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ABSTRACT

In recent years, text-guided image manipulation has gained increasing attention
in the image generation research field. Recent works have proposed to deal with
a simplified setting where the input image only has a single object and the text
modification is acquired by swapping image captions or labels. In this paper,
we study a setting that allows users to edit an image with multiple objects using
complex text instructions. In this image generation task, the inputs are a reference
image and an instruction in natural language that describes desired modifications
to the input image. We propose a GAN-based method to tackle this problem. The
key idea is to treat text as neural operators to locally modify the image feature. We
show that the proposed model performs favorably against recent baselines on three
public datasets.

1 INTRODUCTION

Image synthesis from text has been a highly active research area. This task is typically set up as a
conditional image generation problem where a Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) is learned to generate realistic images according to the text description in the format
of natural languages (Zhang et al., 2018; Xu et al., 2018; Zhu et al., 2019; Li et al., 2019c), scene
graphs (Johnson et al., 2018; Yikang et al., 2019), or other modalities (Li et al., 2019d; Nam et al.,
2018; Li et al., 2020).

In this paper, we study how to manipulate image content through complex text instruction. In this
setting, a user is able to apply various changes to a reference image to add, remove, or modify its
content by sending text instructions. For example, Figure 1 shows the generated images by our model
for three instructions: 1) adding a new object at a location, 2) removing an object, and 3) changing
the object’s attributes (size, shape, color, etc).

The closest related problem to ours is text-guided image manipulation (Nam et al., 2018; Li et al.,
2020) which demonstrates promising image manipulation quality from the text. Sequential text-
to-image generation known as GeNeVA (El-Nouby et al., 2019), which focuses on sequentially
adding objects to a blank canvas given step-by-step text instructions, is also related, as each step
can be seen as doing text-guided image manipulation on the intermediate image. However, the
language in existing works is limited in complexity and diversity which consists of either descriptive
attributes (Nam et al., 2018; Li et al., 2020) or a single “add” operation (El-Nouby et al., 2019).
Different from previous works, this paper focuses on modeling the complex instruction for image
manipulation. The studied text instructions involve adjectives (attributes), verbs (actions) and adverbs
(locations) for three representative operations “add”, “modify”, and “remove”. In addition, the
complex instruction often specifies changes to only one of the many objects in the reference image as
opposed to the single salient object in prior works (Nam et al., 2018; Li et al., 2020).

Image manipulation by complex instruction is inspired by cross-modal image retrieval which com-
prises a variety of applications such as product search (Kovashka et al., 2012; Zhao et al., 2017; Guo
et al., 2018). In this retrieval setting (Vo et al., 2019), users search an image database using an input
query that is formed of an image plus some text that describes complex modifications to the input
image. Cross-modal retrieval is essentially the same as our problem except it aims at retrieving as
opposed to generating the target image. Interestingly, as we will show, the generated image can
be used to retrieve target images with competitive accuracy, providing a more explainable search
experience that allows users to inspect the result before the retrieval.
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Figure 1: Image manipulation by text instruction. Each input contains a reference image and a
text instruction. The results are synthesized images by our model.

The main research question studied in this paper is how to model the complex text instructions for
effective conditional image manipulation. To this end, we propose an approach called Text-Instructed
Manipulation GAN or TIM-GAN. The key idea is to treat language as neural operators to modify the
image feature in a way such that the modified feature is useful in synthesizing the target image by the
GAN model. The generation process is decomposed into where and how to edit the image feature.
For “where to edit”, we leverage existing attention mechanisms to ground words to a spatial region
in the image. Although the use of spatial attention is not new, we find it allows for learning generic
neural operators that can be decoupled from specific locations. For “how to edit”, we introduce a
novel text-adaptive routing network to generate text operators for complex instructions. For a text
instruction, a route is dynamically created serving as a neural operator to modify the image feature.
Since similar instructions perform similar operations, the text-adaptive routing network allows neural
blocks to be shared among similar instructions, while still being able to distinguish among different
operations.

Experimental results on three datasets, including Clevr (Vo et al., 2019), Abstract scene (Zitnick
& Parikh, 2013), and Cityscapes (Cordts et al., 2016) demonstrate that image manipulation by the
proposed approach outperforms baseline approaches by large margins in terms of Fréchet Inception
Distance (FID) (Heusel et al., 2017) and Retrieval Scores (Xu et al., 2018). The user study validates
our method’s efficacy in generating more realistic and semantic relevant images. We also conduct
ablation studies to substantiate the performance gain stems from the proposed neural operators.

