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Abstract
In many scenarios of practical interest, labeled
data from a target distribution are scarce while
labeled data from a related source distribution
are abundant. One particular setting of interest
arises when the target label space is a subset of
the source label space, leading to the framework
of partial domain adaptation (PDA). Typical ap-
proaches to PDA involve minimizing a domain
alignment term and a weighted empirical loss
on the source data, with the aim of transferring
knowledge between domains. However, a theo-
retical basis for this procedure is lacking, and in
particular, most existing weighting schemes are
heuristic. In this work, we derive generalization
bounds for the PDA problem based on partial op-
timal transport. These bounds corroborate the use
of the partial Wasserstein distance as a domain
alignment term, and lead to theoretically moti-
vated explicit expressions for the empirical source
loss weights. Inspired by these bounds, we devise
a practical algorithm for PDA, termed WARM-
POT. Through extensive numerical experiments,
we show that WARMPOT is competitive with
recent approaches, and that our proposed weights
improve on existing schemes.

1. Introduction
In unsupervised domain adaptation, one has access to a set
of labeled source data and a set of unlabeled target data,
drawn from different but related distributions. The aim is to
use these data sets to learn a predictor that performs well on
new instances from the target data distribution (Redko et al.,
2019; Farahani et al., 2021). In contemporary practice, it is
common for classifiers that are pre-trained on large, diverse

1Chalmers University of Technology, Gothenburg, Sweden
2University College London, London, England. Correspondence
to: Jayadev Naram <jayadev@chalmers.se>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

domains to be deployed on smaller domains, characterized
by a smaller label space. This motivates the framework of
unsupervised partial domain adaptation (PDA), wherein
the target label space is a subset of the source label space
(Cao et al., 2018).

In PDA, the use of labeled source data from outlier classes
during training typically has an adverse effect on test
performance—a phenomenon termed negative transfer (Cao
et al., 2018). To alleviate this issue, several heuristic
schemes to weight the source data during training have
been proposed (Zhang et al., 2018; Liang et al., 2020; Li
et al., 2020; Gu et al., 2021; 2024). However, a theoretical
motivation is lacking for most weight selections.

In this work, we provide theoretically motivated algorithms
for PDA. Specifically, we derive generalization bounds on
the target population loss and devise training strategies that
minimize them. The bounds that we obtain involve a partial
Wasserstein distance between the empirical feature distribu-
tions for the source and target data (Caffarelli & McCann,
2010). This motivates the popular strategy of learning a
feature map that aligns source and target features, followed
by a predictor trained to classify the labeled source features.
We will refer to objectives that are minimized with this aim
as domain alignment terms. While the standard Wasserstein
distance has been widely used to analyze and design algo-
rithms for domain adaptation (Courty et al., 2014; 2017b),
its partial counterpart is crucial to handle the existence of
outliers (Wang et al., 2024). Additionally, our bounds in-
clude weighted source training losses, where, in contrast
to all results available in the literature, the weights arise
constructively from the partial optimal transport problem as-
sociated with the partial Wasserstein distance. This enables
a principled weight selection for addressing negative trans-
fer that, unlike the aforementioned heuristics, comes with a
clear theoretical motivation in terms of transport plans.

Our bounds come in two flavors. First, similar to Shen et al.
(2018), one bound depends on the partial Wasserstein dis-
tance between the empirical distributions of the source and
target features. Second, building upon the work of Courty
et al. (2017a), we obtain a bound that incorporates estimates
of the unknown labels of the target samples. This yields a
partial transport problem involving the joint empirical distri-
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bution of features and labels. Each bound depends on two
parameters, which intuitively correspond to the expected
portion of outliers in the source and target data sets, respec-
tively. Concretely, the parameters determine the proportion
of mass from each of the data sets that is accounted for in
the transport problem.

Inspired by the bounds, we propose a novel algorithm for
PDA, termed weighted and regularized minimizer via partial
optimal transport (WARMPOT), whose performance we
compare against state-of-the-art (SOTA) methods.

Contributions. In this work, we derive two new families
of generalization bounds for PDA, and devise algorithms to
minimize them. In particular, our bounds:

• explicitly depend on the learned feature map, moti-
vating, for the first time in the context of PDA, the
approach of partly aligning feature distributions;

• yield explicit weights for source data points with a
principled motivation, giving a theoretically grounded
way to tackle negative transfer;

• lead to algorithms that improve upon or are comparable
to recent approaches to PDA;

• give rise to weights that, when combined with the
ARPM algorithm of Gu et al. (2024), lead to SOTA
results for the Office-Home data set.

Furthermore, compared to previous bounds obtained for
the more restrictive domain-adaptation problem, our proof
techniques directly yield bounds that depend on the Wassser-
stein distance between the empirical distributions of source
and target features. In contrast, in existing bounds, such as
the ones proposed by Courty et al. (2017a) and Shen et al.
(2018), the Wasserstein distance involves the actual source
and target distributions, and an additional concentration-of-
measure step is required to express such bounds in terms of
numerically computable empirical distributions.

2. Related Work
The problem of unsupervised domain adaptation was first
formalized and analyzed by Ben-David et al. (2006). They
derived a generalization bound in terms of the so called H-
divergence, defined in terms of a hypothesis class H. This
divergence is bounded and can be efficiently estimated if the
VC dimension of H is finite (Ben-David et al., 2010). Moti-
vated by this bound, Ganin et al. (2016) proposed domain-
adversarial training, wherein an approximation of the H-
divergence is used as a domain alignment term. However,
the worst-case nature of the VC dimension leads to bounds
that are too weak to explain generalization in deep neural
networks (Nagarajan & Kolter, 2019; Zhang et al., 2021).

In order to exploit the geometry of the data distributions,

Courty et al. (2014; 2017b) proposed the use of optimal
transport, and specifically the Wasserstein distance, for
domain adaptation. This approach was theoretically sup-
ported by Redko et al. (2017) and Shen et al. (2018), who
derived bounds in terms of the Wasserstein distance be-
tween the source and target input distributions. Notably,
this alleviates the issues of uniform convergence associated
with the H-divergence. Based on these bounds, Shen et al.
(2018) proposed a domain alignment term, computed using
a Wasserstein generative adversarial network (GAN) oper-
ating on empirical feature distributions (Arjovsky et al.,
2017). Courty et al. (2017a) derived a bound in terms
of the joint source and target instance-label distributions,
where estimates appear in place of the unknown target labels.
Damodaran et al. (2018) drew inspiration from this bound
to devise an algorithm using mini-batch optimal transport
on the joint feature-label distribution. However, it is worth
noting that the bounds reviewed so far all depend on the
instance distributions, and do not incorporate the learned
feature map. Hence, they do not fully motivate the typical
practice of computing the Wasserstein distance between the
empirical distributions of source and target features.

As mentioned, an important factor in solving the PDA prob-
lem is to appropriately weight the source data. Cao et al.
(2018) proposed to use heuristic class-level weights based
on the predictions on unlabeled target inputs. Li et al. (2020)
used these class-level weights, along with a maximum mean
discrepancy loss as the domain alignment term. In addition
to domain-adversarial training, Zhang et al. (2018) and Cao
et al. (2019) determined the weights based on how well a
domain discriminator can predict whether a given input is
from the source or target distribution. Liang et al. (2020)
proposed entropy-aware weights, along with an advanced
alignment strategy, while Gu et al. (2021; 2024) computed
weights by minimizing the Wasserstein distance between a
weighted source feature distribution and the target feature
distribution. Nguyen et al. (2022) used the joint distribu-
tion partial Wasserstein distance as the domain alignment
term, but with uniformly weighted source data. Wang et al.
(2024) proposed a partial Wasserstein-GAN, an extension of
Wasserstein-GAN to PDA (Wang et al., 2022). Specifically,
they considered a class-level weighting scheme with the
1-partial Wasserstein distance as domain alignment term.
Li & Chen (2022) derived a generalization bound for PDA
in terms of model smoothness, and proposed to focus on
smoothness rather than alignment to transfer knowledge
between domains. Fatras et al. (2021) use a mini-batch
joint distribution unbalanced optimal transport (UOT) cost
as domain alignment term, along with uniformly weighted
source data. Chang et al. (2022) consider a more general
setting where the proposed algorithm uses the marginals of
the UOT transport plan to compute binary weights for target
samples.
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Generalization bounds for domain adaptation containing a
weighted source loss term are reported in the works of Ta-
chet des Combes et al. (2020) and Luo & Ren (2024). These
bounds do not use a generalized Wasserstein metric, such
as the partial Wasserstein metric, as domain alignment term.
Furthermore, the bounds rely on class-level weights defined
in terms of unknown data distributions. These weights are
then estimated using a method developed by Lipton et al.
(2018). However, these estimates are only guaranteed to be
accurate if the so called generalized label shift assumption
(Tachet des Combes et al., 2020) holds exactly, i.e., if the
feature representation Z = f(X) of the instance X with la-
bel Y is such that P (Z|Y = y) = Q(Z|Y = y) for source
distribution P and target distribution Q.

