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Abstract

When Reinforcement Learning (RL) agents are
deployed in practice, they might impact their envi-
ronment and change its dynamics. We propose a
new framework to model this phenomenon, where
the current environment depends on the deployed
policy as well as its previous dynamics. This is a
generalization of Performative RL (PRL) [Mandal
et al., 2023]. Unlike PRL, our framework allows to
model scenarios where the environment gradually
adjusts to a deployed policy. We adapt two algo-
rithms from the performative prediction literature
to our setting and propose a novel algorithm called
Mixed Delayed Repeated Retraining (MDRR). We
provide conditions under which these algorithms
converge and compare them using three metrics:
number of retrainings, approximation guarantee,
and number of samples per deployment. MDRR is
the first algorithm in this setting which combines
samples from multiple deployments in its training.
This makes MDRR particularly suitable for sce-
narios where the environment’s response strongly
depends on its previous dynamics, which are com-
mon in practice. We experimentally compare the al-
gorithms using a simulation-based testbed and our
results show that MDRR converges significantly
faster than previous approaches.

1 INTRODUCTION

When machine learning (ML) models are deployed in prac-
tice, they can affect the prediction target itself, causing a
distribution shift. This problem has received significant at-
tention in supervised learning and is termed as performative
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prediction [Perdomo et al., 2020]. In practice, it is often
approached with repeated retraining: a practical solution
for finding a (performatively) stable model, which does not
suffer from further distribution shift.

Recently, Mandal et al. [2023] considered a reinforcement
learning (RL) variant of this problem setting. In RL, per-
formativity manifests itself as a shift in the environment,
depending on the policy which was deployed by the learner.
For example, the environment can model users of an on-
line platform (e.g., recommender system or a chatbot), who
adapt to the changes in the policy of the RL agent that
controls the platform.

Mandal et al. [2023] formalizes this setting with a frame-
work called performative RL, where the dynamics of a
Markov decision process (MDP) Mt depend on the cur-
rent policy πt. To find an approximately stable policy, they
propose repeated retraining over the space of occupancy
measures C(Mt) and the regularized objective

max
d∈C(Mt)

∑
s,a

rt(s, a) · d(s, a)− λ∥d∥2,

where rt is the reward function of Mt, the sum goes over
all possible states s and actions a, and λ is a regularization
factor.

However, this framework assumes that the environment
only depends on the deployed policy and is independent of
the previous environment. In many practical scenarios, this
assumption does not hold. Going back to our examples from
before, users are likely to manifest a learning behavior when
interacting with the platform, and thus adapt their behavioral
patterns gradually to any changes made in the platform,
instead of adapting immediately after every change. Thus
we consider an extension of the performative RL framework
where the underlying MDP Mt is gradually changing over
time.

Contributions Following a similar line of work on per-
formative prediction that considers gradual shifts in the
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Table 1: Overview of Our Results. Convergence criteria for computing a δ-approximate stable policy. λ is a factor of the
regularization, ϵ < 1 indicates the dependence of the current environment on the previous environment, ι < 1 indicates
the dependence of the current environment on the deployed policy, i denotes the current retraining iteration, 1− p is the
probability of achieving said approximate stable policy in the finite sample setting, k denotes the number of repeated
deployments of the same policy in MDRR, |S| is the number of states, |A| the number of actions, and γ is the discount
factor of the MDP.

Algorithm λ #retrainings
#samples

per deployment

RR[exact] O
(

|S|5/2
(1−ϵ)(1−γ)4

) ln
((
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√
2)
√
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p
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DRR[fin] O
(
ι(|S|+γ|S|5/2)
(1−ϵ)(1−γ)4

)
ln( 2

1−γ /δ)
ln(4/(3+ϵ)) Õ

(
|A|ψ
λ2 ln

(
i
p

))
[a]

MDRR[fin] as for DRR as for DRR (v−1)vk−1

vk−1
Õ
(

|A|ψ
λ2 ln

(
i
p

))
[a,b]

[a] Here ψ = O

(
|S|3

(
B+

√
|A|
)2

δ4(1−γ)6

)
and we ignore all terms which are logarithmic in |S|, |A| and 1/δ.

[b] v > 1
ϵ

is a hyperparamter of MDRR
[exact] results when the learner knows current environment (Pt, rt)
[fin] results when the learner gets a finite set of samples from the current environment (Pt, rt)

distribution [Brown et al., 2022, Li and Wai, 2022, Ray
et al., 2022, Izzo et al., 2022], we model this scenario by
assuming that the underlying MDP Mt is dependent on
both the deployed policy πt and the MDP from the previous
round, i.e., Mt−1. Our overall goal is to analyze different
repeated retraining approaches and provide characterization
results that compare these approaches along the following
three measures: a) attainable approximation quality (i.e., the
minimum value of λ for which the convergence is guaran-
teed), b) the number of retrainings which guarantees the
convergence (signifying the compute needed to converge),
and c) the sample complexity per deployment (signifying
the number of data points that need to be collected). Our
main contributions are as follows:

• Framework: An extension of the performative RL frame-
work that can model gradual environment shifts, and
an extension of the DRR algorithm from Brown et al.
[2022], suitable for our framework.