2 RELATED WORK

Conditional generative adversarial networks. Generative adversarial networks GANs (Goodfellow
et al., 2014; Mao et al., 2017; Arjovsky et al., 2017; Brock et al., 2019) have made rapid progress on
image generation in recent years. Built on the basis of GANs, the conditional GAN aims to synthesize
the image according to the input context. The input context can be images (Isola et al., 2017; Zhu
et al., 2017a; Lee et al., 2020; Huang et al., 2018; Mejjati et al., 2018), audio sequences (Lee et al.,
2019), human poses (Ma et al., 2017), or semantic segmentation masks (Wang et al., 2018; Park
et al., 2019; Li et al., 2019b). Particularly, text-to-image synthesis (Zhang et al., 2018; Johnson et al.,
2018; Xu et al., 2018; Zhu et al., 2019; Li et al., 2019c; Yikang et al., 2019; Li et al., 2019a) learns a
mapping from textual descriptions to images. Recently, GeNeVA (El-Nouby et al., 2019) extended
the mapping for iterative image generation in which new objects are added one-by-one to a blank
canvas following textual descriptions. Different from text-to-image synthesis, the proposed problem
takes multimodal inputs, aiming at learning to manipulate image content through text instructions.

Conditional image manipulation. The goal is to manipulate image without degrading the quality
of the edited images. To enable user-guided manipulation, a variety of frameworks (Zhang et al.,
2016; 2017; Huang & Belongie, 2017; Li et al., 2018; Hung et al., 2018; Portenier et al., 2018;
Chang et al., 2018; Nam et al., 2018; Li et al., 2020) have been proposed to use different control
signals. For instance, Zhang et al. (Zhang et al., 2017) uses sparse dots to guide the image colorization
process. There are additional works on image manipulation by bounding boxes subsequently refined as
semantic masks (Hong et al., 2018) or by code (Mao et al., 2019). Numerous image stylization (Huang
& Belongie, 2017; Li et al., 2018) and blending (Hung et al., 2018) approaches augment the images by
referencing an exemplar image. Closest to ours are the TA-GAN (Nam et al., 2018) and ManiGAN (Li
et al., 2020) schemes that take the image caption as input to describe attributes for conditional
image manipulation. In this work, we propose to manipulate the images according to complex text
instructions. Different from the image caption used by the TA-GAN and ManiGAN methods, the
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Figure 2: Method overview. Given an input image x and a text instruction t, the proposed TIM-
GAN first predicts a spatial attention mask M (where to edit, Section 3.2) and a text operator fhow
(how to edit, Section 3.1). The image feature φx is then modified by the text operator fhow on the
predicted mask M . Finally, the edited image ŷ is synthesized from the manipulated image feature φŷ .

instruction we take as input specifies 1) the region of the image to be edited (where) and 2) the type
of editing to be conducted (how).

Feature Composition. The key idea of this work is to model text as operator. This can be seen
as a feature composition function to combine the image and text features for image generation.
Feature composition has been studied more extensively in other problems such as visual question
answering (Kim et al., 2016; Noh et al., 2016; Chen et al., 2020; Liang et al., 2019), visual reason-
ing (Johnson et al., 2017b; Santoro et al., 2017), image-to-image translation (Zhu et al., 2017b; Lee
et al., 2020), etc. In this work, we design a routing mechanism for image generation such that the inter-
mediate neural blocks can be effectively shared among similar text operators. Our method is related to
feature-wise modulation, a technique to modulate the features of one source by referencing those from
the other. Examples of recent contributions are: text image residual gating (TIRG) (Vo et al., 2019),
feature-wise linear modulation (FiLM) (Perez et al., 2018), and feature-wise gating (Ghosh et al.,
2019). Among numerous existing works on feature composition, this paper compares the closely
related methods including a state-of-the-art feature composition method for image retrieval (Vo et al.,
2019) and three strong methods for conditional image generation (Zhu et al., 2019; Nam et al., 2018;
El-Nouby et al., 2019), in additional to the standard routing mechanism (Rosenbaum et al., 2018) in
the ablation study.

3 METHODOLOGY

Our goal is to manipulate a given reference image according to the modification specified in the
input text instruction which specifies one of the three operations “add”, “modify”, and “remove” We
accomplish this task by modeling instructions as neural operators to specify where and how to modify
the image feature.

