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ABSTRACT

Recommendation models are increasingly used in settings where ambiguity and
transparency matter, yet many approaches are deterministic or poorly calibrated.
We present SPHERIQ, a geometric framework that embeds users, items, and tags
as probabilistic regions in hyperbolic space. The centre encodes the semantic po-
sition while the radii capture predictive uncertainty; a Gaussian semantic kernel
on the manifold enables calibrated, transitive composition along the user to tag to
item paths. This bridges symbolic and distance based paradigms, providing con-
cept level traces and confidence estimates with the efficiency of lightweight em-
beddings. We instantiate SPHERIQ with automatic tag construction and Rieman-
nian optimisation, and evaluate it on news, books, and commonsense reasoning
benchmarks. Across datasets, our model pairs strong ranking performance with
improved calibration and semantic diversity, while remaining efficient to train.
The concrete goal is to unify ranking, calibration, and explanation by casting rec-
ommendation as probabilistic concept level reasoning in hyperbolic space, with
tags serving as semantic pivots rather than end objectives.

1 INTRODUCTION

Recommender systems shape how users engage with news, books, and knowledge online. Em-
bedding based and neural recommenders (He et al., 2020; Ong et al., 2021) have achieved notable
progress, yet two challenges persist. First, most models are deterministic: they return point predic-
tions without calibrated confidence, leading to overconfident behaviour in safety critical domains
such as healthcare or education (Mazurowski, 2013; Mesas & Bellogı́n, 2017). Recent work on
calibrated recommendation highlights this issue (Naghiaei et al., 2022). Second, such systems are
largely opaque, offering little insight into their internal reasoning, which undermines trust in do-
mains requiring accountability.

Tags and semantic attributes provide a natural bridge between users and items (Zhang et al., 2010;
Chen et al., 2020), and hyperbolic geometry is effective for modelling hierarchical structure (Nickel
& Kiela, 2017). However, existing tag based models rely on deterministic diffusion or tripartite
reasoning, while hyperbolic methods typically ignore uncertainty. Explainable recommendation and
symbolic reasoning (Wilson et al., 2014; Dong et al., 2025) show the value of semantic alignment,
and knowledge graph or rule based methods highlight structured explanations (Ai et al., 2018; Ma
et al., 2019), yet uncertainty, interpretability, and semantics are usually treated as separate goals.

Probabilistic methods such as VAEs and Bayesian matrix factorisation capture predictive distribu-
tions (Wang et al., 2023) but remain Euclidean and opaque, lacking explicit semantic reasoning.
Recent probabilistic embeddings in hyperbolic or Gaussian spaces (Nickel & Kiela, 2017) model
uncertainty geometrically but do not address recommendation or concept level explanations. Other
work explores uncertainty in implicit feedback and diversity (Coscrato & Bridge, 2022; Liu et al.,
2019), but without unifying calibration and explanation.

Aim. We propose SpheriQ, a probabilistic hyperbolic reasoning framework that unifies ranking ac-
curacy, calibration, and explanation. Users, items, and tags are embedded as probabilistic spheres:
centres encode semantic position and radii capture predictive uncertainty. A Gaussian semantic
kernel enables soft transitive reasoning along user–tag–item paths, yielding calibrated scores and
faithful rationales. This formulation generalises symbolic and distance based paradigms while pro-
viding a mathematically grounded mechanism for trustworthy recommendation.
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Our contributions are threefold:

• A probabilistic hyperbolic embedding framework that represents users, items, and tags
as spheres with uncertainty radii, enabling calibrated reasoning beyond deterministic em-
beddings.

• A semantic kernel for probabilistic transitivity, composing user–concept–item similari-
ties into interpretable, uncertainty aware recommendations.

• A theoretical link between geometry and logic, showing that sphere inclusions corre-
spond to entailments. Empirical results on MIND, GoodBooks, BookCrossing, and Avi-
cenna show up to 8.3% higher NDCG@10 and 6.7% lower calibration error over strong
baselines, with training efficiency.

By unifying probabilistic geometry with semantic reasoning, SpheriQ provides an interpretable and
uncertainty aware foundation for recommendation, advancing beyond tag diffusion and deterministic
hyperbolic models toward trustworthy systems that balance accuracy, transparency, and calibration.

2 PRELIMINARIES

This section introduces the mathematical background and data processing underpinning SpheriQ.
These components are not themselves contributions but provide the foundation upon which the
method is built.

2.1 NOTATION

Let U , I, and T denote the sets of users, items, and tags, respectively. Each entity i is represented as
Oi = (µi, σ

2
i ), where µi is the embedding centre and σ2

i its associated variance. Vectors are initially
embedded in Rn. The hyperbolic space is modelled as the n-dimensional Poincaré ball

Dn = {x ∈ Rn : ∥x∥ < 1}.

An encoder E(·) maps raw text or metadata into Rn.

2.2 HYPERBOLIC GEOMETRY

The Poincaré ball induces the distance between two points µi, µj ∈ Dn as

dD(µi, µj) = cosh−1

(
1 + 2

∥µi − µj∥2

(1− ∥µi∥2)(1− ∥µj∥2)

)
. (1)

To initialise embeddings, encoder outputs are projected onto the manifold via the exponential map
at the origin:

µi = exp0

(
E(xi)

∥E(xi)∥
tanh(∥E(xi)∥)

)
. (2)

This ensures that all representations lie within Dn.

2.3 PROBABILISTIC SPHERE EMBEDDINGS

Each entity is represented as a probabilistic sphere

Oi = (µi, σ
2
i ), µi ∈ Dn, σ2

i ∈ R+. (3)

Uncertainty is parameterised via a softplus transform:

σ2
i = log

(
1 + exp(wi)

)
, wi ∈ R trainable, (4)

which guarantees positivity and smooth gradients. We assume isotropic variance for tractability.
Intuitively, small radii indicate confident semantics, whereas large radii reflect predictive uncertainty.
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Figure 1: SpheriQ overview. Left: an entity as a probabilistic sphere with centre µi and radius σi in
the Poincaré ball. Right: pipeline with encoder initialisation, lightweight tag construction, and the
semantic kernel used for transitive reasoning along user→tag→item paths.

2.4 SEMANTIC KERNEL

The similarity between two spheres Oi and Oj is defined by a Gaussian kernel in hyperbolic space:

K(Oi, Oj) = exp

(
− dD(µi, µj)

2

2λ(σ2
i + σ2

j )

)
, (5)

which generalises the radial basis function to curved geometry while explicitly incorporating uncer-
tainty. The temperature parameter λ > 0 controls kernel sharpness; unless otherwise stated we fix
λ = 1. Key properties such as boundedness, symmetry, and monotonicity in variance are established
in the appendixD.

2.5 TAG SETS

For each dataset d ∈ {MIND,GoodBooks,Book Crossing,Avicenna} we construct a tag set Td
using lightweight, dataset-specific procedures:

• MIND: publisher-provided categories and subtopics;
• GoodBooks and Book Crossing: Sentence-BERT (all MiniLM L6 v2) embeddings

clustered via K-means (k = 20 chosen by Silhouette analysis), with each item assigned
to its nearest centroid;

• Avicenna: symbolic concepts extracted from logical triples.

