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Abstract
AI spans from large language models to tiny mod-
els running on microcontrollers (MCUs). Ex-
tremely memory-efficient model architectures are
decisive to fit within an MCU’s tiny memory bud-
get e.g., 128kB of RAM. However, inference
latency must remain small to fit real-time con-
straints. An approach to tackle this is fusion,
which aims to optimize data flows across neu-
ral network layers. In this paper, we introduce
msf-CNN, a novel technique that efficiently finds
optimal fusion settings for convolutional neural
networks (CNNs) by walking through the fusion
solution space represented as a directed acyclic
graph. Compared to previous work on CNN fu-
sion for MCUs, msf-CNN identifies a wider set
of solutions. We published an implementation
of msf-CNN running on various microcontrollers
(ARM Cortex-M, RISC-V, ESP32). We show
for instance that msf-CNN achieves inference
using 50% less RAM compared to the prior art
(MCUNetV2 and StreamNet). msf-CNN thus of-
fers additional flexibility for system designers.

1. Introduction
Artificial Intelligence of Things (AIoT) is a domain aiming
to embed AI in the smallest networked devices (Ghosh et al.,
2018). As such AIoT is pushing the miniaturization of Deep
Neural Networks (DNNs) to fit microcontroller-based hard-
ware, which enables various applications at the edge of the
network. Use-cases include vision/audio recognition, envi-
ronmental monitoring, personalized medical care, etc. How-
ever, imbalance between the increasing resource require-
ments of DNNs and the very limited computation capacity
(CPU in MHz) and memory resource of Microcontroller
Units (MCUs) remains a challenge in deploying DNNs on
Internet of Things (IoT) devices. For instance, as described
in RFC7228 (Bormann et al., 2014), billions of IoT de-
vices are resource-constrained devices, with Random Ac-
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cess Memory (RAM) smaller than 50 KiB, and Flash mem-
ory smaller than 250 KiB. On the other hand, even a single
convolutional layer in quantized ResNet-34 (Koonce, 2021;
He et al., 2016) consumes around 414.72 KiB in RAM. This
example highlights the huge gap between memory budgets
on IoT devices and RAM usage of DNNs.

A technique aimed at decreasing this gap is layer fusion, in-
troduced in (Alwani et al., 2016). Initially targeting FPGAs,
fusion reduces off-chip Dynamic RAM (DRAM) require-
ments and communication bus transfer costs for inference
with CNNs. Fusion is great for low-memory devices be-
cause it can save up to 95% of RAM usage. Moreover,
Fusion decouples input size from memory usage, allowing
for larger input. Recent work has thus explored the use
of fusion on MCUs, for example, to improve the memory
consumption of the first few convolutional layers of Mo-
bileNetV2 (Lin et al., 2021).

Nevertheless, we observe that significant issues linger on
MCUs. First, intermediate feature maps inside the fusing
block incur a high (re)compute cost. Second, input size lim-
its hamper many use-cases such as medical image process-
ing, sequence time series analysis (e.g. audio application),
etc. Third, implementations of fusion on MCUs have so
far been very hardware-specific (e.g. bound to the ARM-
Cortex-M7 instruction set) and model-specific (e.g. bound
to CNN mobile inverted blocks).

Contributions – With the goal of improving on the above
issues, we report on following work:

• We propose msf-CNN, a fusion-based approach to
achieve ultra-low RAM footprint of neural network
inference and we open-source its implementation;

• We formulate the problem of finding optimal fusion set-
tings that minimize peak RAM usage or compute cost
of neural networks as a variant shortest path problem.

• We provide graph models representing multi-stage fu-
sion neural networks, which encode peak RAM usage
and compute cost of single and fused layers.

• We designed a pruning strategy to squeeze the search
space and use graph-based algorithm to find solu-
tions in reasonable time complexity (From O(2N−2)
to O(N2)).

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

msf-CNN: Multi-Stage Fusion with Convolutional Neural Networks for TinyML

• We improved global pooling and dense operators to fur-
ther squeeze RAM usage without compute overhead.

• We released preliminary evaluation results on MCU-
based IoT boards. We compared common CNN,
StreamNet, MCUNetV2 and msf-CNN on a variety
of microcontrollers. We show that msf-CNN allows
new trade-off between memory saving and compute
overhead.

2. Background
Fusion for DNN on FPGA & GPU – Fusion was initially
proposed in (Alwani et al., 2016) as a fusion scheme for
Convolutional Neural Network (CNN) deployed on Field
Programmable Gate Array (FPGA) to reduce the off-chip
DRAM usage and I/O overhead. Instead of computing the
complete feature maps for each layer, it fuses convolutional
layers into a single block (pyramid structure) and computes
only one or a few output elements. This approach requires
only small portions (tiles) of the feature maps loaded onto
DRAM. However, the reduction of RAM is at the cost of re-
computing the overlapped elements in feature maps required
by adjacent fused layers. DeFiNES (Mei et al., 2023), an-
other fusion framework, explored different cache strategies
within fused layers to alleviate the re-computation issue.
(Fully-recompute, H-Cached & V-recompute, and Fully-
cache). Fully-recompute eliminates caching entirely, requir-
ing all overlapping input tensor elements to be recalculated;
H-cached & V-recompute caches elements along the hori-
zontal axis while recomputing vertical overlaps; and Fully-
cache retains all overlapping elements in memory. These
approaches illustrate a critical trade-off—enhanced caching
progressively reduces compute redundancy but proportion-
ally increases RAM usage, with cached element quantity in-
versely correlating to compute overhead and directly scaling
with memory demands. Additional work has also applied
fusion on GPUs, for instance (Pinckaers et al., 2022) used it
for cancer detection in medical pictures.