• Algorithm: A novel repeated retraining algorithm, called
MDRR, which compared to repeated retraining (RR)
and DRR uses samples from multiple rounds of deploy-
ment, thereby reducing the number of samples needed
per round.

• Characterization results: A characterization of three re-
peated retraining approaches: a canonical RR, DRR, and
MDRR. Our analysis is a non-trivial combination of the
proof techniques used by Mandal et al. [2023] and Brown
et al. [2022] and brings additional insights about regular-

ization in performative RL. The overview of the results
can be found in Table 1. At a high-level, our theoretical
results suggest that DRR and MDRR fare better than RR
in terms of the number of retrainings and sample com-
plexity, as well as in terms of attainable approximation
quality when the environment depends weakly on the
current policy. When the environment depends strongly
on the previous environment, MDRR fares better than
RR and DRR in terms of samples per round. These re-
sults shed light on regularization in performative RL, and
the importance of utilizing historic data to reduce it, thus
obtaining better approximation quality.

• Experiments: Finally, we compare the algorithms in an
experimental evaluation. In our experiments, MDRR out-
performs RR and DRR in terms of the convergence speed
and the quality of the solution obtained.

1.1 RELATED WORK

We relate our work to four lines of research: Performative
Prediction, Markov Games, Adversarial Markov Decision
Processes, and Reinforcement Learning. The latter two are
discussed in Appendix A.

Performative Prediction. The study of performative pre-
diction was initiated by Perdomo et al. [2020]. They in-
vestigate conditions under which repeated retraining con-
verges to a performatively stable point. This study was



extended in various ways, including stochastic optimiza-
tion [Mendler-Dünner et al., 2020], finding performatively
optimal points [Miller et al., 2021, Izzo et al., 2021], multi-
agent scenarios [Narang et al., 2023, Li et al., 2022] and
using performativity to measure the power of firms [Hardt
et al., 2022]. Mofakhami et al. [2023] use a different set
of assumptions and provide convergence guarantees also in
cases where the loss is not strongly convex in the param-
eters of the model. Most related to our setting are works
that consider performative prediction under gradual shifts
in the distribution [Brown et al., 2022, Li and Wai, 2022,
Ray et al., 2022, Izzo et al., 2022], commonly known as
stateful performative prediction [Brown et al., 2022]. All of
the above works study performativity in supervised learning.
In contrast, we consider reinforcement learning. However,
we emphasize that some of our results are extensions of or
inspired by those that appear in [Brown et al., 2022]. Most
notably, we extend delayed repeated retraining, an algorithm
proposed by [Brown et al., 2022], to our RL setting, and ana-
lyze its convergence guarantees. Furthermore, we introduce
a novel algorithm inspired by delayed repeated retraining.

Markov Games. Our work is also related to the literature
on stochastic or Markov games [Shapley, 1953] and multi-
agent reinforcement learning [Zhang et al., 2021]. Much of
the focus in multi-agent RL have been on computational
and statistical aspects of learning Nash or correlated equilib-
ria [Daskalakis et al., 2023, Wei et al., 2017, Bai et al., 2020,
Jin et al., 2022]. Our setting is more related to multi-agent
RL frameworks that consider Stackelberg or commitment
policies [Letchford et al., 2012, Vorobeychik and Singh,
2012, Dimitrakakis et al., 2017, Zhong et al., 2021], where
a principal agent commits a policy to which one or more fol-
lowers best responds. Computing optimal commitment poli-
cies is in general computationally intractable Letchford et al.
[2012]. Hence, some restrictions on followers’ response
models are needed to enable computationally efficient learn-
ability Zhong et al. [2021]. Similarly, no-regret learning in
a two-agent principal-follower setting where the follower
independently learns or changes its policy over time is also
in general computationally intractable [Radanovic et al.,
2019, Bai et al., 2020]. However, if the dynamics of the fol-
lower’s policy updates is not adversarial, tractable no-regret
algorithms exist [Radanovic et al., 2019]. These restrictions
on the follower are similar in spirit to the setting and the
assumptions we consider in this paper, however, our setting
is technically quite different: whereas these works focus
on no-regret learning, we focus on performative RL and
repeated retraining approaches.

2 PRELIMINARIES

We follow Perdomo et al. [2020], Brown et al. [2022] and
Mandal et al. [2023] in defining the formal setting.

Markov Decision Processes We consider tabular Markov
Decision Processes (MDPs), which consist of a finite state
space S, finite action space A, discount factor γ and initial
state distribution ρ. We assume that the reward and transi-
tion probability functions change over time, as a response
to the policy which the learner deploys. The learner deploys
policy πt in round t and the previous probability transition
and reward function are Pt−1 and rt−1. They then change
to Pt = P(πt, Pt−1, rt−1) and rt = R(πt, Pt−1, rt−1) re-
spectively, according to the response models P andR. Thus,
the MDP in round t is Mt = (S,A, Pt, rt, ρ).