In this work, similar to Nguyen et al. (2022); Wang et al.
(2024), we use the partial Wasserstein distance as the do-
main alignment term. However, unlike prior work, we derive
generalization bounds that both corroborate the choice of
domain alignment term and lead to a theoretically motivated
weighting scheme for the empirical source loss. Further-
more, unlike some of the empirical weighting methods used
in the literature (e.g., class-level weights), our approach
readily extends beyond classification settings.

3. Theoretical Results
We now present our main theoretical results. First, in Sec-
tion 3.1, we formalize the problem setup and introduce the
notation. In Section 3.2, we obtain bounds on the empir-
ical target loss for a fixed sample, which we leverage to
obtain generalization bounds in Section 3.3. Some useful
definitions and results are recalled in Appendix A.

3.1. Problem Setup and Proposed Approach

We next introduce the notation that we will use throughout
this section. We let Z = X × Y be the source domain,
where X ⊆ Rd is the input space, equipped with the sigma-
algebra ΣX , and Y ⊆ R is the source label space, equipped
with the sigma-algebra ΣY . We consider a joint probability
distribution PZ on (Z,ΣX ⊗ ΣY ), called the source distri-
bution. Similarly, we let Z̃ = X × Ỹ be the target domain,
where Ỹ , equipped with the sigma-algebra ΣỸ , is an un-
known subset of Y . Furthermore, we introduce a second
joint probability distribution QZ̃ on (Z̃,ΣX ⊗ΣỸ ), termed
the target distribution.1

A hypothesis is a measurable function w : X → Y . In order
to discuss feature alignment, we express each hypothesis
as w = g ◦ f , where f is a feature extractor and g is a
classifier. Throughout the paper, we will for simplicity
consider bounded loss functions ℓ : Y ×Y → [0, 1]. We are

1In the remainder of the paper, we will not specify sigma-
algebras if they are clear from the context.

interested in determining a hypothesis w within a suitably
chosen hypothesis class W (to be introduced later) that
minimizes the population target loss

LQZ̃
(w) = E(X,Y )∼QZ̃

[ℓ(w(X), Y )]. (1)

To do so, in the PDA setup considered in this paper, we
have at our disposal a vector z = (z1, . . . , zns) ∈ Zns ,
with zi = (xi, yi), of labeled source instances drawn in-
dependently from PZ . Additionally, we have a vector
t = (x̃1, . . . , x̃nt

) of unlabeled target instances drawn in-
dependently from QX , which is the marginal distribution
on X induced by QZ̃ . Let z̃ = (z̃1, . . . , z̃nt) ∈ Z̃nt , with
z̃j = (x̃j , ỹj), be the corresponding vector of labeled target
instances. Since this vector is not available to the learner,
the learner cannot evaluate the empirical target loss

Lz̃(w) =
1

nt

nt∑
j=1

ℓ(w(x̃j), ỹj). (2)

To overcome this issue, we will obtain an upper bound on
this quantity in Section 3.2. This bound contains a partial
Wasserstein distance term and a weighted version of the
empirical source loss, in which the weights are a function
of the optimal coupling measure Π⋆ obtained when solving
the optimization problem in the definition of the partial
Wasserstein distance. This definition is provided below.
Definition 3.1 (Figalli, 2010, Eq. (2.1), Caffarelli & Mc-
Cann, 2010, Eq. (1.8)). The partial Wasserstein distance
with parameter α between two measures2 PX and QX̃ on
(X ,ΣX) is defined as

PWα(PX , QX̃) = inf
Π∈Γα(PX ,QX̃)

∫
c(x, x̃) dΠ(x, x̃), (3)

where c : X × X → R+ is the so-called cost function
(typically a metric) and Γα(PX , QX̃) is the set of all non-
negative measures Π on X × X for which Π(X × X ) = α
and, for which, for all measurable sets A,B ⊆ X , we have
that Π(A×X ) ≤ PX(A) and Π(X × B) ≤ QX̃(B).

For the case in which the measures of interest are discrete
and supported on m and n mass points, respectively, it is
convenient to express PX and QX̃ as vectors of dimension
m and n, and the (coupling) measure as an m× n nonneg-
ative (coupling) matrix Π with entries Πij . Then, one can
rewrite (3) as

PWα(PX , QX̃) = min
Π∈Γα(PX ,QX̃)

m∑
i=1

n∑
j=1

c(xi, x̃j)Πij (4)

where Γα(PX , QX̃) is the set of nonnegative matrices that
satisfy3 Π1n ≤ PX , ΠT1m ≤ QX̃ and 1T

mΠ1n = α.

2We do not require that the two measures are probability mea-
sures. In particular, in our setup we will have PX(X ) ≥ 1.

3Here and throughout the paper, vector inequalities should be
interpreted entry-wise.
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3.2. Bounds on the Empirical Target Loss

Next, we present our main theoretical results: two bounds
on the empirical target loss (2). Generally speaking, the
bounds consist of four terms: (i) a weighted average of the
loss computed on the labeled source instances, (ii) a partial
Wasserstein term, (iii) a total variation term that allows us
to make the bound explicit in the empirical target loss, and,
similar to most theoretical bounds for domain adaptation
available in the literature (Ben-David et al., 2006; Courty
et al., 2017a; Shen et al., 2018), (iv) a non-computable
term that dictates the difficulty of the PDA problem under
consideration.

Drawing inspiration from Shen et al. (2018), we first present
a bound in Theorem 3.2 in which the partial Wasserstein
distance is between the empirical distributions of the source
and target features. Then, drawing inspiration from Courty
et al. (2017a), we extend it in Theorem 3.3 to the case
in which the partial Wasserstein distance is between the
joint empirical distribution of source features and labels
and the joint empirical distribution of target features and
predicted labels. While the feature-based approach can
capture covariate shift, where only the marginal distributions
on the input differ, a joint distribution-based approach is
beneficial in the case of labeling distribution shift, i.e., when
the conditional distribution on labels given inputs also differ.
Both bounds are in terms of the PWα distance. Partial
domain adaptation is achieved by inflating the empirical
source distribution by a parameter 1/β, where 0 < β ≤
1. Intuitively, the parameter β relates to the fraction of
source instances we want to associate to target instances,
whereas the parameter α corresponds to the fraction of target
instances we want to consider. Hence, β allows for partial
domain adaptation, while α can be used to avoid outliers in
the target set.
Theorem 3.2 (Feature-based bound). Assume that the loss
function ℓ is a metric on Y and consider the set W of hy-
potheses w = g ◦ f for which g is γ-Lipschitz with respect
to ℓ. Let P f

s = 1
ns

∑ns

i=1 δf(xi) and Qf
t = 1

nt

∑nt

j=1 δf(x̃j)

be the empirical source and target feature distributions, re-
spectively, with feature extractor f . Then, for all w ∈ W
and all α, β ∈ (0, 1],

Lz̃(w) ≤
ns∑
i=1

pi
α
ℓ(w(xi), yi) +

2

α
PWα

(
1
βP

f
s , Q

f
t

)
+

1

2

nt∑
j=1

∣∣∣∣ 1nt
− qj

α

∣∣∣∣+ 2Lf , (5)

where the cost function in PWα is c(x, x̃) = γ∥f(x) −
f(x̃)∥, and the weights {pi} and {qj} are given by

pi = (Π⋆1nt
)i, i = 1, . . . , ns (6)

qj =
(
(Π⋆)T1ns

)
j
, j = 1, . . . , nt (7)

with Π⋆ being the optimal coupling matrix in the definition
of PWα(

1
βP

f
s , Q

f
t ). Finally,

Lf = min
g′∈G

max
z∈z∪z̃
z=(x,y)

ℓ(g′(f(x)), y), (8)

where G denotes the set of classifiers g′ associated to hy-
potheses in W , and where, with an abuse of notation, z ∪ z̃
denotes the set of all labeled source and target instances.