Fusion on MCUs – Work on MCUNetV2 (Lin et al., 2021)
has applied fusion on MobileNetV2 to reduce the peak RAM
usage. It revealed that layers at the head of the model dom-
inate the RAM usage. Hence these layers were fused into
one block to reduce RAM usage significantly. The recom-
pute issue was mitigated by redistributing the receptive field,
so the receptive field inside the fusion block was decreased
and regained at a later stage. Work on StreamNet (Zheng
et al., 2024a) introduced a two-dimensional tensor cache to
significantly reduce re-compute operations in a fusion block
and applied brute force to search for optimal fusion position
and cache depth. Nevertheless, no prior work explored the
potential of multiple fusion blocks in CNNs.

Representing DNNs as Inverted Dataflow Graphs –
Dataflow graph have been widely used for modeling DNN,

Conv / Pooling

Conv / Pooling

Conv / Pooling
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Conv / Pooling

Conv / Pooling

GlobalPooling / Dense

Fusion Blocks with 
Layer Cache

Iterative
GlobalPooling / Dense

…...

Fused

Rewrite
…...

Output

Original CNN

MLP

Output

MLP
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Figure 1. Overview of msf-CNN. The convolutional layers are
fused into several fusion blocks based on the optimal setting found
by optimizer. We let global Pooling and dense layers compute the
outputs iteratively to further squeeze RAM usage.

as pioneered by TensorFlow and PyTorch (Abadi et al.,
2016; Paszke et al., 2019). The data (tensor) flows along-
side the directed edge between nodes which indicates the
operations (convolution, pooling, addition, etc.) applied on
the incoming edges (tensors). This representation shows
the producer-consumer relations among operations and has
great expressiveness and flexibility, enabling automatic dif-
ferentiation and concurrent execution of independent opera-
tions.

3. High-Level Idea
Inspired by the above previous works, msf-CNN aims to
answer the following questions: (1) Where to fuse and how
to determine the fusion position/depth? (2) Under specific
resource constraints, how to find the optimal fusion settings?

As depicted in Figure 1, msf-CNN determines fusion set-
tings (fusion position and depth), transforms layers accord-
ingly into fusion blocks and rewrites global pooling and
dense layers as their iterative implementation, which can
further squeeze RAM usage without any computation over-
head.

To guide us in doing so, we use inverted dataflow graphs
to model CNNs, where tensors are represented as nodes,
and operations are depicted as edges connecting them. On
this graph, we encode into the edges the resource usage of
the operations, and use additional edges to represent fusion
blocks. This allows us to design graph-based strategies to
find optimal solutions with lower computational complexity
using proven graph algorithms.
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4. Problem Definitions & Assumptions
We aim to solve a pair of dual optimization problems. Let
χ be the set of all possible configurations for fusion blocks.
We define P1 as the problem of minimizing peak RAM
usage subject to a computation cost limit:

min
S

P (χ, S) (1)

s.t. F (χ, S) < Fmax (2)

where P is the peak RAM usage, and F is the computation
overhead for inference under fusion setting S, relatively to
inference without fusion (thereafter denoted vanilla). The
compute cost limit and RAM limit are annotated by Fmax

and Pmax, respectively. Dually, we define P2 as the prob-
lem of minimizing computation cost subject to a RAM
footprint limit:

min
S

F (χ, S) (3)

s.t. P (χ, S) < Pmax (4)

Without loss of generality, we only discuss fusion blocks
of convolutions. We assume a H-Cache scheme, which
we chose to be a good trade-off between buffer size and
recompute cost on MCUs. For a fusion block containing n
layers, the cache buffer size of the i-th layer under H-cache
scheme is given by

Bufi = ti × ki × cini (5)

where ti, ki and cini are the tile size, kernel size and input
channels number, respectively. Obviously, the first layer
of the fusion block does not need any input cache, thus
Buf1 = 0. The total cache size of the fusion block is Buf =∑

i Bufi.

In Appendix A, we further detail the analysis of the number
of multiply–accumulate (MAC) operations.

5. DNN Graph Representation & Formulation
We interpret the optimization problems described in Sec-
tion 4 by modeling the DNN as data-nodes graph. We trans-
form the problem as a shortest path problem (Sedgewick,
2001) and use off-the-shelf graph algorithms to find a solu-
tion that minimizes the peak memory usage as well as com-
pute cost during inference regarding specified constraints.

5.1. DNN Representation

As described in Section 2, we model a DNN as a directed
acyclic graph (DAG) G = (V,E) with data nodes
v0, . . . , vn representing input/output tensors of consecutive
layers and m edges e1, . . . , em that represent single layers
or fusion blocks. Each edge is also encoded with resource

Optimal (min-max): 
(e5, e3, e4) | 10 kB

v0 v1 v2 v3 v4
e1 e2 e3 e4

e5

e6

15 kB 10 kB 10 kB 2 kB

8 kB

2 kB

RAM Usages

v0 v1 v2 v3 v4
e1 e2 e3 e4

e5

e6

10 M 15 M 15 M 5 M

40 M

35 M

MAC Operations

Optimal (shortest): 
(e1, e2, e3, e4) | 45 M

Conv / Pooling: e2

Conv / Pooling: e1

Conv / Pooling: e4

Conv / Pooling: e3

v0

v4

v1

v2

v3

e5

e6

Figure 2. The neural network is modeled as a DAG. Nodes vn
denote the tensors that are produced and consumed by the operators
or possible fusion blocks. Edges e1, . . . , e4 represent individual
operators, while edge e5, e6 represent two candidate fusion blocks.
Edges are annotated with the RAM usage and MAC amounts of
their corresponding operators and fusion blocks.

requirements by layer or fusion block. Specifically, the first
(v0) and the last node (vn) are the input and output tensor
of the neural network, respectively.

