of generating high-resolution DP synthetic images with small
dataset sizes. (2) The use of PE in other data modalities beyond images such as texts, tabular data,
and time series data. (3) Besides DP, there are other parallel/orthogonal privacy concerns, notions,
and metrics (Issa et al., 2019; Lin et al., 2022; 2023b; Commission). It is interesting to study if PE
can be used to generate privacy-preserving synthetic data with respect to these privacy notations.

9

https://github.com/microsoft/DPSDA

Published as a conference paper at ICLR 2024

7 ETHICS STATEMENT

PE uses the APIs of pre-trained models. The DP guarantee of PE is rigorous for the data used in
the PE algorithm (i.e., Spriv). That being said, PE does not address the privacy of pre-training data
of foundation models, which is a different goal. PE has no control over the pre-training data—any
privacy breaches in the pre-training data are attributable to the data holder (e.g., leaking the data
publicly) or the foundation model developer (e.g., using data without permission). However, as a PE
user, it is advisable to ensure no overlap between the pre-training data and Spriv for liability reasons.
Depending on whether the APIs are from blackbox models, which can only be accessed through
APIs (e.g., DALLE3), or local models, whose weights and architectures are accessible by the users
(e.g., Stable Diffusion), it has different implications.

• Using APIs from blackbox models. Since most blackbox models do not reveal their training
dataset, it is safer to only consider Spriv that was never been shared or posted online. For in-
stance, a hospital who wants to share a DP synthetic version of its proprietary medical records
can safely run PE if it has never released these medical records to any other party, making it
impossible for those records to be in the pre-training data of any foundation model.

• Using APIs from local models. For local models, we have full control over the model weights
and architectures. We can pre-train the models on data that surely has no overlap with the private
data. In all experiments of the paper, we use local models including Improved Diffusion (Nichol
& Dhariwal, 2021) and Stable Diffusion (Rombach et al., 2022). We directly take the pre-trained
models from prior work, and we make sure that the private data and the pre-training data have
no overlap.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their valuable feedback and sugges-
tions. The authors would also like to thank Sepideh Mahabadi for the insightful discussions and
ideas, and Sahra Ghalebikesabi for the tremendous help in providing the experimental details of DP-
Diffusion (Ghalebikesabi et al., 2023). The authors would like to extend their heartfelt appreciation
to Cat Cookie and Cat Doudou for generously sharing their adorable faces in the new dataset, as
well as to Wenyu Wang for collecting and pre-processing the photos.
† This paper is the full version of our previous workshop paper (Lin et al., 2023a).

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang Zhang. Differ-
entially private clustering in high-dimensional euclidean spaces. In International Conference on
Machine Learning, pp. 322–331. PMLR, 2017.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Ana-
lytical calibration and optimal denoising. In International Conference on Machine Learning, pp.
394–403. PMLR, 2018.

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al.

10

Published as a conference paper at ICLR 2024

From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE transactions on medical imaging, 38(2):550–560, 2018.

Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani,
James Brian Byrd, and Casey S Greene. Privacy-preserving generative deep neural networks sup-
port clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7):e005122,
2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianshi Cao, Alex Bie, Arash Vahdat, Sanja Fidler, and Karsten Kreis. Don’t generate me: Training
differentially private generative models with sinkhorn divergence. Advances in Neural Informa-
tion Processing Systems, 34:12480–12492, 2021.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium, 2019.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. arXiv preprint arXiv:2112.03570, 2021a.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raf-
fel. Extracting training data from large language models. In 30th USENIX Security Symposium,
USENIX Security ’21, pp. 2633–2650. USENIX Association, 2021b.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
arXiv preprint arXiv:2301.13188, 2023a.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. International Conference on
Learning Representations, 2023b.

Alisa Chang and Pritish Kamath. Differentially private clustering in google’s differential pri-
vacy library. Google AI Blog, 2023. URL https://ai.googleblog.com/2021/10/
practical-differentially-private.html. https://ai.googleblog.com/
2021/10/practical-differentially-private.html.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In Proceedings of the 38th International Conference on Machine
Learning, ICML ’21, pp. 1964–1974. JMLR, Inc., 2021.

European Commission. Article 29 data protection working party.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Lawrence Davis. Genetic algorithms and simulated annealing. 1987.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

11

https://ai.googleblog.com/2021/10/practical-differentially-private.html
https://ai.googleblog.com/2021/10/practical-differentially-private.html
https://ai.googleblog.com/2021/10/practical-differentially-private.html
https://ai.googleblog.com/2021/10/practical-differentially-private.html

Published as a conference paper at ICLR 2024

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion
models. arXiv preprint arXiv:2210.09929, 2022.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3–37, 2022.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322–1333, 2015.

Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Why is public pretraining necessary for private model
training? arXiv preprint arXiv:2302.09483, 2023.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approxi-
mation ratios. Advances in Neural Information Processing Systems, 33:4040–4054, 2020.

Badih Ghazi, Junfeng He, Kai Kohlhoff, Ravi Kumar, Pasin Manurangsi, Vidhya Navalpakkam, and
Nachiappan Valliappan. Differentially private heatmaps. arXiv preprint arXiv:2211.13454, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad Shokouhi, and
Sergey Yekhanin. Differentially private set union. In International Conference on Machine Learn-
ing, pp. 3627–3636. PMLR, 2020.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. arXiv preprint arXiv:2206.07758, 2022.

Frederik Harder, Kamil Adamczewski, and Mijung Park. Dp-merf: Differentially private mean em-
beddings with randomfeatures for practical privacy-preserving data generation. In International
conference on artificial intelligence and statistics, pp. 1819–1827. PMLR, 2021.

Frederik Harder, Milad Jalali, Danica J Sutherland, and Mijung Park. Pre-trained perceptual features
improve differentially private image generation. Transactions on Machine Learning Research,
2023.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. arXiv preprint arXiv:2212.01539, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

12

Published as a conference paper at ICLR 2024

Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Outsourcing training without
uploading data via efficient collaborative open-source sampling. Advances in neural information
processing systems, 35:20133–20146, 2022.

Charlie Hou, Hongyuan Zhan, Akshat Shrivastava, Sid Wang, Aleksandr Livshits, Giulia Fanti, and
Daniel Lazar. Privately customizing prefinetuning to better match user data in federated learning.
arXiv preprint arXiv:2302.09042, 2023.

Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding,
David Forsyth, Bo Li, and Dawn Song. Sok: Privacy-preserving data synthesis. arXiv preprint
arXiv:2307.02106, 2023.

Ibrahim Issa, Aaron B Wagner, and Sudeep Kamath. An operational approach to information leak-
age. IEEE Transactions on Information Theory, 66(3):1625–1657, 2019.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations,
2019.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Zinan Lin. Data Sharing with Generative Adversarial Networks: From Theory to Practice. PhD
thesis, Carnegie Mellon University, 2022.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing net-
worked time series data: Challenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference, pp. 464–483, 2020.

Zinan Lin, Vyas Sekar, and Giulia Fanti. On the privacy properties of gan-generated samples. In
International Conference on Artificial Intelligence and Statistics, pp. 1522–1530. PMLR, 2021.

Zinan Lin, Shuaiqi Wang, Vyas Sekar, and Giulia Fanti. Distributional privacy for data sharing. In
NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research, 2022.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model APIs 1: Images. In NeurIPS 2023 Workshop on
Synthetic Data Generation with Generative AI, 2023a. URL https://openreview.net/
forum?id=7GbfIEvoS8.

Zinan Lin, Shuaiqi Wang, Vyas Sekar, and Giulia Fanti. Summary statistic privacy in data sharing.
arXiv preprint arXiv:2303.02014, 2023b.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Im-
age synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

13

https://openreview.net/forum?id=7GbfIEvoS8
https://openreview.net/forum?id=7GbfIEvoS8

Published as a conference paper at ICLR 2024

OpenAI. Gpt-4 technical report, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Neil Savage. Synthetic data could be better than real data. Nature, April 2023. doi: 10.1038/
d41586-023-01445-8. URL https://doi.org/10.1038/d41586-023-01445-8.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means
clustering. In Proceedings of the sixth ACM conference on data and application security and
privacy, pp. 26–37, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. arXiv preprint arXiv:2309.11765, 2023.

Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong,
and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their secrets.
arXiv preprint arXiv:2204.00032, 2022.

Margarita Vinaroz, Mohammad-Amin Charusaie, Frederik Harder, Kamil Adamczewski, and
Mi Jung Park. Hermite polynomial features for private data generation. In International Con-
ference on Machine Learning, pp. 22300–22324. PMLR, 2022.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of
trustworthiness in gpt models. arXiv preprint arXiv:2306.11698, 2023.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip
header trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference,
pp. 458–472, 2022.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

14

https://doi.org/10.1038/d41586-023-01445-8

Published as a conference paper at ICLR 2024

Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. arXiv preprint
arXiv:2305.13865, 2023.

Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Huan Sun, David Levitan,
and Robert Sim. Synthetic text generation with differential privacy: A simple and practical recipe.
arXiv preprint arXiv:2210.14348, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

15

Published as a conference paper at ICLR 2024

A MORE RELATED WORK

DP data selection. One key component in PE is to use private samples to select similar generated
samples (Alg. 2). Prior work studied similar problems in different applications.