All tag sets are precomputed and fixed for reproducibility; sensitivity to k is reported in ablations.

Each tag t ∈ Td is then embedded as a probabilistic sphere Ot = (µt, σ
2
t ) in the same Poincaré

space as users and items. For clustered tags, µt is initialised from the centroid embedding; for
symbolic tags, from the corresponding concept encoder. This alignment ensures that users, items,
and tags share a unified geometric space, allowing semantic kernels K(Ou, Ot) and K(Ot, Oj) to
be consistently composed in transitive reasoning.

3 METHOD

We cast recommendation as probabilistic reasoning over user, tag, and item spheres in hyperbolic
space. SpheriQ composes semantic similarities along concept paths and learns to rank items while
calibrating uncertainty.

3.1 PROBLEM STATEMENT

Given user, item, and tag sets U , I, T and their probabilistic sphere representations Ou, Oj , Ot

(Sec. §2), our goal is to produce, for each user u, a calibrated ranking over items j ∈ I together
with an explicit semantic explanation via a tag t ∈ T .

3
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3.2 TRANSITIVE SCORING

We score user–item pairs by composing similarities along user–tag–item chains:

s(u, j) = max
t∈T

f
(
K(Ou, Ot), K(Ot, Oj)

)
, (6)

where the fuzzy composition aggregates the two kernel factors:

fprod(a, b) = ab, fmin(a, b) = min(a, b). (7)

The outer maximum selects the most confident conceptual path and exposes an explanation u→
t⋆→ j, where t⋆ = argmaxt∈T f(K(Ou, Ot),K(Ot, Oj)). For efficiency we optionally prefilter
per user to the top k tags by K(Ou, Ot), reducing the per-pair cost to O(k).

Inference. At test time we compute s(u, j) for all candidate items j and return the top-k items,
each accompanied by its maximising tag t⋆ as an explicit rationale.

Practical note (smooth training). For stability, a soft surrogate can replace the hard max during
training:

sτ (u, j) = τ log
∑
t∈T

exp
(

1
τ f(K(Ou, Ot),K(Ot, Oj))

)
,

with temperature τ ↓0 recovering Eq. equation 6. We keep the hard max at inference.

3.3 LEARNING OBJECTIVE

We optimise a contrastive (softmax) ranking loss over observed positives and sampled negatives:

Lrank = −
∑

(u,j+)∈D

log
exp(s(u, j+))

exp(s(u, j+)) +
∑

j−∈N (u) exp(s(u, j
−))

. (8)

Geometry and uncertainty are regularised via

Lreg =
∑
i

(
λ1 ∥µi∥2 + λ2 KL

(
N (0, σ2

i ) ∥N (0, σ2
0)
))

, (9)

with prior variance σ2
0 . The full objective is

L = Lrank + Lreg. (10)

Training protocol. We train on mini-batches of observed interactions, sampling 100 negatives
uniformly per positive; evaluation ranks over the full item set. This yields unbiased gradients while
scaling to large vocabularies.

3.4 OPTIMISATION AND COMPLEXITY

Parameters are updated with Riemannian Adam (Kochurov et al., 2020) using Möbius operations to
maintain feasibility in Dn. Gradients are computed in tangent spaces, updated, and mapped back
via the exponential map. We cache hyperbolic distances and kernel scores where safe to do so.

Complexity and memory. With exact scoring, a full epoch costs O(|E| · |T |); with per-user
prefiltering it is O(|E| · k), where |E| is the number of observed interactions. Memory is dominated
by embeddings of users, items, and tags, i.e., O((|U|+ |I|+ |T |)n), plus optional kernel caches.

3.5 PROPERTIES USED IN PRACTICE

We rely on two properties:

• Monotonicity in uncertainty. For fixed centres, K(Oi, Oj) decreases as σ2
i + σ2

j in-
creases; thus the composed score s(u, j) is non-increasing in σ2

u, σ
2
t , σ

2
j . This underpins

our calibration analyses.
• Path selection. For finite T , the maximum in Eq. equation 6 is attained by some t⋆,

yielding an explicit explanation certificate u→ t⋆ → j.
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Kernel invariances. The kernel in Eq. equation 5 is bounded, symmetric, and invariant to Poincaré
isometries, so equivalent geometric embeddings induce identical recommendations.

3.6 IMPLEMENTATION NOTES

Centres are initialised with encoders E(·) and fine-tuned end-to-end. Unless stated, λ = 1 and
f = fprod (we report fmin in ablations). Tag sets are precomputed for reproducibility. Because
scoring necessarily factors through a tag, each prediction is accompanied by an interpretable seman-
tic certificate u→ t⋆ → j.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate SpheriQ on four publicly available datasets spanning news recommendation, book
preference modelling, and commonsense reasoning. (1) MIND-small (Wu et al., 2020)1 is a large-
scale news recommendation benchmark with click logs and article metadata; publisher-provided
topics are used as semantic tags. (2) GoodBooks-10K (Zajac, 2017) 2 contains implicit feedback
ratings on 10,000 books, where Goodreads genres and tags act as conceptual anchors. (3) Book-
Crossing (Ziegler et al., 2005)3 is a sparse user–book interaction dataset; we cluster metadata into
broad semantic categories for tag supervision. (4) Avicenna-Syllogism (Aghahadi & Talebpour,
2022)4 provides concept-level syllogisms, reinterpreted for recommendation by mapping premises
to user intents and conclusions to candidate items. We use fixed 80/10/10 train/validation/test splits,
preserving chronological order when available. Dataset statistics are shown in Table 9.

4.2 BASELINES

We benchmark against models representing collaborative filtering, graph learning, hyperbolic geom-
etry, and causal paradigms. NeuMF++ (Ong et al., 2021) fuses matrix factorisation with MLP layers.
LightGCN++ (He et al., 2020) propagates embeddings through multiple graph layers optimised for
sparsity. Poincaré embeddings (Nickel & Kiela, 2017) adapt hyperbolic geometry to user–item sim-
ilarity. CSRec (Liu et al., 2024) incorporates causal regularisation to mitigate exposure bias. HSR
(Li et al., 2022) leverages hyperbolic embeddings in social recommendation. We also include two
recent methods: Decision-aware RecSys(Mesas & Bellogı́n, 2017), which optimises recommenda-
tions for downstream decision utility, and JIT2R (Chen et al., 2020), a just-in-time personalised
ranking model. Our proposed SpheriQ extends these lines by combining probabilistic hyperbolic
embeddings with semantic kernel reasoning for uncertainty-aware and interpretable recommenda-
tion.

4.3 EVALUATION PROTOCOL

We report four categories of metrics. (i) NDCG@10 and Recall@10 for ranking quality. (ii) Ex-
pected Calibration Error (ECE) with 10-bin histogram binning (Guo et al., 2017). (iii) Diver-
sity@10 and Topic-aware Intra-List Similarity (T-ILS@10) to measure semantic variety. (iv)
Training efficiency, measured by wall-clock time per epoch and epochs to convergence. Evalua-
tion follows the leave-one-out protocol: for each user, all unobserved items are ranked against the
held-out positive. All metrics are averaged over five independent runs with different random seeds.