In general, the edge represents the input/output relation of
nodes and also indicates the fusion depth inside the neural
network. For example, an edge that connects consecutive
vertices e = vn → vn+1 is a single layer that consumes
vn as input tensor and outputs tensor vn+1, while an edge
that jumps over multiple vertices e = vn → vn+m,m > 1
represents a fusion block with m layers. Each complete
compute path from v0 to vn represents a fusion setting S.

A typical example depicted in Figure 2 explains how to use
DAG for representing a simple neural network. Tensors
are transformed into nodes, operators and fusion blocks
are edges. Edges are encoded with RAM usages and MAC
amounts of their corresponding operators. Hence, the prob-
lem is transformed to find an optimal path from the input
node to the output node of the graph.

5.2. Encoding RAM Usage

We first calculate the RAM usages Pei of all single layers
and all possible fusion blocks inside the neural network by

Pei = I +O +Buf (6)

where I and O are the size of input and output tensor, respec-
tively. Buf represents the cache buffer size of the fusion
block, which is determined by the chosen cache scheme. In
this work it is given in Equation (5). Trivially, for non-fused
layers Buf is always set to zero since no fusion cache is
needed.

Thereafter, the calculated RAM usages are attached to the
corresponding edges for further analysis. For a complete
compute path contains n edges S = (ei1 , . . . , ein) we can
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then calculate the overall peak RAM usage PS by

PS = max
j=1...n

Peij
(7)

5.3. Encoding Compute Cost

The encoding steps of compute cost are similar to encoding
peak memory usage. Here we use MAC operations as the
indicator of compute cost. In this paper, the MAC amount
of fusion block is given in Equation (16) and Equation (17).

After attaching the calculated MACs to the edges, the total
compute cost of a complete compute path S is

CS =

n∑
j=1

Ceij
(8)

Therefore, the compute overhead factor F representing
the ratio of the MAC amount after fusion to the vanilla,
common one without fusion is expressed as

F = CS/Cvanilla. (9)

For the constraints in Equation (2), users can set a maximum
compute overhead factor Fmax expressed as

Fmax = Cmax/Cvanilla. (10)

In the following sections, we will discuss several graph-
based algorithms to solve the optimization problem.

6. Searching for Optimal Fusion Settings
After building an inverted dataflow graph of a DNN with
all possible fusion combinations (edges), the two dual prob-
lems are indeed transformed into classic graph problems:
finding an optimal complete compute path from the input
tensor node v1 to the output tensor node vn under specific
constraints.

Impact of Search Space Size – If we consider the un-
constrained optimization, the solution is trivial: the single-
source-single-target shortest path, which can be found by
classical graph algorithm like Dijkstra’s (Dijkstra, 2022)
with the time complexity of O(E log (V )). However, when
considering the constraints, it is necessary first to explore all
possible complete compute paths that meet the conditions,
which can potentially explode the complexity to O(2V−2)
(Robert, 2002) in the worst case. Hence, we need a smarter
strategy to squeeze the search space and avoid horrendous
complexity.

6.1. Problem P1: Minimizing Peak RAM Usage

The unconstrained optimization is to find a complete com-
pute path with minimal peak RAM usage, which is equiva-
lent to finding the path that minimizes the maximum weight

of edges (minimax path problem). As mentioned above,
this can be solved by modified Dijkstra algorithm. An ex-
ample path with minimal peak RAM usage is presented in
Figure 2.

For the constraint of compute cost limit (Equation (2)), the
pruning strategy needs co-design with its optimization prob-
lem (Equation (1)). We noticed that all possible peak RAM
usages have already been encoded into the edges. There-
fore, the problem can be transformed into the following:
we first construct a candidate solution set candidate set
{S0, S1, . . . , Si, . . . } with

Si = argmin
S

C(Gi, S), (11)

Gi := subgraph of Gi−1, obtained by removing
all edges in Gi−1 with the maximal RAM usage, (12)
G0 = G (13)

where C(Gi, S) is the MAC amount of fusion setting S
in graph Gi. The candidate solution Si can be obtained
by applying the shortest path algorithm. We then filter the
candidate solutions to find those that satisfy the constraints
and select the one with the smallest RAM usage as the
optimal solution.

In this way, we avoid constructing a search space with a
complexity of O(2V−2). Instead, we iteratively eliminate
subgraphs and solve for candidate solutions, reducing the
complexity to O(V 2). For most deep neural networks run-
ning on MCUs, this process can be done in few seconds.

6.2. Problem P2: Minimizing Compute Cost

We first discuss the unconstrained variant, which is identical
to Pmax = ∞. In this case, finding the solution is equivalent
to finding the shortest complete compute path – the path
with a minimal sum of MAC – of the graph, which can be
again solved by classical algorithm like Dijkstra’s (Dijkstra,
2022). Figure 2 shows an example with an optimal path
marked in red.

When bringing back the constraint of RAM limit, the prun-
ing step is simple: eliminating all edges with encoded RAM
usage exceeding the limit. So, all paths in the graph will
automatically fulfill the limitation.