An overview of the proposed TIM-GAN method is illustrated in Figure 2. Given the input image
x and text instruction t, we first extract the image feature φx along with the text features φwhere

t
and φhowt . The text features φwhere

t and φhowt encode the where and how information about the
modification, respectively. To indicate the region on the image x to be edited, we predict a spatial
attention mask M from φwhere

t . Thereafter, we design a new network routing mechanism for building
an operator fhow, from the feature φhowt , to modulate the feature editing. Finally, the resulting image
ŷ is generated from the manipulated image feature φŷ using the generator G.

Although spatial attention has been commonly used in GAN models, we find that by disentangling
how from where in the modification, our model learns more generic text operators that can be applied
at various locations. To be more specific, let M be a learned spatial mask. The image feature φx is
modified by:

φŷ = (1−M)� φx +M � fhow(φx, φ
how
t ; Θhow(t)), (1)
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Figure 3: Where and how to edit. (a) The calculation of spatial mask M from text feature φwhere
t

and image feature φx. (b) The proposed text-adaptive routing mechanism executes various paths as
text operators. The operator is parameterized by (α, β, γ) generated from text feature φhowt .

where � is element-wise dot product. The first term is a gated identity establishing the input image
feature as a reference to the output modified feature.

The second term fhow is the proposed neural operator function which embodies the specific computa-
tion flow over the image feature (i.e., how to modify). We introduce a new text-adaptive router to
execute a sequence of neural blocks dynamically for each text instruction. A route is parameterized by
Θhow(t) that is generated from φhowt ; the remaining parameters are shared across all text instructions.

For training, we use the standard conditional GAN – the pix2pix (Isola et al., 2017) model, which
consists of an adversarial loss LGAN and an `1 reconstruction loss called LL1. The weights to LGAN

and LL1 are set to 1 and 10, receptively. In the rest of this section, we will detail the computation of
M and fhow.

3.1 HOW TO EDIT: TEXT-ADAPTIVE ROUTING

Instructions are not independent. Similar instructions perform similar operations, e.g., “add a large
cylinder” and “add a red cylinder”. Motivated by this idea, we model text operators in a routing
network (Rosenbaum et al., 2018) where the text feature is used to dynamically select a sequence
of neural blocks (or a path). Our routing network is illustrated in Figure 3b which has l layers
of m blocks of identical structures. Each block consists of a conv layer followed by an instance
normalization layer (Ulyanov et al., 2017). The routing parameter αi decides to connect or disconnect
a block in a layer. An execution path is hence parameterized by a series of α for all layers.

Different from prior routing mechanisms (Rosenbaum et al., 2018; Ahmed & Torresani, 2019; Newell
et al., 2019), ours is text-adaptive which selects not only a path but also the associated parameters
along the path. To be specific, in addition to α, text features also generate β and γ to perform
text-specific normalization in the selected block. This design increases the learning capacity of text
operators, while still allowing blocks to be shared among similar instructions. Our idea is partially
inspired by the success of style transfer methods (Huang & Belongie, 2017).

Ideally, the path selector α can only take discrete values. However, this approach is not differentiable,
and continuous approximation needs to be applied. To do so, we adopt the Gumbel-Max trick (Jang
et al., 2017) to sample a block from a categorical distribution. Let π ∈ Rm

>0 be the categorical variable
with probabilities P (α = i) ∝ πi which indicates the probability for selecting block i. We have:

arg max
i

[P (α = i)] = arg max
i

[gi + log πi] = arg max
i

[π̂i], (2)

where gi = − log(− log(ui)) is a re-parameterization term, and ui ∼ Uniform(0, 1). To make
it differentiable, the argmax operation is approximated by a continuous softmax operation: α =
softmax(π̂/τ), where τ is the temperature controlling the degree of the approximation.

Then, a text operator can be parameterized by Θhow(t) defined in Equation 1 as:

Θhow(t) = fMLP(φwhere
t ) = {(αi, βi, γi)|αi ∈ [0, 1]m, γi, βi ∈ Rm×p, i ∈ {1, · · · , l}}, (3)
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where the text feature φwhere
t generates real vectors αi, βi, γi for text-adaptive routing for all layers,

p is the number of normalization parameters for each block.

Finally, as shown in Figure 3, the image feature is modified by:

a(i+1) =

m∑
j=1

αij(γij
oij − µ(oij)

δ(oij)
+ βij), (4)

where oij is the output of the j-th conv block in layer i. δ and µ compute channel-wise mean and
variance across spatial dimensions, and are applied at test time unchanged. The operator in Equation 4
takes the input of a(1) = φx and outputs the modified image feature as a(l).