In the federated learning setting, Hou et al. (2023) select public datasets that are similar to the
clients’ data, and then pre-train the model on the selected datasets before federated fine-tuning.
Hong et al. (2022) first cluster public data, and then use clients’ data to select the closest cluster
centers (using a similar histogram approach), so that models trained on the selected clusters can
have better performance for the clients. In contrast to these works, PE selects generated samples at
a sample-level, so that we can improve the generated data in a more fine-grained manner.

Similar to ours, Yu et al. (2023) also conduct sample-level data selection. They select public samples
that are similar to the private data for pre-training the model, before DP fine-tuning the model on the
private data (Yu et al., 2023). Their data selection rule does not provide guarantees on the distance
between the selected samples and the private samples, whereas our selection provides distribution
convergence guarantees (App. E).

Nevertheless, given that all these methods deal with DP data selection, they can be interchangeably
used in each application. It would be interesting to study such extensions in future work.

Furthermore, we apply such data selection iteratively on the generated data. Together with the use
of foundation model APIs, we can generate DP synthetic data, which is not studied in prior work.

B DEFINITION OF WASSERSTEIN DISTANCE

Wasserstein distance is a widely used metric in designing (Arjovsky et al., 2017) and evaluat-
ing (Heusel et al., 2017) generative models. Given probability distributions µ, ν on a metric
space, the Wasserstein distance w.r.t. to a distance function d(·, ·) is defined as Wp(µ, ν) =

infγ
[
E(x,y)∼γd(x, y)

p
]1/p

where the infimum is over all couplings γ of µ, ν. Also given discrete
point sets S, T , we use Wp(S, T) to denote the Wp-distance between uniform distributions on S and
T .

C A BRIEF INTRODUCTION TO EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (Davis, 1987) are inspired by biological evolution, and the goal is to pro-
duce samples that maximize an objective value. It starts with an initial population (i.e., a set of
samples), which is then iteratively updated. In each iteration, it selects parents (i.e., a subset of sam-
ples) from the population according to the fitness function which describes how useful they are in
achieving better objective values. After that, it generates offsprings (i.e., new samples) by modifying
the parents, hoping to get samples with better objective values, and puts them in the population. By
doing so, the population will be guided towards better objective values.

We cannot directly apply existing EA algorithms to our problem. Firstly, our objective is to produce
a set of samples that are jointly optimal (i.e., closer to the private distribution, § 3.2), instead of
optimizing an objective calculated from individual samples in typical EA problems. In addition,
the differential privacy requirement and the restrictive model API access are unique to our problem.
These differences require us to redesign all components of EA.

D MORE DETAILS ON PRIVATE EVOLUTION

Alg. 3 shows the full algorithm that supports both unconditional data and conditional data. For
simplicity, we assume that the private dataset Spriv is balanced, i.e., it has an equal number of
samples in each label class. Otherwise, we can first estimate the counts using the Laplace mechanism
and use these counts to generate synthetic data of appropriate size in each label class.

Privacy analysis. For ease of understanding the privacy guarantee of Alg. 3, we can consider a
modified version of Alg. 3 as in Alg. 4, where we switch the order of the two for loops over t and
c. Apparently, this modified algorithm gives the same outcome as Alg. 3. The only lines that touch

16

Published as a conference paper at ICLR 2024

Algorithm 3: Private Evolution (PE) for both labeled and unlabeled data.

Input: The set of private classes: C (C = {0} if for unconditional generation)
Private samples: Spriv = {(xi, yi)}

Npriv

i=1 , where xi is a sample and yi ∈ C is its label
Number of iterations: T
Number of generated samples: Nsyn (assuming Nsyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

1 Ssyn ← ∅
2 for c ∈ C do
3 private samples← {xi|(xi, yi) ∈ Spriv and yi = c}
4 S1 ← RANDOM API (Nsyn/ |C|)
5 for t← 1, . . . , T do
6 histogramt ← DP NN HISTOGRAM (private samples, St, σ,H) // See

Alg. 2
7 Pt ← histogramt/sum(histogramt) // Pt is a distribution on St

8 S′
t ← draw Nsyn/|C| samples with replacement from Pt // S′

t is a multiset
9 St+1 ← VARIATION API (S′

t)

10 Ssyn ← Ssyn ∪ {(x, c)|x ∈ ST }
11 return Ssyn

private data are Lines 5 and 6. The input to these lines is the entire private dataset, and the output
is a histogram with size Nsyn. Same as step 1 in the analysis of Alg. 1 (§ 4.3), each private sample
only contributes one vote in the histogram. If we add or remove one sample, the resulting histogram
will change by 1 in the ℓ2 norm. Therefore, the sensitivity of these lines is 1. The following privacy
analysis follows exactly the same as steps 2-5 in § 4.3, and therefore, the privacy guarantee of
Alg. 3 is the same as Alg. 1. It is important to emphasize that even though Alg. 3 utilizes the
labels of the samples directly, the above analysis means that Alg. 3 provides privacy protection to
the label assignment of the samples (i.e., the labels each sample has) in the same way as the
DP-SGD-fine-tuneing-based algorithms (Ghalebikesabi et al., 2023).

Algorithm 4: Private Evolution (PE) for both labeled and unlabeled data. (Modified from Alg. 3)
for the ease of privacy analysis.)

Input: The set of private classes: C (C = {0} if for unconditional generation)
Private samples: Spriv = {(xi, yi)}

Npriv

i=1 , where xi is a sample and yi ∈ C is its label
Number of iterations: T
Number of generated samples: Nsyn (assuming Nsyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

1 Ssyn ← ∅
2 Sc

1 ← RANDOM API (Nsyn/ |C|) for each c ∈ C
3 private samplesc ← {xi|(xi, yi) ∈ Spriv and yi = c} for each c ∈ C
4 for t← 1, . . . , T do
5 for c ∈ C do
6 histogramc

t ← DP NN HISTOGRAM (private samplesc, Sc
t , σ,H) // See

Alg. 2

7 for c ∈ C do
8 Pt ← histogramc

t/sum(histogramc
t) // Pt is a distribution on Sc

t
9 S′

t ← draw Nsyn/|C| samples with replacement from Pt // S′
t is a multiset

10 Sc
t+1 ← VARIATION API (S′

t)

11 Ssyn ← Ssyn ∪ {(x, c)|x ∈ Sc
T , c ∈ C}

12 return Ssyn

17

Published as a conference paper at ICLR 2024

E THEORETICAL EVIDENCE FOR CONVERGENCE OF PE

In this section, we will give some intuition for why PE can solve DPWA.

Convergence of Non-Private Evolution. We first analyze Alg. 1 when no noise is added to the
histograms (i.e., we set σ = 0 and H = 0 in Line 3). We show that in this case, the evolution
algorithm does converge to the private distribution in O(d) iterations where d is the dimension of
the embedding space. Under some reasonable modeling assumptions (see App. F), we prove the
following theorem. Here D is the diameter of Spriv, L ≈ number of variations of each point in S′

t
that are added to St+1 in Line 6 of Alg. 1.

Theorem 1. Assume that logL≪ d.8 With probability≥ 1−τ , the non-private evolution algorithm
(Alg. 1 with σ = H = 0) outputs Ssyn with Wasserstein distance Wp(Spriv, Ssyn) ≤ η after T
iterations9 ∀p ∈ [1,∞] whenever

T ≫ d log(D/η)

logL
+ log(Npriv/τ). (2)

This theorem is nearly tight. In each iteration of PE, we get the voting information which is about
Õ(Npriv log(L)) bits. To converge to Spriv, we need at least Ω̃(Nprivd) bits of information. There-
fore we do require at least Ω̃(d/ logL) iterations to converge. Here is some intuition for how the
proof of Thm. 1 works. Fix some private point x ∈ Spriv. Let z∗ ∈ St be its closest point in
St. In St+1, we generate variations of z∗ using the VARIATION API (z∗). We then prove that if
∥x− z∗∥ ≥ η, then one of the variations will get closer to x than z∗ by a factor of (1− (logL)/d)
with constant probability. Repeating this for T iterations as in Eq. (2), will bring some point in ST

η-close to x.

Convergence of Private Evolution. To get some intuition on the working of PE in the presence
of noise, we make a simplifying assumption. We will assume that there are B identical copies of
each private point in Spriv. We call B as multiplicity. Note that for any DP algorithm to converge to
Spriv, we need that the private data is well clustered with some minimum cluster size. Any cluster
with too few points cannot be represented in Ssyn, because that would violate DP. And when there
is a cluster of B private points and the generated points in St are still far from this cluster, then it is
likely that all the B private points will have a common closest point in St

10, i.e., they all vote for the
same point in St as a single entity. Therefore multiplicity is a reasonable modeling assumption to
make to understand the working of PE. Note that, actually it is very easy to find Spriv exactly using
DP Set Union (Gopi et al., 2020) with the multiplicity assumption. The point of Thm. 2 is to give
intuition about why PE works in practice; it is proved in App. F.2 under the same assumptions as in
Thm. 1.

Theorem 2. Let 0 ≤ ε ≤ log(1/2δ). Suppose each point in Spriv has multiplicity B. Then,
with high probability (≥ 1 − τ), Private Evolution (Alg. 1) with σ ≫

√
T log(1/δ)/ε and

H ≫ σ
√
log(TLNpriv/τ), when run for T iterations, satisfies (ε, δ)-DP and outputs Ssyn such

that Wp(Spriv, Ssyn) ≤ η, ∀p ∈ [1,∞], whenever T satisfies Eq. (2) and multiplicity B ≫ H .