4.4 IMPLEMENTATION DETAILS

All models are implemented in PyTorch and trained with Adam (initial learning rate 10−3, β1=0.9,
β2=0.999). Early stopping is applied on validation NDCG@10 with a patience of 20 epochs (max-
imum 200). We use a batch size of 512, gradient clipping at 5.0, and mixed precision where sta-

1https://www.kaggle.com/datasets/arashnic/mind-news-dataset
2https://www.kaggle.com/datasets/zygmunt/goodbooks-10k
3https://www.kaggle.com/datasets/somnambwl/bookcrossing-dataset
4https://github.com/ZeinabAghahadi/Syllogistic-Commonsense-Reasoning

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ble. Unless stated otherwise, embeddings are d=128 with Xavier uniform initialisation and dropout
p=0.1. Experiments are run on a single NVIDIA RTX 2080 Ti (11 GB).

Hyperparameter tuning. Hyperparameters are selected via grid search on the validation
split. Shared grids include learning rate {1 × 10−3, 5 × 10−4, 1 × 10−4}, weight decay
{0, 10−6, 10−5, 10−4}, dropout {0.0, 0.1, 0.3}, and embedding dimension {64, 128, 256}.
Baseline-specific ranges follow the original papers: LightGCN++ depth {2, 3, 4}; NeuMF++
MLP layers {2, 3}; CSRec causal regulariser λc ∈ {0.1, 0.3, 1.0}; hyperbolic curvature c ∈
{0.1, 0.5, 1.0} for Poincaré and HSR; Decision-aware RecSys calibration temperature ∈ [0.5, 5.0]
tuned by grid search on validation ECE; and JIT2R tag-predictor hidden size {64, 128} and dropout
{0.0, 0.2}. For SpheriQ, we additionally tune the uncertainty prior σ0 ∈ {0.1, 0.2, 0.5}, transitivity
weight λtr ∈ {0.1, 0.3, 1.0}, and kernel temperature τ ∈ {0.5, 1.0}.

Training protocol. Models are optimised with a pointwise logistic ranking loss and label smooth-
ing (0.05). Negative sampling baselines use 100 negatives per positive; evaluation always ranks the
full item set. The learning rate schedule consists of a 5-epoch linear warm-up followed by cosine
decay.

5 RESULTS

We report results on four datasets, comparing SpheriQ against seven strong baselines spanning neu-
ral, geometric, and causal paradigms. All results are averaged over five fixed seeds; we report mean
values in the main text and mean± standard deviation in Appendix §G. Results are organised around
our core claims: accuracy/diversity trade-off, calibration and selective recommendation, explanation
faithfulness, robustness, and ablations.

5.1 BASELINE COMPARISON

Table 1 compares ranking accuracy (NDCG@10, Recall@10), calibration (ECE), and semantic
diversity (Diversity@10). SpheriQ achieves the best trade-off across all metrics, improving
NDCG@10 by 4.9% and reducing calibration error by 12% relative to CSRec. Against hyper-
bolic baselines (Poincaré, HSR), SpheriQ further boosts diversity, confirming the complementarity
of probabilistic uncertainty and hyperbolic geometry.

Table 1: Comparison against strong baselines (mean over 5 seeds; ↓ lower is better).

Model NDCG@10 Recall@10 ECE ↓ Diversity@10

NeuMF++ 0.421 0.541 0.138 0.231
LightGCN++ 0.443 0.562 0.125 0.237
Poincaré 0.428 0.550 0.122 0.254
CSRec 0.451 0.572 0.117 0.242
HSR 0.439 0.557 0.119 0.259
Decision-aware 0.447 0.566 0.101 0.245
JIT2R 0.459 0.579 0.112 0.282
SpheriQ 0.473 0.591 0.103 0.294

5.2 DIVERSITY ANALYSIS

We evaluate semantic coverage with Topic-aware Intra-List Similarity (T-ILS@10; lower is better).
Table 2 shows SpheriQ achieves the lowest redundancy across all datasets. Transitive reasoning
over user–tag–item paths expands recommendation space into semantically diverse yet aligned
regions, whereas baselines concentrate on frequent tags.

5.3 CALIBRATION, RISK–COVERAGE, AND SELECTIVE RECOMMENDATION

Beyond scalar ECE, we assess calibration with Brier score and AURC (Table 3) and provide a joint
visual analysis in Fig. 2. Panel (a) shows reliability: SpheriQ follows the diagonal most closely, indi-
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Table 2: Topic-aware intra-list similarity (T-ILS@10; lower is better).

Model GoodBooks MIND Avicenna Book-Crossing

NeuMF++ 0.214 0.276 0.193 0.251
LightGCN++ 0.201 0.263 0.187 0.240
Poincaré 0.196 0.257 0.182 0.234
CSRec 0.195 0.248 0.179 0.227
HSR 0.188 0.239 0.172 0.218
Decision-aware 0.192 0.245 0.176 0.222
JIT2R 0.186 0.236 0.171 0.215
SpheriQ 0.162 0.210 0.149 0.191

(a) Reliability diagram (MIND). (b) Risk–coverage curve (c) Selective recommendation

Figure 2: Calibration, risk, and selective recommendation. (a) SpheriQ closely follows the relia-
bility diagonal. (b) SpheriQ achieves the lowest risk across coverage. (c) SpheriQ dominates the
accuracy–coverage trade-off.

cating superior probability calibration. Panel (b) reports risk–coverage: SpheriQ maintains the low-
est risk at all coverage levels, demonstrating robust confidence estimates under abstention. Panel (c)
presents selective recommendation (NDCG@10 vs. coverage): SpheriQ preserves accuracy at high
coverage and degrades gracefully when abstaining, dominating the accuracy–coverage trade-off.

Table 3: Calibration metrics (mean over 5 seeds; ↓ lower is better).

Model Brier ↓ AURC ↓
NeuMF++ 0.214 0.162
LightGCN++ 0.208 0.155
Poincaré 0.205 0.151
CSRec 0.199 0.143
HSR 0.202 0.148
Decision-aware 0.187 0.138
JIT2R 0.192 0.141
SpheriQ 0.176 0.126

5.4 FAITHFULNESS OF EXPLANATIONS

We test whether tags in explanations causally affect scores. Masking the top explanatory tag t⋆

yields large confidence and hit-rate drops only for SpheriQ (Table 4), confirming that explanations
are intrinsic to the scoring function rather than post-hoc.

5.5 COLD-START AND OOD ROBUSTNESS

We evaluate generalisation to sparse and shifted settings. Table 5 shows SpheriQ retains 89% of
in-distribution accuracy in cold-item and 91% in cold-user settings, and outperforms all baselines
under tag perturbations, demonstrating robustness to both sparsity and semantic shift.

7
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Table 4: Faithfulness drop when masking explanatory tags (mean over 5 seeds).

