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Abstract

Synthetic datasets have enabled significant progress in001
point tracking by providing large-scale, densely annotated002
supervision. However, deploying these models in real-world003
domains remains challenging due to domain shift and lack004
of labeled data—issues that are especially severe in surgi-005
cal videos, where scenes exhibit complex tissue deforma-006
tion, occlusion, and lighting variation. While recent ap-007
proaches adapt synthetic-trained trackers to natural videos008
using teacher ensembles or augmentation-heavy pseudo-009
labeling pipelines, their effectiveness in high-shift domains010
like surgery remains unexplored. This work presents011
SurgTracker, a semi-supervised framework for adapting012
synthetic-trained point trackers to surgical video using fil-013
tered self-distillation. Pseudo-labels are generated online014
by a fixed teacher—identical in architecture and initializa-015
tion to the student—and are filtered using a cycle consis-016
tency constraint to discard temporally inconsistent trajec-017
tories. This simple yet effective design enforces geomet-018
ric consistency and provides stable supervision throughout019
training, without the computational overhead of maintain-020
ing multiple teachers. Experiments on the STIR benchmark021
show that SurgTracker improves tracking performance us-022
ing only 80 unlabeled videos, demonstrating its potential023
for robust adaptation in high-shift, data-scarce domains.024

1. Introduction025

Tracking visual points over time is a core problem in com-026
puter vision, underpinning applications in motion under-027
standing, visual correspondence, and robotic perception.028
Recent advances in learning-based point trackers [2, 4, 9,029
10] have shown remarkable performance by training on030
large-scale synthetic datasets with dense supervision. These031
models benefit from scalability and control in simulation,032
but transferring them to real-world scenarios remains a ma-033
jor challenge due to domain shift and lack of annotated data.034

To mitigate this gap, recent efforts [5, 8] propose semi-035

supervised adaptation strategies using pseudo-labels gener- 036
ated on unlabeled natural videos. These methods leverage 037
teacher-student frameworks and consistency losses to refine 038
models in the absence of ground truth. However, they have 039
been validated primarily on natural video domains, which, 040
despite being unlabeled, still resemble the synthetic train- 041
ing distribution in terms of motion regularity and scene 042
composition. Their applicability to more specialized, high- 043
variance domains remains largely unexplored. 044

One such domain is surgical video analysis, where accu- 045
rate point tracking can facilitate understanding of tissue dy- 046
namics, tool-tissue interaction, and intraoperative state es- 047
timation—critical for applications such as surgical skill as- 048
sessment, automation, and guidance [13]. However, the do- 049
main poses unique challenges: deformable anatomy, specu- 050
lar lighting, heavy occlusion, and rapid motion. Moreover, 051
obtaining annotated datasets for point tracking in surgery is 052
impractical due to privacy concerns, the need for domain 053
expertise, and the high cost of manual labeling. 054

Prior methods in point tracking in surgical videos have 055
typically relied on classical techniques such as sparse fea- 056
ture matching or optical flow [7]. Recent work such as 057
SurgMotion [18] adapts OmniMotion [17] to surgical data 058
using domain-specific priors, but requires test-time opti- 059
mization, making it less practical for real-time deployment. 060
As a result, the question remains: can recent synthetic- 061
trained point trackers be effectively adapted to surgical 062
video—without any manual annotations? 063

To address this, we propose SurgTracker, a semi- 064
supervised framework for adapting synthetic-trained point 065
trackers to surgical video using only unlabeled data. While 066
CoTracker3 [8] adapts to natural videos using pseudo-labels 067
from diverse teacher models, we find that this approach is 068
less effective in surgical settings, where the domain shift 069
is more pronounced. Instead, SurgTracker employs a sim- 070
pler yet more effective strategy: it leverages pseudo-labels 071
from a single frozen teacher, identical to the student in ar- 072
chitecture and initialization, and applies a cycle consistency 073
constraint to retain only temporally coherent trajectories. 074

We attribute effectiveness of this design to three factors: 075
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first, diverse teachers introduce higher supervision variance076
due to inconsistent behaviors under domain shift, mak-077
ing pseudo-label quality less reliable; second, architectural078
alignment between teacher and student improves represen-079
tational compatibility, allowing for more effective learn-080
ing; and third, using a fixed teacher yields a stable super-081
visory signal across training batches, reducing fluctuations082
in optimization dynamics. In addition, our single-teacher083
setup eliminates the need to keep multiple large models084
in memory during training, making the approach more085
computationally efficient. Experiments on STIR bench-086
mark [18] show that SurgTracker improves tracking perfor-087
mance using only 80 unlabeled videos, demonstrating that088
in high-shift data-scarce domains, supervision consistency089
and alignment can outweigh benefits of teacher diversity.090