When the learner deploys policy πt+1, the probability of a
trajectory τ = (sk, ak)

∞
k=0 to be realized in round t is given

by Pπt
t (τ) = ρ(s0)

∏∞
k=1 πt(ak|sk)Pt(sk, ak, sk+1).

Given policy π and initial state distribution ρ, we denote the
value function at round t as V π

t (ρ). It is defined as

V π
t (ρ) = Eτ∼Pπ

t

[ ∞∑
k=0

γkrt(sk, ak)|ρ

]
.

The learner in round t has access to the past MDPs
M0, . . . ,Mt−1, or a finite number of samples thereof.

Solution Concept We assume that when the learner de-
ploys π in every round, the MDP converges to the limiting
MDP Mπ = (S,A, Pπ, rπ, ρ), which is independent of the
initial MDP. Using this, we can define the performative
value function as

V π
π′(ρ) = lim

t→∞
V π
t (ρ|πi = π′ ∀i) .

It is the value function of MDP Mπ .

One common solution concept in this setting is to find a
performatively stable policy, defined as follows.

Definition 1 (Performatively Stable Policy). We call a pol-
icy π performatively stable, if it is the best response to the
MDP Mπ . That is, π ∈ argmaxπ′ V π

π′ .

Given two performatively stable policices π1 and π2, their
convex combination might not be performatively stable. Be-
cause of this, it is hard to use the standard formulation of
RL. This problem is alleviated by using the linear program-
ming formulation of RL. To describe this, we define the
long term-state occupancy measure of a policy π in MDP
Mt as dπt (s, a) = Eτ∼Pπ

t

[∑∞
k=0 γ

k1{sk = s, ak = a}
]
.

When given occupancy measure d, one can consider the
following policy πd, which has occupancy measure d.

πd(a|s) =

{
d(s,a)∑
b d(s,b)

if
∑
a d(s, a) > 0

1
|A| otherwise

(1)

We consider that the learner parameterizes its policy by the
occupancy measure and calculates the policy via (1).



In an unregularized setting, we would say that a occupancy
measure dS is performatively stable if it is the optimal solu-
tion to the following linear program.

d∗S ∈ argmax
d≥0

∑
s,a

d(s, a)rd∗S (s, a) (2)

s.t.
∑
a

d(s, a) = ρ(s) + γ ·
∑
s′,a

d(s′, a)Pd∗S (s
′, a, s) ∀s

where we denote Pd = Pπd
and rd = rπd

. This describes
an occupancy measure which is itself the best response
against the current MDP.

But, similar to prior work, to make the theoretical analysis
feasible, we assume the following regularized version of
optimization problem (2). A stable occupancy measure dS
is defined by

dS ∈ argmax
d≥0

∑
s,a

d(s, a)rd(s, a)−
λ

2
∥d∥22 (3)

s.t.
∑
a

d(s, a) = ρ(s) + γ ·
∑
s′,a

d(s′, a)Pd(s
′, a, s) ∀s.

Here λ is a constant regularization factor which describes
the strong-concavity of the objective. This describes an occu-
pancy measure which is itself the best response against a reg-
ularized objective of the current MDP. If a learner updates
their occupancy measure using the best response against a
L2-regularized objective, (3) describes an occupancy mea-
sure which would not change under such an update, i.e. be
stable.

In our results, we provide lower bounds for how small λ can
be to guarantee convergence. Furthermore, in Appendix C.3
we show that (3) approximates the unregularized objec-
tive (2).

Sensitivity Assumption We overload the notation to write
the response models in the following form. For every
occupancy measure d, let P(d, P, r) = P(πd, P, r) and
R(d, P, r) = R(πd, P, r).

For the learner to make use of this past information, we use
the following sensitivity assumption, which are commonly
used in performative prediction.

Assumption 1 (sensitivity). Consider some
ιp, ιr, ϵp,p, ϵp,r, ϵr,p, ϵr,r ≥ 0 with ι = ιp + ιr < 1,
ϵp = ϵp,p + ϵr,p < 1 and ϵr = ϵp,r + ϵr,r < 1. Assume

∥P(d, P, r)− P(d′, P ′, r′)∥2
≤ ιp∥d− d′∥2 + ϵp,p∥P − P ′∥2 + ϵp,r∥r − r′∥2 and

∥R(d, P, r)−R(d′, P ′, r′)∥2
≤ ιr∥d− d′∥2 + ϵr,p∥P − P ′∥2 + ϵr,r∥r − r′∥2

for any occupancy measures d, d′, reward functions r, r′

and probability transition functions P, P ′.

Assumption 1 ensures that when the learner deploys a new
policy, the new MDP does not drift too far from the old
MDP. In Appendix C.1 we discuss one example where this
assumption commonly holds.

