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Abstract

The performance of 3D object detection in large outdoor point clouds deteriorates
significantly in an unseen environment due to the inter-domain gap. To address
these challenges, most existing methods for domain adaptation harness self-training
schemes and attempt to bridge the gap by focusing on a single factor that causes
the inter-domain gap, such as objects’ sizes, shapes, and foreground density vari-
ation. However, the resulting adaptations suggest that there is still a substantial
inter-domain gap left to be minimized. We argue that this is due to two limitations:
1) Biased pseudo-label collection from self-training. 2) Multiple factors jointly
contributing to how the object is perceived in the unseen target domain. In this
work, we propose a grouping-exploration strategy framework, Group Explorer
Domain Adaptation (GroupEXP-DA), to addresses those two issues. Specifically,
our grouping divides the available label sets into multiple clusters and ensures
all of them have equal learning attention with the group-equivariant spatial fea-
ture, avoiding dominant types of objects causing imbalance problems. Moreover,
grouping learns to divide objects by considering inherent factors in a data-driven
manner, without considering each factor separately as existing works. On top of the
group-equivariant spatial feature that selectively detects objects similar to the input
group, we additionally introduce an explorative group update strategy that reduces
the false negative detection in the target domain, further reducing the inter-domain
gap. During inference, only the learned group features are necessary for making the
group-equivariant spatial feature, placing our method as a simple add-on that can
be applicable to most existing detectors. We show how each module contributes
to substantially bridging the inter-domain gaps compared to existing works across
large urban outdoor datasets such as NuScenes, Waymo, and KITTI.

1 Introduction

Learning 3D object detection [42, 12, 27] and segmentation [50, 11, 32, 10] in large outdoor point
cloud scenes is of increasing importance due to its wide range of applications, such as autonomous
driving [19] and Augmented Reality (AR) [14]. However, annotating such 3D data is expensive and
labor-intensive. This limits the applicability and generalization of off-the-shelf models to diverse
real-world applications. To mitigate the dependency on large-scale datasets with labels, studies
for Domain Adaptation (DA) have gained considerable attention from the community [38, 25, 41,
46, 44, 43, 20, 17, 40, 8, 3, 31, 7]. In the context of 3D detection, DA is motivated by utilizing
knowledge learned from a source domain to adapt to a target domain using a pseudo-label set.
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Figure 1: Several factors causing the inter-domain gap, such as the point density and object volume in
NuScenes (Target) and Waymo (Source) datasets are illustrated with the fitted multivariate Gaussian
distribution (left). The baseline [43] adaptation primarily detects objects having features near the
mean of the distributions indicated by red circles. On the other hand, the proposed adaptation first
groups objects and explores the target domain to reduce the false negative. The heatmaps show
average recall (right). Objects with extreme sparsity are excluded for clear visualization.

Typically, in the widely used self-training scheme [44, 43], a detection model is pre-trained on the
source domain and constructs an initial pseudo-label set for re-training in the target domain. The
pseudo-label set progressively expands as more pseudo-labels are collected after each retraining.
Here, the pseudo-label set consists of detections with high confidence scores. Based on the principle
of self-training, recent existing works focus on specific factors that cause the inter-domain gap. These
can be broadly categorized into domain variations in object sizes [38], density [8], or geometric
structure [17, 20]. Despite good progress in bridging the inter-domain gap, two challenges remain
unsolved: 1) Biased pseudo-labels due to the conservative collection strategy of the self-training
scheme 2) Strict separation of multiple factors that jointly contribute to the creation of inter-domain
gap. Typically, in one domain, a group of objects sharing common features outnumber other objects
having different features, as addressed in existing works [38, 8, 17, 20]. While this may not cause
a significant performance deterioration in the source domain, where the environment is similar, it
could cause a bias under the self-training scheme. For example, detection with high confidence scores
typically comes from objects belonging to dominant groups, as they are the ones that the detector
learns the most of in the source domain. As shown in Figure 1 (a), the recall of objects in the target
domain is significantly higher when the objects contain similar features as the dominant objects in
the source domain, ignoring other objects. As a partial solution to this problem, existing works focus
on a single factor only to address the inter-domain gap e.g. size or point cloud density. However, as
Figure 1 shows, a single factor cannot explain all the domain variation as an object’s appearance is a
result of multiple factors jointly influencing the foreground points.