2. Related Works091

2.1. Point Tracking092

Deep learning-based point trackers have advanced rapidly,093
largely by training on synthetic datasets due to the diffi-094
culty of labeling real-world trajectories. Early work like095
PIPs [6] framed dense tracking as long-range motion esti-096
mation, later extended to longer sequences in PIPs++ [19].097
TAPIR [4] built on this by introducing global matching,098
while CoTracker [9] leveraged transformers to jointly track099
multiple points and better handle occlusion. More recent100
variants like LocoTrack [2] uses 4D correlation volumes101
whereas Track-On [1] enables frame-by-frame tracking us-102
ing spatial and context memory. While these methods show103
strong performance, they are trained on synthetic datasets104
and have been validated primarily on natural video domains.105

Point tracking in surgical videos is essential for mod-106
eling tissue dynamics and enabling image-guided robotic107
interventions [18]. Classical methods based on sparse fea-108
tures or dense optical flow [7] are limited by poor texture,109
deformation, and occlusion in surgical scenes. Recent ap-110
proaches such as SENDD [12] use graph-based models to111
jointly estimate 2D correspondences and 3D deformation.112
More recently, Zhan et al. [18] introduced a benchmark113
with manually annotated trajectories and proposed SurgMo-114
tion, which adapts OmniMotion [17] with domain-specific115
priors. While effective, SurgMotion relies on test-time op-116
timization, limiting its applicability in real-time settings. In117
contrast, our work explores whether synthetic-trained track-118
ers can be adapted to surgical videos without any labels to119
enable robust real-time performance in clinical scenarios.120

2.2. Unsupervised Domain Adaptation121

While synthetic data enables scalable training, domain shift122
remains a core challenge when deploying models on real-123
world videos. Self-training with pseudo-labels has emerged124
as a promising strategy, wherein source-trained models gen-125

erate labels on unlabeled target data to guide fine-tuning. 126
BootsTAP [5] applies this paradigm to large-scale natu- 127
ral video via teacher-student learning and strong augmen- 128
tations. CoTracker3 [8] improves efficiency by distilling 129
pseudo-labels from multiple teacher models, but applies no 130
filtering to account for label noise. Sun et al. [14] incor- 131
porate cycle consistency to improve label quality, but com- 132
pute pseudo-labels only once and keep them fixed, increas- 133
ing susceptibility to confirmation bias. 134

Critically, these approaches have been validated only on 135
natural videos, and it remains unclear whether they gen- 136
eralize to domains with significantly higher distribution 137
shift—like surgical video. We address this gap by extending 138
self-training-based point tracking to surgical data, leverag- 139
ing a single, architecture-aligned teacher and applying cycle 140
consistency filtering to provide stable supervision. 141

3. Method 142

3.1. Problem Formulation 143

Tracking tissue motion in surgical videos involves accu- 144
rately following specific tissue points across frames. Given 145
a video sequence V = {It}Tt=1 consisting of T frames, 146
our objective is to track a set of N query points Q = 147
{(xi, yi, t0)}Ni=1 where (xi, yi) denotes spatial location of 148
i-th query point in the frame t0. The goal is to estimate a tra- 149
jectory P = {(xt

i, y
t
i)}Tt=1 for each query point i, represent- 150

ing its predicted location in every frame of the sequence. 151

3.2. SurgTracker 152

We propose SurgTracker, a semi-supervised framework 153
for adapting synthetic-pretrained point trackers to surgical 154
video, where large domain shift and lack of annotations 155
present significant challenges. Our method leverages Co- 156
Tracker3—pretrained on synthetic data and adapted to nat- 157
ural videos—as a fixed teacher to produce pseudo-labels, 158
which are then filtered via a cycle consistency constraint 159
to remove noisy trajectories. The student model, identi- 160
cal in architecture and initialization to the teacher, is then 161
fine-tuned using these filtered labels. An overview of the 162
SurgTracker pipeline is shown in Fig. 1. 163

Unlike prior work that relies on teacher model ensem- 164
bles [8] or large-scale data augmentation [5], SurgTracker 165
uses a single teacher—architecturally aligned with the stu- 166
dent—and leverages temporal consistency to identify high- 167
quality training signals. This simple yet effective design 168
enables adaptation to surgical videos without requiring any 169
annotations. The method consists of three main stages: (1) 170
pseudo-label generation, (2) trajectory filtering via cycle 171
consistency, and (3) supervised fine-tuning of the student. 172

3.2.1. Pseudo-Label Generation 173

For each training sequence, we sample a set of query points 174
Q from the first frame. To ensure that these points are infor- 175
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Figure 1. Overview of the SurgTracker framework. Given an unlabeled surgical video, pseudo-labels are generated by a frozen teacher
network and filtered using a cycle consistency check to remove temporally inconsistent trajectories. The filtered trajectories supervise the
student model, which is fine-tuned using a tracking loss Ltrack. The teacher model remains frozen during training.