Ignoring polylogarithmic factors in d, L,Npriv, log(D/η), τ , we need T ≫ d and B ≫√
d log(1/δ)/ε for Theorem 2 to hold. Thus, we should expect that PE will discover every cluster of

private data of size≫
√

d log(1/δ)/ε in O(d) iterations. We now compare this to previous work on
DP clustering. Ghazi et al. (2020) gives an algorithm for densest ball, where they show an (ε, δ)-DP
algorithm which (approximately) finds any ball of radius r which has at least ≫

√
d log(1/δ)/ε

private points. Thus intuitively, we see that PE compares favorably to SOTA DP clustering algo-
rithms (though we don’t have rigorous proof of this fact). If this can be formalized, then PE gives
a very different algorithm for densest ball, which in turn can be used to solve DP clustering. More-
over PE is very amenable to parallel and distributed implementations. We therefore think this is an
interesting theory problem for future work.

8If logL ≫ d log(D/η), i.e., if we generate an exponential number of points then by a simple epsilon-net
argument we can prove that the algorithm will converge in a single step.

9Number of samples produced using VARIATION API per iteration is ≤ L · r ·Npriv = L log(D/η)Npriv.
10In fact, it is easy to formally prove that there will be a common approximate nearest neighbor.

18

Published as a conference paper at ICLR 2024

Why Private Evolution works well in practice. We have seen that in the worst case, PE takes
Ω(d) iterations to converge. In our experiments with CIFAR10 and Camelyon17, where d = 2048
is the embedding dimension, we see that PE actually converges in only about 20 iterations which is
much smaller than d. We offer one plausible explanation for this via intrinsic dimension. Suppose
the (embeddings of) realistic images lie on a low dimensional manifold M inside Rd of dimension
dintrinsic ≪ d (see experimental results in App. G). Given an image z, VARIATION API (z) will
create variations of z which are also realistic images. Therefore the embeddings of these variations
will also lie in the same manifold M , and PE is searching for the private points only inside the
manifold M without ever going outside it. Therefore the d that matters for convergence is actually
dintrinsic ≪ d. In this case, we expect that PE converges in O(dintrinsic) iterations and discovers
clusters of private points of size at least

√
dintrinsic log(1/δ)/ε.

F PROOFS OF PE CONVERGENCE THEOREMS

We will slightly modify the algorithm as necessary to make it convenient for our analysis. We will
make the following modeling assumptions:

• The private dataset Spriv is contained in an ℓ2 ball of diameter D and RANDOM API will
also produce initial samples in the same ball of diameter D. This is a reasonable assumption
in practice, as images always have bounded pixel values: for the original images in UINT8
data type, each pixel is in the range of [0, 255]; in diffusion models, they are usually nor-
malized to [−1, 1] (i.e., 0 corresponds to -1 and 255 corresponds to 1), and all generated
images are guaranteed to be in this range.

• The distance function used in Alg. 2 is just the ℓ2 norm, d(x, z) = ∥x− z∥2.
• The distribution of points we output is Ssyn = PT (i.e., we output a distribution of points).

• S′
t ⊃ supp(Pt) = supp(histogramt).11

• St+1 = S′
t ∪

⋃
z∈S′

t
VARIATION API (z) where VARIATION API (z) samples L samples

each from Gaussian distributions N (z, σ2
i I) for σi = D

√
logL

2id where 1 ≤ i ≤ r and
r = log(D/η) where η > 0 is the final Wasserstein distance.

F.1 PROOF OF THM. 1

Proof. Fix a point x ∈ Spriv and some iteration t. Suppose z∗ ∈ St is the closest point to x. Since
x will vote for z∗ in histogramt, z∗ ∈ supp(Pt) ⊂ S′

t. Therefore VARIATION API (z∗) ⊂ St+1.
Let V = VARIATION API (z∗).

Claim 1. If ∥x− z∗∥ ≥ η, then with probability at least 1/2, some point in V will get noticeably
closer to x than z∗, i.e.,

min
z∈V
∥x− z∥2 ≤

(
1− logL

4d

)
∥x− z∗∥2 .

Proof. Let s = ∥x− z∗∥ and let σ ∈ {σ1, σ2, . . . , σr} be such that σd/
√
logL ∈ [s/2, s]. Note

that such a σ exists since s ∈ [η,D]. We will now prove that one of the L samples z1, z2, . . . , zL ∼
N (z∗, σ2Id) will get noticeably closer to x than z∗. Let zi = z∗ + σwi where wi ∼ N (0, Id).

min
i∈[L]
∥x− zi∥22 = ∥x− z∗∥22 + min

i∈[L]

(
σ2 ∥wi∥22 − 2σ ⟨x− z∗, wi⟩

)
≤ s2 +max

i∈[L]
σ2 ∥wi∥22 −max

i∈[L]
2σ ⟨x− z∗, wi⟩

Note that ∥wi∥22 is a χ2
d random variable. By using upper tail bounds for χ2

d distribution and union
bound over i ∈ [L], we can bound

Pr

[
max
i∈[L]

∥wi∥22 ≥ 3d/2

]
≤ L exp(−Ω(d))≪ 1.

11This may not be true in the original algorithm due to sampling, we need to modify it so that S′
t ⊃

supp(Pt).

19

Published as a conference paper at ICLR 2024

The distribution of ⟨x− z∗, wi⟩ is the same as ∥x− z∗∥2 w̃i where w̃1, . . . , w̃L are i.i.d. N (0, 1)
random variables. By using the fact that max of L i.i.d. Gaussians is at least

√
logL with probability

at least 3/4 (for L≫ 1), we get that

Pr

[
max
i∈[L]

⟨x− z∗, wi⟩ ≤ s
√
logL

]
≤ 1

4
.

Combining everything we get:

1

2
≥ Pr

[
min
i∈[L]
∥x− zi∥22 ≥ s2 + (3/2)dσ2 − 2sσ

√
logL

]
≥ Pr

[
min
i∈[L]
∥x− zi∥22 ≥ max

λ∈[1/2,1]
s2 + (3/2)d

(
λs
√
logL

d

)2

− 2s

(
λs
√
logL

d

)√
logL

]

≥ Pr

[
min
i∈[L]
∥x− zi∥22 ≥ s2 +

(
s2 logL

d

)
max

λ∈[1/2,1]
(3λ2/2− 2λ)

]
≥ Pr

[
min
i∈[L]
∥x− zi∥22 ≥ s2

(
1− logL

2d

)]
≥ Pr

[
min
i∈[L]
∥x− zi∥2 ≥ s

(
1− logL

4d

)]
where last inequality uses the fact that

√
1− t ≤ 1− t

2 for t ≤ 1.

Now in T iterations, minz∈St
∥x− z∥2 will shrink by a factor of

(
1− logL

4d

)
in at least T/4 it-

erations with probability 1 − exp(−Ω(T)) ≥ 1 − τ
Npriv

(by standard Chernoff bounds). Note
that in iterations where it doesn’t shrink, it doesn’t grow either since S′

t ⊂ St+1. Similarly, if
minz∈St ∥x− z∥2 ≤ η for some iteration, it will remain so in all subsequent iterations. Therefore
after T ≫ d log(D/η)

logL iterations, minz∈ST
∥x− z∥2 ≤ η with probability at least 1 − τ

Npriv
. By

union bounding over all points we get that, with probability at least 1− τ , for every point x ∈ Spriv

there is a point in ST which is η-close. This proves that Wp(Spriv,PT) ≤ η.

F.2 PROOF OF THM. 2

Proof. Since we are doing T iterations of Gaussian mechanism with noise level σ, we need to set
σ ≫

√
T log(1/δ)/ε to satisfy (ε, δ)-DP (Dwork et al., 2014) when ε ≤ log(1/2δ). Let x ∈ Spriv

be a point with multiplicity B. If z∗ ∈ St is the closest point to x, then it will get B votes.
After adding N (0, σ2) noise, if B ≫ H ≫ σ

√
log(TLNpriv/τ), then with probability at least

1 − τ/(4T), the noisy votes that z∗ gets is still above the threshold H . Therefore z∗ will survive
in St+1 as well. Also since H ≫ σ

√
log(TLNpriv/τ), with probability 1 − τ/(4T), points in St

which do not get any votes (there are LNpriv of them) will not survive even after adding noise and
thresholding by H . Therefore, by union bounding over all T iterations, with probability at least
1 − τ/2, the algorithm behaves identically to the non-private algorithm. Therefore by an identical
proof as in the non-private analysis, we can prove that after T iterations Wp(Spriv,PT) ≤ η with
probability at least 1− τ .

G INTRINSIC DIMENSION OF IMAGE EMBEDDINGS

To illustrate the intrinsic dimension of image embeddings, we use the following process:

1. We (randomly) take an image x from CIFAR10.
2. We use VARIATION API from App. J to obtain 3000 image variations of x: x1, . . . , x3000, and

their corresponding inception embeddings g1, ..., g3000 ∈ R2048. 3000 is chosen so that the
number of variations is larger than the embedding dimension.