In this work, we address the aforementioned two issues of the current domain adaptive 3D detection.
Our core intuition comes from the fact that the factors causing inter-domain gaps often already exist
in the source domain to an extent. For example, the density of points often varies due to the distance
and viewing angle of the sensor even inside a domain. Object sizes and shapes would also vary even
in one single domain. Based on this observation, we aim to reduce the bias of the detection model to
dominant objects by finding groups and evenly distributing the detector’s attention during learning
to all groups that would be otherwise largely neglected due to less dominant features. Nevertheless,
finding optimal groups that represent the intra-domain gap is not straightforward because multiple
factors jointly contribute to variations in objects’ appearances. To address this issue, we introduce a
data-driven grouping method that finds object groups with different characteristics. The groups are
then progressively updated for adaptation, redistributing the available labels according to each group
to learn the different characteristics found for each group in the target domain. Our contributions can
be summarized as follows:

1. We introduce a new alternative approach for domain adaptation, Group Explorer Domain
Adaptation, (GroupExp-DA), which reflects on the available labels in order to understand the
target domain, bridging the inter-domain gap.

2. To ensure each object group receives equal attention for learning, we introduce the Group-
Equivariant spatial feature, which is learned for selectively detecting objects similar to the input
group, preventing dominant types of objects from causing imbalance problems.

2



3. To make the best use of the Group-Equivariant feature’s selective detection ability depending on
the input group, we propose an exploration strategy that encourages the groups to reflect the target
domain by redistributing available labels, leading to fewer false negatives for the adaptation.

4. Extensive adaptation experiments on KITTI, Waymo, and NuScenes datasets show the effective-
ness of our approach for bridging inter-domain gaps.

2 Related Work

Point Cloud-based 3D Detection for Outdoor Scene. Existing methods for 3D point cloud-based
object detection can be divided into two main categories: point-based and voxel-based. Based on
PointNet series [21, 24], point-based methods [23, 29, 29, 22, 45] propose to extract features from
unordered and unstructured raw point-cloud directly. Voxel-based methods divide the unstructured
point clouds into regular voxel grids and are fed into encoders either based on sparse convolution [42,
51, 12, 30, 26, 2, 9, 48] or Transformer [34, 16, 5, 37, 15]. The encoded spatial features, which
are also called Bird’s Eyes View (BEV) features, are then fed into Regional Proposal Networks
(RPN) for the final detection. There are also a few methods that combine point- and voxel-based
methods [27, 28, 39]. Currently, in terms of performance, voxel-based detectors dominate the
point-cloud-based 3D detection for outdoor scenes. Therefore, we employ Second-IoU [42] and
PointPillars [12] as the base detectors for our experiments, as they are most-widely used detectors
that existing works are built on.

Domain Adaptive Detection. The target of domain adaptive 3D detection is to mitigate the inter-
domain gap between the source and the target by focusing on several factors, such as object size [38,
25], point cloud deterioration [41], and the encoder separation for domains [46]. ST3D series [44, 43]
propose a self-training scheme that progressively collects pseudo-label sets in the target domain
for retraining. Built on self-training scheme, DA for 3D detection has been extensively studied to
acquire higher quality pseudo-labels by addressing the inter-domain gap caused by geometric shape
with prototype learning [20, 17], dense-to-sparse density variation using knowledge distillation [40],
a general density variation with beam augmentation and knowledge distillation [8], cross-domain
examination to measure the consistency of pseudo-labels [3] and focusing on specific architecture [49].
A considerable number of existing works focus on a single factor, such as density, shape, and size, to
bridge the inter-domain gap. Instead, we attempt to see the inter-domain gap as a result of multiple
factors combined and bridge the gap by finding inherent groups.

3 Method

3.1 Framework Overview

Following the self-training-based unsupervised domain adaptation scheme [44, 43] for 3D detection,
we are given point clouds X = Xs ∪Xt and labels Y = Ys ∪ Yt as the initial set. Here, Xs and Ys

are point could and box labels of the known source domain. On the other hand, Xt and Yt are the
point cloud and initial pseudo label set in the unlabeled target domain. Yt is collected by the detector
trained only on the source domain using Xs and Ys. A label in Y consists of seven parameters
defining a 3D box with three parameters for center (x, y, z), three parameters for size (l, w, h), and
one parameter for vertical rotation θ. Our goal is to improve the detector’s inter-domain adaptation
by focusing on the pseudo-label collection. In particular, instead of treating all available objects in Y
equivalently, we aim to understand objects in Y better by grouping.