mative and trackable, we extract keypoints using SIFT [11],176
which provides robust features under appearance changes177
and viewpoint variation. Sequences with an insufficient178
number of detected keypoints are excluded to maintain su-179
pervision quality. The teacher model M then predicts can-180
didate trajectories P̂ for each query point qi ∈ Q.181

3.2.2. Cycle-Consistent Filtering182

To improve the quality of pseudo-labels, we apply a cycle183
consistency check to identify and discard noisy trajectories.184
Let P̂i = {(xt

i, y
t
i)}

t1
t=t0 denote the forward trajectory for185

a query point qi = (xt0
i , yt0i ) generated by the teacher M ,186

where t0 and t1 are the start and end frames of the sequence.187
We then perform reverse tracking starting from the final pre-188
dicted location (xt1

i , yt1i ), obtaining a backward trajectory189
P̃i = {(x̃t

i, ỹ
t
i)}

t0
t=t1 , again using M . We define cycle con-190

sistency error as the Euclidean distance between original191
query point and endpoint of the backward track:192

Ecycle(qi) =
∥∥(xt0

i , yt0i )− (x̃t0
i , ỹt0i )

∥∥
2
. (1)193

A trajectory P̂i is considered valid if the cycle consis-194
tency error satisfies Ecycle(qi) < α, where α is a hyperpa-195
rameter controlling the filtering aggressiveness. Only valid196
trajectories are used as pseudo-labels to supervise the stu-197
dent. Throughout training, the teacher model is frozen and198
only the student model is updated via backpropagation.199

3.2.3. Student Fine-Tuning200

We train the student using supervision from both visible and201
occluded trajectories, following the loss formulation in Co-202
Tracker3 [8]. Tracking supervision is provided via a Huber203
loss with a threshold of 6, applied across multiple refine-204
ment iterations. To emphasize visible points, higher weight205
is assigned to their loss terms, while occluded points are206
down-weighted by a factor of 1/5. An exponential discount207
factor γ ∈ (0, 1) is also applied, reducing contribution of208
earlier iterations and encouraging accurate predictions in fi-209
nal refinement steps. The overall loss is defined as:210

Ltrack =

K∑
k=1

γK−k

(
1vis +

1

5
1occ

)
·Huber(P(k),P⋆) (2)211

where P(k) is the student’s prediction at refinement it- 212
eration k, and P⋆ is the pseudo-label provided by teacher 213
M . Since pseudo-labels can be noisy, we found it more 214
stable to omit confidence and visibility supervision during 215
fine-tuning. This helps prevent overfitting to unreliable la- 216
bel quality and focuses learning on trajectory refinement. 217

4. Experiments 218

4.1. Datasets and Metrics 219

We train on the Cholec80 dataset [16], which contains 220
80 laparoscopic cholecystectomy videos exhibiting diverse 221
anatomy, motion patterns, lighting conditions, and tool in- 222
teractions. The videos are recorded at 25 FPS with an av- 223
erage duration of 2,306 seconds. Although it lacks point- 224
level annotations, we use it as an unlabeled dataset for semi- 225
supervised training. For evaluation, we use the STIR bench- 226
mark [18], comprising around 425 in-vivo and ex-vivo sur- 227
gical videos recorded with a da Vinci Xi robot and anno- 228
tated with over 3,000 points in the first and last frames of 229
each sequence. We filter out around 20 sequences with ex- 230
cessive label noise to ensure consistent evaluation. 231

We evaluate tracking performance using three metrics: 232
Mean Endpoint Error (MEE), Mean Chamfer Distance 233
(MCD), and Average Accuracy < δxavg , as defined in TAP- 234
Vid [3]. The < δxavg metric is computed as the average 235
percentage of tracked points falling within thresholds of {4, 236
8, 16, 32, 64} pixels from ground truth positions. 237

4.2. Implementation Details 238

The student model is trained for 120,000 iterations using 239
the Adam optimizer with a cosine learning rate schedule 240
starting at 5× 10−5. Each batch contains a randomly sam- 241
pled sequence with 64 query points tracked over 16 frames, 242
sampled with a random stride between 1 and 4. Training is 243
conducted on NVIDIA RTX 4090 GPUs. The cycle consis- 244
tency threshold α = 5 provides the best trade-off between 245
label quality and training signal. 246

4.3. Results 247

We evaluate SurgTracker on the STIR benchmark, com- 248
paring it to several recent methods for point tracking, in- 249
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CoTracker3
(Online)

Ours

Figure 2. Comparison of CoTracker3 and our method on a chal-
lenging sequence. Red and green dots mark initial and mid-frame
predicted positions, respectively, blue lines show trajectories, and
pink lines indicate final error. Our model better handles occlusion
and motion change, accurately recovering the original trajectory.