When ϵp, ϵr < 1, the mapping from (P, r) to
(P(d, P, r),R(d, P, r)) is a contraction for any occupancy
measure d (Proof in Appendix C.4). Therefore, if the learner
deploys the same policy π in every round, Pt and rt asymp-
totically converge to some Pπ and rπ respectively and we
don’t need to assume this explicitly.

To simplify the exposition of the results in the main paper,
we assume that the following assumption holds, without
explicitly stating it in the results.

Assumption 2. For the results in the main part of the paper,
we assume that ϵp,p = ϵp,r = ϵr,p = ϵr,r = ϵ

2 , ιp, ιr ≤ ϵ
2

for some ϵ < 1 and 9γ|S|
(1−γ)2 ≥ 1 .

Assumption 2 is not critical – as we show in the appendix,
our results easily generalize when we do not assume it.

Sample Generation Model We also consider finite-
sample versions of the algorithms we propose. For this we
use the following sample generation model. In round t, let
dt be the occupancy measure of πt under dynamics Pt. Note
that this is different than the occupancy measure which the
learner uses to calculate its policy πdt , since this was calcu-
lated using different dynamics. We then define the normal-
ized occupancy measure d̃t(s, a) = (1 − γ)dt(s, a). Each
sample in round t is a tuple (s, a, r, s′) and is generated in
the following way. First a state, action pair is sampled i.i.d.
according to (s, a) ∼ d̃t, then reward as r = rt(s, a) and
then the next state s′ ∼ Pt(·|s, a). This is a standard model
of sample generation in offline RL [Munos and Szepesvári,
2008, Farahmand et al., 2010, Xie and Jiang, 2021, Mandal
et al., 2023].

3 REPEATED RETRAINING (RR)

One common approach in performative prediction is re-
peated retraining (RR), where the learner updates its policy
at every round, by best responding to the current environ-
ment. In this section, we explore guarantees for when this
approach converges to a stable occupancy measure.

In RR we assume that the learner updates its policy every
round in such a way that it is optimal for the regularized
objective of the current MDP Mt. In particular, we define
dt+1 to be a solution to the following optimization problem.

max
d≥0

∑
s,a

d(s, a)rt(s, a)−
λ

2
∥d∥22 (4)

s.t.
∑
a

d(s, a) = ρ(s) + γ ·
∑
s′,a

d(s′, a)Pt(s
′, a, s) ∀s



We go on to show that RR converges to a stable occupancy
measure.

Theorem 1 (informal, details in Appendix D.2). Assume
that Assumption 1 holds and λ = O

(
|S|5/2

(1−ϵ)(1−γ)4

)
. Then

for any δ > 0 we have,

∥dt − dS∥2 ≤ δ,

for all t ≥
ln
((

2
1−γ +(1+

√
2)
√

|S||A|
)
/δ
)

ln(2/(1+ϵ)) .

The bound on λ in Theorem 1 is comparable to the one
required in standard Performative RL, there are only dif-
ferences in the constants and the ϵ factors. The bound on
the number of rounds t in standard Performative RL is
2 ln

(
2

δ(1−γ)

)
/
(
1− |S|5/2ϵ

λ(1−γ)4

)
, which is comparable to the

bound here, when only considering the δ parameter. We
note that the bound on t in Theorem 1 does depend on λ,
but for the simplicity of the exposition it is swapped by
the lower bound on λ instead. The full theorem is found in
Appendix D.2.

The proofs of this paper are found in the appendix. In gen-
eral, the proofs rely on a non-trivial combination of adapting
arguments from Brown et al. [2022] to the RL setting and
using results from Mandal et al. [2023]. Additionally, we
extend the analysis by introducing a distinction between
the parameter ι indicating how the environment adapts to a
deployed policy, and ϵ indicating how strongly the environ-
ment depends on the previous environment. We therefore
view our main contribution in this section and Section 4 as
bridging the gap between the theoretical findings of Man-
dal et al. [2023] and the often more realistic assumptions
made by history-dependence, as in Brown et al. [2022]. In
section 5 we will introduce a novel algorithm.

3.1 FINITE SAMPLE GUARANTEES

Theorem 1 assumes that the learner knows the exact envi-
ronment when updating its policy. In practice, this is usually
too strong of an assumption, since the learner typically has
access to only a finite number of samples drawn via the
deployed policy on the adopted environment. In this subsec-
tion, we first discuss some general considerations for this
new setting and then show that RR also converges here.

Update rule for RR The learner has access to i.i.d. drawn
set of samples Ft for each round t. In round t, let mt := |Ft|
be the number of samples.

As prior work, we use the following empirical Lagrangian
to devise an optimization problem in the finite sample set-

ting [Mandal et al., 2023].

L̂(d, h; t) = −λ

2
∥d∥22 +

∑
s

h(s)ρ(s)

+
∑

(s,a,r,s′)∈Ft

d(s, a)

dt(s, a)
· r − h(s) + γh(s′)

mt(1− γ)

(5)

Here h is the Lagrange multiplier with one entry for each
s ∈ S.