6.3. Analytical Results

To explore the capability of these two dual optimizers, here
we choose three variants of MobileNetV2 and MCUNet
(Sandler et al.; Lin et al., 2021) with different scales for the
pilot study: MobileNetV2 with width multiplier 0.35 and
input size of 144× 144× 3 (MBV2-w0.35), MCUNetV2-
VVW-5fps with input size of 80 × 80 × 3 (MN2-vvw5),
MCUNetV2-320KB-ImageNet with input size of 176 ×
176 × 3 (MN2-320K). For optimizer of minimizing peak

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

msf-CNN: Multi-Stage Fusion with Convolutional Neural Networks for TinyML

RAM usage, the maximal compute overhead factor ranges
from 1.1 to 1.5 then jumps to Infinite, which represents an
unconstrained optimization. For optimizer of minimizing
compute cost, the maximal peak RAM usage was set from
16 kB to 256 kB where each level represents a popular RAM
capacity of mainstream MCUs.

As shown in Table 1, both optimizers can indeed theoret-
ically suppress the peak RAM usage without violating all
preset constraints. The high RAM usage compression is
achieved with increase of deep fusion blocks, thereby intro-
ducing a high compute overhead. The extreme cases lay on
the unconstrained optimization minimizing the RAM usage
by more than 90%, while reluctantly introducing 1.6× to
2.7× of compute overhead. This is only suitable for time-
intensive applications with a high limited RAM budget.

On the other hand, setting appropriate constraints can still
lead to well-optimized configurations, with our tools offer-
ing flexibility to accommodate real-life scenarios. Under
different thresholds on compute overhead factor or peak
RAM usage, the solutions that optimizer found are all ful-
fill the constraints and with RAM usage all lower than the
vanilla, un-fused setting. In some cases, it is even possi-
ble to compress RAM usage without incurring additional
computational overhead. These pilot studies demonstrate
the effectiveness of finding usable solutions under real-life
constraints.

The analytical results were further validated by on-board
experiments presented in Section 8.

7. msf-CNN Implementation Details
We have implemented the msf-CNN fusion mechanism on
top of microTVM v0.16.0 (Chen et al., 2018). We use the
TVM frontend to convert models into intermediate repre-
sentation (IR), and rewrite the compute graph and low-level
routines of operators to fit the fusion settings. We leveraged
RIOT-ML (Huang et al., 2024) to benchmark the fused mod-
els (transform into C code by microTVM) on the IoT boards
shown in Table 2.

Sequential RAM Usage – We have optimized the RAM
usage of the global pooling and fully connected (Dense) lay-
ers. We observed that the outputs of these two basic blocks
can be computed iteratively, and in most scenarios, their
input dimensions are much larger than their output dimen-
sions. As a result, we can temporally divide the input and
sequentially process it through the iterative global pooling
or dense layers, which further minimizes memory usage. If
their upstream is a fusion block, this perfectly matches the
feature of temporally split inputs, enabling them to be fused
seamlessly.

Iterative Computation of Global Pooling – As illustrated

2 = IterPool 1 ,

1 = IterPool 0 ,

n = IterPool n-1 ,

…...

= Pool

(Iter)Pool  {min, max, average}∈
Elements in memory

Common Global Pooling Iterative Global Pooling

Figure 3. Comparison of common and iterative global pooling.

Common Dense Iterative Dense

Elements in memory

Flatten

W(1) W(2) ... W(n) × = 

1 2

n

= 1 W(1)× + 2 W(2)× n W(n)×+...+

1. Iteration

2. Iteration

n-th Iteration

Figure 4. Comparison of common and iterative dense layer. The
columns of the weight matrix are denoted as w(n).

in Figure 3, standard global pooling requires that all ele-
ments of the input tensor stored in RAM. In our approach,
the global pooling layer receives one or a few input elements
at each step and iteratively updates the result. For a 7× 7
global pooling layer, this allows us to compress the RAM
usage to 2% of the original size, without introducing any
redundant computations or computation overhead.

Iterative Computation of Dense Layer – We noted that the
matrix multiplication in dense layers can be implemented
by splitting the input vector into individual elements, multi-
plying each element with its corresponding weight column,
and iteratively summing the results, as shown in Figure 4.
Unlike the original approach, which requires the complete
input tensor, this method processes only one element of the
input tensor per iteration. For a 1024→256 dense layer, this
approach compresses memory usage to 20% of the original.

8. Experiments on Microcontrollers
In this section we report on experiments running msf-CNN
on various MCUs, aiming to validate both the correctness of
our optimization strategies and their versatility when applied
on diverse IoT devices.
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Table 1. Analytical results with msf-CNN under different constraints. Vanilla: un-fused models. SAA: Same as above.
MBV2-w0.35 MN2-vww5 MN2-320K

Constraint RAM (kB) F RAM (kB) F RAM (kB) F
Vanilla - 194.44 1 96 1 309.76 1

P1: Fmax

1.1 67.905 1.1 32.792 1.04 190.096 1.04
1.2 (SAA) 26.128 1.11 186.736 1.19
1.3 21.288 1.3 17.76 1.3 186.032 1.25
1.4 15.34 1.38 13.376 1.35 156.672 1.37
1.5 (SAA) (SAA) 94.184 1.45
Inf 7.887 1.68 12 1.96 42.643 2.69

P2: Pmax

16 kB 15.34 1.38 13.376 1.35 (No Solution)32 kB 25.674 1.25 26.128 1.11
64 kB 63.741 1.23 38.576 1.02 62.88 2.02
128 kB 83.065 1.02 89.6 1 94.184 1.45
256 kB 181.44 1 (SAA) 247.808 1

More concretely, we measured peak RAM usage and com-
pute latency based on the fusion settings in Section 6.3,
as reported in the following. As shown in Table 2, we
carried out our experiments on the relevant 32-bit micro-
controller architectures: Arm Cortex-M, Espressif Xtensa,
and RISC-V. For our model zoo, we chose MBV2-w0.35,
MN2-vww5 and MN2-320K as they are good representa-
tives of backbones for applications in AIoT (Saha et al.,
2022), as also used in prior works (Lin et al., 2021; Zheng
et al., 2024a). We compare msf-CNN performance to the
closest related work: MCUNetV2 (Lin et al., 2021) and
StreamNet-2D (Zheng et al., 2024a), more simply denoted
StreamNet in the following.