Specifically, as depicted in Figure 2 and Alg. 1, we first extract foreground points from available
boxes and learn to encode objects into the object descriptor from the points (Sec.3.2). The descriptors
are then used to progressively group objects (Sec. 3.3). Our Group-Region Correlation (Sec. 3.4)
takes the group features as input and fuses with RPN to selectively detect objects similar to the
individual group.

3.2 Object Descriptor Extraction

Given a pair of point cloud x ∈ Rnp×3 and a label set y ∈ Rnb×7 consisting of np points and
nb boxes from X and Y , respectively, this module aims to produce a learnable object descriptor
Fobj ∈ Rnb×dobj during training. First, foreground points, Pobj = {pkobj}

nb
k=1 are extracted using y
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Figure 2: Overall pipeline of our proposed method. During training, we extract foreground points
from existing 3D box labels and feed them to the Object Descriptor Extraction module to acquire
object descriptors. The descriptors are used for grouping & exploration and fed into the Group-
Correlation module to generate RPN to detect objects similar to each group.

from the input point cloud x. Our object descriptor extraction module then takes Pobj as input and
outputs object descriptors Fobj using neural networks consisting of MLP and global max pooling,
which are adopted from [21, 13]. The motivation behind the architectural choice is two-fold: (1) An
arbitrary number of object points, pkobj , can be processed efficiently without involving comparably
slow sampling techniques. (2) Global max pooling offers permutation invariant features, which helps
Fobj less prone to overfitting by certain permutations from viewing angles, etc. During training, Fobj

serves as the input for the progressive grouping process and is not used during inference.

3.3 Progressive Grouping

Determining similarities between objects is a complex problem as intra-object variations are created
by various factors, such as density, shape, size, etc. To find groups that, when combined, explain this
intra-object variation, we utilize Gaussian Mixture Model (GMM) based grouping for the following
advantages: (1) GMM better captures the heterogeneity of data using only a few more parameters,
such as covariance and weights, compared to the proximity-based methods. (2) The parameters that
define groups can be efficiently updated with weighted linear combinations and are also differentiable
for learning the groups in a data-driven manner. In the following sections, we explain the details of
how the groups are initialized, determined for each sample, and updated.

Initialization Given all available pairs of scans and labels, X and Y, we first extract Fobj from
each pair and stack them. All of the stacked {F o

obj}
ntotal
o=1 are then used for the initialization. Here,

ntotal stands for the total number of pairs in X and Y. Specifically, we initialize ng groups using K-
Means clustering on {F o

obj}
ntotal
o=1 , where each cluster forms a group. After this, Maximum Likelihood

Estimation is performed for each group to acquire parameters, such as mean µ ∈ Rng×dobj , covariance
σ ∈ Rng×dobj×dobj , and weight ϕ ∈ Rng that define a GMM-based group. This initialization is
required only once before the training. In the following, all procedures are based on a single pair of
scan and label, x and y, which can be extended to batch-wise operation.

Determining Group for New Sample The probability P k→i of k-th sample belonging to i-th group
is estimated as :

P k→i =
ϕiN (F k

obj |µi, ϕi)∑ng
t=1 ϕ

tN (F k
obj |µt, ϕt)

, (1)

where N (|, ) is the probability density function of multivariate Gaussian distribution that outputs the
likelihood of a sample F k

obj given mean µ and covariance ϕ. The group labels G ∈ Rnb for all the nb

samples in Fobj are then acquired using P . That is, the group label Gk for k-th sample is specifically
determined as:

Gk = argmax
i

P k→i (2)

Explorative Update during Training Typically, pseudo-label sets from the target domain are
incorporated into the existing label set from the source domain and considered as the same label set
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Figure 3: Conceptual diagram comparing pseudo-label generation processes of (a) baseline [44, 43]
with our (b) grouping followed by (c) the explorative update using pseudo-labels.