The empirical Lagrangian is defined in such a way that
when we take its expectation over samples, we obtain the
exact Lagrangian L of optimization (4). One can show that
the empirical Lagrangian L̂ lies in a neighborhood of the
true Lagrangian L almost certainly. The learner repeatedly
solves

(dt+1, ht+1) = argmax
d

argmin
h

L̂(d, h; t) . (6)

We need a further assumption, which ensures an overlap
in the occupancy measure between the behavioral policy
and the target policy space. This assumption is standard in
offline RL [Munos and Szepesvári, 2008, Zhan et al., 2022,
Mandal et al., 2023]. Without such an overlap, it is unclear
how the learner would compute an optimal policy.

Assumption 3. Assume we are given an integer k. Given
occupancy measure d, initial transition probability function
P0 and initial reward function r0, let Pt and rt be the result
after the learner deploys πd for t rounds. Let d∗t be the so-
lution to optimization problem (4). Let dt be the occupancy
measure of πd in Pt. Then there exists B > 0 such that for
all d and t ≤ k it holds that

max
s,a

∣∣∣∣d∗k(s, a)dt(s, a)

∣∣∣∣ ≤ B .

Note that we only need overlap for state-action pairs where
the optimal policy d∗t is non-zero. So values where d∗k(s, a)
is 0 are allowed iff dt(s, a) is 0 for all t ≤ k.

We can then show the following guarantee for RR.

Theorem 2 (informal, details in Appendix D.3). Sup-
pose that overlap Assumption 3 holds for k =
1 with parameter B and Assumption 1 holds. Let
p > 0. Then for λ = O

(
ϵ(|S|+γ|S|5/2)
(1−ϵ)(1−γ)4

)
, mt =

Õ

(
|A||S|3

(
B+
√

|A|
)2

δ4(1−γ)6λ2(1−ϵ)4 ln
(
t
p

))
1 and for any δ > 0, with

probability at least 1− p,

∥dt − dS∥2 ≤ δ for all t ≥
ln

(
2

1−γ +(1+
√
2)
√

|S||A|
δ

)
ln (4/ (3 + ϵ))

+1 .

1Here we ignore all terms which are logarithmic in |S|, |A|
and 1/δ



The bounds here are similar to the bounds in standard Per-
formative RL. For λ, there is no γ in the numerator and the
ϵ parameters are a bit different in the standard setting. The
number of retrainings also has a factor of ln(1/((1− γ)δ))
in standard Performative RL.

4 DELAYED REPEATED RETRAINING

A different approach inspired by work from Brown et al.
[2022], is to not update the policy every round, but wait a
number of k rounds before each update. Then the policy is
updated using only the environment from the last round of
the k deployments. Algorithm 1 illustrates this approach,
called Delayed Repeated Retraining (DRR).

The advantage of DRR is that during the rounds of repeat-
edly deploying the same policy, the MDP can somewhat
stabilize and the learner might need a lower amount of re-
trainings and therefore less compute.

For the result, we use the following definition.

Definition 2. Let dP,r be the maximal distance between any
environment and its successive environment, i.e.

dP,r := max
P,r,d

(∥P(P, r, d)− P∥2 + ∥R(P, r, d)− r∥2) .

Theorem 3 (informal, details in Appendix E.1). Let di be
computed by DRR with k = ln−1

(
1
ϵ

)
ln
(

dP,r

δι

)
. Suppose

Assumption 1 holds and λ = O
(

ι·|S|5/2
(1−ϵ)(1−γ)4

)
. Then for

any δ > 0, we have

∥di − dS∥2 ≤ δ for all i ≥ ln

((
2

1− γ

)
/δ

)
.

The regularization parameter λ has an ι factor in DRR, but
not in RR (see Theorem 1). The factor ι is close to 0, if
the MDP does not react strongly to the current policy. In
such settings, the conditions for λ in DRR are substantially
relaxed. In addition, the number of retrainings required for
DRR is much smaller than for RR. However, RR may re-
quire fewer total rounds than DRR.

Algorithm 1: Delayed Repeated Retraining
1: Input: radius δ, initial transition probability P0 and

reward function r0, initial occupancy measure d0,
number of deployments k

2: for i = 0, 1, 2, . . . do
3: for g = 1, . . . , k do
4: // deploy πdi :
5: Pi·k+g ← P(di, Pi·k+g−1, ri·k+g−1)
6: ri·k+g ← R(di, Pi·k+g−1, ri·k+g−1)
7: Update policy to πdi+1

4.1 FINITE SAMPLE GUARANTEES

In DRR with finite samples, the learner again applies the
same policy for several rounds. After that it updates its pol-
icy using samples drawn from the most recent environment.
For this, the learner uses optimization problem (6).