8.1. Minimal Peak RAM Usage

First, we evaluated solutions to P1 while relaxing Equa-
tion (2), i.e. the fusion settings with minimum peak RAM us-
age, without compute time constraint. Results are shown in
Table 3. We observe that, compared to prior art (StreamNet-
2D and MCUNetV2), msf-CNN can further reduce the peak
RAM usage by 65% to 87%. We could even deploy the
MBV2-w0.35 model onto the SiFive board that provides
only 16 kB RAM (!). However, achieving this high compres-
sion ratio comes at the expense of increased computational
latency, which we measured in Table 4. Interestingly, while
clock frequency plays a decisive role, MCU architecture can
also have a crucial effect, for larger models. For instance, no-
tice latency with Xtensa esp32s3 at 240MHz versus RISC-V
esp32c3 at 160 MHz, for the MN2-320K model (in Table 4).
Nevertheless, we measured that latency increases 2× to 5×
compared to vanilla (non-fused) CNN. Hence, such min-
imal RAM settings are only suitable for latency-tolerant
applications on the smallest devices.

8.2. Impact of RAM Budget Limit

As shown in Table 5, the measured peak RAM usage consis-
tently obeys to the given constraints, thereby validating the
correctness of the optimizer and corroborating our analytical
results. Based on these, we observe that higher RAM bud-
gets result in shorter compute latency for the optimal fusion
configurations identified by msf-CNN. This is because the
optimizer tends to favor configurations with either no fusion
or shallow fusion depths, which correspond to higher peak
RAM usage but lower computational costs.

For the MBV2-w0.35 and MN2-vww5 models, our method
outperforms MCUNetV2 when the RAM limit is set to
32kB and 64kB. Although our method does not surpass
StreamNet-2D across the board, msf-CNN does demonstrate
its flexibility, enabling users to select the optimal fusion
configuration under varying memory budgets.

8.3. Impact of Computation Cost Limit

When capping computation cost as a constraint, the rela-
tion between compute latency and peak RAM usage is con-
sistent (dual) with the previous section, such that higher
compute overhead budgets result in longer compute latency
and smaller peak RAM usage. We also observe that the
ratio F measuring the overhead compared to vanilla CNN
(no fusion) is bigger than the Fmax we set for. This dis-
crepancy comes from the fact that the optimizer computes
the amount of MAC operations, whereas the full latency
includes not only MAC operations but also I/O delays. In
mainstream MCUs, model weights are stored in Flash rather
than RAM, which introduces substantial additional latency
during read operations, thereby contributing to higher com-
pute latency. Specifically, when recomputation occurs, the
weights must be refetched from flash memory, which could
disrupt cache hits and lead to increased overall latency. De-
spite this discrepancy, our method still generates fusion
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Table 2. The different microcontrollers & boards used in our experiments.
Board MCU Core RAM (kB) Flash (kB)
Nucleo-f767zi STM32F767ZI Cortex-M7 @ 216 MHz 512 2048
Stm32f746g-disco STM32F746NG Cortex-M7 @ 216 MHz 320 1024
Nucleo-f412zg STM32F412ZG Cortex-M4 @ 100 MHz 256 1024
esp32s3-devkit ESP32-S3-WROOM-1N8 Xtensa @ 240 MHz 512 8192
esp32c3-devkit ESP32c3-1-MINI-M4N4 RISC-V @ 160 MHz 384 4096
hifive1b SiFive FE310-G002 RISC-V @ 320 MHz 16 4096

Table 3. Minimal peak RAM use, measured in kB.
(Vanilla: un-fused model)

MBV2-w0.35 MN2-vww5 MN2-320K
(Fusion)
Vanilla 194.44 96 309.76
MCUNetV2 63 45 215
StreamNet 66 44 208
msf-CNN 8.56 15.368 51.164

Table 4. Inference execution time, measured in ms, with msf-CNN
tuned with minimal peak RAM. (OOM: Out-of-Memory)

MBV2-w0.35 MN2-vww5 MN2-320K
(MCU)
stm32f767 1996.8 1723.0 19329.9
stm32f746 1379.6 1727.5 16261.9
stm32f412 5270.1 4943.4 56979.0
esp32s3 6748.2 5974.1 76763.6
esp32c3 6792.7 6248.9 73713.8
SiFive 10000.0 OOM OOM

configurations for the MBV2-w0.35 and MN2-vww5 mod-
els that outperform MCUNetV2. Particularly for memory-
sensitive but time-insensitive applications, we can set the
constraint Fmax to infinity, thereby obtaining novel fusion
configurations with minimal RAM usage.

9. Discussion
Our experiments demonstrate msf-CNN’s capability to op-
timize resource usage with diverse CNN models, under
user-specified constraints emphasizing either compute la-
tency or RAM footprint. Furthermore, msf-CNN generates
code that is deployable across diverse microcontroller ISAs.
Users can thus produce optimal CNN fusion configurations
tailored to specific industrial hardware requirements. How-
ever, some limitations remain, on which our future work
will focus next.

Parameter Space – The current optimization scope is
limited to fusion block positioning and depth selection, with
the number of output elements per iteration fixed at one.
This parameter significantly impacts both memory footprint

and compute overhead, which warrants further exploration.