Table 1. Performance comparison on the STIR dataset.

Method MEE ↓ MCD ↓ < δxavg ↑
RAFT 44.25 43.60 50.41

SENDD 22.80 45.18 66.5
TAPIR 24.33 25.03 61.04

BootsTAP 20.38 21.4 63.74
CoTracker3 (Online) 17.01 17.81 68.11
SurgTracker (Ours) 16.27 17.12 68.55

cluding RAFT [15], SENDD [12], TAPIR [4], BootsTAP250
[5], and CoTracker3 (Online) [8]. As shown in Table 1,251
SurgTracker outperforms all baselines across all metrics.252
Compared to CoTracker3 (Online), which serves as our ini-253
tialization and frozen teacher, it reduces MEE by 0.74 and254
MCD by 0.69 while improving < δxavg by 0.44. These gains255
demonstrate the effectiveness of filtered self-distillation for256
adapting point trackers to high-shift surgical domains.257

Figure 2 shows a qualitative comparison with Co-258
Tracker3 on a challenging occlusion scenario. Both models259
initially track the top-right point correctly until an occlu-260
sion occurs (second column). Notably, during the occlu-261
sion, the direction of the intended motion changes. While262
CoTracker3 drifts and continues tracking the occluding tis-263
sue with an estimation of the prior motion, our model suc-264
cessfully recovers and resumes tracking the original struc-265
ture after it reappears (third column). The final trajectory is266
significantly more accurate, highlighting the robustness of267
our distilled model to occlusions and motion changes.268

4.4. Ablation Studies269

To evaluate the impact of cycle consistency filtering, we270
vary the threshold α controlling the maximum allowed de-271
viation between a point and its cycle-tracked counterpart.272
As shown in Table 2, omitting the filter results in lower273
accuracy, confirming the presence of noisy pseudo-labels.274
Filtering with α = 5 achieves the best trade-off, minimiz-275
ing both MEE and MCD while improving < δxavg , reflect-276

Table 2. Ablation on cycle consistency threshold α.

α MEE ↓ MCD ↓ < δxavg ↑
No filtering 16.69 17.46 68.04

2.5 16.76 17.58 68.02
5 16.27 17.12 68.55

7.5 16.43 17.23 68.31

Table 3. Comparison of different teacher configurations. The stu-
dent is always CoTracker3 (Online). CoT3 (On) and CoT3 (Off)
refer to online and offline versions of CoTracker3 respectively.

Teacher Models MEE ↓ MCD ↓ < δxavg ↑
CoT3 (On) 16.27 17.12 68.55

CoT3 (On), CoT3 (Off) 16.28 17.10 68.50
CoT3 (On), CoT3 (Off),

BootsTAP 16.38 17.21 68.39

CoT3 (On), CoT3 (Off),
Track-On 16.80 17.64 68.00

ing more accurate tracking. A lower threshold (α = 2.5) is 277
overly conservative, discarding too many training samples 278
and thus limiting supervision. Conversely, a higher thresh- 279
old (α = 7.5) allows more trajectories but admits additional 280
noise, slightly degrading performance. These results high- 281
light the importance of temporal consistency in improving 282
label quality and overall tracking performance. 283

Table 3 compares different teacher configurations for 284
pseudo-label generation, following multi-teacher setup in 285
CoTracker3. For each configuration, a teacher model is ran- 286
domly sampled from corresponding pool per batch and used 287
to generate pseudo-labels for student fine-tuning. Our self- 288
distillation approach, which uses only CoTracker3 (Online) 289
as the teacher, achieves the best performance. Incorporating 290
other teachers slightly degrades performance, likely due to 291
inconsistent supervision that hinders stable learning. These 292
findings suggest that, under a significant domain shift, a 293
consistent, architecture-aligned teacher can outperform di- 294
verse ensembles, offering more effective supervision. 295

4.5. Conclusion 296

We present SurgTracker, a semi-supervised framework for 297
adapting synthetic-trained point trackers to surgical video 298
through filtered self-distillation. By leveraging a single, 299
architecture-aligned teacher and enforcing cycle consis- 300
tency, our method provides stable, high-quality supervi- 301
sion without the overhead of maintaining teacher ensem- 302
bles. Experiments on the STIR benchmark demonstrate that 303
SurgTracker improves tracking performance using only 80 304
unlabeled videos, demonstrating that consistent supervision 305
can outperform diverse teacher setups in challenging, high- 306
shift surgical domains. 307
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