The proof of Theorem 3.2 is provided in Appendix B. The
weights pi and qj arise constructively from the partial trans-
port problem corresponding to PWα(

1
βP

f
s , Q

f
t ). The under-

lying intuition is that, when partially transporting the source
data to the target data, the source samples that play the dom-
inant role in the transportation plan should be the ones that
are most similar to the target samples. Conversely, outliers
are expected to be nearly ignored, leading to small values
of the corresponding pi and qj . The connection between
this transportation view and the actual prediction problem
of interest is formalized in the proof of the bound, detailed
in Appendix B.

Note that when α = 1, we have that qj = 1/nt and, hence,
the third term on the right-hand side of (5) disappears. Set-
ting α = 1 is reasonable if we do not expect any outliers
in the target set, and, hence, we want to consider all target
instances equally. In contrast, α < 1 and β = 1 may be
suitable for the so called open set adaptation problem, where
the target label space includes additional classes beyond the
source label space (Panareda Busto & Gall, 2017).

Next, we present an analogous bound, in which joint feature-
label distributions are used in place of feature-only distribu-
tions in the partial Wasserstein term.
Theorem 3.3 (Joint distribution-based bound). Assume
that the loss function ℓ is a metric on Y and ζ-Lipschitz
in each argument. Consider the set W of hypotheses
w = g ◦ f for which g is γ-Lipschitz with respect to
the Euclidean distance. Let P f

z = 1
ns

∑ns

i=1 δf(xi),yi
and

Qw
t = 1

nt

∑nt

j=1 δf(x̃j),w(x̃j) be the empirical joint source
and estimated joint target distributions, respectively, for
the hypothesis w = g ◦ f . Then, for all w ∈ W and all
α, β ∈ (0, 1],

Lz̃(w) ≤
ns∑
i=1

p̂i
α
ℓ(w(xi), yi) +

1

α
PWα

(
1
βP

f
z , Q

w
t

)
+

1

2

nt∑
j=1

∣∣∣∣ 1nt
− q̂j

α

∣∣∣∣+ L̂f , (9)

where the underlying cost function for PWα is

c((x, y), (x̃, ỹ)) = ζγ∥f(x)− f(x̃)∥+ ℓ(y, ỹ), (10)

the weights {p̂i} and {q̂j} are given by

p̂i = (Π̂⋆1nt)i, i = 1, . . . , ns (11)
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q̂j =
(
(Π̂⋆)T1ns

)
j
, j = 1, . . . , nt (12)

with Π̂⋆ being the optimal coupling matrix in the definition
of PWα

(
1
βP

f
z , Q

w
t

)
, and

L̂f = min
g′∈G

{ nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj)

}
+ Ξ (13)

with Ξ given in (63) (see Appendix C).

The proof of Theorem 3.3 is provided in Appendix C. Note
that the cost in (10) coincides with the one proposed in
Courty et al. (2017b). However, it is important to note that
the values of the weights can differ between the two bounds.
Indeed, while the weights are given by similar expressions,
the underlying optimal coupling matrix differs in general.
The same considerations on the role of the weights detailed
after Theorem 3.2 also apply to Theorem 3.3. Furthermore,
while both L̂f in (13) and Lf in (8) relate to the difficulty
of the PDA problem under consideration, they are incom-
parable in general. Finally, some terms in (5) have an extra
factor of 2 compared to the corresponding terms in (9), and
the underlying cost function in the partial Wasserstein dis-
tance in (9) has an extra term. This, in addition to the slight
difference in assumptions on the loss, means that the two
bounds given in (5) and (9) cannot be compared in general
beyond the discussion above.

3.3. PAC-Bayes Generalization Bounds

In Section 3.2, we derived bounds on the empirical target
loss for a fixed hypothesis in the PDA setting. However,
these results cannot be applied directly to learned hypothe-
ses. To proceed, we will use the PAC-Bayesian approach
(McAllester, 1999; Catoni, 2007), which will allow us to
obtain loss bounds for a learned hypothesis. These bounds
hold with high probability over the choice of the training
source and target samples.

While a wide array of PAC-Bayes generalization bounds are
available (Alquier, 2024; Hellström et al., 2025), we restrict
ourselves to the following one for simplicity.

Lemma 3.4. Suppose that there exists a function R : W ×
Zns × Z̃nt such that, for all (w, z, z̃) ∈ W ×Zns × Z̃nt ,

Lz̃(w) ≤ R(w, z, z̃). (14)

Let QW be a prior distribution on W and PW |Z,T a poste-
rior distribution on W given the labeled source samples4

Z ∼ Pns

Z and the unlabeled target samples T . Here, T is
the projection on Xnt of Z̃ ∼ Qnt

Z̃
. Then, for every fixed

λ > 0 and δ ∈ (0, 1), with probability at least 1 − δ over

4We denote by Pns
Z the ns-fold product of PZ . Similarly, Qnt

Z̃
stands for the nt-fold product of QZ̃ .

(Z, Z̃),

EPW |Z,T
[LQZ̃

(W )] ≤ EPW |Z,T
[R(W,Z, Z̃)] +

λ

8nt

+
DKL(PW |Z,T ||QW ) + log 1

δ

λ
(15)

where DKL denotes the Kullback-Leibler (KL) divergence.

We provide the proof of Lemma 3.4 in Appendix D. Note
that, in Section 3.2, we derived functions R that can be
combined with Lemma 3.4 to yield generalization bounds
for PDA. We present these bounds below, beginning with a
feature-based bound, obtained by combining Theorem 3.2
and Lemma 3.4.

Corollary 3.5. Suppose that the assumptions of Theo-
rem 3.2 and Lemma 3.4 hold, and consider the same nota-
tion as used therein. Furthermore, denote the decomposition
of the hypothesis W as W = G ◦ F . Then, for every choice
of λ > 0 and δ ∈ (0, 1), with probability at least 1− δ over
Z ∼ Pns

Z , Z̃ ∼ Qnt

Z̃
,

EPW |Z,T
[LQZ̃

(W )]≤B+EPW |Z,T

[ ns∑
i=1

pi
α
ℓ(W (Xi), Yi)

+
2

α
PWα

(
1
βP

F
S , QF

T

)
+
1

2

nt∑
j=1

∣∣∣∣ 1nt
− qj

α

∣∣∣∣+2LF

]
, (16)

where (Xi, Yi) = Zi are the entries of Z, we let S denote
the projection on X of Z, and we use the shorthand

B =
λ

8nt
+

DKL(PW |Z,T ||QW ) + log 1
δ

λ
. (17)

Next, we present a joint distribution-based bound, which
follows by Theorem 3.3 and Lemma 3.4.

Corollary 3.6. Suppose that the assumptions of Theo-
rem 3.3 and Lemma 3.4 hold, and consider the same nota-
tion as used therein and in Corollary 3.5. Then, for every
choice of λ > 0 and δ ∈ (0, 1), with probability at least
1− δ over Z ∼ Pns

Z , Z̃ ∼ Qnt

Z̃
,

EPW |Z,T
[LQZ̃

(W )]≤B+EPW |Z,T

[ ns∑
i=1

p̂i
α
ℓ(W (Xi), Yi)

+
1

α
PWα

(
1
βP

F
Z , QW

T

)
+
1

2

nt∑
j=1

∣∣∣∣ 1nt
− q̂j

α

∣∣∣∣+L̂F

]
. (18)

The proof techniques that we use to derive these generaliza-
tion bounds yield several key advantages compared to prior
results obtained in the more restrictive context of domain
adaptation by Shen et al. (2018) and Courty et al. (2017a).
First, when relating the loss in the target domain to the loss
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in the source domain in Section 3.2, we work directly with
the empirical measures. Consequently, the partial Wasser-
stein distances in our results are fully empirical. In contrast,
in earlier derivations for the case of domain adaptation,
the Wasserstein distance is between population measures,
which need to be related to their empirical counterparts via
a concentration-of-measure step. This step adds an addi-
tional term to the bound, the need for which is obviated by
our approach. Furthermore, while most existing domain-
adaptation algorithms compute domain alignment terms on
the basis of learned feature distributions, the underlying
generalization bounds available in the literature depend on
the fixed input distribution. In contrast, our bounds explic-
itly depend on the learned features, directly motivating the
feature-based approaches most commonly used in practice.