Caching Paradigm – The search space currently incorpo-
rates only the H-cache paradigm. Future implementations
should integrate alternative caching strategies to enhance
optimization flexibility.

Neural Network Architecture – The work currently fo-
cuses exclusively on convolutional neural network architec-
tures (CNNs). The analysis of other prevalent structures,
particularly attention mechanisms and recurrent neural net-
works (RNNs), remains an open research direction.

10. Related Work
Machine Learning Compilers for MCUs – Compilers
such as Tensor Virtual Machine (TVM)(Chen et al., 2018),
IREE(The IREE Authors, 2019), FlexTensor (Zheng et al.,
2020), and Buddy (Zhang et al., 2023) offer automated tran-
spilation and compilation for models produced by major
Machine Learning (ML) frameworks, including TensorFlow
and PyTorch. As an extension of TVM, microTVM provides
low-level optimizations and routines tailored for execution
on various processing units, including a wide range of mi-
crocontrollers. Other prior work such as RIOT-ML (Huang
et al., 2024) combine a small general-purpose OS with mi-
croTVM, for comprehensive support for ML frameworks
and operator implementation on divers MCUs. Similarly,
msf-CNN work utilizes microTVM as both the front-end
importer for model files and the code generator for low-end
platforms. However, none of the above tools provide CNN
fusion optimization mechanisms, in contrast to msf-CNN.

Efficient Neural Network Structure – For models to op-
erate on low-power IoT devices, they must be compact and
computationally efficient. Studies have demonstrated the
use of lightweight CNNs for speech recognition and age
classification (Maayah et al., 2023), water leakage detection
(Atanane et al., 2023), fall detection for the elderly (Fang
et al., 2021) and other tasks (Hussain & Haque, 2018; Zhu-
Zhou et al., 2023). Tiny vision transformers have also been
employed for classification tasks in various studies (Jinyang
Yu et al., 2023; Liang et al., 2023; Yao & Liu, 2023; Wyatt
et al., 2021). Besides handcrafting a lightweight structure
by reducing layer number or kernel size, people (Iandola

7
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Table 5. Optimal fusion settings on Nucleo-f767zi. RAM (kB), Latency (ms). SAA: Same as above. Bold: msf-CNN beats MCUNetV2.
MBV2-w0.35 MN2-vww5 MN2-320K
RAM Latency RAM Latency RAM Latency

Vanilla 194.44 807.6 96 509.7 309.76 4394.3
MCUNetV2 63 1513.0 45 810.0 215 2777.0
StreamNet 66 417.0 44 225.0 208 1444.0

P1: Min. RAM s.t. Compute Cost Limit

Fmax

1.1 67.996 961.9 45.283 696.0 199.6 4171.0
1.2 (SAA) 26.24 769.2 196.072 4525.1
1.3 21.389 1313.8 20.568 922.7 195.333 4680.7
1.4 15.199 1412.3 17.904 931.3 156.864 5128.9
1.5 (SAA) (SAA) 94.224 5370.3
Inf 8.56 1996.8 15.368 1723.0 51.164 19329.9

P2: Min. Compute Cost s.t. RAM Limit

Pmax

16 kB 15.199 1412.3 17.904 931.3 (No Solution)32 kB 25.803 1266.3 26.24 769.2
64 kB 63.603 1121.7 45.283 684.6 63.456 9458.6
128 kB 83.133 947.0 89.6 683.4 94.224 5370.3
256 kB 181.44 879.2 (SAA) 247.808 3923.2

et al.; Tan & Le; Howard et al., b; Sandler et al.; Howard
et al., a) also re-designed the basic blocks to replace com-
mon convolutions for lower memory footprint and compute
latency.

Tiny Neural Architecture Search (NAS) This technique is
employed to automatically search for model structures with
optimal accuracy under the constraints of memory, flash
footprint and compute latency. TinyNAS (Lin et al., 2020)
and the Once-for-All Network (Cai et al., 2019) leverage
Neural Architecture Search (NAS) to design CNNs with
exceptionally small memory requirements for MCUs. The
resulting networks require only a few hundred kilobytes of
RAM for execution. However, contrary to msf-CNN, these
methods necessitate retraining or fine-tuning of pre-existing
networks.

Memory Optimization for CNN layers – Memory
optimization strategies can be broadly categorized into
scheduling-based and fusion-based methods. Scheduling-
based methods, such as those implemented in frameworks
like vMCU (Zheng et al., 2024b), MoDEL (Steiner et al.,
2023) and TinyEngine (Lin et al., 2021), focus on the ef-
ficient reuse of memory pools to minimize peak memory
usage by leveraging the different lifetimes of inter- and
intra-layer tensors. For instance, TinyEngine employs in-
place tensor updates for depthwise convolutions, enabling
the corresponding input and output tensors to share the same
memory space. vMCU further generalized this approach
for common convolution and pooling operations. Although
both methods achieve a peak memory reduction exceeding
50%, they still generate a complete output tensor for each
layer. This requirement remains problematic for low-power

MCUs with limited RAM, particularly when dealing with
large input sizes or an extensive number of output channels.
Prior work on fusion was covered in Section 2. Contrary to
msf-CNN, these methods do not fully exploit the potential
of multiple fusion blocks.