Theorem 4 (informal, details in Appendix E.2). Let
di be computed by finite sample DRR with k =

ln−1
(
1
ϵ

)
ln
(

5·dP,r

δι

)
. Suppose the Assumption 1 holds and

Assumption 3 holds for k and parameter B. Let p > 0.
Furthermore assume λ = O

(
ι(|S|+γ|S|5/2)
(1−ϵ)(1−γ)4

)
. Then for

mi = Õ

(
|A||S|3

(
B+
√

|A|
)2

δ4(1−γ)6λ2 ln
(
i+1
p

))
1, and any δ > 0,

with probability at least 1− p,

∥di − dS∥2 ≤ δ for all i ≥
ln
(

2
1−γ /δ

)
ln (4/ (3 + ϵ))

+ 1.

In this result, λ has a factor of ι, whereas RR has a fac-
tor of ϵ (see Theorem 2). In prior work, the difference of
ϵ and ι was ignored and the two were assumed to be the
same [Brown et al., 2022]. As we see here however, interest-
ing properties emerge when we explicitly assume that they
are not the same. In settings where the environment does not
respond strongly to the current policy, but strongly depends
on the previous environment, ϵ is larger than ι, substantially
relaxing the conditions on λ for DRR. DRR also requires
less samples, by a factor of (1− ϵ)4 when assuming equal
λ. The number of retrainings also is less for DRR. Still, RR
may need fewer rounds of retraining overall because DRR
only retrains every kth round. Assumption 3 is stricter for
DRR, because it has a larger k-parameter than RR. The k
parameter in Assumption 3 indicates how far into future
rounds the overlap of occupany measures has to reach.

5 MIXED DELAYED REPEATED
RETRAINING (MDRR)

Consider a scenario where in each round the learner gets a
limited number of samples from the MDP. In this scenario,
in each training step DRR would use samples from one
round only. But using samples from multiple rounds would
allow the learner to use more samples overall, reducing
variance and potentially improving convergence.

However, it is challenging to determine how the learner
should combine samples from multiple rounds. Should they
optimize using all available samples collectively, or should
they use more samples from recent rounds and less from
older ones? Additionally, it is uncertain whether such a
method would converge and, if so, whether it would offer



any benefits. To address these questions, we present a novel
algorithm that:

• Uses samples from multiple rounds.
• Allows for prioritizing recent samples while still incor-

porating older ones.
• If the response of the environment depends strongly on

the previous MDP, achieves convergence with fewer sam-
ples per round. If additionally the number of provided
samples per deployment is low, it provides better approx-
imation guarantees.

The algorithm uses a new optimization problem, which
can be viewed as an extension of the previous empirical
Lagrangian (5) to multiple rounds:

L̂M (d, h, i) = −λ

2
∥d∥22 +

∑
s

h(s)ρ(s)

+

k∑
g=1

∑
(s,a,r,s′)
∈Fi·k+g

1

Ui

d(s, a)

di·k+g(s, a)

r − h(s) + γh(s′)

1− γ

(7)

Here we define by di·k+g the occupancy measure of policy
πdi under dynamics Pi·k+g . Ui denotes the total number of
samples, i.e. Ui :=

∑k
g=1 |Fi·k+g|. The learner thus opti-

mizes over samples from multiple rounds of deployment.

But there is an inherent trade-off: recent samples contain
more information about the current environment, but using
earlier samples allows the total set of samples to be larger.

To balance this trade-off, the approach here is to use more
samples from recent rounds and less samples from early
rounds. For illustration, let’s assume that the learner didn’t
update its policy since MDP Mi·k = (S,A, Pi·k, ri·k, ρ)
and updates every k rounds. Then they might take m sam-
ples from Mi·k+1, mv samples from Mi·k+2 (for v > 1),
mv2 samples from Mi·k+3, . . . , and mvk−1 samples from
Mi·k+k. If v is close to 1, the learner takes approximately
equal number of samples from all rounds. If v is large, and
m small, the learner focuses more on recent rounds. The
pseudocode for this approach is shown in Algorithm 2, we
call it Mixed Delayed Repeated Retraining (MDRR).

In MDRR the learner uses mi·k+g =
v−1
vk−1

vg−1Ui samples
from environment (Pi·k+g, ri·k+g) (for each g = 1, . . . , k),
where Ui denotes the total number of samples used to com-
pute di+1.

Theorem 5 (informal, details in Appendix F.2). Let di be

computed by MDRR with k ≥
ln( ϵ(v−1)

vϵ−1 )+ln
(

5(1−ϵ) dP,r
ιδ

)
ln(1/ϵ) .