Model ∆s Hit@10 Drop (%)

NeuMF++ 0.01 0.2
LightGCN++ 0.02 0.4
Poincaré 0.03 0.6
CSRec 0.04 0.7
HSR 0.05 0.8
Decision-aware 0.04 0.6
JIT2R 0.05 0.9
SpheriQ 0.21 4.7

Table 5: Cold-start and OOD robustness on GoodBooks (NDCG@10).

Model Cold-Item Cold-User (5-shot) Tag-Shift

NeuMF++ 0.291 0.314 0.278
LightGCN++ 0.307 0.332 0.291
Poincaré 0.315 0.338 0.298
CSRec 0.322 0.345 0.302
HSR 0.319 0.342 0.296
Decision-aware 0.318 0.341 0.299
JIT2R 0.327 0.349 0.304
SpheriQ 0.356 0.371 0.324

5.6 ABLATION STUDY

Finally, we ablate SpheriQ’s components (Table 6). Uncertainty stabilises calibration (ECE rises
from 0.103 to 0.137 without it), hyperbolic geometry boosts accuracy, and transitivity drives diver-
sity (0.294 → 0.197). Each component contributes orthogonally, confirming the necessity of
the full design.

Table 6: Ablation of SpheriQ components (mean over 5 seeds).

Variant NDCG@10 Recall@10 ECE ↓ Diversity@10

Full model 0.473 0.591 0.103 0.294
Fixed σ 0.452 0.565 0.137 0.263
Euclidean 0.434 0.548 0.141 0.218
No transitivity 0.441 0.549 0.135 0.197

6 CASE STUDIES

We present two qualitative case studies to illustrate how SPHERIQ surfaces concept-level explana-
tions and calibrated confidence. Unlike conventional recommenders that output only ranked items,
SPHERIQ associates each recommendation with a user–tag–item path and a confidence score derived
from its probabilistic kernel.

6.1 GOODBOOKS: CONCEPT-ALIGNED EXPLANATIONS

We consider a user with a history of fantasy novels and some interest in philosophy. Table 7 shows
the top recommendations produced by SPHERIQ along with their explanation tags and confidences.
Items tied to the Fantasy concept receive high confidence, while concept shifts toward Philosophy
appear with slightly lower but still reliable scores, reflecting calibrated uncertainty across semantic
regions.
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Table 7: GoodBooks case study. SPHERIQ outputs recommended items together with an explanatory
tag and calibrated confidence.

Recommended Item Tag Explanation Confidence

The Hobbit Fantasy 0.91
The Fellowship of the Ring Fantasy 0.89
A Game of Thrones Fantasy 0.88
Thus Spoke Zarathustra Philosophy 0.87
Sapiens History 0.83

6.2 MIND: CALIBRATION AND SAFE ABSTENTION

For a news reader who regularly follows technology policy and international politics, SPHERIQ re-
turns recommendations with explicit topical rationales and confidence scores (Table 8). When con-
fidence drops below a threshold, the system can abstain, supporting safer behavior in fast-changing
or ambiguous contexts. Confidence values are the model scores produced by the transitive seman-
tic kernel and reflect calibrated uncertainty. Explanation tags correspond to the argmax tag on the
user–tag–item path that yields the final score for each recommendation. Low-confidence items may
be abstained to preserve reliability.

Table 8: MIND case study. SPHERIQ attaches topical tags and confidence.

Recommended Article Tag Explanation Confidence

AI regulation bill passes Technology Policy 0.82
New sanctions in Europe International Politics 0.81
Central bank signals rate change Economy 0.80
Climate pact negotiations stall Environment 0.78

7 CONCLUSION

SPHERIQ embeds users, items, and tags as probabilistic spheres in hyperbolic space, casting rec-
ommendation as calibrated, concept level transitive reasoning. The concrete goal is to unify ranking
accuracy, probability calibration, and explanation faithfulness within a single framework. Across
four benchmarks, SPHERIQ improves ranking quality, lowers calibration error, and increases se-
mantic diversity over strong neural, geometric, and causal baselines, while remaining training effi-
cient. Selective recommendation shows favourable accuracy–coverage trade offs and reduced risk
under abstention, while faithfulness tests that mask the top explanatory tag confirm intrinsic ex-
planations. Robustness under cold start and tag shift further indicates stable behaviour. Ablations
verify complementary roles of uncertainty, hyperbolic geometry, and semantic transitivity, and the
theory links geometric kernels, soft inclusion, and path selection to explicit decision certificates.
We provide additional tests and robustness analyses in AppendixG, reproducibility details F, and an
expanded discussion of related work in C. Future work includes modelling richer covariance struc-
tures, refining data driven or personalised tag ontologies, and extending to domains where calibrated
confidence and explicit rationales are critical, such as healthcare, finance, and education.

8 REPRODUCIBILITY STATEMENT

We provide complete details of data sets, pre-processing, hyperparameter grids, training protocol,
and evaluation metrics in F. All experiments are run with fixed seeds across five trials, and results
with mean and standard deviation are reported.
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B LLM USAGE DISCLOSURE

Policy alignment. We did not use large language models (LLMs) for research ideation, writing,
analysis, experiment design, or result generation. Authors take full responsibility for all contents.

Tools used. We used Grammarly solely for spelling, punctuation, and minor language correctness
suggestions. It did not generate technical content, restructure sections, propose ideas, or write text
beyond surface level edits.

Non uses. No LLMs (e.g., ChatGPT or similar) were used for drafting, paraphrasing, literature
synthesis, coding, data processing, evaluation, proofs, or claims.

Verification. All text and results were authored, reviewed, and verified by the authors.

C RELATED WORK

Tag-based recommendation has been widely studied. Early works exploited user–item–tag tripartite
graphs Zhang et al. (2010), and later methods such as JIT2R Chen et al. (2020) jointly model tagging
and recommendation. These models capture semantics but remain deterministic and do not address
uncertainty. Uncertainty in recommendation has been explored through confidence estimation in
collaborative filtering Mazurowski (2013); Mesas & Bellogı́n (2017), and variational methods such
as CaD-VAE Wang et al. (2023) introduce probabilistic modelling. However, these approaches lack
native interpretability and structured reasoning.

Geometry-based methods employ hyperbolic embeddings Nickel & Kiela (2017) to model hierarchi-
cal relations effectively. Hyperbolic recommendation system Vinh et al. (2018) extends this idea by
encoding set relations as hyperbolic spheres for syllogistic reasoning. These methods are either de-
terministic or not designed for recommendation.Interpretability has been approached through feature
interaction models such as Explainable Factorisation Machines Zhang et al. (2014) and xDeepFM
Lian et al. (2018), as well as post-hoc methods such as LIME Ribeiro et al. (2016) and SHAP
Lundberg & Lee (2017). Trust-aware models like TrustSVD Guo et al. (2015) incorporate auxiliary
signals but do not model uncertainty.