3. We construct a matrix M = [g1 − g; . . . ; g3000 − g] ∈ R3000×2048, where g is the
mean(g1, . . . , g3000).

20

Published as a conference paper at ICLR 2024

4. We compute the singular values of M : σ1 ≥ σ2 ≥ . . . ≥ σ2048.
5. We compute the minimum number of singular values n needed so that the explained variance

ratio12 ∑n
i=1 σ2

i/
∑2048

i=1 σ2 ≥ 0.8. Intuitively, this n describes how many dimensions are needed
to reconstruct the embedding changes M with a small error. We use it as an estimated intrinsic
dimension of the image variations.

We conduct the above process with the variation degree
[98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62, 60] utilized in the CIFAR10
experiments (see App. J). We additionally add a variation degree of 100 which is the highest
variation degree in the API that was used to generate the initial samples. We plot the estimated
intrinsic dimension v.s. variation degree in Fig. 9. The raw original singular values of M/

√
3000

for variation degree=60 are in Fig. 10 (other variation degrees have similar trend). Two key
observations are:

• As the variation degree increases, the estimated intrinsic dimension also increases. This could
be because the manifold of image embeddings is likely to be non-linear, the above estimation
of intrinsic dimension is only accurate when we perturb the image x to a small degree so that
the changes in the manifold can still be well approximated by a linear subspace. Using a larger
variation degree (and thus larger changes in the embedding space) will overestimate the intrinsic
dimension.

• Nevertheless, we always see that the singular values decrease rapidly (Fig. 10) and the estimated
intrinsic dimension is much smaller than the embedding size 2048 (Fig. 9), which supports our
hypothesis in App. E.

60 70 80 90 100
Variation Degree

150

160

170

180

190

Es
tim

at
ed

 In
tri

ns
ic

Di
m

en
sio

n

Figure 9: Estimated intrinsic dimension of inception embeddings of realistic images.

100 101 102 103

Singular Value Index

10−2

10−1

100

Si
ng

ul
ar

 V
al

ue

Figure 10: Singular values of inception embeddings of image variations at variation degree=60.

12See https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.TruncatedSVD.html.

21

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html

Published as a conference paper at ICLR 2024

H RELATION OF DPWA TO PRIOR WORK

Recall that in DPWA, we want a DP algorithm to output Ssyn which is close to the distribution
of Spriv in Wasserstein distance w.r.t. some distance function d(·, ·). When the distance function
d(·, ·) is just ℓ2 distance between the samples (i.e., ℓ2 in the pixel space for images), then DPWA
is closely related to DP Clustering (Ghazi et al., 2020; Balcan et al., 2017; Su et al., 2016) and DP
Heatmaps (Ghazi et al., 2022).

In (Ghazi et al., 2022), to give an algorithm for DP Heatmaps, the authors study DP sparse EMD13

aggregation problem where we need to output a distribution of points which approximates the distri-
bution of private data in EMD distance (i.e., W1). They study this problem only in two dimensions
and the running time of their algorithms (suitably generalized to higher dimensions) will be expo-
nential in the dimension d.

The DP Clustering problem requires us to output a clustering of private data using DP. The most
common clustering studied is k-means clustering where we should output k cluster centers such that
k-means cost is minimized, where k-means cost is the sum of squares of ℓ2-distance of each data
point to its nearest cluster center. Note that in DPWA, if the number of synthetic data points Nsyn is
specified to be k, then DP k-means clustering and DPWA with W2 metric are equivalent. In (Ghazi
et al., 2022), a polynomial time DP Clustering algorithm with an additional k-means cost (over what
is non-privately possible) of k

√
d log(1/δ)polylog(Npriv, d)/ϵ is given. This can be converted into

an upper bound on the Wasserstein distance. But this is not a practical algorithm. The privacy-utility
tradeoffs are bad due to the large hidden constants in the analysis and the authors don’t provide an
implementation. There is a practical DP Clustering algorithm (along with an implementation) given
in (Chang & Kamath, 2023) (but with no theoretical guarantees).

H.1 WHY NOT JUST USE DP CLUSTERING?

We now explain why we can’t just use prior work on DP Clustering to solve DPSDA say for images.

Clustering in the image space. We can use DP k-means Clustering to cluster the images w.r.t. ℓ2
metric in the pixel space. This doesn’t work because ℓ2 distance in the pixel space doesn’t capture
semantic similarity. An image which is slightly shifted in pixel space gets very far in ℓ2 distance.
And the dimension of the images is too large for prior DP Clustering algorithms to work well. Their
convergence and privacy-utility tradeoffs depend too strongly on the dimension.

Clustering in the embedding space. We can use DP k-means Clustering to cluster the image
embeddings w.r.t. ℓ2 metric in the embedding space. Note that this is the distance function we use
in PE (Eq. (1)). Even after we find the cluster centers, it is hard to invert the embedding map (i.e.,
find an image whose embedding is close to a given vector in the embedding space).14 Moreover the
dimension of the embedding space is still too large for the above methods to be practical.

Our PE algorithm does much better because:

1. Its distance function is ℓ2 in the embedding space which captures semantic similarity,

2. It exploits the intrinsic dimension of the manifold of images in the embedding space which
is much smaller than the embedding dimension (see App. E and App. G) and

3. There is no need to invert points in embedding space to the image space.

In an early experiment, we have tried DP clustering in the CLIP embedding space using the practical
DP Clustering algorithm in (Chang & Kamath, 2023). We then inverted the cluster centers (which
are in the embedding space) using unCLIP. But we found the resulting images are too noisy com-
pared to the images we get from PE and the FID scores are also significantly worse than that of
PE.

13Earth’s Mover Distance, which is the another name for Wasserstein metric W1.
14Some special embeddings such as CLIP embedding do have such an inverse map called unCLIP (Ramesh

et al., 2022).

22

Published as a conference paper at ICLR 2024

I IMPLEMENTATION DETAILS ON LABEL CONDITION

There are two meanings of “conditioning” that appear in our work:

1. Whether the pre-trained networks or APIs (e.g., ImageNet pre-trained diffusion models used in
§ 5.1.1 and 5.1.2) support conditional input (e.g., ImageNet class label).

2. Whether the generated samples are associated with class labels from the private data.

In DP fine-tuning approaches, these two usually refer to the same thing: if we want to generate
class labels for generated samples, the common practice is to use a pre-trained network that supports
conditional input (Ghalebikesabi et al., 2023). However, in PE, these two are completely orthogonal.

Conditional pre-trained networks/APIs. We first explain our implementation when the pre-trained
networks or APIs support conditional inputs such as class labels or text prompts. When generating
the initial population using RANDOM API (Line 1), we will either randomly draw labels from all
possible labels when no prior public information is available (which is what we do in CIFAR10 and
Camelyon17 experiments where we randomly draw from all possible ImageNet classes), or use the
public information as condition input (e.g., the text prompt used in Stable Diffusion experiments; see
App. L). In the subsequent VARIATION API calls (Line 6), for each image, we will use its associated
class label or text prompt as the condition information to the API, and the output samples from
VARIATION API will be associated with the same class label or text prompt as the input sample. For
example, if we use an image with “peacock” class to generate variations, all output images will be
associated with “peacock” class for future VARIATION API calls. Note that throughout the above
process, all the condition inputs to the pre-trained networks/APIs are public information; they have
nothing to do with the private classes.

Conditional generation. Conditional generation is achieved by Alg. 3, where we separate the
samples according to their class labels, and run the main algorithm (Alg. 1) on each sample set. We
can use either conditional or unconditional pre-trained networks/APIs to implement it.

Throughout the paper, “(un)condition” refers to 2, expect the caption in Fig. 7 which refers to 1.

J MORE DETAILS AND RESULTS ON CIFAR10 EXPERIMENTS

Pre-trained model. By default, we use the checkpoint imagenet64_cond_270M_250K.pt
released in (Nichol & Dhariwal, 2021).15 For the ablation study of the pre-trained network, we
additionally use the checkpoint imagenet64_uncond_100M_1500K.pt.

API implementation. RANDOM API follows the standard diffusion model sampling process. VARI-
ATION API is implemented with SDEdit (Meng et al., 2021), which adds noise to input images and
lets the diffusion model denoise them. We use DDIM sampler (Song et al., 2020) and the default
noise schedule to draw samples. Note that these choices are not optimal; our results can potentially
be improved by using better noise schedules and the full DDPM sampling (Ho et al., 2020) which
are known to work better. The implementation of the above APIs is straightforward without touch-
ing the core modeling part of diffusion models and is similar to the standard API implementations
in Stable Diffusion (App. L).

Hyperparameters. We set number of iterations T = 20, lookahead degree k = 8, and number
of generated samples Nsyn = 50000. For RANDOM API and VARIATION API, we use DDIM sam-
pler with 100 steps. For VARIATION API, we use SDEEdit (Meng et al., 2021) by adding noise
till [98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64, 62, 60] timesteps for each iter-
ation respectively. These timesteps can be regarded as the v parameter in § 3.3.

For the experiments in Fig. 4, we use noise multiplier σ = t ·
√
2 and threshold H = 2t for

t ∈ {5, 10, 20}, and pick the the pareto frontier. Fig. 11 shows all the data points we got. Combining
this figure with Fig. 4, we can see that PE is not very sensitive to these hyper-parameters, and even
with less optimal choices PE still outperforms the baselines.