Suppose the Assumption 1 holds and the overlap Assump-
tion 3 holds for k and parameter B. Let p > 0. Also
assume that λ = O

(
ι(|S|+γ|S|5/2)
(1−ϵ)(1−γ)4

)
. Further let Ui =

Õ

(
|A||S|3

(
B+
√

|A|
)2

δ4(1−γ)6λ2 ln
(
i+1
p

))
1 be the total number of

Algorithm 2: Mixed DRR (MDRR)
1: Input: radius δ, initial P0 and r0, initial occupancy

measure d0, hyperparameters v and k, total number of
samples for each round Ui

2: for i = 0, 1, 2, . . . do
3: for g = 1, . . . , k do
4: Pi·k+g ← P(di, Pi·k+g−1, ri·k+g−1)
5: ri·k+g ← R(di, Pi·k+g−1, ri·k+g−1)
6: Fi·k+g ← draw v−1

vk−1
vg−1Ui samples from

(Pi·k+g, ri·k+g)
7: Update occupancy measure

di+1 ← argmaxdminh L̂M (d, h, i)

samples in retraining-round i and v > 1
ϵ . Then for any

δ > 0, with probability at least 1− p,

∥di − dS∥2 ≤ δ for all i ≥
ln
(

2
1−γ /δ

)
ln (4/ (3 + ϵ))

+ 1 .

The proof of this result involves showing that the empirical
Lagrangian (7) approximates an exact Lagrangian of the
optimization problem where the MDP is a mixture of MDPs
from different rounds. We then show that the solution to
this optimization problem approximates the solution of an
exact one-step update with the limiting MDP (i.e. the MDP
which the environment converges to if the learner repeatedly
applies the current policy). In a last step we apply arguments
similar to the proof of convergence for DRR.

To compare MDRR to RR and DRR, let’s first consider the
case when ϵ is close to 1. This holds when the environment
responds strongly to the old environment, for example when
the new environment after one step is a slight alteration
of the old environment. We expect this property to hold in
many applications, because the environment shift typically
happens only slowly over time. We anticipate that MDRR
performs particularly well in those settings, because it uses
samples from old environments, and if those environments
are close to the current environment, those samples are
more informative. And indeed, this is what we observe. The
number of samples required in line 6 of MDRR is smaller by
a factor of v

k−vk−1

vk−1
, which converges to (v− 1)/v for large

k. When ϵ is close to 1, we can set v close to 1, resulting in
a significant decrease in the required number of samples.

The regularization parameter λ is the same as for DRR and
has a factor of ι compared to RR which has a factor of ϵ.
But note that the number of samples has a factor of 1/λ2

in all three algorithms, therefore in settings where there are
few samples, one needs larger λ to guarantee convergence.
However, because MDRR requires less samples per round
than RR and DRR in those settings, it requires smaller val-
ues of λ. The number of retrainings is similar to DRR and
significantly less than for RR.
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Figure 1: The figures show the distance of the current occupancy measure from the average of the last 10 in that run (after
11990 deployments). The data represent means computed over 20 trials, along with their 95% confidence intervals. Unless
otherwise noted, the settings are k = 3 for DRR and MDRR, v = 1.1 for MDRR, 1000 trajectories per iteration, B = 10,
λ = 0.1 and w = 0.5 Figure 1a and 1b compare the three algorithms to one another, while Figure 1c compares MDRR with
different values for the hyperparameter k and Figure 1d compares MDRR with different values for the hyperparameter v.

In general, we see that MDRR performs particularly well
in settings where the environment responds strongly to the
previous environment in a given round, which likely is a
scenario often present in practice.

6 EXPERIMENTS

Environment In order to compare the three algorithms
in a fair and tractable experimental setup, we use a varia-
tion of the experimental testbed from Mandal et al. [2023],
with two agents controlling an actor in a grid-world. In our
testbed, agent A1 proposes a control policy for the actor
and A2 responds by overriding some of the actions taken
by the control policy. Hence, A1’s effective environment
is performative. More information about this experimental
setup can be found Appendix B.1.

To simulate a slow response, A2 plays a weighted combina-
tion of its last policy and a softmax of its optimal Q-values.
Specifically, the policy of A2 in round i is

π2
i (a|s) = w· eQ

∗|π1
2 (s,a)∑

a′∈A eQ
∗|π1
2 (s,a′)

+(1−w)·π2
i−1(a|s) (8)

Here Q
∗|π1

2 (s, a) are the optimal Q-values for A2, while w
describes the responsiveness of the environment towards
the deployed policy of A1. For small w, the environment
responds strongly to the current policy, while for large w
the environment is less responsive to the current policy.

Implementation We study the finite sample setting, and
sample trajectories instead of taking single samples from
occupancy measures. The learner solves the min-max-
problem (6) using a follow-the-regularized-leader algorithm
described in Appendix B.3. To evaluate the speed at which
the algorithms reach a stable occupancy measure, we eval-
uate how the occupancy measure at each round compares

to the average of the last 10 occupancy measures, which we
denote by dlast.2

Performance In Figures 1a and 1b we see that MDRR
converges the fastest to dlast. This is true both for the setting
where the environment changes faster (w = 0.5, Figure 1a)
and when it changes more slowly (w = 0.15, Figure 1b).
This is the case even though MDRR uses less retrainings
than RR. But MDRR uses more samples per retraining, and
this seems to lead to better convergence properties in the
exposed settings. This also means that MDRR has lower
variance, as indicated by the smaller confidence intervals.
In Appendix B.6 we additionally study settings with larger
values of w, where the environment is more dynamic. Also
here MDRR significantly outperforms RR and DRR.