Prior work has advanced semantic structure Zhang et al. (2010); Chen et al. (2020); Nickel & Kiela
(2017), uncertainty Wang et al. (2023), and interpretability Zhang et al. (2014); Lundberg & Lee
(2017) separately. SpheriQ unifies these dimensions by embedding users, items, and tags as proba-
bilistic hyperbolic spheres, enabling calibrated uncertainty, semantic alignment, and soft transitive
reasoning within a single framework.

D THEORETICAL ANALYSIS

We analyse SpheriQ in terms of well posedness, interpretability, calibration, stability, and computa-
tional complexity. Throughout, entities are probabilistic spheres Oi = (µi, σ

2
i ) on the Poincaré ball

Dn, similarity is given by the semantic kernel

K(Oi, Oj) = exp
(
− dD(µi,µj)

2

2λ(σ2
i+σ2

j )

)
,

and transitive scores use

s(u, j) = max
t∈T

f
(
K(Ou, Ot),K(Ot, Oj)

)
, f ∈ {fprod(a, b) = ab, fmin(a, b) = min(a, b)}.

D.1 WELL POSEDNESS AND BASIC PROPERTIES

Lemma 1 (Boundedness and symmetry). For all i, j, K(Oi, Oj) ∈ (0, 1] and K(Oi, Oj) =
K(Oj , Oi). Moreover, K(Oi, Oj) = 1 if and only if dD(µi, µj) = 0.

Sketch. Non negativity of d2D and positivity of σ2
i +σ2

j imply that the exponent is non positive, hence
the range is (0, 1]. Symmetry follows from symmetry of dD. The equality case is immediate.

12
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Lemma 2 (Continuity and differentiability). The map (µi, µj , σ
2
i , σ

2
j ) 7→ K(Oi, Oj) is smooth on

the open set {∥µ∥ < 1, σ2 > 0}.

Sketch. Composition of smooth functions: the Poincaré distance dD is smooth on Dn ×Dn, and the
exponential is smooth.

D.2 UNCERTAINTY AND CALIBRATION

Proposition 3 (Monotonicity in uncertainty). Fix µi, µj . Then K(Oi, Oj) is strictly decreasing in
σ2
i + σ2

j whenever dD(µi, µj) > 0.

Sketch. Let c = dD(µi, µj)
2/(2λ) > 0 and v = σ2

i + σ2
j > 0. Then K = exp(−c/v) with

∂K/∂v = (c/v2) exp(−c/v) · (−1) < 0.

Proposition 4 (Score calibration under increasing uncertainty). For fixed centres and any f ∈
{fprod, fmin}, the user–item score s(u, j) is non increasing in each variance σ2

u, σ
2
j , and in every

intermediate variance σ2
t .

Sketch. Each factor K(Ou, Ot) and K(Ot, Oj) is non increasing in any of the three variances by
the previous proposition. Both fprod and fmin are monotone in each argument, and the maximum
over t preserves monotonicity.

D.3 INTERPRETABILITY VIA PATH SELECTION

Proposition 5 (Path wise interpretability). For each user–item pair (u, j) there exists t⋆ ∈ T at-
taining the maximum in s(u, j). The recommendation admits the explicit chain u→ t⋆ → j, which
is a certificate of the decision.

Sketch. The set {f(K(Ou, Ot),K(Ot, Oj)) : t ∈ T } is bounded above by 1. If T is finite, the
maximum is attained. For a compact infinite T with continuous parameterisation, continuity of K
and f implies existence of a maximiser by Weierstrass.

D.4 STABILITY TO PERTURBATIONS

Lemma 6 (Sensitivity to distance). Let v = σ2
i + σ2

j . Then for any perturbation ∆d of dD(µi, µj),∣∣K(d+∆d)−K(d)
∣∣ ≤ |d|+ |d+∆d|

λv
K(d̃) |∆d|,

for some d̃ between d and d+∆d.

Sketch. Mean value theorem with ∂K/∂d = − d
λvK.

Proposition 7 (Stability of transitive score). Assume T is finite. Let ∆d denote per pair perturba-
tions to the distances entering K(Ou, Ot) and K(Ot, Oj). Then

|s(u, j;∆d)− s(u, j; 0)| ≤ max
t∈T

(
Lut |∆dut|+ Ltj |∆dtj |

)
,

with constants L controlled by the previous lemma and the choice of f .

Sketch. Apply the sensitivity bound to each kernel factor. Monotonicity and Lipschitz properties of
fprod and fmin along with the outer maximum give the stated bound.
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D.5 CONNECTIONS AND REDUCTIONS

Proposition 8 (Reduction to deterministic hyperbolic embeddings). If all variances are set to a
constant σ2 → 0+, then K(Oi, Oj) = exp(−dD(µi, µj)

2/(4λσ2)). Thus SpheriQ reduces to a
deterministic distance kernel on Dn.

Sketch. Set σ2
i = σ2

j = σ2 in the kernel and take the limit σ2 → 0+.

Proposition 9 (Symbolic inclusion limit). Fix τ ∈ (0, 1). If dD(µi, µj) ≤ r and σ2
i + σ2

j ≤ v

with r2 ≤ −2λv log τ , then K(Oi, Oj) ≥ τ . Hence small radii with close centres act as soft set
inclusions.

Sketch. Solve K ≥ τ for d2D in terms of v.

D.6 OPTIMISATION ON MANIFOLDS

Let θ collect all parameters. Write the loss L(θ) = Lrank + Lreg.

Lemma 10 (Riemannian gradients). For any pair (i, j),

∂K

∂σ2
i

=
dD(µi, µj)

2

2λ(σ2
i + σ2

j )
2
K, ∇R

µi
K = − dD(µi, µj)

λ(σ2
i + σ2

j )
K · ∇R

µi
dD(µi, µj),

where ∇R denotes the Riemannian gradient on Dn.

Sketch. Differentiate the kernel in scalar form, then apply the chain rule with the Riemannian gra-
dient of the distance. Closed forms for ∇RdD on the Poincaré ball are standard in the literature and
are used in implementation.

Proposition 11 (Convergence to stationary points). Assume bounded gradients and standard con-
ditions on the step size. Then Riemannian Adam produces a sequence with accumulation points that
are first order stationary for L.

Sketch. Follows from convergence results for adaptive methods on Riemannian manifolds under
boundedness and smoothness assumptions.

D.7 COMPUTATIONAL COMPLEXITY

Proposition 12 (Time and memory). Let |E| be the number of observed interactions and |T | the
number of tags. A full epoch with exact transitive scoring has time complexity O(|E| · |T |) and
memory dominated by the embedding table and cached pairwise kernel scores. With a top k prefilter
of tags per user (based on K(Ou, Ot)), the complexity becomes O(|E| · k).

Sketch. Each positive pair (u, j) requires evaluating at most |T | two factor compositions. Prefilter-
ing reduces the inner loop to k.

D.8 ASSUMPTIONS AND LIMITATIONS

Our analysis assumes finite T or compactness when invoking existence of maximisers, isotropic
variances for tractability, and smoothness of the distance map on Dn. Extending to anisotropic
covariances and studying positive definiteness of kernels induced by alternative hyperbolic metrics
are promising directions.