For the experiments in Fig. 5, we use noise multiplier σ =
√
2 and threshold H = 2 (i.e., t = 1).

15https://github.com/openai/improved-diffusion

23

https://github.com/openai/improved-diffusion

Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5
Epsilon

5

10

15

20

FI
D

σ= 5√ 2, uncond
σ= 10√ 2, uncond
σ= 20√ 2, uncond
σ= 5√ 2, cond
σ= 10√ 2, cond
σ= 20√ 2, cond

Figure 11: FID (lower is better) v.s. privacy cost ϵ (δ = 10−5) on CIFAR10 with different noise
multipliers and thresholds. “(Un)cond” means (un)conditional generation.
For the experiments in Figs. 3 and 13, we use noise multiplier σ = 10

√
2 and threshold H = 20

(i.e., t = 10) and the number of PE iteration is 5 (i.e., the point of “Ours (cond)” in Fig. 4 that has
FID≤ 7.9).

For downstream classification (Fig. 5), we follow (Ghalebikesabi et al., 2023) to use WRN-40-4
classifier (Zagoruyko & Komodakis, 2016). We use the official repo16 without changing any hyper-
parameter except adding color jitter augmentation according to (Ghalebikesabi et al., 2023). The
ensemble of the classifier is implemented by ensembling the logits.

FID evaluation. Compared to Fig. 4 in the main text, Fig. 12 shows the full results of two versions
of (Harder et al., 2023). Baseline results are taken from (Harder et al., 2023; Ghalebikesabi et al.,
2023).

0.125 0.25 0.5 1 2 4 8 16 32
Epsilon

0

20

40

60

80

100

FI
D

Ours (uncond)
Ours (cond)
DP-MEPF1 (uncond)
DP-MEPF2 (uncond)
DP-MEPF1 (cond)
DP-MEPF2 (cond)
DP-GAN (uncond)
DP-Diffusion (cond)

Figure 12: FID (Heusel et al., 2017) (lower is better) v.s. privacy cost ϵ on CIFAR10 (δ = 10−5).
Baseline results are taken from (Harder et al., 2023; Ghalebikesabi et al., 2023). (Un)cond means
(un)conditional generation. Ours achieves the best privacy-quality trade-off.

Classification accuracy. In § 5.1.1, we show the classification accuracy at a single privacy budget
ϵ = 3.34. In Table 1, we further show how the classification accuracy evolves with respect to
different ϵs. These results are from the first 5 PE iterations.

16https://github.com/szagoruyko/wide-residual-networks/tree/master/
pytorch

24

https://github.com/szagoruyko/wide-residual-networks/tree/master/pytorch
https://github.com/szagoruyko/wide-residual-networks/tree/master/pytorch

Published as a conference paper at ICLR 2024

ϵ Accuracy

1.36 72.46%
1.99 78.78%
2.50 80.83%
2.94 81.15%
3.34 81.74%

Table 1: Classification accuracy v.s. privacy cost ϵ on CIFAR10 (δ = 10−5).
Generated samples. See Figs. 13 and 14 for generated images and real images side-by-side. Note
that the pre-trained model we use generates 64x64 images, whereas CIFAR10 is 32x32. In Fig. 3,
we show the raw generated 64x64 images; in Fig. 13, we scale them down to 32x32 for better
comparison with the real images.

Figure 13: Generated samples on CIFAR10
with

(
0.67, 10−5

)
-DP. Each row corresponds

to one class. FID=7.87.

Figure 14: Real samples from CIFAR10.
Each row corresponds to one class.

Nearest samples in the private dataset Figs. 15 and 16 show generated images and their nearest
neighbors in the private dataset evaluated using two distance metrics: ℓ2 distance in the inception
embedding space and the pixel space. We can see that the generated images are different from
private images. This is expected due to the DP guarantee.

Distributions of the distances to nearest samples. Continuing the above experiments, we further
show the distribution of the distances between (1) generated samples and their nearest real samples
and (2) real samples and their nearest generated samples in Figs. 17 and 18 respectively. Two key
observations are: (1) During the early PE iterations, the distances tend to decrease. This means
that PE is effective in pushing the generated distribution to be closer to the private distribution. (2)
However, as PE continues, the distances stop decreasing. It is expected, as DP upper bounds the
probability of reconstructing any sample in the private dataset.

Samples with the highest and the lowest votes. Fig. 19 shows the samples with the highest and
the lowest votes in DP Nearest Neighbors Histogram across different PE iterations. We can see that
DP Nearest Neighbors Histogram picks samples similar to the private data as desired. This is more
obvious in the first two PE iterations, where DP Nearest Neighbors Histogram assigns high votes on
the samples with correct classes and puts low votes on the samples with incorrect classes.

Distribution of counts in DP Nearest Neighbors Histogram. Fig. 20 shows that the standard
deviation of counts in DP Nearest Neighbors Histogram tends to decrease with more PE iterations
on CIFAR10. This means that the histogram becomes “more uniform” with more PE iterations. It
is expected for the following reasons. In the beginning, only a few generated samples are close to
the private data. Those generated samples get most of the votes from private samples, which results
in a concentrated histogram. PE will then pick those highly voted generated samples and do more

25

Published as a conference paper at ICLR 2024

variations over them. As a result, private samples that voted for the same generated sample may now
find different closest generated samples and distribute the votes, which results in a “more uniform”
histogram.

26

Published as a conference paper at ICLR 2024

Figure 15: Nearest samples in the private dataset on CIFAR10. In each row, the first column is
a generated image (from Fig. 13), and the other columns are its nearest neighbors in the private
dataset, sorted by the distance in ascending order. Every three rows correspond to generated image
from one class. The distance metric is ℓ2 in the inception embedding space.

27

Published as a conference paper at ICLR 2024

Figure 16: Nearest samples in the private dataset on CIFAR10. In each row, the first column is
a generated image (from Fig. 13), and the other columns are its nearest neighbors in the private
dataset, sorted by the distance in ascending order. Every three rows correspond to generated image
from one class. The distance metric is ℓ2 in the pixel space.

28

Published as a conference paper at ICLR 2024

5 10 15 20 25
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(a) The distance metric is ℓ2 in the inception
embedding space.

2000 4000
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(b) The distance metric is ℓ2 in the pixel
space.

Figure 17: CDF of the distributions between each generated sample and its nearest private sam-
ples on CIFAR10 across different PE iterations. “Iteration 0” refers to the initial random samples
from Line 1 in Alg. 1.

5 10 15 20
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(a) The distance metric is ℓ2 in the inception
embedding space.

1000 2000 3000 4000 5000
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(b) The distance metric is ℓ2 in the pixel
space.

Figure 18: CDF of the distributions between each private sample and its nearest generated sam-
ples on CIFAR10 across different PE iterations. “Iteration 0” refers to the initial random samples
from Line 1 in Alg. 1.

29

Published as a conference paper at ICLR 2024

(a) Iteration=0. (b) Iteration=1.

(c) Iteration=2. (d) Iteration=3.

(e) Iteration=4. (f) Iteration=5.

Figure 19: Samples with the highest and the lowest counts in the DP Nearest Neighbors Histogram
on CIFAR10. In each subfigure, each row corresponds to one class; the left subfigure shows the
samples with the highest counts and the right subfigure shows the samples with the lowest counts.

30

Published as a conference paper at ICLR 2024

2 4 6
PE iteration

2

4

6

8

10

12

St
d

of
 c

ou
nt

s
in

 D
P

NN
 H

ist
og

ra
m

DP counts
Non-DP counts

Figure 20: The standard deviation of counts in DP Nearest Neighbors Histogram across different PE
iterations on CIFAR10. “DP counts” refers to the counts after adding Gaussian noise and threshold-
ing. “Non-DP counts” refer to the counts before adding Gaussian noise and thresholding.

31

Published as a conference paper at ICLR 2024

K MORE DETAILS AND RESUTLS ON CAMELYON17 EXPERIMENTS

Pre-trained model. We use the checkpoint imagenet64_cond_270M_250K.pt released in
(Nichol & Dhariwal, 2021).17

API implementation. Same as App. J.

Hyperparameters. We set lookahead degree k = 8, and number of generated samples Nsyn =
302436.

About the experiments in Fig. 21. For RANDOM API and VARIATION API, we use DDIM sam-
pler with 10 steps. For VARIATION API, we take a 2-stage approach. the first stage, we
use DDIM sampler with 10 steps and use SDEEdit (Meng et al., 2021) by adding noise till
[10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7] timesteps for each iteration respectively. In the sec-
ond stage, we use DDIM sampler with 40 steps and use SDEEdit (Meng et al., 2021) by adding
noise till [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5] timesteps for each iteration respec-
tively. These timesteps can be regarded as the v parameter in § 3.3. We use noise multiplier
σ = 2 ·

√
2 and threshold H = 4.

About the experiments in § 5.1.2. For RANDOM API and VARIATION API, we use DDIM sampler
with 10 steps. For VARIATION API, we use DDIM sampler with 10 steps and use SDEEdit (Meng
et al., 2021) by adding noise till [10, 10, 10, 10, 9, 9, 9] timesteps for each iteration respectively.
These timesteps can be regarded as the v parameter in § 3.3. We use noise multiplier σ = 1.381 and
threshold H = 4.