3.2 WHERE TO EDIT: SPATIAL MASK

We use the standard scaled dot-product self-attention (Vaswani et al., 2017) to summarize the location-
indicative words in an instruction. Let S = [w1, · · · , wl] ∈ Rl×d0 denote the instruction where
wi ∈ Rd0 is the BERT embedding (Devlin et al., 2018) for the i-th word. The query, key and value in
the attention are computed by:

Q = SWQ, K = SWK , V = SWV (5)

where WQ,WK ,WV ∈ Rd0×d are weight matrices to learn, and d is the output dimension. After
reducing matrix Q to a column vector q̂ by average pooling along its first dimension, we obtain the
attended text embedding by:

φwhere
t = V T softmax(

Kq̂√
d

), (6)

in which the softmax function is supposed to assign higher attention weights for locational words.
Likewise, we obtain the text feature φhowt for salient operational words in the instruction (e.g., “add”,
“red”, “cylinder”), computed by a separate self-attention head similar to that of φwhere

t .

After that, we pass the image feature φx to a convolution block (e.g., a ResBlock (He et al., 2016)) to
get the output v ∈ RH×W×C . The spatial mask is then computed from φwhere

t using image features
as the context:

M = fwhere(φx, φ
where
t ) = δ(Wm ∗ (fMLP(φwhere

t )� v)) ∈ [0, 1]H×W×1, (7)

where σ is the sigmoid function, ∗ represents the 2d-convolution product with kernel Wm (see Fig-
ure 3a). We use two layers of MLP with the ReLU activation. The spatial attention can be derived
from M by performing `1 normalization over the spatial dimensions. In this paper, we choose to use
the unnormalized mask for improved generalization performance.

In training, we also use an `1 loss to penalize the distance between the predicted mask M and the
noisy true mask, and assign it the same weight as the LL1 reconstruction loss. Note that computing
this loss needs no additional supervision as the noisy mask is automatically computed by comparing
the difference between the input and ground-truth training images.

4 EXPERIMENTAL RESULTS

We conduct experiments to quantitatively and qualitatively compare the proposed method with
baseline approaches. Additional qualitative results are presented in the supplementary material. We
will release the source code and dataset to facilitate further research in this field.

4.1 EXPERIMENTAL SETUPS

Datasets. We use three public datasets: Clevr (Vo et al., 2019), Abstract scene (Zitnick & Parikh,
2013), and Cityscapes (Cordts et al., 2016). All datasets consist of images of multiple objects
accompanied by complex text instructions. Since there is no dataset of text instructions on real-world
RGB images (i.e., providing the ground-truth manipulated images for the inputs of a text instruction
and a reference image), existing works (El-Nouby et al., 2019; Li et al., 2019e) were only able to
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Table 1: Quantitative comparisons. We use the FID scores to measure the realism of the generated
images, and the retrieval score (RS) to estimate the correspondence to text instructions.

Method Clevr Abstract scene Cityscape

FID ↓ RS@1 ↑ RS@5 ↑ FID ↓ RS@1 ↑ RS@5 ↑ FID1↓ RS@1 ↑ RS@5 ↑
DM-GAN 27.9 1.6±0.1 5.6±0.1 53.8 2.1±0.1 6.6±0.1 18.7 4.6±0.2 15.7±0.2

TIRG-GAN 34.0 48.5±0.2 68.2±0.1 52.7 23.5±0.1 38.8±0.1 6.1 25.0±0.3 88.9±0.3

TA-GAN 58.8 40.8±0.1 64.1±0.1 44.0 26.9±0.2 46.3±0.1 6.7 36.8±0.4 79.8±0.3

GeNeVA 46.1 34.0±0.1 57.3±0.1 72.2 17.3±0.2 31.6±0.2 10.5 14.5±0.4 46.1±0.3

Ours 33.0 95.9±0.1 97.8±0.1 35.1 35.4±0.2 58.7±0.1 5.9 77.2±0.4 99.9±0.1

Real images 17.0 100 100 14.0 100 100 4.4 100 100

test on synthetic images. Therefore we extend our method to manipulate semantic segmentation in
Cityscapes. By doing so, we show the potential of our method for synthesizing RGB images from the
modified segmentation mask. We describe details about these datasets in the Appendix.