11. Conclusion
In order to fulfill the full potential of AI, convolutional neu-
ral networks (CNNs) must not only execute in the cloud
or on edge computing gateways, but also on the smaller
microcontroller-based devices which take part in our cyber-
physical systems. These small energy-efficient devices pose
a great challenge regarding the joint optimization of RAM
memory consumption and inference latency for CNNs. In
this context, we presented msf-CNN, a technique and heuris-
tics able to identify pools of practical fusion-based optimiza-
tions for CNN inference which jointly satisfy memory and
latency constraints. Compared to previous work on CNN
fusion for microcontrollers, msf-CNN identifies a wider set
of applicable solutions, on more diverse hardware. Our ex-
perimental evaluation using the open source implementation
we provide for common microcontrollers (ARM Cortex-
M, RISC-V, and ESP32) show that msf-CNN can achieve
inference with less than 50% the peak RAM usage state-of-
the-art. As such msf-CNN provides a new level of flexibility
for embedded system designers, which can now better tune
the trade-off between peak RAM and model inference la-
tency on various MCUs.
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Impact Statement
This paper presents work contributing to the field of Ma-
chine Learning on small microcontrollers. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. {TensorFlow}: a system for {Large-Scale}
machine learning. In 12th USENIX symposium on oper-
ating systems design and implementation (OSDI 16), pp.
265–283, 2016.

Alwani, M., Chen, H., Ferdman, M., and Milder, P.
Fused-layer CNN accelerators. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 1–12, Taipei, Taiwan, October 2016.
IEEE. ISBN 978-1-5090-3508-3. doi: 10.1109/MICRO.
2016.7783725. URL http://ieeexplore.ieee.
org/document/7783725/.

Atanane, O., Mourhir, A., Benamar, N., and Zennaro,
M. Smart Buildings: Water Leakage Detection Using
TinyML. Sensors, 23(22):9210, November 2023. ISSN
1424-8220. doi: 10.3390/s23229210. URL https:
//www.mdpi.com/1424-8220/23/22/9210.

Bormann, C. et al. Terminology for Constrained-Node
Networks. RFC 7228, May 2014.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan,
M., Shen, H., Wang, L., Hu, Y., Ceze, L., et al. Tvm:
An automated end-to-end optimizing compiler for deep
learning. arXiv preprint arXiv:1802.04799, 2018.

Dijkstra, E. W. A note on two problems in connexion with
graphs. In Edsger Wybe Dijkstra: his life, work, and
legacy, pp. 287–290. 2022.

Fang, K., Xu, Z., Li, Y., and Pan, J. A Fall Detection
using Sound Technology Based on TinyML. In 2021
11th International Conference on Information Technol-
ogy in Medicine and Education (ITME), pp. 222–225,
Wuyishan, Fujian, China, November 2021. IEEE. ISBN
978-1-66540-679-6. doi: 10.1109/ITME53901.2021.
00053. URL https://ieeexplore.ieee.org/
document/9750658/.

Ghosh, A., Chakraborty, D., and Law, A. Artificial in-
telligence in internet of things. CAAI Transactions on
Intelligence Technology, 3(4):208–218, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen,
B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasude-
van, V., Le, Q. V., and Adam, H. Searching for
MobileNetV3. pp. 1314–1324, a. URL https:
//openaccess.thecvf.com/content_
ICCV_2019/html/Howard_Searching_for_
MobileNetV3_ICCV_2019_paper.html.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
MobileNets: Efficient convolutional neural networks for
mobile vision applications, b. URL http://arxiv.
org/abs/1704.04861.

Huang, Z., Zandberg, K., Schleiser, K., and Baccelli, E.
RIOT-ML: toolkit for over-the-air secure updates and
performance evaluation of TinyML models. Annals of
Telecommunications, pp. 1–15, 2024.

Hussain, M. S. and Haque, M. A. SwishNet: A Fast
Convolutional Neural Network for Speech, Music and
Noise Classification and Segmentation. 2018. doi:
10.48550/ARXIV.1812.00149. URL https://arxiv.
org/abs/1812.00149.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model
size.

Jinyang Yu, Zikai Song, Jiahao Ji, Lixian Zhu, Kele Xu,
Qian, K., Dou, Y., and Hu, B. Tiny Audio Spectrogram
Transformer: Mobilevit for Low-Complexity Acoustic
Scene Classification with Decoupled Knowledge Dis-
tillation. 2023. doi: 10.13140/RG.2.2.24001.12646.
URL https://rgdoi.net/10.13140/RG.2.2.
24001.12646.

Koonce, B. Resnet 34. Convolutional neural networks
with swift for tensorflow: image recognition and dataset
categorization, pp. 51–61, 2021.

Liang, Y., Wang, Z., Xu, X., Tang, Y., Zhou, J., and Lu,
J. MCUFormer: Deploying Vision Transformers on
Microcontrollers with Limited Memory. 2023. doi:
10.48550/ARXIV.2310.16898. URL https://arxiv.
org/abs/2310.16898.

Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. Mcunet:
Tiny deep learning on iot devices. Advances in neural
information processing systems, 33:11711–11722, 2020.

9

http://ieeexplore.ieee.org/document/7783725/
http://ieeexplore.ieee.org/document/7783725/
https://www.mdpi.com/1424-8220/23/22/9210
https://www.mdpi.com/1424-8220/23/22/9210
https://ieeexplore.ieee.org/document/9750658/
https://ieeexplore.ieee.org/document/9750658/
https://openaccess.thecvf.com/content_ICCV_2019/html/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.html
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1812.00149
https://arxiv.org/abs/1812.00149
https://rgdoi.net/10.13140/RG.2.2.24001.12646
https://rgdoi.net/10.13140/RG.2.2.24001.12646
https://arxiv.org/abs/2310.16898
https://arxiv.org/abs/2310.16898


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

msf-CNN: Multi-Stage Fusion with Convolutional Neural Networks for TinyML

Lin, J., Chen, W.-M., Cai, H., Gan, C., and Han, S.
Memory-efficient Patch-based Inference for Tiny Deep
Learning. In Advances in Neural Information Processing
Systems, volume 34, pp. 2346–2358. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
1371bccec2447b5aa6d96d2a540fb401-Abstract.
html.