for training [44, 43], as shown in Figure 3 (a). However, we argue that for the domain adaptation, the
pseudo-label set should be given more weight on its usage than the source label sets because they
contain inherent features of the target domain, which can be used to understand the target domain in
terms of objects’ appearances. To address this, we introduce an explorative group update strategy
using pseudo-labels. For i-th group, its mean µ̂i ∈ Rdobj , covariance σ̂i ∈ Rdobj×dobj , and the group
weight ϕ̂i are acquired as follows:

µ̂i =
1

nb,i

nb,i∑
k=1

F k
b,i, σ̂i =

1

nb,i

nb,i∑
k=1

(F k
obj,i − µ̂i)(F k

obj,i − µ̂i)T , ϕ̂i =
nb,i

nb
, (3)

where Fobj,i is subset of Fobj that belong to i-th group using G in Eqn. 2 as:

Fobj,i = {F k
obj |Gk = i}, (4)

and nb,i is the number of samples in Fobj,i. Similar to the update rule for prototype learning [20],
each group parameters are updated with linear combination as:

µ = αµ+ (1− α)µ̂, σ = ασ + (1− α)σ̂, ϕ = αϕ+ (1− α)ϕ̂, (5)

where α is a coefficient that affects how conservatively each parameter is updated. After the update,
µi is considered as a representative of i-th group and utilized as a query input for generating group-
equivariant spatial features. Accordingly, during training, the samples that belong to the i-th group
are used as the foreground boxes. Intuitively, this process distributes source labels according to the
groups found in the target domain so that the source labels are used for learning to find similar objects
in the target domain, as shown in Figure 3 (b) and (c).

For training, to ensure that the groups learn to be distinctive enough, we adopt inter-group repel [17]
based on the contrastive loss.

Lrep =

ng−1∑
i=1

ng∑
j=i+1

max(0, cos(µi, µj)), (6)

where cos(, ) is a function that calculates cosine-similarity between two inputs. In addition, to
encourage similar features for group cohesion, intra-group attraction loss, Latt is used:

Latt =

ng∑
i=1

nb∑
k=1

(1− cos(F k
obj , µ

i))1[Gk = i], (7)

where 1[Gk = i] is an indicator function that is 1 if Gk = i and 0 otherwise. During the inference,
only the learned µ is necessary for the following Group-Region Correlation.

3.4 Group-Region Correlation

In a typical voxel-based 3D object detector’s pipeline, voxelized points are fed into the backbone,
which outputs the spatial feature Fbev ∈ RH×W×dbev , as shown in Figure 2. Fbev is then fed into
RPN to make final box predictions. Given input group queries µ = {µi}ng

i=1, µ
i ∈ Rdobj and Fbev,

Our Group-Region Correlation aims at producing the spatial features Fcbev ∈ Rng×H×W×dbev that

5



Algorithm 1 Training Pipeline
Require: a point-cloud x, (pseudo) labels y, Group parameters G

1: Extract obj. descriptors Fobj using x and y (Sec 3.2)
2: Determine groups of Fobj and update G (Sec 3.3)
3: Update G using Fobj according to the determined groups (Sec 3.3)
4: Calculate Lrep and Latt as in Sec 3.3
5: Extract spatial feature Fbev from the backbone (Sec 3.4)
6: Make group equivariant features for each group using G and Fbev (Sec 3.4)
7: Predict boxes using shared RPN for each group equivariant feature
8: Calculate Ldet as in Eq. 10.
9: Calculate gradients using Lrep, Latt, and Ldet.

10: Update all modules’ weights using the gradients

are equivariant to the group query so that Fcbev provide selective features for detecting objects similar
to each group. In the following sections, we explain how each group and spatial feature are correlated
and then used by RPN to detect the corresponding objects.

Group Equivariant Spatial Feature The aim of Group-Region Correlation module is to make
spatial features Fbev selectively attend to objects that are similar to the query group. The following
RPN then detects only certain objects that are similar to the query group. To achieve this, we
utilize cross-attention with µ as query and Fbev as key and value to encourage features from µ and
Fbev to cross-attend to generate necessary features. Intuitively, µ is compared to Fbev to find the
object that is similar to each group. For i-th group, the attended group-equivariant spatial features
F i
cbev ∈ RH×W×dbev are acquired as:

F i
cbev = cAttn(µi, Fbev, Fbev), (8)

where cAttn(.) refers to the cross attention [36] that takes query, key, and value as input and outputs
the cross-attended feature. Here, µi is the i-th query in µ. The group-equivariant spatial features
Fcbev can then be fed into any existing RPN strcutures [42, 4, 12] to detect foreground objects for
each group. The ground-truth boxes in y that belong to the i-th group are utilized as the foreground
boxes for F i

cbev to train the follwing RPN.