4. Algorithms for PDA: WARMPOT
Now, motivated by the bounds on the empirical target loss in
Section 3.2, we propose a family of algorithms for the PDA
problem. Specifically, focusing on the first two computable
terms of (9) in Theorem 3.3, we consider the following
optimization problem:

min
w

{
ns∑
i=1

p̂iℓ(w(xi), yi) + PWα

(
1
βP

f
z , Q

w
t

)}
. (19)

Here, the cost function in the definition of the partial Wasser-
stein distance is c((x, y), (x̃, ỹ)) = η1∥f(x) − f(x̃)∥ +
η2ℓ(y, ỹ)) and the weights p̂i are given by (11). By set-
ting η2 = 0, we observe that PWα(

1
βP

f
z , Q

w
t ) reduces

to PWα(
1
βP

f
s , Q

f
t ), which is the domain alignment term

appearing in (5) in Theorem 3.2. Thus, the optimization
problem in (19) allows us to draw inspiration from both
Theorem 3.2 and Theorem 3.3.

The parameters η1 and η2 determine the impact of the inter-
feature and inter-label distances respectively, which act as
regularizers, while α and β control the alignment between
the source and target distributions.

We refer to an algorithm that minimizes (19) as weighted
and regularized minimizer via partial optimal transport
(WARMPOT). To clarify the role of the parameters and the
relation to prior work, we discuss two extreme cases:

• WARMPOT with β = 1. In this case, the partial
Wasserstein term aligns an α fraction of the source
distribution with an α fraction of the target distribution.
This is reminiscent of the MPOT algorithm, which
uses a mini-batch approximation of PWα to solve the
PDA problem (Nguyen et al., 2022). The key differ-
ences are that (i): MPOT uses a different cost function,
where the inter-feature cost is given by the squared dis-
tance ∥f(x)− f(x̃)∥2, and (ii): MPOT uses uniform
weights for the source sample losses, rather than the pi

of WARMPOT.
• WARMPOT with α = 1. Here, the source distribu-

tion is scaled so that its total mass is 1/β > 1. Of
this mass, 1 unit is aligned with the entire target distri-
bution, whose total mass is 1. The PWAN algorithm
(Wang et al., 2024) uses this alignment approach along
with the heuristic class-level weights of the BA3US
algorithm (Liang et al., 2020), detailed in Section 5.3.

The proposed WARMPOT algorithm can then be inter-
preted as aligning an α fraction of the β-scaled source dis-
tribution with an α fraction of the target distribution. The
use of two parameters α and β allows for asymmetry in
this domain alignment process, which is necessary if the
proportion of outliers differs between the source and target
data sets.

5. Experiments
We now experimentally evaluate our proposed algorithm,
WARMPOT, for PDA tasks. Specifically, in Section 5.1, we
detail our experimental setup. In Section 5.2, we discuss the
implementation details of WARMPOT. In Section 5.3, we
investigate the impact of our proposed weight choice. Then,
in Section 5.4, we compare WARMPOT against existing
PDA methods. Finally, in Section 5.5, we visualize the
weights used in WARMPOT and provide insight into their
role. Additional details on the experiments are provided in
Appendix E.

5.1. Setup

In the experiments, we focus on the Office-Home data set
(Venkateswara et al., 2017), which consists of images of
65 objects belonging to 4 different domains: Art, Clipart,
Product, and Real-World. To construct a PDA task, we con-
sider a source data set consisting of all labeled samples from
one domain and a target data set consisting of unlabeled
samples from the first 25 classes of another domain. We
consider all 12 possible combinations of source and target
domains. This PDA setup has been widely studied and was
considered by, among others, Nguyen et al. (2022); Wang
et al. (2022); Gu et al. (2024).

5.2. Implementation of WARMPOT

We consider hypotheses w = g ◦f consisting of a ResNet50
(He et al., 2016) feature extractor f pretrained on ImageNet
(Russakovsky et al., 2015) and a fully connected network
with a hidden layer of dimension 256 as the classifier g. We
solve (19) using stochastic gradient descent, and compute
PWα(

1
βP

f
z , Q

w
t ) for each mini-batch following the method

proposed by Nguyen et al. (2022). Throughout, we set ℓ to
be the cross-entropy loss and the parameters of the domain
alignment term to be (α, β) = (0.8, 0.35). The values of all
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Table 1. Test accuracy on the Office-Home dataset using the weight choices described in Section 5.3.

Weighting scheme A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

MPOT weights 62.2 (1.4) 81.2 (1.0) 88.6 (0.6) 73.0 (1.1) 77.0 (3.1) 79.2 (1.3) 74.4 (1.3) 61.7 (0.9) 85.1 (1.5) 80.0 (0.7) 65.9 (0.5) 83.8 (0.5) 76.0 (0.4)
BA3US weights 64.2 (1.5) 82.6 (2.0) 89.2 (0.4) 75.5 (0.8) 76.4 (4.1) 80.2 (0.9) 76.6 (1.4) 62.9 (1.4) 88.5 (1.1) 81.3 (0.8) 67.4 (0.6) 86.7 (0.9) 77.6 (0.4)
ARPM weights 55.9 (1.0) 75.8 (0.6) 87.1 (0.4) 69.7 (1.5) 73.7 (1.4) 75.2 (1.1) 72.4 (1.6) 55.8 (2.6) 81.2 (1.0) 80.5 (0.6) 63.7 (0.8) 83.9 (0.7) 72.9 (0.3)

WARMPOT (ours) 62.5 (1.2) 83.0 (1.1) 89.5 (0.3) 75.2 (1.1) 78.4 (2.2) 82.3 (1.3) 76.6 (1.5) 61.4 (3.1) 88.0 (1.0) 81.1 (0.7) 66.5 (1.0) 86.6 (0.6) 77.6 (0.7)

other hyperparameters are provided in Appendix E. 5 The
results of a sensitivity analysis on α and β are discussed in
Appendix G.

5.3. Comparison with Existing Weighting Schemes

In this section, we evaluate our weighting strategy. Specifi-
cally, we compare our choice for the weights in (11) with
the following weighting schemes:

• MPOT weighting strategy (Nguyen et al., 2022), with
uniform weights p̂i = 1/ns.

• BA3US weighting strategy (Liang et al., 2020), where

p̂i =

nt∑
j=1

I[w(x̃j) = yi]/nt. (20)

Here, x̃j is a target instance and yi is the label of the
ith source instance xi.

• ARPM weighting strategy (Gu et al., 2024), where

min
p̂∈∆
p̂i≥0

W1

 ns∑
i=1

p̂iδf(xi),
1

nt

nt∑
j=1

δf(x̃j)

 . (21)

Here, p̂ = (p̂1, . . . , p̂ns
) and ∆ is given by

∆ =

{
p̂ :

ns∑
i=1

p̂i = 1,

ns∑
i=1

(
p̂i −

1

ns

)2

<
ρ

ns

}
(22)

with ρ being a hyperparameter.
The results are presented in Table 1. Note that, in our weight-
ing strategy, the weights are computed for each mini-batch at
every iteration. On the contrary, in BA3US and ARPM, the
weights are computed on the entire dataset but only every n
iterations. We set this weight update interval to be n = 500
for BA3US and ARPM as suggested in Liang et al. (2020)
and Gu et al. (2024) respectively. The experiments are re-
peated for 6 random seeds, and we report the average and
the standard deviation. As seen in the table, WARMPOT
results in better performance than MPOT and ARPM, and
yield performance comparable to BA3US. This illustrates
that the weighting strategy suggested by the theoretical re-
sults reported in Section 3 is indeed effective. Results from

5Open source Python implementation of WARMPOT:
https://github.com/JayD2106/WARMPOT.

a similar experiment using the ImageNet → Caltech data set
(see Appendix F) confirm these findings. Interestingly, the
ARPM weighting strategy can be seen as a variation of our
weighting strategy. We discuss this connection in further
detail in Appendix H.