Maayah, M., Abunada, A., Al-Janahi, K., Ahmed, M. E.,
and Qadir, J. LimitAccess: on-device TinyML based
robust speech recognition and age classification. Dis-
cover Artificial Intelligence, 3(1):8, February 2023.
ISSN 2731-0809. doi: 10.1007/s44163-023-00051-x.
URL https://link.springer.com/10.1007/
s44163-023-00051-x.

Mei, L., Goetschalckx, K., Symons, A., and Verhelst, M. De-
fines: Enabling fast exploration of the depth-first schedul-
ing space for dnn accelerators through analytical mod-
eling. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 570–
583. IEEE, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pinckaers, H., van Ginneken, B., and Litjens, G. Streaming
Convolutional Neural Networks for End-to-End Learning
With Multi-Megapixel Images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44
(3):1581–1590, March 2022. ISSN 1939-3539. doi:
10.1109/TPAMI.2020.3019563. URL https://
ieeexplore.ieee.org/document/9178453.
Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Robert, S. Algorithms in c, part 5: Graph algorithms, 2002.

Saha, S. S., Sandha, S. S., and Srivastava, M. Machine
learning for microcontroller-class hardware: A review.
IEEE Sensors Journal, 22(22):21362–21390, 2022.

Sandler, M., Howard, A., Zhu, M., Zhmoginov,
A., and Chen, L.-C. MobileNetV2: Inverted
residuals and linear bottlenecks. pp. 4510–
4520. URL https://openaccess.thecvf.
com/content_cvpr_2018/html/Sandler_
MobileNetV2_Inverted_Residuals_CVPR_
2018_paper.html.

Sedgewick, R. Algorithms in c, part 5: graph algorithms,
third edition. Addison-Wesley Professional, third edition,
2001. ISBN 9780768685329.

Steiner, B., Elhoushi, M., Kahn, J., and Hegarty, J. Model:
memory optimizations for deep learning. In International
Conference on Machine Learning, pp. 32618–32632.
PMLR, 2023.

Tan, M. and Le, Q. V. EfficientNet: Rethinking model
scaling for convolutional neural networks. URL http:
//arxiv.org/abs/1905.11946.

The IREE Authors. IREE, September 2019. URL https:
//github.com/iree-org/iree.

Wyatt, S., Elliott, D., Aravamudan, A., Otero, C. E.,
Otero, L. D., Anagnostopoulos, G. C., Smith, A. O.,
Peter, A. M., Jones, W., Leung, S., and Lam, E.
Environmental Sound Classification with Tiny Trans-
formers in Noisy Edge Environments. In 2021 IEEE
7th World Forum on Internet of Things (WF-IoT), pp.
309–314, June 2021. doi: 10.1109/WF-IoT51360.
2021.9596007. URL https://ieeexplore.ieee.
org/abstract/document/9596007.

Yao, Z. and Liu, X. A CNN-Transformer Deep
Learning Model for Real-time Sleep Stage Classi-
fication in an Energy-Constrained Wireless Device
*. In 2023 11th International IEEE/EMBS Confer-
ence on Neural Engineering (NER), pp. 1–4, Bal-
timore, MD, USA, April 2023. IEEE. ISBN
978-1-66546-292-1. doi: 10.1109/NER52421.2023.
10123825. URL https://ieeexplore.ieee.
org/document/10123825/.

Zhang, H., Xing, M., Wu, Y., and Zhao, C. Compiler tech-
nologies in deep learning co-design: A survey. Intelligent
Computing, 2:0040, 2023.

Zheng, H.-S., Liu, Y.-Y., Hsu, C.-F., and Yeh, T. T. Stream-
net: memory-efficient streaming tiny deep learning infer-
ence on the microcontroller. Advances in Neural Infor-
mation Processing Systems, 36, 2024a.

Zheng, S., Liang, Y., Wang, S., Chen, R., and Sheng, K.
Flextensor: An automatic schedule exploration and opti-
mization framework for tensor computation on heteroge-
neous system. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 859–873,
2020.

Zheng, S., Chen, R., Li, M., Ye, Z., Ceze, L., and Liang, Y.
vMCU: Coordinated Memory Management and Kernel
Optimization for DNN Inference on MCUs. Proceed-
ings of Machine Learning and Systems, 6:452–464, May
2024b.

Zhu-Zhou, F., Tejera-Berengué, D., Gil-Pita, R., Utrilla-
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Code Availability – The implementation of msf-CNN is
publicly available. Please check the supplementary material
for the URL.

A. Analysis of the number of MAC operations
Analyzing the number of MAC operations in the fusion
block is quite complex. The input tensor for each layer is
sliced into overlapped tiles, and the kernel performs con-
volution on the data within each tile. Here, the number of
overlapped tiles N tile of each layer is

N tile = ⌊h
in + 2p− t

stile
+ 1⌋⌊w

in + 2p− k

slayer
+ 1⌋, (14)

where hin, win are the height and width of input tensor,
stile, slayer are the stride of tile and layer, p represents the
input padding. Recall that t, k are the tile size and kernel
size respectively.

And the output size of each tile is determined as:

Otile = ⌊ t− k

slayer
+ 1⌋cout. (15)

whereby cout is the number of output channels. We can
therefore derive the number Clayer of MAC operations of a
fused convolutional layer as:

Clayer = N tile ×Otile × k2 × cout. (16)

Finally, we can derive Cfb the total MAC operations of the
entire fusion block as:

Cfb =
∑

Clayer. (17)
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