Generated samples. See Figs. 21 and 22 for generated images and real images side-by-side. Note
that the real images in Camelyon17 dataset are 96x96 images, whereas the pre-trained network is
64x64. In Fig. 22, we scale them down to 64x64 for better comparison.

Fig. 23 shows the generated images in the intermediate iterations. We can see that the generated
images are effectively guided towards Camelyon17 though it is very different from the pre-training
dataset.

Figure 21: Generated samples on Came-
lyon17 with

(
9.92, 3 · 10−6

)
-DP. The first

five rows correspond to one class, and the rest
correspond to the other class. FID=10.66.

Figure 22: Real samples from Camelyon17.
The first five rows correspond to one class,
and the rest correspond to the other class.

Nearest samples in the private dataset Figs. 24 and 25 show generated images and their nearest
neighbors in the private dataset evaluated using two distance metrics: ℓ2 distance in the inception
embedding space and the pixel space. Similar to the results in CIFAR10, we can see that the gener-
ated images are different from private images. This is expected due to the DP guarantee.

17https://github.com/openai/improved-diffusion

32

https://github.com/openai/improved-diffusion

Published as a conference paper at ICLR 2024

(a) Iteration=0. (b) Iteration=1. (c) Iteration=3.

(d) Iteration=5. (e) Iteration=7. (f) Iteration=9.

(g) Iteration=11. (h) Iteration=13. (i) Iteration=15.

(j) Iteration=17. (k) Iteration=19. (l) Iteration=21.

(m) Iteration=23. (n) Iteration=25. (o) Iteration=27.

Figure 23: Generated samples on Camelyon17 at the first few iterations. We can see that the gener-
ated images are gradually guided from ImageNet, the pre-training dataset, to Camelyon17, the (very
different) private dataset. “Iteration=0” means the initial random samples from RANDOM API.

33

Published as a conference paper at ICLR 2024

Samples with the highest and the lowest votes. Fig. 26 shows the samples with the highest and the
lowest votes in DP Nearest Neighbors Histogram across different PE iterations. We can see that DP
Nearest Neighbors Histogram gradually picks samples with the right patterns as the private data, and
drops samples with more different patterns. As Camelyon17 is further away from the pre-training
dataset ImageNet than CIFAR10, we can see that it converges slower than the case in CIFAR10
(Fig. 19).

Distributions of the distances to nearest samples. Continuing the above experiments, we further
show the distribution of the distances between (1) generated samples and their nearest real samples
and (2) real samples and their nearest generated samples in Figs. 27 and 28 respectively. Similar
to the CIFAR10 experiments (Figs. 17 and 18), we see that: (1) During the early PE iterations,
the inception distances tend to decrease. This means that PE is effective in pushing the generated
distribution to be closer to the private distribution. (2) However, as PE continues, the inception
distances stop decreasing. It is expected, as DP upper bounds the probability of reconstructing
any sample in the private dataset. However, one difference to CIFAR10 results is that the distance
between each generated sample and its nearest private samples measured in the original pixel space
(Fig. 27b) tends to increase. We hypothesize that it is be due to nature of this dataset that any shifts
of the histological images are still in-distribution but can result in a high distance in the original
pixel space.

Distribution of counts in DP Nearest Neighbors Histogram. Fig. 29 shows that the standard
deviation of counts in DP Nearest Neighbors Histogram tends to decrease with more PE iterations
on Camelyon17. This accords with the observations and takeaways messages in CIFAR10 (Fig. 20).

Inspescting the ImageNet class labels of the generated samples. As discussed in App. I, each
generated samples have an associated ImageNet label. Here, we inspect those labels to under-
stand how PE works in this dataset. The list of the labels and their associated number of generated
images are: “honeycomb” (164647), “velvet” (83999), “nematode, nematode worm, roundworm”
(35045), “handkerchief, hankie, hanky, hankey” (14495), “bib” (3102), “head cabbage” (934), “bub-
ble” (142), “stole” (72). We see that 54.4% images are with the label “honeycomb”. Many honey-
comb images in ImageNet have a “net-like” structure, which shares some similarities with Came-
lyon17. However, the details, colors, and structures are still different. We compute the FID between
honeycomb images and CIFAR10. The FID score is 162.86, which is much higher than the FID
score of the final generated images we get (10.66 in Fig. 21). These results show that the existence
of the honeycomb class in ImageNet helps with PE, but PE does more than just picking this class.

Why PE works under large distribution shifts. The fact that PE is able to make ImageNet-pre-
trained-models to generate Camelyon17 images may appear surprising to readers. Here, we provide
intuitive explanations. Even though the diffusion model is trained on natural images, the support of
the generated distribution could be very large due to the formulation. More concretely, let’s look
at two examples: score-based models (Song & Ermon, 2019), which is closely related to diffusion
models, and the diffusion model we used (Ho et al., 2020). For score-based models, its modeling
target is a distribution perturbed by Gaussian noise, and therefore, the generated distribution spans
the entire sample space. For diffusion models (Ho et al., 2020), the latent space has the same
size as the image, and the last denoising step is modeled as a distribution derived from a Gaussian
distribution that spans the entire pixel space (see Section 3.3 of Ho et al. (2020)). Therefore, the
generated distribution of diffusion models also spans the entire sample space.

In other words, for any (trained) score-based models or diffusion models, it is theoretically possible
to generate images similar to the private dataset (or in fact, generate any images). The problem
is that the probability of generating such images is small if there is a large distribution shift from
the pre-training data to the private data. PE is effective in guiding the diffusion model to generate
samples from the region that is low-density in the original pre-trained distribution but high-density
in the private distribution.

To make it more concrete, we provide how the generated images evolve from natural images to
Camelyon17 dataset in Fig. 23 and the selected/filtered samples by PE in Fig. 26. At every iteration,
PE selects the set of images that are most similar to Camelyon17 dataset (Fig. 26). Those images
might still appear different from Camelyon17 in early iterations. However, as long as we get im-
ages that are more similar to Camelyon17 through VARIATION API at every iteration, we will make
progress, and finally, we can get images similar to Camelyon17 (Fig. 21).

34

Published as a conference paper at ICLR 2024

We further experiment PE under different levels of distribution shifts. To do that, we take the Came-
lyon17 dataset and modify the saturation of the images to create a sequence of datasets, each with a
different saturation change. This way, we create a sequence of datasets with different levels of distri-
bution shifts from ImageNet. From Fig. 30, we can see that no matter what the level of distribution
shifts is, PE can consistently improve the generated distribution towards the private data.

35

Published as a conference paper at ICLR 2024

Figure 24: Nearest samples in the private dataset on Camelyon17. In each row, the first column
is a generated image (from Fig. 21), and the other columns are its nearest neighbors in the private
dataset, sorted by the distance in ascending order. Every fifteen rows correspond to generated image
from one class. The distance metric is ℓ2 in the inception embedding space.

36

Published as a conference paper at ICLR 2024

Figure 25: Nearest samples in the private dataset on Camelyon17. In each row, the first column
is a generated image (from Fig. 13), and the other columns are its nearest neighbors in the private
dataset, sorted by the distance in ascending order. Every fifteen rows correspond to generated image
from one class. The distance metric is ℓ2 in the pixel space.

37

Published as a conference paper at ICLR 2024

(a) Iteration=0. (b) Iteration=1.

(c) Iteration=2. (d) Iteration=3.

(e) Iteration=4. (f) Iteration=5.

Figure 26: Samples with the highest and the lowest counts in the DP Nearest Neighbors Histogram
on Camelyon17. In each subfigure, each row corresponds to one class; the left subfigure shows the
samples with the highest counts and the right subfigure shows the samples with the lowest counts.

10 20 30
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(a) The distance metric is ℓ2 in the inception
embedding space.

2000 4000 6000 8000
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(b) The distance metric is ℓ2 in the pixel
space.

Figure 27: CDF of the distributions between each generated sample and its nearest private sam-
ples on CIFAR10 across different PE iterations. “Iteration 0” refers to the initial random samples
from Line 1 in Alg. 1.

5 10 15 20
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(a) The distance metric is ℓ2 in the inception
embedding space.

0 5000 10000
Distance to nearest neighbor

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7

(b) The distance metric is ℓ2 in the pixel
space.

Figure 28: CDF of the distributions between each private sample and its nearest generated sam-
ples on CIFAR10 across different PE iterations. “Iteration 0” refers to the initial random samples
from Line 1 in Alg. 1.

38

Published as a conference paper at ICLR 2024

5 10
PE iteration

20

40

60

80

100

120

St
d

of
 c

ou
nt

s
in

 D
P

NN
 H

ist
og

ra
m

DP counts
Non-DP counts

Figure 29: The standard deviation of counts in DP Nearest Neighbors Histogram across different
PE iterations on Camelyon17. “DP counts” refers to the counts after adding Gaussian noise and
thresholding. “Non-DP counts” refer to the counts before adding Gaussian noise and thresholding.

0 5 10 15
PE iteration

100

200

300

FI
D

Original Camelyon17
Saturation +50
Saturation +100
Saturation +200

Figure 30: FID vs. PE iterations under Camelyon17 variants with different levels of distribution
shifts.