Regional Proposal Network (RPN) Following the general architecture of RPN [42, 12], our object-
ness and box regression heads take Fcbev ∈ Rng×H×W×D as input and predict objectness scores
Fcls ∈ Rng×H×W×1 and box parameters Fbox ∈ Rng×H×W×7 to form 3D boxes on the dense
spatial grid corresponding to Fcbev .

For the training of i-th group, standard training losses for RPN based detection, Li
det, are applied as

existing works [42, 12, 30, 26, 2, 9, 48]. Specifically, given the box labels yi, F i
cls and F i

box are used
for calculating first-stage box detection training loss, Ldet1, as:

Li
det1 = Li

focal + Li
box, (9)

where Lfocal stands for Focal Loss [18] and Lbox is box regression loss. Here, the foreground labels
and regression targets for Lfocal and Lbox are calculated using yi depending on the individual base
detectors’ configurations. Similarly, for the second-stage box refinement training, Fcbev is used with
Fcls and Fbox for RoI Pooling. Then, the pooled features are fed into classification and box regression
head for refinement with architectures depending on the detectors to calculate the second stage loss
Li
det2. The detection loss for all groups, Ldet, is then acquired by iterating over all groups as:

Ldet =
1

ng

ng∑
i=1

Li
det1 + Li

det2. (10)

3.5 Overall Training

Apart from Lrep and Latt for grouping, our overall training losses are defined the same as the general
RPN learning for detection.

L = λ1Lrep + λ2Latt + λ3Ldet (11)
Using L we train our system following the self-training scheme [44, 43]. Further details can be found
in Sec:B.1.
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4 Experiment

4.1 Datasets

We evaluate our methods against various baselines across three different datasets, such as KITTI [6],
NuScenes [1], and Waymo [33]. KITTI contains 7481 frames of point clouds for training and
validation, and all the data is collected with 64-beam Velodyne LiDAR. NuScenes dataset contains
28130 training and 6019 validation point clouds collected with a 32-beam roof LiDAR. Waymo
dataset contains 122000 training and 30407 validation frames of point clouds collected with five
LiDAR sensors, i.e., one 64-beam LiDAR and four 200-beam LiDAR.

4.2 Implementation Details

For a fair comparison with existing domain adaptive 3D detection methods, we build our model on
two base detectors, Second IoU [42] and PointPillars [12], following [44, 43, 17, 8], that are widely
used and applicable to most recent detectors with the implementation based on OpenPCDet [35]
and parameters from ST3D [44]. Following [17], we first train each detector for 50 epochs with
batch-size 8 as a pretraining step using a single NVIDIA A10 GPU. In the self-training stage, we train
30 more epochs for the tuning to adapt to the target domain. The learning rate is set to 1× 15−4 using
Adam optimizer with Cosine annealing [47] for scheduling the learning rate. In order to improve the
learning stability, the baseline RPN is also learned in addition to the group learning. While the group
equivariant RPNs are used for the pseudo label collection during self-training, only the baseline RPN
is used for the final testing, ensuring the same execution speed as the existing pipeline. The feature
dimensions dbev and dobj for Fbev and µ are both set to 512 for cAttn. α for updating the group
parameters is empirically set to 0.8. λ1, λ2, and λ3 are set to 0.5, 0.5, and 1.0, respectively.

4.3 Comparing Methods

We compare recent existing 3D domain adaptive detection methods, such as SN [38], 3D-CoCo [46],
ST3D [44, 43], GPA-3D [17] and DTS [8] with our proposed method. As our method is based on the
self-training, we set ST3D [44] as our baseline and show experimental results by comparing with
more recent methods. Additionally, we also illustrate the performance of the oracle models, which
refer to a fully-supervised model on the target domain directly as an upper bound. Following the
most recent works [17, 8], all methods are compared in three adaptation scenarios focusing on "car"
class: (1) Waymo → NuScenes (2) NuScenes → KITTI (3) Waymo → KITTI.