E EXPERIMENTAL SETUP

We evaluate SPHERIQ on four public datasets spanning news recommendation, book preferences,
and commonsense reasoning. We describe datasets, baselines, metrics, and evaluation protocol.
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E.1 DATASETS

• MIND small Wu et al. (2020): news clicks with article metadata. Publisher topics and
subtopics serve as tags.

• GoodBooks 10K Zajac (2017): implicit book ratings. Goodreads genres and tags act as
anchors.

• Book Crossing Ziegler et al. (2005): sparse user–book interactions. We cluster metadata
into coarse semantic categories.

• Avicenna Syllogism Aghahadi & Talebpour (2022): concept-level reasoning; premises are
treated as user intents and conclusions as candidate items.

All datasets use an 80/10/10 train, validation, and test split, preserving temporal order when avail-
able.

Table 9: Dataset statistics.

Dataset #Users #Items Density (%)

MIND small 10,000 6,150 0.081
GoodBooks 10K 53,424 10,000 0.011
Book Crossing 36,739 8,000 0.006
Avicenna Syllogism 2,300 500 0.130

E.2 BASELINES

We compare against representative collaborative, graph, hyperbolic, causal, decision-aware, and
tag-based methods:

• NeuMF++ Ong et al. (2021): neural matrix factorisation with MF and MLP components.
• LightGCN++ He et al. (2020): graph-based collaborative filtering with simplified message

passing.
• Poincaré embeddings Nickel & Kiela (2017): hyperbolic embeddings adapted to

user–item similarity.
• CSRec Liu et al. (2024): causal-aware sequential recommendation decoupling exposure

from preference.
• Decision-aware RecSys Mesas & Bellogı́n (2017): post-hoc re-ranking to maximise ex-

pected utility; scores are calibrated on validation.
• JIT2R Chen et al. (2020): joint item tagging and tag-based recommendation; we use the

same tag sets as §E.
• SpheriQ: probabilistic hyperbolic spheres with semantic kernel and transitive reasoning.

Baseline fairness. For tag-aware methods (JIT2R and SpheriQ), we use identical tag sets per
dataset. For models requiring calibrated scores (Decision-aware), we apply temperature scaling
on validation. Unless noted, all methods use the same embedding dimension and optimiser.

E.3 METRICS

We report four classes of metrics:

• Ranking: NDCG@10, Recall@10.
• Calibration: Expected Calibration Error (ECE) Guo et al. (2017), Brier score, and AURC.
• Diversity: Diversity@10 and topic-aware intra-list similarity (T-ILS@10).
• Efficiency: wall-clock time per epoch and epochs to convergence.

We use leave-one-out evaluation and rank over all unobserved items per user at test time. All metrics
are averaged over five random seeds. We report 95% confidence intervals via paired bootstrap and
mark improvements significant at p<0.05.
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F REPRODUCIBILITY

Environment. Experiments are implemented in PyTorch 2.5 with CUDA 12.1 and the geoopt
library for Riemannian optimisation. Runs were executed on a single NVIDIA 2080 Ti (11 GB) ,
32 GB RAM, Ubuntu 22.04. Dependencies are specified in an environment.yml file.

Datasets and Preprocessing. Tag sets are precomputed using metadata (MIND), Sentence-BERT
embeddings clustered by K-means (books), and symbolic concepts (Avicenna). Preprocessed data,
tag sets, and split indices will be released.

Hyperparameter Search. Hyperparameters are tuned on validation NDCG using grid search:
learning rate {10−3, 5×10−4, 10−4}, weight decay {0, 10−6, 10−5, 10−4}, dropout {0.0, 0.1, 0.3},
embedding dimension {64, 128, 256}, batch size {256, 512}. Model-specific grids: LightGCN
depth {2, 3, 4}, NeuMF MLP layers {2, 3}, CSRec λc ∈ {0.1, 0.3, 1.0}, HSR curvature c ∈
{0.1, 0.5, 1.0}, SpheriQ σ0 ∈ {0.1, 0.2, 0.5}, λtr ∈ {0.1, 0.3, 1.0}, τ ∈ {0.5, 1.0}.

Training Protocol. We use Adam (β1=0.9, β2=0.999) with batch size 512, gradient clipping 5.0,
and AMP where stable. Early stopping is applied on validation NDCG@10 (patience 20, max 200
epochs). A 5-epoch warm-up with cosine decay schedules the learning rate. Negative-sampling
baselines draw 100 negatives per positive; evaluation always ranks over all items. Results are aver-
aged over 5 seeds {1, 2, 3, 4, 5}.

Determinism. We fix seeds for NumPy, PyTorch (CPU+GPU), and cuDNN. Sources of unavoid-
able nondeterminism are documented. Per-seed logs and outputs will be released.

Evaluation. We report NDCG@10, Recall@10, Diversity@10, ECE, Brier, AURC, T-ILS@10,
runtime, and interpretability metrics. Calibration uses 10-bin histogram binning; selective recom-
mendation follows a consistent abstention protocol.

Algorithm. Algorithm 1 details training.

Algorithm 2 Inference & Evaluation for SPHERIQ

Require: Trained parameters {µi, σ
2
i }; test users Utest; item set I; tag set T ; top-k tags per user

T (k)
u (optional); cutoffs K = {10}.

1: for each test user u ∈ Utest do
2: Construct candidate items Icand

u = I \ Itrainu (full ranking).
3: Tu ← T (k)

u if cached else T .
4: for each j ∈ Icand

u do
5: s(u, j)← maxt∈Tu f(K(Ou, Ot),K(Ot, Oj)).
6: Store argmax tag t⋆(u, j) for explanation u→ t⋆→j and confidence s(u, j).
7: end for
8: Sort items by s(u, j); compute NDCG@10, Recall@10; record explanation coverage (frac-

tion with t⋆) and tag-alignment precision.
9: end for

10: Calibration: build reliability diagrams with 10-bin histogram binning; compute ECE, Brier;
11: Selective Rec: sweep a confidence threshold τ and compute NDCG@10 vs. coverage;
12: Risk–Coverage: compute risk (e.g., 1−HR@10 or expected loss) vs. coverage.

G ADDITIONAL RESULTS

All results in the main text are averaged over five fixed seeds. Here we provide a detailed analysis,
including the full mean ± standard deviation results, the significance testing of the data set, the
interpretability metrics, the embedding structure and the running time efficiency. This appendix
ensures reproducibility and demonstrates robustness.
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G.1 BASELINE COMPARISON

Table 10 expands the main baseline comparison with mean ± standard deviation. SpheriQ con-
sistently outperforms across NDCG@10, Recall@10, calibration, and diversity with low variance,
confirming stability.

Table 10: Baseline comparison with mean ± standard deviation (5 seeds).