39

Published as a conference paper at ICLR 2024

L MORE DETAILS AND RESULTS ON STABLE DIFFUSION EXPERIMENTS

Dataset construction. We start with cat photos taken by the authors, crop the region around cat faces
with a resolution larger than 512x512 manually, and resize the images to 512x512. We construct
two datasets, each for one cat with 100 images. See Figs. 31 and 32 for all images. Note that having
multiple samples from the same identity is not meaningful from the practical perspective of DP.
Instead of regarding these datasets as real-world use cases, they should be treated as “toy datasets”
for experimenting DP generative models with a small number of high-resolution images.

Figure 31: All images from Cat Cookie dataset. The original resolution is 512x512; we resize them
to 128x128 here for reducing the file size of the paper.

API implementation. We use off-the-shelf open-sourced APIs of Stable Diffusion. For RAN-
DOM API, we use the text-to-image generation API18, which is implemented by the standard diffu-
sion models’ guided sampling process. For VARIATION API, we use the image-to-image generation
API19, which allows us to control the degree of variation. Its internal implementation is SDEdit
(Meng et al., 2021), which adds noise to the input images and runs diffusion models’ denoising
process.

Hyperparameters We set lookahead degree k = 8, and number of generated samples Nsyn = 100.
For RANDOM API and VARIATION API, we use the default DDIM sampler with 50 steps. For
RANDOM API, we use the prompt ”A photo of ragdoll cat”. This gives reaonable cat images
but still far away from the private data (Fig. 35). For VARIATION API, we use variation de-
grees [0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.84, 0.8, 0.76, 0.72, 0.68, 0.64, 0.6] for each iteration re-

18https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/
text2img

19https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/
img2img

40

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img

Published as a conference paper at ICLR 2024

Figure 32: All images from Cat Doudou dataset. The original resolution is 512x512; we resize them
to 128x128 here for reducing the file size of the paper.
spectively with the same prompt. We use noise multiplier σ = 2 and threshold H = 2. We use
inception embedding for Eq. (1).

Generated images. We use the same hyper-parameters to run PE on two datasets separately. This
can also be regarded as running the conditional version of PE (Alg. 3) on the whole dataset (with
labels Cat Cookie or Cat Doudou) together. All generated images are in Figs. 33 and 34. While the
two experiments use completely the same hyper-parameters, and the initial random images are very
different from the cats (Fig. 35), our PE can guide the generated distribution in the right direction
and the final generated images do capture the key color and characteristics of each of the cats. This
demonstrates the effectiveness of PE with large foundation models such as Stable Diffusion.

We also observe that the diversity of generated images (e.g., poses, face directions) is limited com-
pared to the real data. However, given the small number of samples and the tight privacy budget, this
is an expected behavior: capturing more fine-grained features of each image would likely violate DP.

Generated images with more diversity. To make the generated images more diverse, we can
utilize the approach in § 4.2, which passes the generated images through VARIATION API. We have
demonstrated in § 5.1.3 that this approach can generate more samples that are useful for downstream
classification tasks. Here, we use it for a different purpose: enriching the diversity of generated
samples.

Figure Figs. 36 and 37 show the results. We can see that this simple approach is able to generate cats
with a more diverse appearance. This is possible because the foundation model (Stable Diffusion)
has good prior knowledge about cats learned from massive pre-training, and PE is able to utilize that
effectively.

41

Published as a conference paper at ICLR 2024

Figure 33: All generated images from Cat Cookie dataset with (6.62, 10−3)-DP. The original reso-
lution is 512x512; we resize them to 128x128 here for reducing the file size of the paper.

42

Published as a conference paper at ICLR 2024

Figure 34: All generated images from Cat Doudou dataset with (6.62, 10−3)-DP. The original reso-
lution is 512x512; we resize them to 128x128 here for reducing the file size of the paper.

43

Published as a conference paper at ICLR 2024

Figure 35: The initial random images from Stable Diffusion. The original resolution is 512x512; we
resize them to 128x128 here for reducing the file size of the paper.

44

Published as a conference paper at ICLR 2024

Figure 36: Generated images with enhanced diversity using the approach in § 4.2 on Cat Cookie.
The original resolution is 512x512; we resize them to 128x128 here for reducing the file size of the
paper.

45

Published as a conference paper at ICLR 2024

Figure 37: Generated images with enhanced diversity using the approach in § 4.2 on Cat Doudou.
The original resolution is 512x512; we resize them to 128x128 here for reducing the file size of the
paper.

46

Published as a conference paper at ICLR 2024

M CINIC EXPERIMENTS

Given that PE is based on sampling from pre-trained foundation models, a natural baseline is to
conditionally sample from the classes closest to the private data. For example, in the experiments
of § 5.1.1 (CIFAR10 as private data, ImageNet as the public data), it would be interesting to con-
sider baselines that conditionally sample from the same classes in CIFAR10 (with privacy) from a
foundation model trained on ImageNet. However, there could be many ways to implement such an
algorithm, and the model and hyper-parameter choices could impact the result. To eliminate the in-
fluence of these arbitrariness choices, we conduct the following experiment which gives an estimate
on the best FID such an approach could achieve.

Experiment setup. We use CINIC10 dataset (Darlow et al., 2018), which contains CIFAR10 images
and the filtered images from ImageNet that belong to CIFAR10 categories. We compute the FID
between (a) the subset of CINIC10 images that come from ImageNet (i.e., excluding CIFAR10
images from CINIC10 dataset), and (b) CIFAR10 dataset. This is to simulate the best case when the
foundation model (1) learns the ImageNet dataset perfectly and (2) is able to draw only the samples
from CIFAR10 classes. In practice, the above two assumptions will certainly not hold; especially,
achieving (2) would necessarily incur privacy costs as the knowledge of which samples belong to
CIFAR10 is assumed to be private. Therefore, this process gives us a lower bound of the FID (i.e.,
the best possible FID) we can get by such a baseline that samples the same classes as CIFAR10 from
an ImageNet model using an arbitrary privacy cost.

Results. The FID score from the above is 12.21. We can see from Fig. 4 that PE is able to achieve
a smaller FID with ϵ as small as 0.38. This result suggests that PE does a non-trivial job: it can
achieve a lower FID score than simply sampling the same classes as CIFAR10 from an ImageNet
model.

N MORE ABLATION STUDIES

All ablation studies are conducted by taking the default parameters in unconditional CIFAR10 ex-
periments and modifying one hyperparameter at a time. The default noise multiplier σ = 5 ·

√
2 and

the default threshold H = 10.

Lookahead degree. Fig. 38 shows how the lookahead degree k (§ 4) impacts the results. We can
see that higher lookahead degrees monotonically improve the FID score. However, the marginal
benefits diminish as the lookahead degree goes beyond 8, and a higher lookahead degree increases
the required of API calls. Throughout all experiments, we used k = 8. This experiment suggests
that better results can be obtained with a higher k. In practice, we suggest users set the lookahead
degree as the highest value within their computation or API budget.

0.5 1.0 1.5 2.0 2.5
Epsilon

6

8

10

12

14

FI
D

Lookahead=0
Lookahead=4
Lookahead=8
Lookahead=12

Figure 38: Ablation studies on the lookahead degree k for DP Nearest Neighbors Histogram. Looka-
head=0 means lookahead is not used (Eq. (1)).

Population size. Fig. 39 shows how the number of generated samples Nsyn impacts the results in
non-DP setting. We can see that, as the number of samples increases, FID score monotonically
gets better. This is expected because with more generated samples, there are higher chances to get
samples similar to the private data. However, we want to point out that in the DP case, it may not
be true, as a large number of samples would flatten the DP Nearest Neighbors Histogram and thus
decrease the signal noise ratio.

47

Published as a conference paper at ICLR 2024

5 10 15 20
Step

4

6

8

10

FI
D

Number of samples=50000
Number of samples=80000
Number of samples=100000

Figure 39: Ablation studies on the number of generated samples Nsyn in non-DP setting.
Histogram threshold. Fig. 40 shows how the threshold H in DP Nearest Neighbors Histogram
impacts the results. We can see that a large threshold results in a faster convergence speed at the
beginning. This is because, in the early iterations, many samples are far away from the private data.
A larger threshold can effectively remove those bad samples that have a non-zero histogram count
due to the added DP noise. However, at a later iteration, the distribution of generated samples is
already close to the private data. A large threshold may potentially remove useful samples (e.g., the
samples at low-density regions such as classifier boundaries). This may hurt the generated data, as
shown in the increasing FID scores at threshold=15. In this paper, we used a fixed threshold across
all iterations. These results suggest that an adaptive threshold that gradually decreases might work
better.

0.5 1.0 1.5 2.0 2.5
Epsilon

5

10

15

20

25

FI
D

Threshold=0
Threshold=5
Threshold=10
Threshold=15

Figure 40: Ablation studies on the threshold H for DP Nearest Neighbors Histogram.

Embedding. Fig. 41 compares the results with inception embedding or CLIP embedding in Eq. (1).
The results show that both embedding networks work well, suggesting that PE is not too sensitive to
the embedding network. Inception embedding works slightly better. One reason is that the inception
network is trained on ImageNet, which is similar to a private dataset (CIFAR10). Therefore, it might
be better at capturing the properties of images. Another possible reason is that FID score is calcu-
lated using inception embeddings, which might lead to some bias that favors inception embedding.

The number of private samples. In this experiment, we show how the number of private samples
Npriv impacts the performance of PE. Specifically, on CIFAR10, we vary the number of samples
Npriv by sub-sampling. For each Npriv ∈ {50000, 20000, 10000, 5000}:
• We fix Nsyn/Npriv = 1 when running PE.