4.4 Evaluation Metric

Following [44, 43, 17, 8], we adopt Average Precision(AP) as our primary evaluation metric and
evaluate our model on Bird-Eyes-View (BEV) IoU, APBEV, and 3D Box IoU, AP3D, with 40 varying
recall points and 0.7 as the IoU threshold.

4.4.1 Quantitative Result

Waymo → KITTI Table 1 (first task) shows the quantitative results of 3D detection in APBEV and
AP3D. When using Second-IoU as detector [42], our proposed method outperforms the baseline
ST3D series for 4.75/11.88 in APBEV/AP3D, respectively. Compared with the SOTA method, DTS [8],
1.14/2.21 improvements are made. When using PointPillars as the base detector [12], our approach
gains 2.34/3.91 improvements compared to the best performing method, GPA-3D [17].

NuScenes → KITTI As shown in Table 1 (second task), our approach shows 0.97/5.80 performance
gains in terms of APBEV/AP3D with Second-IoU [42] as the base detector. Compared with SOTA
DTS [8], 0.07/1.60 improvements are acquired. With PointPillars [12] as the base detector, our
approach exceeds the baseline and DTS by 21.49/41.74 and 2.39/1.04, respectively.

Waymo → NuScenes Table 1 (third task) illustrates the adaptation results. Our approach outperforms
the baseline and the best-performing method by 8.55/5.72 and 3.27/2.91 in APBEV/AP3D, respectively,
with Second-IoU as the detector. Similarly, with PointPillars as the detector, 14.89/7.84 and 32.8/1.94
improvements are gained compared with the baseline and SOTA in terms of APBEV/AP3D.
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Table 1: Quantitative comparisons of the recent domain adaptive 3D detection methods on three
adaptation scenarios. The top-3 performing methods are labeled in different colors.

Task Methods SECOND-IOU PointPillars
APBEV/AP3D Closed Gap APBEV/AP3D Closed Gap

Waymo → KITTI

Source Only 67.64/27.48 - 47.8/11.5 -
SN [38] 78.96/59.20 72.33/69.00 27.4/6.4 -55.14/-8.49

3D-CoCo [46] - - 76.1/42.9 76.49/52.25
ST3D [44] 82.19/61.83 92.97/74.72 58.1/23.2 27.84/19.47

ST3D++ [43] 80.78/65.64 83.96/83.01 - -
GPA-3D [17] 83.79/70.88 103.19/94.41 77.29/50.84 79.70/65.46

DTS [8] 85.80/71.50 115.9/95.7 76.1/50.2 76.50/64.4
Ours 86.94/73.70 123.2/100.4 78.44/54.11 82.81/71.0

Oracle 83.3/73.5 - 84.8/71.6 -

NuScenes → KITTI

Source Only 51.8/17.9 - 22.8/0.5 -
SN [38] 59.7/37.6 25.1/35.4 39.3/2.0 26.6/2.1

3D-CoCo [46] - - 77.0/47.2 87.4/65.7
ST3D [44] 75.9/54.1 76.6/59.5 60.4/11.1 60.6/14.9

ST3D++ [43] 80.5/62.4 91.1/80.0 - -
DTS [8] 81.4/66.6 94.0/87.6 79.5/51.8 91.5/72.2

Ours 81.47/68.2 98.3/90.0 81.89/52.84 95.3/73.6
Oracle 83.3/73.5 - 84.8/71.6 -

Waymo → NuScenes

Source Only 32.91/17.24 - 27.8/12.1 -
SN [38] 33.23/18.57 1.69/7.54 28.1/12.98 2.41/4.58

3D-CoCo [46] - - 33.1/20.7 25.00/44.79
ST3D [44] 35.92/20.19 15.87/16.73 30.6/15.6 13.21/18.23

ST3D++ [43] 35.73/20.90 14.87/20.76 - -
GPA-3D [17] 37.25/22.54 22.88/30.06 35.47/21.01 36.18/46.41

DTS [8] 41.2/23.0 43.7/32.80 42.2/21.5 67.9/49.0
Ours 43.84/24.42 57.56/40.66 44.31/22.15 77.88/52.34

Oracle 51.9/34.9 - 49.0/31.3 -

Figure 4: Qualitative comparison of Baseline ST3D [44], DTS [8] and ours on NuScenes to KITTI
adaptation scenario (top) and Waymo to NuScenes(bottom) adaptation scenarios.