Baselines. We compare to the following baseline approaches in our experiments. All methods
including ours are trained and tested on the same datasets, implemented by their official code or
adapted official code. More details about the baseline comparison are discussed in the Appendix.

• DM-GAN: The DM-GAN (Zhu et al., 2019) model is a recent text-to-image synthesis framework.
To adapt it to our task, we use our image encoder to extract the image feature and concatenate it
with its original text feature as its input signal.
• TIRG-GAN: TIRG (Vo et al., 2019) is a state-of-the-art method for the cross-modal image

retrieval task. It takes the same input as ours but only produces the image feature for retrieval.
We build a baseline TIRG-GAN based on TIRG by using our image decoder G to synthesize the
image from the feature predicted by the TIRG model.
• TA-GAN: TA-GAN (Nam et al., 2018) is trained by learning the mapping between the caption

and the image. The manipulation is then conducted by changing the caption of the image. Since
there is no image caption in our task, we concatenate the pre-trained features of the input image
and text instruction as the input caption feature for the TA-GAN model.
• GeNeVA: GeNeVA (El-Nouby et al., 2019) learns to generate the image step-by-step according

to the text description. To adapt it to take the same input as all the other methods, we use it for
single-step generation over the real input image.

Metrics. In all experiments, we use the Fréchet Inception Distance score (FID) to measure the realism
of the edited images Heusel et al. (2017), and the retrieval score (RS) to estimate the correctness of
the manipulation. For the retrieval score, we employ the evaluation protocols similar to (Vo et al.,
2019; Xu et al., 2018). Specifically, we use the generated image as a query to retrieve the target
images in the test set. We extract the image features of all query and target images by an autoencoder
pre-trained on each dataset and use simple cosine similarity between their feature embedding as
our retrieval metric. The score RS@N indicates the recall of the ground-truth image in the top-N
retrieved images. The computations of FID and RS scores are detailed in the Appendix.

4.2 QUANTITATIVE RESULTS

Realism and Retrieval Score. The results are shown in Table 1. The proposed method performs
favorably against all baseline approaches across datasets. Although DM-GAN appears to generate
more realistic images on the Clevr dataset, its retrieval scores are very poor (< 2%), indicating it
merely memorizes random images without properly editing the input image. In comparison, our
approach achieves a decent realism score as well as significantly higher retrieval scores.

User preference study. We conduct two user studies to understand the visual quality and semantic
relevance of the generated content. Given a pair of images generated by two different methods, users
are asked to choose 1) which one looks more realistic while ignoring the input image and text; 2)
which one is more relevant to the text instruction by comparing the content of the generated and
the ground-truth image. In total, we collect 960 answers from 30 users. As shown in Figure 4, the
proposed TIM-GAN outperforms other methods by a large margin in both metrics.
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Figure 4: User preference studies. We present manipulated images on the Clevr and abstract scene
datasets and ask the users to select the one which (a) is more realistic and (b) is more semantically
relevant to the ground-truth image.

Input Image Spatial
Attention Where How

Self-Attention

𝑀𝑎𝑘𝑒
!.!#

𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑙𝑒𝑓𝑡
!.$%

𝑙𝑎𝑟𝑔𝑒
!.&

𝑟𝑒𝑑
!.'

𝑜𝑏𝑗𝑒𝑐𝑡
!.&$

𝑏𝑟𝑜𝑤𝑛
!.&

𝑅𝑖𝑔ℎ𝑡 − 𝑡𝑜𝑝
!.($

𝑐𝑜𝑟𝑛𝑒𝑟
!.&)

𝑠𝑢𝑛
!.!#

𝑚𝑜𝑠𝑡𝑙𝑦
!.!%

𝑐𝑜𝑣𝑒𝑟𝑒𝑑
!.!*

𝑏𝑦
!.!+

𝑎
!.!%

𝑐𝑙𝑜𝑢𝑑
!.!+

𝐹𝑖𝑟𝑒
!.&

𝑡𝑜
!.&+

𝑟𝑖𝑔ℎ𝑡
!.(%

𝑜𝑓
!.&*

𝑏𝑜𝑦
!.!#

Results

𝑀𝑎𝑘𝑒
!.!

𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑙𝑒𝑓𝑡
!.!

𝑙𝑎𝑟𝑔𝑒
!.!

𝑟𝑒𝑑
!.!

𝑜𝑏𝑗𝑒𝑐𝑡
!.!

𝑏𝑟𝑜𝑤𝑛
&.!