5.4. Comparison with State of the Art

Next, we compare the performance of WARMPOT with
the performance of alternative algorithms proposed in the
literature for the Office-Home data set. The results of our
analysis are detailed in Table 2.6 First, we focus on compar-
isons to algorithms that, similar to WARMPOT, rely on a
cost function of the form given in (19). Specifically, we con-
sider MPOT (Nguyen et al., 2022) and PWAN (Wang et al.,
2024). As shown in the table, WARMPOT achieves higher
average test accuracy compared to PWAN and similar to
that of MPOT.

In the same table, we broaden the comparison to a wider
range of algorithms. As shown in the table, among the
available algorithms, the best performance on Office-Home
is achieved by ARPM (Gu et al., 2024), which relies on
several heuristic loss terms beyond the weighted source loss.
Motivated by our results in Section 5.3, which indicate that
the WARMPOT weighting strategy yields better perfor-
mance than that of ARPM, we also consider an algorithm
that is identical to ARPM except that it uses the WARM-
POT weights. We refer to this approach as ARPM+our-
weights. Interestingly, ARPM+our-weights improves upon
SOTA performance. This indicates that our theoretically
motivated weighting strategy can lead to gains for PDA al-
gorithms that involve a weighted source loss. We detail the
choice of hyperparameters used to obtain the test results of
ARPM+our-weights in Appendix E.

5.5. The WARMPOT Weights

In order to illustrate the behavior of the WARMPOT
weights, we focus on a single task from the Office-Home
data set, namely, the P→A task. In Fig. 1, we present the
weights p̂i in (11) obtained by evaluating the transport ma-
trix Π̂⋆ achieving PWα(

1
βP

f
z , Q

w
t ) over the entire data set,

6The test accuracy scores accompanied by standard deviation
in Table 2 are obtained by reproducing the results reported in the
corresponding papers.
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Table 2. Test accuracy on the Office-Home dataset.

Algorithm A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet-50 (He et al., 2016) 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4
ADDA (Tzeng et al., 2017) 45.2 68.8 79.2 64.6 60.0 68.3 57.6 38.9 77.5 70.3 45.2 78.3 62.8
CDAN+E (Long et al., 2018) 47.5 65.9 75.7 57.1 54.1 63.4 59.6 44.3 72.4 66.0 49.9 72.8 60.7
IWAN (Zhang et al., 2018) 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6
PADA (Cao et al., 2018) 52.0 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1
ETN (Cao et al., 2019) 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5
DRCN (Li et al., 2020) 54.0 76.4 83.0 62.1 64.5 71.0 70.8 49.8 80.5 77.5 59.1 79.9 69.0
BA3US (Liang et al., 2020) 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0
ISRA+BA3US (Xiao et al., 2021) 64.7 83.0 89.1 75.7 75.5 85.4 78.5 64.2 88.1 81.3 65.3 86.7 78.2
SHOT++ (Liang et al., 2021) 65.0 85.8 93.4 78.8 77.4 87.3 79.3 66.0 89.6 81.3 68.1 86.8 79.9
SPDA (Guo et al., 2022) 64.2 87.8 88.0 74.3 75.1 79.1 79.4 58.9 85.1 81.4 67.4 84.1 77.1
APDA-CI (Lin et al., 2022) 61.7 86.9 90.5 77.2 76.9 83.8 79.6 63.8 88.5 85.0 65.8 86.2 78.8
CLA (Yang et al., 2023) 66.7 85.6 90.9 75.6 76.9 86.8 78.8 67.4 88.7 81.7 66.9 87.8 79.5
RAN (Wu et al., 2023) 63.3 83.1 89.0 75.0 74.5 82.9 78.0 61.2 86.7 79.9 63.5 85.0 76.8
JUMBOT (Fatras et al., 2021) 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5
STCPDA (He et al., 2023) 63.1 87.8 90.1 77.2 75.4 85.6 81.4 62.4 90.5 82.6 69.5 88.2 79.5
SLM (Sahoo et al., 2023) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0
SAN++ (Cao et al., 2022) 61.3 81.6 88.6 72.8 76.4 81.9 74.5 57.7 87.2 79.7 63.8 86.1 76.0
IDSP (Li & Chen, 2022) 60.8 80.8 87.3 69.3 76.0 80.2 74.7 59.2 85.3 77.8 61.3 85.7 74.9
MOT (Luo & Ren, 2023) 63.1 86.1 92.3 78.7 85.4 89.6 79.8 62.3 89.7 83.8 67.0 89.6 80.6
AR (Gu et al., 2021) 67.4 85.3 90.0 77.3 70.6 85.2 79.0 64.8 89.5 80.4 66.2 86.4 78.3
ARPM (Gu et al., 2024) 67.4 (2.5) 88.4 (1.4) 92.7 (1.1) 79.9 (2.1) 82.6 (2.6) 87.0 (0.7) 78.8 (3.1) 69.1 (1.6) 89.6 (0.3) 86.0 (1.0) 69.5 (2.2) 89.7 (1.1) 81.7 (0.7)

MPOT (Nguyen et al., 2022) 64.6 80.6 87.1 76.4 77.6 83.5 77.0 63.7 87.6 81.4 68.5 87.3 77.9
PWAN (Wang et al., 2024) 63.3 (1.8) 84.1 (1.8) 89.3 (0.6) 76.7 (1.1) 75.6 (2.0) 83.8 (1.8) 76.6 (0.8) 60.7 (2.2) 86.7 (0.8) 80.1 (0.6) 64.4 (0.5) 86.6 (0.7) 77.3 (0.5)

WARMPOT (ours) 62.5 (1.2) 83.0 (1.1) 89.5 (0.3) 75.2 (1.1) 78.4 (2.2) 82.3 (1.3) 76.6 (1.5) 61.4 (3.1) 88.0 (1.0) 81.1 (0.7) 66.5 (1.0) 86.6 (0.6) 77.6 (0.7)
ARPM+our-weights 69.0 (1.9) 87.2 (1.7) 92.8 (0.7) 81.0 (1.1) 83.4 (2.7) 86.0 (2.8) 79.9 (2.2) 69.1 (0.8) 90.2 (0.9) 86.6 (0.8) 69.7 (2.3) 88.7 (1.0) 82.0 (0.4)

at the end of the training process. For illustrative purposes,
we normalize the p̂i by 1/(βns) to obtain values in the in-
terval [0, 1]. The left plot in Fig. 1 shows the distribution
of all weights on source instances. The middle and the
right plots show the distribution of the normalized weights
on the shared and the outlier class instances, respectively.
The weight proportion assigned to outlier source samples
in WARMPOT is just 6.04%, even though 58.41% of the
source samples belong to outlier classes. A total of 64.4%
outlier class instances have been assigned to the smallest bin,
which helps in minimizing the effect of negative transfer.

6. Conclusion
In this work, we obtain generalization bounds for PDA tasks.
In particular, our bounds depend on a partial Wasserstein
distance, and hence provide a theoretical motivation for us-
ing it as a domain alignment term. While several existing
algorithms in the literature take such an approach, a theo-
retical justification was previously missing. Furthermore,
our bounds constructively give rise to explicit source data
weights, which can help alleviate negative transfer. In con-
trast, prior work used heuristic weight choices, which were
not directly motivated by theoretical considerations.

Inspired by our bounds, we propose the algorithm WARM-
POT to minimize them. Through numerical experiments,
we demonstrate that WARMPOT is competitive with recent
approaches to PDA. Furthermore, we show that the perfor-
mance of the SOTA algorithm ARPM is improved when
its weighting scheme is replaced with that of WARMPOT.