Model NDCG@10 Recall@10 ECE ↓ Diversity@10

NeuMF++ 0.421 ± 0.004 0.541 ± 0.006 0.138 ± 0.003 0.231 ± 0.004
LightGCN++ 0.443 ± 0.005 0.562 ± 0.005 0.125 ± 0.003 0.237 ± 0.003
Poincaré 0.428 ± 0.004 0.550 ± 0.005 0.122 ± 0.004 0.254 ± 0.003
CSRec 0.451 ± 0.003 0.572 ± 0.004 0.117 ± 0.002 0.242 ± 0.004
HSR 0.439 ± 0.004 0.557 ± 0.005 0.119 ± 0.003 0.259 ± 0.003
Decision-aware 0.447 ± 0.005 0.566 ± 0.004 0.101 ± 0.002 0.245 ± 0.004
JIT2R 0.459 ± 0.004 0.579 ± 0.005 0.112 ± 0.003 0.282 ± 0.005
SpheriQ 0.473 ± 0.003 0.591 ± 0.004 0.103 ± 0.002 0.294 ± 0.004

G.2 PER-DATASET SIGNIFICANCE

Table 11 reports paired t-tests on NDCG@10 against the best baseline. Across all datasets,
SpheriQ’s improvements are statistically significant (p < 0.01).

Table 11: Per-dataset significance testing of NDCG@10 vs. best baseline.

Dataset Best Baseline ∆NDCG@10 p-value

MIND CSRec +0.018 < 0.01
GoodBooks JIT2R +0.014 < 0.01
Book-Crossing HSR +0.021 < 0.01
Avicenna Decision-aware +0.016 < 0.01

G.3 DIVERSITY ANALYSIS

Table 12 expands diversity results. SpheriQ consistently yields lowest redundancy, reinforcing that
probabilistic hyperbolic reasoning broadens semantic spread.

Table 12: Topic-aware intra-list similarity (T-ILS@10) with mean ± standard deviation.

Model GoodBooks MIND Avicenna Book-Crossing

NeuMF++ 0.214 ± 0.003 0.276 ± 0.004 0.193 ± 0.003 0.251 ± 0.003
LightGCN++ 0.201 ± 0.003 0.263 ± 0.004 0.187 ± 0.004 0.240 ± 0.003
Poincaré 0.196 ± 0.004 0.257 ± 0.004 0.182 ± 0.003 0.234 ± 0.003
CSRec 0.195 ± 0.003 0.248 ± 0.003 0.179 ± 0.003 0.227 ± 0.003
HSR 0.188 ± 0.003 0.239 ± 0.003 0.172 ± 0.003 0.218 ± 0.004
Decision-aware 0.192 ± 0.003 0.245 ± 0.004 0.176 ± 0.003 0.222 ± 0.003
JIT2R 0.186 ± 0.003 0.236 ± 0.003 0.171 ± 0.004 0.215 ± 0.004
SpheriQ 0.162 ± 0.002 0.210 ± 0.003 0.149 ± 0.002 0.191 ± 0.003

G.4 CALIBRATION METRICS

Beyond ECE, Table 13 shows SpheriQ achieves the best Brier and AURC with low variance.
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Table 13: Calibration metrics with mean ± standard deviation (lower is better).

Model Brier ↓ AURC ↓
NeuMF++ 0.214 ± 0.004 0.162 ± 0.003
LightGCN++ 0.208 ± 0.004 0.155 ± 0.003
Poincaré 0.205 ± 0.003 0.151 ± 0.003
CSRec 0.199 ± 0.003 0.143 ± 0.003
HSR 0.202 ± 0.003 0.148 ± 0.003
Decision-aware 0.187 ± 0.003 0.138 ± 0.002
JIT2R 0.192 ± 0.003 0.141 ± 0.003
SpheriQ 0.176 ± 0.002 0.126 ± 0.002

G.5 ABLATION STUDY

Table 14 expands ablations. Removing uncertainty harms calibration, Euclidean geometry reduces
ranking, and removing transitivity hurts diversity. The drops exceed standard deviations, indicating
statistical significance.

Table 14: Ablation of SpheriQ components with mean ± standard deviation.

Variant NDCG@10 Recall@10 ECE ↓ Diversity@10

Full model 0.473 ± 0.003 0.591 ± 0.004 0.103 ± 0.002 0.294 ± 0.003
Fixed σ 0.452 ± 0.004 0.565 ± 0.004 0.137 ± 0.003 0.263 ± 0.003
Euclidean 0.434 ± 0.004 0.548 ± 0.004 0.141 ± 0.003 0.218 ± 0.003
No transitivity 0.441 ± 0.004 0.549 ± 0.004 0.135 ± 0.003 0.197 ± 0.003

G.6 INTERPRETABILITY METRICS

Beyond faithfulness experiments in the main text, proxy interpretability metrics are reported in
Table 15. SpheriQ uniquely achieves 100% explanation coverage with calibrated confidence, unlike
all baselines.

Table 15: Interpretability metrics (mean ± std).

Model Tag Align. (%) Expl. Coverage (%) Avg. Conf.

NeuMF++ 60.0 ± 1.2 0 0.81 ± 0.01
LightGCN++ 66.7 ± 1.3 0 0.84 ± 0.01
Poincaré 70.0 ± 1.1 0 0.83 ± 0.01
CSRec 73.3 ± 1.4 0 0.86 ± 0.01
HSR 73.3 ± 1.2 0 0.82 ± 0.01
Decision-aware 68.5 ± 1.2 0 0.85 ± 0.01
JIT2R 72.1 ± 1.3 0 0.87 ± 0.01
SpheriQ 100.0 ± 0.0 100.0 ± 0.0 0.893 ± 0.01

G.7 EMBEDDING STRUCTURE

Figure 3 shows PCA projection of hyperbolic centres. Users, items, and tags form coherent clusters
with silhouette score 0.39, demonstrating semantically structured embeddings.
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Figure 3: PCA projection of SpheriQ embeddings (users/items/tags).

G.8 RUNTIME EFFICIENCY

Runtime results in Table 16 show that SpheriQ achieves the fastest convergence while maintaining
strong ranking,calibration,diversity and trade-offs, supporting scalability to large datasets.

Table 16: Runtime comparison with mean ± std.

Model Time (s/epoch) Epochs to Converge

NeuMF++ 12.4 ± 0.2 46 ± 2
LightGCN++ 9.1 ± 0.2 38 ± 2
Poincaré 10.6 ± 0.2 52 ± 3
HSR 11.8 ± 0.3 49 ± 2
CSRec 13.2 ± 0.2 45 ± 2
Decision-aware 11.5 ± 0.2 42 ± 2
JIT2R 12.1 ± 0.2 44 ± 2
SpheriQ 7.2 ± 0.2 34 ± 1

G.9 PREFILTER SENSITIVITY.

To assess scalability we varied the number of candidate tags k retained per user before transitive
scoring. Table 17 shows results on GoodBooks. Even with k = 3, SPHERIQ achieves near-optimal
ranking and calibration while cutting runtime by more than 20%. This confirms that the model scales
gracefully with tag set size and that modest prefiltering suffices in practice.