𝐴𝑑𝑑
!.&$

𝑙𝑎𝑟𝑔𝑒
!.&+

𝑔𝑟𝑎𝑦
!.&+

𝑠𝑝ℎ𝑒𝑟𝑒
!.&+

𝑡𝑜
!.&'

𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑟𝑖𝑔ℎ𝑡
!.'%

𝐴𝑑𝑑
!.!

𝑙𝑎𝑟𝑔𝑒
!.!

𝑔𝑟𝑎𝑦
!.#*

𝑠𝑝ℎ𝑒𝑟𝑒
!.!&

𝑡𝑜
!.!

𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑟𝑖𝑔ℎ𝑡
!.!

𝑅𝑖𝑔ℎ𝑡 − 𝑡𝑜𝑝
!.!+

𝑐𝑜𝑟𝑛𝑒𝑟
!.!(

𝑠𝑢𝑛
!.)(

𝑚𝑜𝑠𝑡𝑙𝑦
!.!)

𝑐𝑜𝑣𝑒𝑟𝑒𝑑
!.!$

𝑏𝑦
!.!'

𝑎
!.!$

𝑐𝑙𝑜𝑢𝑑
!.'$

𝐹𝑖𝑟𝑒
!.('

𝑡𝑜
!.!*

𝑟𝑖𝑔ℎ𝑡
!.&&

𝑜𝑓
!.!&

𝑏𝑜𝑦
!.'*

(a) Text and spatial attention (b) Text Operators

Figure 5: Where and how to edit. (a) We visualize the predicted self-attention weights and spatial
attention masks. The self-attention weights are labeled above each word, and highlighted if the
weights are greater than 0.2. (b) We show the t-SNE visualization of the routing parameters α
predicted from different types of instructions on the Clevr dataset.

Ablation study. Results are shown in Table 2. We verify three of our key designs by leaving the
module out from the full model. (1) the learned mask M is removed and replaced with an identity
matrix; (2) the fhow operator is substituted with a fixed network with the same number of layers
and parameters that takes the input of concatenated features of image and text; (3) We examine the
standard routing by treating the text-adaptive parameters β, γ as latent variables in our full model.

The results show the following. First, removing fhow from our approach leads to worse performance
than the baseline methods in Table 1, which indicates the performance gain is primarily resulted from
the proposed text operator as opposed to the network backbone or BERT embedding. Second, there
is a sharp drop when text-adaptive routing is removed. This is more evident on Clevr in which text
instructions are more diverse. These results substantiate the efficacy of text-adaptive in modeling
complex text instructions. Finally, though fwhere is not a crucial component, it complements the
learning of generic fhow that is decoupled from specific spatial locations.

4.3 QUALITATIVE RESULTS

Qualitative results are shown in Figure 6. As shown, TA-GAN and TIRG-GAN tend to copy the
reference images. DM-GAN often generates random objects following similar input layouts. GeNeVA
can make local modifications to images, but often does not follow the text instructions. By comparison,
our model generates images guided by the text instructions with better quality.

Figure 5 visualizes our intermediate results for where and how to edit. The former is shown by the
text self-attention and spatial attention in Figure 5a. Figure 5b shows the t-SNE plot of the routing
parameters. As shown in Figure 5b, instructions of similar types are grouped together, suggesting
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Input Image Instruction

Ours TA-GAN TIRG-GAN DM-GAN GeNeVA

Results

Make blue object 
cyan

Make middle-right 
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right large red cube

large sun middle 
top cut off
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medium pine tree 
right side is cut off 
up to the trunk top 

is cut off a little

She's wearing 
shades

Add a car to the 
right close to the 

camera

Remove the person 
in the middle

Push the car in the 
middle away

Figure 6: Selected generation results. We show the manipulation results by different approaches on
the Clevr (top), Abstract scene (middle), and Cityscapes (bottom) datasets.

Table 2: Ablation Studies. Performance on ablated versions of our model.

Methods fwhere fhow Clevr Abstract scene

text-adaptive non-adaptive FID ↓ R@1 ↑ R@5 ↑ FID ↓ R@1 ↑ R@5 ↑
Ours Full 3 3 7 33.0 95.9±0.1 97.8±0.1 35.1 35.4±0.2 58.7±0.1

no fwhere 7 3 7 34.8 81.7±0.1 89.6±0.1 48.7 28.7±0.1 44.4±0.1

no fhow 3 7 7 34.7 49.5±0.1 67.4±0.1 36.0 33.8±0.2 56.7±0.2

no text-adaptive 3 7 3 45.9 29.9±0.2 49.1±0.1 37.4 33.1±0.2 54.5±0.1

neural blocks are shared among similar text operators. It is interesting to find our method can
automatically uncover the subtle relationship between operators, e.g., “add” and “make size larger”
operators are closer indicating more neural blocks are shared between these similar operations.