This, along with an additional ablation study, corroborates
the utility of our proposed weights.

It should be noted that an exact minimization of our bounds
is prohibitively expensive from a computational standpoint,
and hence, WARMPOT relies on some approximations.
Additional performance gains may be obtained by optimiz-
ing this implementation. Furthermore, the SOTA algorithm
ARPM includes additional loss terms that aim to reduce pre-
diction uncertainty and improve robustness. Such quantities
are not explicitly present in our generalization bounds, but
are studied by Gu et al. (2024, Thm. 1). A promising direc-
tion for future research is to explore these aspects within our
theoretical framework, potentially enabling more powerful
algorithms.
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Figure 1. The distribution of WARMPOT weights for the task P→A. Most of the weights of the outlier classes are close to zero, suggesting
that most of the outliers are successfully omitted when training the classifier.

specifically highlighted here.
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A. Preliminaries
We recall some definitions that are used in the main text as well as in the appendices. We will also establish a useful lemma.

Definition A.1. A function ρ : X × X → R+ is called a metric on X if it is real-valued, finite, and nonnegative, and if for
all a, b, c ∈ X :

(i) ρ(a, b) = 0 if and only if a = b,

(ii) ρ(a, b) = ρ(b, a) (symmetry),

(iii) ρ(a, c) ≤ ρ(a, b) + ρ(b, c) (triangle inequality).

We shall also use the so-called reverse triangle inequality,

|ρ(a, b)− ρ(a, c)| ≤ ρ(b, c) (23)

which can be readily obtained from the properties in Definition A.1.

Definition A.2. A function g : Rd → Y is γ-Lipschitz with respect to a metric ρ on Y if for all t, t′ ∈ Rd

ρ(g(t), g(t′)) ≤ γ∥t− t′∥. (24)

Definition A.3. The total variation distance between two discrete probability distributions P and Q on Z is defined as

TV(P,Q) =
1

2

∑
z∈Z

|P (z)−Q(z)|. (25)

Lemma A.4. Assume that the loss function ℓ : Y ×Y → R+ is a metric on Y . Let W be the set of all hypotheses w = g ◦ f
such that g is γ-Lipschitz with respect to ℓ. Let Lf and z ∪ z̃ be defined as in Theorem 3.2. Then, for all pairs z = (x, y)
and z̃ = (x̃, ỹ) in z ∪ z̃, we have

|ℓ(w(x), y)− ℓ(w(x̃), ỹ)| ≤ 2γ∥f(x)− f(x̃)∥+ 2Lf . (26)

Proof. Consider two arbitrary pairs (x, y) and (x̃, ỹ) in z ∪ z̃. Furthermore, fix f and let g∗ be a classifier achieving Lf

in (8). Then,

ℓ(w(x), y) = ℓ(g(f(x)), y) (27)
≤ ℓ(g(f(x)), g∗(f(x))) + ℓ(g∗(f(x)), y) (28)
≤ ℓ(g(f(x)), g∗(f(x))) + Lf (29)
≤ ℓ(g(f(x)), g(f(x̃))) + ℓ(g(f(x̃)), g∗(f(x))) + Lf (30)
≤ γ∥f(x)− f(x̃)∥+ ℓ(g(f(x̃)), g∗(f(x))) + Lf (31)
≤ γ∥f(x)− f(x̃)∥+ ℓ(g(f(x̃)), g∗(f(x̃))) + ℓ(g∗(f(x̃)), g∗(f(x))) + Lf (32)
≤ 2γ∥f(x)− f(x̃)∥+ ℓ(g(f(x̃)), g∗(f(x̃))) + Lf (33)
≤ 2γ∥f(x)− f(x̃)∥+ ℓ(g(f(x̃)), ỹ) + ℓ(ỹ, g∗(f(x̃))) + Lf (34)
≤ 2γ∥f(x)− f(x̃)∥+ ℓ(w(x̃), ỹ) + 2Lf . (35)

Here, (27) follows because w = g ◦ f ; in (28) we used the triangle inequality; in (29) we used the max-min inequality (Boyd
& Vandenberghe, 2004, Eq. (5.46)) as well as the definition of Lf ; in (30) we again used the triangle inequality; in (31) we
used that g is γ-Lipschitz; in (32) we used the triangle inequality; in (33) we used that g∗ is γ-Lipschitz; in (34) we used the
triangle inequality; and finally, (35) follows again from the max-min inequality and the definition of Lf . Similarly, starting
with ℓ(w(x̃), ỹ) and proceeding analogously, we conclude that

ℓ(w(x̃), ỹ) ≤ 2γ∥f(x)− f(x̃)∥+ ℓ(w(x), y) + 2Lf . (36)

Combining (35) and (36), we obtain the desired result.
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B. Proof of Theorem 3.2
Note that there may be duplicate features in {f(xi)}ns

i=1 and {f(x̃i)}nt
i=1. Hence, strictly speaking, P f

s and Qf
t are probability

vectors whose dimensions are given by the number of distinct features, and multiplicities need to be accounted for. However,
in our proof, this yields the same result as if we treat the duplicate values as separate features with identical cost values.
Hence, for simplicity but without loss of generality, we assume that the features in both {f(xi)}ns

i=1 and {f(x̃i)}nt
i=1 are

distinct. This allows us to view P f
s and Qf

t as probability vectors of dimensions ns and nt respectively, where all entries of
each vector are equal, i.e., P f

s = [ 1
ns
, . . . , 1

ns
]T and Qf

t = [ 1
nt
, . . . , 1

nt
]T .

Now, define the ns × nt cost matrix C with entries Cij = γ∥f(xi)− f(x̃j)∥. We consider the partial Wasserstein distance
between 1

βP
f
s and Qf

t , which is given by (see the definition in (4))

PWα

(
1
βP

f
s , Q

f
t

)
= min

Π∈Γα

(
1
β P f

s ,Qf
t

)
ns∑
i=1

nt∑
j=1

CijΠij , (37)

where Γα

(
1
βP

f
s , Q

f
t

)
=

{
Π ∈ Rns×nt : Π1nt

≤ 1
βP

f
s ,Π

T1ns
≤ Qf

t ,1
T
ns
Π1nt

= α
}
.

Let Π⋆ ∈ Γα

(
1
βP

f
s , Q

f
t

)
attain the minimum in (37). Then

2PWα

(
1

β
P f
s , Q

f
t

)
=

ns∑
i=1

nt∑
j=1

2CijΠ
⋆
ij (38)

=

ns∑
i=1

nt∑
j=1

2γ∥f(xi)− f(x̃j)∥Π⋆
ij (39)

≥
ns∑
i=1

nt∑
j=1

(|ℓ(w(x̃j), ỹj)− ℓ(w(xi), yi)| − 2Lf )Π
⋆
ij (40)

≥
ns∑
i=1

nt∑
j=1

(ℓ(w(x̃j), ỹj)− ℓ(w(xi), yi)− 2Lf )Π
⋆
ij (41)

=

nt∑
j=1

ℓ(w(x̃j), ỹj)

ns∑
i=1

Π⋆
ij −

ns∑
i=1

ℓ(w(xi), yi)

nt∑
j=1

Π⋆
ij − 2Lf

ns∑
i=1

nt∑
j=1

Π⋆
ij (42)

=

nt∑
j=1

ℓ(w(x̃j), ỹj)((Π
⋆)T1ns

)j −
ns∑
i=1

ℓ(w(xi), yi)(Π
⋆1nt

)i − 2Lf1
T
ns
Π⋆1nt

(43)

=

nt∑
j=1

ℓ(w(x̃j), ỹj)qj −
ns∑
i=1

ℓ(w(xi), yi)pi − 2Lfα. (44)

Here, in (38) we used (37); in (39) we used the definition of the cost function; (40) follows from Lemma A.4; and finally,
in (44) we used that 1T

ns
Π⋆1nt

= α by definition, and we set pi = (Π⋆1nt
)i, i = 1, . . . , ns and qj =

(
(Π⋆)T1ns

)
j
,

j = 1, . . . , nt. The inequality just obtained can be rewritten as

nt∑
j=1

ℓ(w(x̃j), ỹj)qj ≤
ns∑
i=1

ℓ(w(xi), yi)pi + 2PWα

(
1

β
P f
s , Q

f
t

)
+ 2αLf . (45)