4.4.2 Qualitative Result

Figure 4 compares the 3D detection results of the baseline [44], DTS [8] and our methods. Due to the
conservative pseudo-label selection policy and absence of methods addressing variations in object
size or foreground density, the baseline struggles to detect objects with comparably less common
sizes or further away with different densities (red circles in 1st row (b)). Moreover, some dominant
object shapes make the detector overfit, leading to false positive detection of road structure (red
circles in 2nd row (b)). DTS [8] improves the inter-domain density variance problem presented in
the baseline. However, it still encounters the overfitting problem to certain geometric shapes in the
source domain, leading to the same false positive detection of the road structure as the baseline (red
circles in 2nd row (c)). Moreover, despite the training for foreground density invariant, the objects
appearing sparse due to the distance remain false negative (red circles in 1st row (c)) in DTS. The
observation suggests that another factor, in addition to the foreground density, causes the inter-domain
gap. On the other hand, our proposed method improves both false positive and negative detections,
demonstrating a more robust adaptation ability than DTS, which is the best-performing method.
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Table 2: Impact of each component in APBEV and
AP3D on Waymo to NuScenes adaptation.

Group Latt Lrepel Exp. Up. APBEV AP3D

(a) 35.92 20.19
(b) ✓ 39.48 22.66
(c) ✓ ✓ 40.82 23.14
(d) ✓ ✓ 41.14 23.61
(e) ✓ ✓ ✓ 41.64 24.55
(f) ✓ ✓ ✓ ✓ 44.47 25.91

Table 3: Impact of grouping methods and α on
NuScenes to KITTI adaptation.

Proximity-based GMM-based
APBEV AP3D APBEV AP3D

α=0.4 79.82 64.77 81.37 66.95
α=0.6 81.02 65.63 82.29 67.52
α=0.8 81.61 66.20 82.78 67.93
α=0.99 81.95 66.83 81.80 66.86

Figure 5: Impact of ng on three adaptation scenar-
ios in AP3D. Here W → K, N → K, and W →
N refer to Waymo→KITTI, NuScenes→KITTI,
and Waymo→NuScenes adaptations.

Figure 6: Comparison of DTS [8] (left), ours without explorative update (middle), and ours with
explorative update (right) in Waymo → NuScenes with t-SNE visualization. Here, the foreground
features are extracted using ground-truth boxes using Fbev for DTS and Fcbev for ours.

4.5 Ablations

Impact of Each Component Table 2 shows the impact of each component in Waymo→NuScenes
adaptation using Second IoU [42] in terms of APBEV/AP3D. For this experiment, we progressively
add each core component to the baseline (a) to see how they affect the performance. As grouping
ensures every group has similar attention during training and prevents only a few dominant object
types from having high confidence scores, it significantly improves the performance 9.91%/12.23%
from the baseline. From this result, Latt (c) and Lrepel (d) improve 3.39%/2.11% and 4.20%/4.19%
respectively, suggesting that making the groups distinctive has more impact than making the intra-
group cohesive. This is expected because, during the group-equivariant RPN training, samples inside
each group are already learned to be cohesive against background and samples from other groups,
indirectly supervised to be close to each other. Nevertheless, when combined in (e), Latt and Lrepel

improves 15.92%/21.59% from the baseline, demonstrating the synergy of the two losses. On top of
this, the explorative update considerably boosts the performance by 23.80%/28.33%, proving that
using samples found in target (pseudo-labels) for the update further reduces the inter-domain gap, as
can also be seen in Figure 6 (a group of FN in the middle disappears in the right figure).

Impact of ng is illustrated in Figure 5 in AP3D for all adaptation scenarios presented in the main
experiments. For this experiment, we include all components with the same hyper-parameters
and only change ng to see the impact. As can be seen, increasing ng improves the performance,
reaching the top around when ng is set to 4. In principle, having many groups would make the
group-equivariant RPN discover more object types while ensuring the same attention for each group
during learning. However, in practice, the performances start decreasing when ng is set around 6,
suggesting that having too many groups increases the risks of overfit problems due to a small number
of objects in each group or underfit problems due to high complexity for learning Fcbev . We also find
that the training result is most stable when ng is set to 3.