5 CONCLUSION

In this paper, we studied a conditional image generation task that allows users to edit an input
image using complex text instructions. We proposed a new approach treating text instructions as
neural operators to locally modify the image feature. To learn more genetic operators, our method
decomposes “where” from “how” to apply the modification (text operator), introducing a new text-
adaptive network routing mechanism. We evaluate our method on three datasets and show competitive
results with respect to metrics on image quality, semantic relevance, and retrieval performance.
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A MORE QUALITATIVE RESULTS

A.1 MORE IMAGES GENERATED BY OUR MODEL

We show additional images generated by our model on the three experimental datasets. See Figure 7,
Figure 8, and Figure 9 for details. Generally, our model can handle complex text instructions. But
we also observe cases in which our method can fail: (a) when the location of the target is not
well-specified, see Figure 10 the 8-th row; and when the attribute of the target is not detailed enough,
see Figure 10 the 7-th and 9-th row.

A.2 RETRIEVAL RESULTS

We use the generated image by our model as a query to retrieve the target image. Figure 10 shows the
top-5 retrieved images on the Clevr dataset. We show the successful retrieval cases in the first 5 rows
and failure cases in the rest of the rows. The quantitative retrieval performance is reported in Table 1

B IMPLEMENTATION DETAILS

B.1 DATASET PROCESSING

Clevr. We use the CSS dataset (Vo et al., 2019) which was created for the image retrieval task. The
dataset is generated using the Clevr toolkit (Johnson et al., 2017a) and contains 3-D synthesized
images with the presence of objects with different color, shape, and size. Each training sample
includes an input image, an output image and a text instruction specifying the modification. There
are three types of modifications: add a new object, remove an existing object, and change the
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Figure 7: Examples of the generated image by our model on Clevr.
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Figure 8: Examples of the generated image by our model on Abstract Scene.

attribute of an object. Each text instruction specifies the position of the target object and the expected
modification. The dataset includes 17K training data pairs and 17K tests. Note the original rendering
of this dataset contains significant camera and object displacements which fail GAN model training
of all the methods. In our experiments, we use the re-rendered CSS obtained from Vo et al. (2019)
with reduced misalignment for unchanged objects. As a result, we can train meaningful GAN models
and compare all methods fairly on the same CSS benchmark.

Abstract scene. CoDraw(Kim et al., 2017) is a synthetic dataset built upon the Abstract Scene
dataset(Zitnick & Parikh, 2013). It is formed by sequences of images of children playing in the
park. For each sequence, there is a conversation between a Teller and a Drawer. The teller gives text
instructions on how to change the current image and the Drawer can ask questions to confirm details
and output images step by step. To adapt it to our setting, we extract the image and text of a single
step. The dataset consists of 30K training and 8K test instances. Each training sample includes an
input image, an output image and a text description about the object to be added to the input image.

13



Under review as a conference paper at ICLR 2021

add a person to 
the right

Input Image Instruction Results

add a person to 
the middle

pull the person 
on the left closer

add a person 
to the left

add a car to the 
right distant from 

the camera

pull the car in the 
middle closer

pull the person in 
the middle closer

remove the person 
in the middle

remove the car on 
the left close on 

the camera

add a car to the 
right close to 
the camera

Input Image Instruction Results

Figure 9: Examples of the generated image by our model on Cityscapes.

Cityscapes. We create a third dataset based on Cityscapes segmentation masks. The dataset consists
of 4 types of text modifications: “add”, “remove”, “pull an object closer”, and “push an object away”.
The ground-truth images are manually generated by pasting desired objects on the input image
at appropriate positions. We crop out various object prototypes (cars, people, etc.) from existing
images. Specifically, adding is done by simply pasting the added object. Removing is the inverse
of adding. Pulling and pushing objects are done by pasting the same object of different sizes (with
some adjustment on location as well to simulate depth changing effect). The dataset consists of 20K
training instances and 3K examples for testing.