Now, let q = [q1, . . . , qnt ]
T and define the following empirical distributions on z̃:

Qz̃ =

nt∑
j=1

1

nt
δz̃j , Qq

z̃ =

nt∑
j=1

qj
α
δz̃j . (46)

Using that the loss function is supported on [0, 1], we perform the following change of measure (Ohnishi & Honorio, 2021,
Lemma 4):

E(X,Y )∼Qz̃
[ℓ(w(X), Y )] ≤ E(X,Y )∼Qq

z̃
[ℓ(w(X), Y )] + TV(Qz̃, Q

q
z̃) (47)
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where the total variation distance TV(·, ·) was introduced in Definition A.3. This implies that

1

nt

nt∑
j=1

ℓ(w(x̃j), ỹj) ≤
1

α

nt∑
j=1

ℓ(w(x̃j), ỹj)qj +TV(Qz̃, Q
q
z̃) (48)

or, equivalently,

Lz̃(w) ≤
1

α

nt∑
j=1

ℓ(w(x̃j), ỹj)qj +TV(Qz̃, Q
q
z̃) . (49)

Finally, we note that

TV(Qz̃, Q
q
z̃) =

1

2

nt∑
j=1

∣∣∣∣ 1nt
− qj

α

∣∣∣∣ . (50)

We substitute (50) in (49) and (49) in (45) to get the desired result.

C. Proof of Theorem 3.3
As in Appendix B, we assume for simplicity that we can view P f

z and Qw
t as probability vectors of dimensions ns and nt

respectively, where all entries of each vector are equal, i.e., P f
z = [ 1

ns
, . . . , 1

ns
]T and Qw

t = [ 1
nt
, . . . , 1

nt
]T .

We now consider an ns × nt cost matrix C with entries Cij = ζγ∥f(xi)− f(x̃j)∥+ ℓ(yi, w(x̃j)). We consider the partial
Wasserstein distance between 1

βP
f
z and Qw

t , which is given by (see the definition in (4))

PWα

(
1
βP

f
z , Q

w
t

)
= min

Π∈Γα

(
1
β P f

z ,Qw
t

)
ns∑
i=1

nt∑
j=1

CijΠij , (51)

where Γα

(
1
βP

f
z , Q

w
t

)
=

{
Π ∈ Rns×nt : Π1nt

≤ 1
βP

f
z ,Π

T1ns
≤ Qw

t ,1
T
ns
Π1nt

= α
}
. We define Qz̃ and Qq̂

z̃ in the

same way as in (46), where q̂ = [q̂1, . . . , q̂nt
]T . Then, given the feature map f , for every fixed hypothesis w′ ∈ W that can

be decomposed as w′ = g′ ◦ f , we have

αLz̃(w) ≤ αTV(Qz̃, Q
q̂
z̃) +

nt∑
j=1

q̂jℓ(w(x̃j), ỹj) (52)

≤ αTV(Qz̃, Q
q̂
z̃) +

nt∑
j=1

q̂j (ℓ(w(x̃j), w
′(x̃j)) + ℓ(w′(x̃j), ỹj)) (53)

=αTV(Qz̃, Q
q̂
z̃)+

ns∑
i=1

p̂iℓ(w
′(xi), yi)+

nt∑
j=1

q̂jℓ(w
′(x̃j), ỹj)+

nt∑
j=1

q̂jℓ(w(x̃j), w
′(x̃j))−

ns∑
i=1

p̂iℓ(w
′(xi), yi).

(54)

Here, (52) follows from (49); in (53) we used that the weights {q̂j} are nonnegative as well as triangle inequality; to
obtain (54) we just summed and subtracted the term

∑ns

i=1 p̂iℓ(w
′(xi), yi). We now focus on the last two terms of (54). Let
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Π̂⋆ be the coupling matrix achieving PWα

(
1
βP

f
z , Q

w
t

)
. We have

nt∑
j=1

q̂jℓ(w(x̃j), w
′(x̃j))−

ns∑
i=1

p̂iℓ(w
′(xi), yi) =

nt∑
j=1

ℓ(w(x̃j), w
′(x̃j))

ns∑
i=1

Π̂⋆
ij −

ns∑
i=1

ℓ(w′(xi), yi)

nt∑
j=1

Π̂⋆
ij (55)

=

ns∑
i=1

nt∑
j=1

Π̂⋆
ij (ℓ(w(x̃j), w

′(x̃j))− ℓ(w′(xi), yi)) (56)

≤
ns∑
i=1

nt∑
j=1

Π̂⋆
ij |ℓ(w(x̃j), w

′(x̃j))− ℓ(w′(xi), yi)| (57)

≤
ns∑
i=1

nt∑
j=1

Π̂⋆
ij

[
|ℓ(w(x̃j), w

′(x̃j))− ℓ(w(x̃j), w
′(xi))| (58)

+ |ℓ(w(x̃j), w
′(xi))− ℓ(w′(xi), yi)|

]
≤

ns∑
i=1

nt∑
j=1

Π̂⋆
ij [ζ |w′(x̃j)− w′(xi)|+ ℓ(w(x̃j), yi)] (59)

≤
ns∑
i=1

nt∑
j=1

Π̂⋆
ij [ζγ ∥f(x̃j)− f(xi)∥+ ℓ(w(x̃j), yi)] (60)

= PWα

(
1

β
P f
z , Q

w
t

)
. (61)

Here, (55) follows from the definitions of p̂i in (11) and q̂j in (12); (59) follows because the loss is ζ-Lipschitz and because
of the reverse triangle inequality (23); and (60) follows since g′ is γ-Lipschitz with respect to the Euclidean distance.

By substituting (61) into (54) and decomposing w′ as w′ = g′ ◦ f , we obtain

Lz̃(w) ≤
1

α
PWα

(
1

β
P f
z , Q

w
t

)
+TV(Qz̃, Q

q̂
z̃) +

ns∑
i=1

p̂i
α
ℓ(g′(f(xi)), yi) +

nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj) . (62)

Next, we define

Ξ = min
g′∈G


ns∑
i=1

p̂i
α
ℓ(g′(f(xi)), yi) +

nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj)


−

min
g′∈G

{
ns∑
i=1

p̂i
α
ℓ(g′(f(xi)), yi)

}
+ min

g′∈G


nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj)


 . (63)

We now minimize over g′ in the two summations of (62), and note that

min
g′∈G


ns∑
i=1

p̂i
α
ℓ(g′(f(xi)), yi) +

nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj)


≤

ns∑
i=1

p̂i
α
ℓ(g(f(xi)), yi) + min

g′∈G


nt∑
j=1

q̂j
α
ℓ(g′(f(x̃j)), ỹj)

+ Ξ. (64)

We obtain the desired result by recalling that g(f(xi)) = w(xi), by using the definition of L̂f , and by writing out the
explicit form of TV(Qz̃, Q

q̂
z̃), as per (50).
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D. Proof of Lemma 3.4
The proof follows that of Alquier (2024, Thm. 2.1), with adjustments to account for the non-standard posterior and the use
of R(W,Z, Z̃) in place of the empirical loss.