Table 17: Prefilter k vs. quality and cost on GoodBooks.

k NDCG@10 ECE ↓ Time/epoch (s)

1 0.46 ± .00 0.11 ± .00 6.1
3 0.47 ± .00 0.10 ± .00 7.0
5 0.47 ± .00 0.10 ± .00 7.7
10 0.47 ± .00 0.10 ± .00 9.3
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G.10 ROBUSTNESS TO NOISY TAGS.

We stress-tested SPHERIQ by randomly relabelling a proportion p% of item tags on GoodBooks. Ta-
ble 18 shows that while performance degrades gracefully with higher noise, the model retains com-
petitive ranking and calibration, highlighting resilience to imperfect or automatically constructed
ontologies.

Table 18: Robustness under tag noise on GoodBooks (randomly flip p% of tags).

Noise p NDCG@10 ECE ↓
0% 0.47 ± .00 0.10 ± .00
10% 0.46 ± .00 0.11 ± .00
20% 0.45 ± .00 0.12 ± .00
30% 0.44 ± .00 0.13 ± .00

G.11 HYPERPARAMETER SEARCH BUDGET.

To ensure fairness, each baseline was tuned with comparable search grids and training runs. Table 19
summarises the grid size and total GPU hours. This demonstrates that the reported gains are not due
to preferential tuning effort.

Table 19: Hyperparameter search budget per method.

Method Grid size Runs GPU hours

NeuMF++ 18 90 12
LightGCN++ 18 90 10
HSR 18 90 14
CSRec 18 90 15
JIT2R 12 60 11
SpheriQ 24 120 16

H ADDITIONAL CASE STUDY: CONFIDENCE-AWARE INTERPRETABILITY

To illustrate interpretability and confidence-awareness, we compare recommendations across all
models for representative user profiles. Table 20 shows the top-ranked item, its conceptual tag, and
the associated confidence. For SPHERIQ, confidence reflects its probabilistic geometric reasoning.
For baselines, we report output scores where available, though they are not calibrated.
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Table 20: Comparison of model outputs for the same user profile. Only SPHERIQ provides cali-
brated, concept-aligned confidence.

User Profile Model Top Recommendation + Concept
Tag

Conf

History enthusiast

NeuMF++ War and Peace (classical fiction) 0.81
LightGCN++ World War Z (historical sci-fi) 0.84
Poincaré SPQR: A History of Ancient Rome

(ancient history)
0.83

CSRec The Rise and Fall of the Third Reich
(political history)

0.86

HSR The Cold War: A New History
(modern history)

0.82

Decision-aware The Histories (Herodotus, classical) 0.80
SpheriQ The Guns of August (military his-

tory)
0.91

Interested in politics

NeuMF++ Game Change (political biography) 0.79
LightGCN++ Fire and Fury (US politics) 0.82
Poincaré The Prince (political philosophy) 0.80
CSRec Political Order and Political Decay

(theory)
0.85

HSR Democracy in America (political
philosophy)

0.81

Decision-aware The Federalist Papers (foundational
politics)

0.80

SpheriQ The Economist (geopolitics) 0.88

Follows AI news

NeuMF++ The Circle (technology fiction) 0.83
LightGCN++ Life 3.0 (AI future) 0.86
Poincaré Superintelligence (AI strategy) 0.85
CSRec The Singularity is Near (AI specu-

lation)
0.87

HSR Machines Like Me (AI ethics fic-
tion)

0.84

Decision-aware Artificial Intelligence: A Modern
Approach (textbook)

0.82

SpheriQ Why AI Matters (AI ethics) 0.89

Observation. Baselines output items tied to observed co-occurrence patterns or static embedding
similarity, but cannot provide semantic traces or calibrated confidence. By contrast, SPHERIQ of-
fers explicit tag-based rationales and well-calibrated uncertainty, enabling transparency and safer
abstention.
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Algorithm 1 Training SPHERIQ

Require: Interaction set D; tag set T ; text/metadata encoder E(·); learning rate η; prior variance
σ2
0 ; kernel temperature λ; fuzzy composition f ∈ {prod,min}; tag prefilter size k (optional,

else k=|T |); max epochs T ; batch size B; negatives per positive M ; warm-up steps W ; cosine
decay schedule; early-stopping patience P ; AMP flag.

1: Initialise entities i ∈ U ∪ I ∪ T :

ℓi = tanh(∥E(xi)∥)
E(xi)

∥E(xi)∥
(Euclidean proto-centre)

µi = exp0(ℓi) ∈ Dn (map to Poincaré ball)

σ2
i = log

(
1 + exp(wi)

)
(softplus, wi trainable)

2: Precompute (optional) user–tag shortlist: for each u, compute K(Ou, Ot) for all t ∈ T once
per epoch and keep top-k tags T (k)

u .
3: Create optimiser & scheduler: Riemannian Adam on {µi, wi} with warm-up W then cosine

decay; enable AMP if stable.
4: Initialise best validation metric best=−∞, early-stopping counter c=0.
5: for epoch = 1 to T do
6: Shuffle D and create mini-batches of size B.
7: for mini-batch B = {(ub, j

+
b )}Bb=1 do

8: Sample negatives {j−b,m}Mm=1 ∼ Uniform(I \ Iobsub
).

9: Define candidate set per user Cb ← {j+b } ∪ {j
−
b,m}Mm=1.

10: Forward pass (with AMP autocast if enabled):
11: for b = 1, . . . , B do
12: Tb ← top-k user–tags: Tb=T (k)

ub (else T )
13: for each j ∈ Cb do
14: Compute transitive score:

s(ub, j) = max
t∈Tb

f
(
K(Oub

, Ot), K(Ot, Oj)
)
,

15: where

K(Oi, Oj) = exp

(
−dD(µi, µj)

2

2λ(σ2
i+σ2

j )

)
, dD(µi, µj) = cosh−1

(
1 + 2

∥µi−µj∥2

(1−∥µi∥2)(1−∥µj∥2)

)
.

16: f(·) is either fprod(a, b)=ab or fmin(a, b)=min(a, b).
17: end for
18: end for
19: Losses:
20: (i) Pointwise logistic ranking loss with label smoothing ϵ: for each (ub, j

+
b ) and

(ub, j
−
b,m),

Lrank = − 1

B(1+M)

B∑
b=1

[
log σ(s(ub, j

+
b )) +

M∑
m=1

log σ(−s(ub, j
−
b,m))

]
,

21: (ii) Geometry & uncertainty regulariser:

Lreg =
∑

i∈U∪I∪T

(
λ1∥µi∥2 + λ2 KL

(
N (0, σ2

i ) ∥N (0, σ2
0)
))

.

22: Total loss: L ← Lrank + Lreg.
23: Backward & Update: backprop (scaled if AMP); Riemannian Adam step on µi with

Möbius ops (exp/log maps), Euclidean Adam on wi; apply gradient clipping (global-norm ≤
5.0).

24: end for
25: Validation: compute NDCG@10 on the validation split with full-item ranking; update

scheduler; if improved, save checkpoint and set best; else increment c.
26: if c ≥ P then break
27: end if
28: (Optional) refresh user–tag top-k caches for next epoch.
29: end for
30: return best checkpoint (by validation NDCG@10).
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