B.2 EVALUATION DETAILS

FID We employ the standard FID (Heusel et al., 2017) metric based on the InceptionV3 model for
the Clevr dataset and the Abstract Scene dataset. On Cityscapes, the FID scores are computed using
a pretrained auto-encoder on segmentation masks. We use the encoder to extract features for distance
computation, and keep the feature dimension to be the same as the original Inception V3 network to
provide a similar scale of the final score.

Retrieval Score First, we extract the features of the edited images using the learned image encoder
Ei to get the queries. For each query, we take the ground-truth output image and randomly select 999
real images from the test set, and extract the features of these images using the same model to form a
pool for the retrieval task. Second, we compute the cosine similarity between the queries and image
features from the pool. We then select the top-N most relevant images from the pool as the candidate
set for each query. We report RS@1 and RS@5 scores in our experiments, in which RS@N indicates
the recall of the ground-truth image in the top-N retrieved images.

B.3 EXPERIMENT SETTING

We implement our model in Pytorch (Paszke et al., 2017). For the image encoder Ei, we use three
down-sampling convolutional layers followed by Instance Normalization and ReLU activation. We
use 3x3 kernels and a stride of 2 for down-sampling convolutional layers. We construct the decoder G
by using two residual blocks followed by three up-sampling layers (transposed-convolutional layers)
followed by Instance Normalization and ReLU activation. We use 3x3 kernels and a stride of 2 for
up-sampling layers.

As for the text encoder Et, we use the BERT (Devlin et al., 2018) model. We use the cased version of
BERT-Base released by the authors of the paper for the BERT (Devlin et al., 2018) text encoder. The
parameters are initialized by pretraining on a large corpus (Wikipedia + BookCorpus).
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Figure 10: Retrieval Results. For each row, top-5 retrieved images are shown. The correct image is
highlighted in the green box.

The parameters in the image encoder Ei and decoder G are initialized by training an image autoen-
coder. Specifically, for each dataset, we pre-train the image encoder and decoder on all images of
the dataset. After the initialization, we fix the parameters in the image encoder Ei and optimize
the other parts of the network in the end-to-end training. During pretraining of the autoencoder, we
use the Adam optimizer (Kingma & Ba, 2015) with a batch size of 8, a learning rate of 0.002, and
exponential rates of (β1, β2) = (0.5, 0.999) and train the model for 30 epochs.

The encoded image feature has 256 channels. The BERT output text embedding dimension d0 = 768,
and the attended text embedding dimension d = 512. The routing network has l = 2 layers and
m = 3 blocks for each layer.

For the training, we use the Adam optimizer (Kingma & Ba, 2015) with a batch size of 16, a learning
rate of 0.002, and exponential rates of (β1, β2) = (0.5, 0.999). We use a smaller learning rate of
0.0002 for BERT as suggested in (Devlin et al., 2018). The model is trained for 60 epochs.
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C NOTES ON BASELINE MODELS

Implementation: the selected baselines are among the state-of-the-art methods in text-to-image
synthesis: DM-GAN2 (Zhu et al., 2019), iterative text-to-image synthesis GeNeVA3 (El-Nouby et al.,
2019), attribute-based text-guided image manipulation TA-GAN4 (Nam et al., 2018). TIRG is a
recent cross-modal retrieval5 (Vo et al., 2019) and is adapted for conditional image generation. For
these baseline methods, we stick to using their original or adapted official implementation (including
their backbone networks and text embeddings) to avoid performance degradation.

DM-GAN is originally used for unconditional text-to-image synthesis and hence has no image input.
To adapt it to our task, we add an image encoder to the model and concatenate the image feature
and the text feature as the model input. However, to minimize modification on the architecture, the
image feature is squeezed into a vector by using global average pooling. Therefore, significant spatial
information of the input image is lost, resulting in low consistency between the generated image and
the input image. We add the `1 reconstruction loss and find it improves the performance.

GeNeVA is a sequential image synthesis model. We compare it under one-shot generation on the
same Abstract scene dataset used in their paper (El-Nouby et al., 2019). While GeNeVA is only tested
on the “add” operation, our method is also verified on other datasets with more diverse and complex
text instructions. Applying our method in the sequential generation is non-trivial as it requires the
design of extra memory for sequential modeling. Since all baseline methods except GeNeVA do not
use memory/state for sequential modeling, we do not evaluate multi-shot generation but leave it as
our future work.

2code available on https://github.com/MinfengZhu/DM-GAN
3code available on https://github.com/Maluuba/GeNeVA
4code available on https://github.com/woozzu/tagan
5code available on https://github.com/google/tirg
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