For a fixed w ∈ W , we let U (w)
j = LQZ̃

(w) − ℓ(w(X̃j), Ỹj). Note that the ℓ(w(X̃j), Ỹj) are supported on an interval
of width 1, are independent and identically distributed, and satisfy E[ℓ(w(X̃j), Ỹj)] = LQZ̃

(w). Hence, we can apply
Hoeffding’s inequality (Wainwright, 2019, Prop. 2.5) to find that, for every t > 0,

EZ̃∼Q
nt
Z̃

[
et

∑nt
j=1 U

(w)
j

]
≤ e

t2nt
8 . (65)

Now, note that
∑nt

j=1 U
(w)
j = nt(LQZ̃

(w)− LZ̃(w)). Hence, setting t = λ/nt for some λ > 0, we have

EZ̃∼Q
nt
Z̃

[
e
λ
(
LQ

Z̃
(w)−LZ̃(w)

)]
≤ e

λ2

8nt (66)

Now, it follows from the upper bound in (14) that

EZ̃∼Q
nt
Z̃

[
e
λ
(
LQ

Z̃
(w)−R(w,z,Z̃)

)]
≤ EZ̃∼Q

nt
Z̃

[
e
λ
(
LQ

Z̃
(w)−LZ̃(w)

)]
. (67)

By combining (66) and (67) and averaging over Z ∼ Pns

Z and W ∼ QW we find that, collecting factors on the left-hand
side,

EZ∼Pns
Z ,Z̃∼Q

nt
Z̃

,W∼QW

[
e
λ
(
LQ

Z̃
(W )−R(W,Z,Z̃)

)
− λ2

8nt

]
≤ 1. (68)

In the remainder of the proof, we will suppress the explicit distributions in the expectation notation when they are clear from
context. We now apply the Donsker-Varadhan variational formula (Alquier, 2024, Lemma 2.2) to conclude that, for a given
posterior PW |Z,T ,

EZ,Z̃

[
e
λEW∼PW |Z,T

[LQ
Z̃
(W )−R(W,Z,Z̃)]−DKL(PW |Z,T ||QW )− λ2

8nt

]
≤ 1. (69)

Next, by the Chernoff bound (Wainwright, 2019, Eq. (2.5)), we have that for every s > 0,

PZ,Z̃

[
λEW∼PW |Z,T

[LQZ̃
(W )−R(W,Z, Z̃)]−DKL(PW |Z,T ||QW )− λ2

8nt
> s

]
≤ EZ,Z̃

[
e
λEW∼PW |Z,T

[LQ
Z̃
(W )−R(W,Z,Z̃)]−DKL(PW |Z,T ||QW )− λ2

8nt

]
e−s (70)

≤ e−s. (71)

Setting s = log(1/δ), we thus conclude that with probability at most δ over Z ∼ Pns

Z , Z̃ ∼ Qnt

Z̃
,

λEW∼PW |Z,T
[LQZ̃

(W )−R(W,Z, Z̃)]−DKL(PW |Z,T ||QW )− λ2

8nt
> log

1

δ
. (72)

We obtain the desired result by considering the complementary event and re-arranging terms.

E. Additional Details on the Experiments

We compute the domain alignment term PWα

(
1
βP

f
z , Q

w
t

)
in (19) using the entropic partial Wasserstein solver from the

POT library (Flamary et al., 2021), with regularization constant ε = 7.0 in all the experiments, which is selected to avoid
numerical instabilities. We set the maximum number of iterations to 5000. Following Nguyen et al. (2022), we linearly
increase α from 0.01 to αmax for the first 2500 iterations, and keep it constant for the last 2500 iterations. Through a
parameter search, we obtained the following values for the hyperparameters: αmax = 0.8, η1 = 0.125, η2 = 1.75, β = 0.35.
We use a batch size of 65, and set the learning rate of stochastic gradient descent to 0.001. We used the same values for
these hyperparameters in all our experiments. For ARPM+our-weights, we set 1/β = 3, while all other hyperparameters are
the same as those in ARPM (Gu et al., 2024).
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Table 3. Test accuracy on the ImageNet → Caltech dataset using the weight choices described in Section 5.3.

Weighting scheme Test accuracy

MPOT weights 78.6 (1.2)
BA3US weights 84.7 (0.7)
ARPM weights 79.2 (1.4)

WARMPOT (ours) 84.8 (0.1)

Table 4. Test accuracy on the ImageNet → Caltech dataset.

Algorithm Test accuracy

ResNet-50 (He et al., 2016) 69.7
DAN (Long et al., 2015) 71.3
DANN (Ganin et al., 2016) 70.8
IWAN (Zhang et al., 2018) 78.1
PADA (Cao et al., 2018) 75.0
ETN (Cao et al., 2019) 83.2
DRCN (Li et al., 2020) 75.3
BA3US (Liang et al., 2020) 84.0
ISRA+BA3US (Xiao et al., 2021) 85.3
SLM (Sahoo et al., 2023) 82.3
SAN++ (Cao et al., 2022) 83.3
AR (Gu et al., 2021) 85.4 (0.2)
ARPM (Gu et al., 2024) 84.1 (1.4)

PWAN (Wang et al., 2024) 86.0 (0.5)

WARMPOT (ours) 84.8 (0.1)
ARPM+our-weights 85.1 (0.9)

F. Additional Numerical Results
In this section, we discuss the results obtained by repeating the experiments described in Section 5.3 on the ImageNet →
Caltech dataset, where ImageNet (Russakovsky et al., 2015) consists of 1000 classes and Caltech-256 (Griffin et al., 2022)
consists of 256 classes.

We first compare different weighting schemes. Following Gu et al. (2024), we set the weight update intervals of ARPM and
BA3US to 2000. The experiment is repeated for 3 random seeds, and we report the average and the standard deviation. The
results are presented in Table 3. WARMPOT results in better performance than MPOT and ARPM, and yields performance
comparable to BA3US.

Then we compare WARMPOT against alternative algorithms. We set αmax = 0.08, η1 = 0.92, η2 = 5.47, β = 0.72,
ε = 5.59 for WARMPOT. The results are shown in Table 4. Once more, we observe that ARPM+our-weights achieves
better performance than ARPM, highlighting the effectiveness of the WARMPOT weights.

G. Sensitivity Analysis for Alignment Parameters
In order to assess the impact on performance of the hyperparameters in the domain alignment term, we conduct a sensitivity
analysis on αmax, β, on the ImageNet → Caltech dataset. In this analysis, we set the following values for the other
hyperparameters: η1 = 0.92, η2 = 5.47, ε = 5.59. In the experiment on αmax, we set β = 0.72, while in the experiment on
β, we set αmax = 0.08.

As seen in Fig. 2 (right), varying β over the entire range (0, 1] has a limited impact on performance, with variations not
exceeding 2%. We observe a similar trend whenever αmax is varied within the range (0, 0.1]. When αmax > 0.1, however,
we see a significant drop in performance, caused most likely by the large number of outliers in the source sample. These
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Figure 2. The effect of changing alignment parameters αmax and β on test accuracy of ImageNet → Caltech.

results indicate that the specific choice of these parameters has a minor impact over a range of reasonable values.

H. Relation between WARMPOT and ARPM Weights
The weights p̂ = (p̂1, . . . , p̂ns

) used in the ARPM algorithm of Gu et al. (2024) are defined as the solution of the following
Wasserstein-1 type problem between the source and target distributions:

min
p̂∈∆

W1

 ns∑
i=1

p̂iδf(xi),
1

nt

nt∑
j=1

δf(x̃j)

 . (73)

Here, the constraint set ∆ is defined as

∆ =



p̂i ≥ 0
ns∑
i=1

p̂i = 1

ns∑
i=1

(
p̂i −

1

ns

)2

≤ ρ

ns

(74a)

(74b)

(74c)

where ρ is a hyperparameter. Interestingly, the weights p̂ = (p̂1, . . . , p̂ns) of WARMPOT, given in (11), can be equivalently
expressed, for the case α = 1, as the solution of the same optimization problem as in (73), but with the constraint set ∆
replaced by Γ defined as:

Γ =



p̂i ≥ 0
ns∑
i=1

p̂i = 1

p̂i ≤
1

βns
.

(75a)

(75b)

(75c)

Here, β is a hyperparameter. Note that the only difference between the two sets of constraints is that they use different ways
to control the magnitude of p̂i in (74c) and (75c). Compared to the ARPM constraint ∆, our constraint Γ is not only simpler
and more theoretically grounded, but also more intuitive: (75c) controls the maximum target sample mass that can be
matched to a single source sample, while the corresponding ARPM constraint (74c) is harder to interpret. As demonstrated
in our numerical results in Table 2, our weights also lead to better performance.
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Note finally that ARPM solves (73) only approximately: it first solves a Wasserstein-1 problem with fixed p̂i = 1/ns using
a Wasserstein-GAN, and then fixes this learned Wasserstein-GAN and updates the weights p̂i.
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