Effect of GMM based Grouping and α are illustrated in Table 3 to compare: (1) Proximity-based
grouping and (2) GMM-based grouping with varying α. For the proximity-based grouping, we
discard σ and ϕ from GMM, and determine the group of each sample as the closest µ from the
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samples using L2 distance while all other configurations stay the same. As can be seen, GMM-based
grouping constantly shows better performances in both APBEV/AP3D in all α. This is due to σ and ϕ
that preserve the characteristics of each group more compared to only µ based on previously seen
samples, improving the stability during learning with similar objects grouped together. Additionally,
setting α too large or small degrades the performances, as small α discourages the explorative update,
while too large α could result in instability as the input µ for training RPN constantly changes more.
Also, setting α = 0.6 results in 0.49/0.66 higher in APBEV/AP3D compared to setting α = 0.99,
suggesting the advantage from exploration surpasses the stability. Interestingly, unlike GMM-based
grouping, setting higher α constantly shows increasingly better performance with the proximity-based
grouping, proving inherent instability without σ and ϕ. Nevertheless, in nearly all the configurations
of α, the GMM-based grouping persistently outperforms the best-performing method, DTS [8].

5 Conclusion and Limitations

In this paper, we present GroupExp-DA that learns object groups, which can be used to bridge
the inter-domain gap with (1) less bias by the dominant objects in the available label sets and (2)
consideration of multiple factors for creating inter-domain gaps in a data-driven manner. This is
achieved by utilizing the group equivariant spatial features that connect the group feature and spatial
features to be learned together with the existing detection loss function. Nevertheless, all methods,
including ours, struggle to detect objects with extremely sparse foreground points (black circles in
2nd row), as shown in Figure 4, because those objects do not contain distinctive features to being
well-learned as groups due to extreme sparsity, which remains as one of the challenges to be explored.
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Appendix

B Supplementary Material

In this supplementary material, we provide the following additional information:

• Details of Self-Training Implementation
• Additional Qualitative Results
• Multi-Class Adaptation Results

B.1 Details of Self-Training Implementation

In the self-training framework [44], a batch consists of an identical number of point cloud scans and
labels from the source and target domains to train the base 3D detector. For training, the ground-truths
from source domain and pseudo-labels from the target domain are considered the same. For each cycle
of the self-training, we train our system for 2 epochs using L in Eqn. 11 and collect the pseudo-label
sets to merge into Y using the model’s inference. Here, the collection of the pseudo-labels takes place
in the training set of the target domain. Utilizing the new Y , we progressively train the detector for
nse epochs again and iterate the same process. The confidence score of the detection to be considered
as the pseudo label is set to 0.5, and nse is set to 2 epochs.

B.2 Additional Qualitative Results

Figure II shows additional qualitative results on Waymo→KITTI and Waymo→NuScenes. For all the
qualitative results of previous works, we only include the results that reproduce the reported results
on their papers based on the published source codes for each dataset at the time of submission

Figure II: Qualitative comparison of Baseline ST3D [44], DTS [8] and ours on Waymo to KITTI
adaptation scenario (top) and Waymo to NuScenes(bottom) adaptation scenarios.
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B.3 Multi-class Adaptation

Table II shows the result of multi-class adaptation. As our method is designed as a simple add-on that
can be applied to general existing pipelines, we apply our pipeline on top of the multi-class adaption
approach, REDB [3]. As can be seen, our GroupEXP-DA and REDB show synergy, improving the
performance further.

Car Pedestrian Cyclist
Method APBEV/AP3D APBEV/AP3D APBEV/AP3D

Source Only 39.15/7.65 21.54/16.87 6.31/2.44
ST3D [44] 71.50/48.09 22.64/17.61 7.86/5.20
ReDB [3] 74.23/51.31 25.95/18.38 13.82/8.64
Ours (SA) 72.39/50.01 24.47/17.80 10.90/6.81

Ours+ReDB 75.12/52.18 26.47/18.51 14.92/9.13
Oracle 83.29/73.45 46.64/41.33 62.92/60.32

Table II: Comparison with multi-class adaptation setting for NuScenes → KITTI adaptation task.
Here, Ours (SA) refers to the naive extension of single-class adaptation to multi-class adaptation, and
Ours + ReDB stands for the proposed method added on top of ReDB. Here, all of ours use three
groups.
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