0.5 1.0 1.5 2.0 2.5
Epsilon

6

8

10

12

FI
D

Inception embedding
Clip embedding

Figure 41: Ablation studies on the embedding network in Eq. (1) to use.

48

Published as a conference paper at ICLR 2024

• After PE is done, we use the approach in § 4.2 to augment the number of generated samples back
to 50000, and compute the FID between the generated samples and CIFAR10.

• All other hyper-parameters are set the same as the CIFAR10 experiments in Fig. 3.

The results are shown in Table 2, which suggests that larger Npriv helps the performance of PE, sim-
ilar to the observation in DP-SGD (Anil et al., 2021). We hypothesize that the reason is as follows.
When we set Nsyn/Npriv = 1, although the signal-noise ratio in the DP Nearest Neighbors His-
togram remains constant, larger Nsyn does allow the generated samples to explore larger space, and
therefore it is more likely to get a sample closer to the private data, which helps the convergence of
PE. Our theorem in App. E also shows that increasing the number of variations (which is controlled
by Nsyn) speeds up the convergence.

Number of samples FID

50000 (original CIFAR10) 7.87
20000 (2.5x smaller) 10.47
10000 (5x smaller) 12.51
5000 (10x smaller) 18.60

Table 2: FID vs. the size of the private dataset in CIFAR10.

O GENERATING MORE SAMPLES

We discussed two ways of generating more samples after PE is done: (1) taking the final generated
samples from PE and passing them through VARIATION API to get more samples (§ 4.2), and (2)
using a larger Nsyn when running PE (Fig. 39). While we see that both approaches are promising,
they have a key difference: the first approach can be applied post hoc without the need to rerun
PE, whereas the second approach requires rerunning PE. This difference would result in a very
different number of API calls. More concretely, let’s say we want to generate N more samples after
PE is done. In the former approach, we simply take the final generated samples from PE and call
VARIATION API N times. In contrast, the latter approach requires rerunning the entire PE process
and would need to increase the number of API calls by N · (k+1), as we will need to generate more
samples at every iteration.

P COMPUTATIONAL COST EVALUATION

We compare the GPU hours of the SOTA DP fine-tuning method (Ghalebikesabi et al., 2023) and PE
for generating 50k samples in § 5.1.1. Note that PE is designed to use existing pre-trained models
and we do so in all experiments. In contrast, DP fine-tuning methods usually require a careful se-
lection of pre-training datasets and architectures (e.g., (Ghalebikesabi et al., 2023) pre-trained their
own diffusion models), which could be costly. Even if we ignore this and only consider the compu-
tational cost after the pre-training, the total computational cost of PE is only 37% of (Ghalebikesabi
et al., 2023) while having better sample quality and downstream classification accuracy (§ 5.1.1).
See Fig. 42 for a detailed breakdown of the computational cost. Note that PE’s computational cost
is mostly on the APIs.

The key takeaway is that even if practitioners want to run the APIs locally (i.e., downloading the
foundation models and running the APIs locally without using public API providers), there are still
benefits of using PE: (1) The computational cost of PE can be smaller than training-based methods.
(2) Implementing and deploying PE are easier because PE only requires blackbox APIs of the models
and does not require code modifications inside the models.

Experimental details. In this experiment, we follow the setting in § 5.1.1, where the user has a
private dataset of size Npriv = 50000 and a pre-trained model (hosted locally, running on GPUs),
and wants to generate a total number of Nsyn = 50000 synthetic data samples. For the DP fine-
tuning baseline, the procedure includes (1) DP fine-tuning the pre-trained model, and then (2) using
the fine-tuned model to generate 50000 synthetic samples. Therefore, we break the time into these
two parts. For PE, the procedure includes running PE with Nsyn = 50000. PE includes the steps

49

Published as a conference paper at ICLR 2024

of RANDOM API, VARIATION API, nearest neighbor search, and feature extraction. Therefore, we
break down the time of PE into these four parts.

In the above evaluation, we did not consider the time of generating more samples beyond Nsyn =
50000, and we discuss its effect here. To generate more samples beyond Nsyn = 50000 samples, the
DP fine-tuning method can directly use the fine-tuned model to generate more samples without more
fine-tuning. PE can use the approach in § 4.2, where we pass the generated Nsyn samples through
VARIATION API to generate more samples (what we did in § 5.1.3; see results thereof). Note that,
for the same size of the model, the same number of generated samples, the same diffusion sampler,
and the same total number of denoising steps, the running time of PE to generate more samples is
smaller than the DP fine-tuning baseline. The reason is as follows. Let’s say we use a diffusion
sampler with 100 steps in total. In the DP fine-tuning baseline, generated samples must take all 100
steps (i.e., starting from Gaussian noise, passing the image through the diffusion model 100 times
iteratively to get the final generated samples). For PE, VARIATION API is implemented by SDEdit
(Meng et al., 2021) (see App. J), where we add noise to input images and let the diffusion model
denoise them starting from the middle of the diffusion process (e.g., adding Gaussian noise to the
image, then passing the image through the diffusion model starting from 20th denoising step for all
the rest 80 steps iteratively to get the final generated samples). In other words, each generated does
not need to go through all 100 steps, but only a fraction of the steps (80 steps in the above example).

To ensure a fair comparison, we estimate the runtime of both algorithms using 1 NVIDIA V100
32GB GPU.

To evaluate the computational cost of (Ghalebikesabi et al., 2023), we take the open-source diffusion
model implementation from (Dhariwal & Nichol, 2021)20 and modify the hyper-parameters accord-
ing to (Ghalebikesabi et al., 2023). We obtain a model with 79.9M parameters, slightly smaller
than the one reported in (Ghalebikesabi et al., 2023) (80.4M). This difference might be due to other
implementation details that are not mentioned in (Ghalebikesabi et al., 2023). To implement DP
training, we utilize Opacus library (Yousefpour et al., 2021). To evaluate the fine-tuning cost, we use
torch.cuda.Event instrumented before and after the core logic of forward and backward pass,
ignoring other factors such as data loading time. We estimate the total runtime based on the mean
runtime of 10 batches after 10 batches of warmup. We do not implement augmentation multiplicity
with data and timestep (Ghalebikesabi et al., 2023); instead, we use multiplicity=1 (i.e., a vanilla
diffusion model), and multiply the estimated runtime by 128, the multiplicity used in (Ghalebikesabi
et al., 2023). To evaluate the generation cost, we use torch.cuda.Event instrumented before
and after the core logic of sampling. We estimate the total runtime based on the mean runtime of 10
batches after 1 batch of warmup.

To evaluate the computational cost of our PE, we use a similar method: we use
torch.cuda.Event instrumented before and after the core logic of each component of our al-
gorithm that involves GPU computation. RANDOM API and VARIATION API are estimated based
on the mean runtime of 10 batches after 1 batch of warmup. Feature extraction is estimated based
on the mean runtime of 90 batches after 10 batch of warmup. The nearest neighbor search is es-
timated based on 1 run of the full search. We use faiss library21 for nearest neighbor search. Its
implementation is very efficient so its computation time is negligible compared with the total time.

20https://github.com/openai/guided-diffusion
21https://github.com/facebookresearch/faiss

50

https://github.com/openai/guided-diffusion
https://github.com/facebookresearch/faiss

Published as a conference paper at ICLR 2024

DP-Diffusion Ours0

250

500

750

1000

1250

GP
U

Ho
ur

s

Fine-tuning (1210.7)
Generation (17.1)
VARIATION_API (440.4)
RANDOM_API (10.4)
Nearest neighbor search (0.0)
Feature extraction (0.7)

Figure 42: GPU hours (on 1 NVIDIA V100 32GB) required to obtain the samples for § 5.1.1
with DP-Diffusion (Ghalebikesabi et al., 2023) and ours. The legend denotes the steps and the
GPU hours; (Ghalebikesabi et al., 2023) contains the fine-tuning and generation steps, whereas ours
contains the other steps.

51

	Introduction
	Background and Related Work
	DP Synthetic Data via APIs (DPSDA)
	Motivation
	Problem Formulation
	Scope of This Work

	Private Evolution (PE)
	Conditional Generation
	Generating Unlimited Number of Samples
	Privacy Analysis

	Experiments
	Comparisons to State-of-the-Art
	Moderate Distribution Shift (ImageNet CIFAR10)
	Large Distribution Shift (ImageNet Camelyon17)
	Generating Unlimited Number of Samples

	More Challenging Benchmarks with Large Foundation Models
	Ablation Studies

	Limitations and Future Work
	Ethics Statement
	More Related Work
	Definition of Wasserstein Distance
	A Brief Introduction to Evolutionary Algorithms
	More Details on Private Evolution
	Theoretical Evidence for Convergence of PE
	Proofs of PE Convergence Theorems
	Proof of thm:nonprivateanalysis
	Proof of thm:privateanalysis

	Intrinsic Dimension of Image Embeddings
	Relation of DPWA to prior work
	Why Not Just Use DP Clustering?

	Implementation Details on Label Condition
	More Details and Results on CIFAR10 Experiments
	More Details and Resutls on Camelyon17 Experiments
	More Details and Results on Stable Diffusion Experiments
	CINIC Experiments
	More Ablation Studies
	Generating More Samples
	Computational Cost Evaluation