Choice of Hyperparameters As we can see in Figure 1c,
the convergence properties of MDRR for different values
of k are similar. As we can see in Figure 1d, in the range
of v = 1.1 to v = 1.8, there does not seem to be much
difference in speed of convergence. The results indicate that
MDRR is robust to the choice of its hyperparameters.

Compute details The experiments in Figure 1 were con-
ducted on a compute cluster with each machine having 4
Intel Xeon E7-8857 v2 CPUs and 1.5 TB of RAM. It took
approximately 80 to 100 hours per algorithm to complete
each experiment.

7 CONCLUSION

This work initiates the study of performative RL in scenar-
ios where the environment changes gradually. We introduce

2Code available at https://
github.com/rank-and-files/
performative-rl-gradually-shifting-envs

https://github.com/rank-and-files/performative-rl-gradually-shifting-envs
https://github.com/rank-and-files/performative-rl-gradually-shifting-envs
https://github.com/rank-and-files/performative-rl-gradually-shifting-envs


different algorithms in this setting and compare them ex-
tensively both theoretically and experimentally. Our results
suggest that our novel MDRR algorithm performs partic-
ularly well in this setting, and it would be interesting to
investigate similar algorithms in performative prediction.
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agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of reinforcement
learning and control, pages 321–384, 2021.

Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I
Jordan. Can reinforcement learning find stackelberg-nash
equilibria in general-sum markov games with myopic
followers? arXiv preprint arXiv:2112.13521, 2021.



Performative Reinforcement Learning in Gradually Shifting Environments
(Supplementary Material)

Ben Rank♠1 Stelios Triantafyllou1 Debmalya Mandal♣♢2 Goran Radanovic♣1

1Max Planck Institute for Software Systems (MPI-SWS)
2University of Warwick

Part I

Appendix

Table of Contents
A Additional Related Work 11

B Additional Experimental Details 12
B.1 Explanation of the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
B.2 Computing Sample Lists for MDRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.3 Solving the Min-Max Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B.4 Total Amount of Compute and Type of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.5 Sanity-Check the Fairness of the Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.6 Additional results for large values of w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C Additional Theoretical Results 16
C.1 Example for Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.2 Existence of Stable Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.3 Approximating the Unregularized Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.4 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D Proofs for Repeated Retraining (RR) (Section 3) 18
D.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D.2 RR in the Exact Setting (Theorem 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
D.3 RR with Finite Samples (Theorem 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E Proofs for Delayed Repeated Retraining (DRR) (Section 4) 25
E.1 DRR in the Exact Setting (Theorem 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
E.2 DRR with Finite Samples (Theorem 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F Proof for MDRR (Theorem 5) 29
F.1 Preparations for the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
F.2 Formal Statement and Proof of Theorem 5 (MDRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A ADDITIONAL RELATED WORK

In this section we present some more related work on Adversarial MDPs and Reinforcement Learning (RL).

Adversarial MDPs. More broadly, our framework is related to the literature on adversarial and non-stationary MDPs, which
extensively studied online learning under adversarial and non-stationary rewards and transitions[Even-Dar et al., 2004, 2009,

mailto:<benrank@mpi-sws.org>


Abbasi Yadkori et al., 2013, Yu and Mannor, 2009, Rosenberg and Mansour, 2019, Cheung et al., 2020, Wei and Luo, 2021].
The positive results therein, in particular, no-regret guarantees when both rewards and transitions evolve over time, often
assume budget constraints on how many times and by how much the underlying MDP model can change [Abbasi Yadkori
et al., 2013, Cheung et al., 2020, Wei and Luo, 2021]. We instead rely on sensitivity assumptions (Assumption 1), introduced
in Section 2.

Reinforcement Learning. We also mention the recent work on RL in Newcomb-like environments [Bell et al., 2021],
whose framework is similar to the original performative RL framework of Mandal et al. [2023]. There, the focus is on the
convergence of value-based RL algorithms; we focus on repeated retraining and allow the environment response model to
gradually change over time. From a practical point of view, repeated retraining is similar to alternating optimization for
game-theoretic bi-level optimization problems in RL(e.g., [Rajeswaran et al., 2020, Mohammadi et al., 2023]). The latter
can be thought of as a training framework for finding optimal commitment policies in Markov games, whereas the former
repeatedly deploys a policy, collects data, and trains a new policy using offline RL. In that regard, we also relate this paper to
the vast literature on offline RL [Levine et al., 2020]. From a technical point of view, the most relevant aspects are coverage
assumptions and data generation process: we consider the ones from [Mandal et al., 2023], which are based on [Zhan et al.,
2022, Munos and Szepesvári, 2008].

B ADDITIONAL EXPERIMENTAL DETAILS

This section discusses more details on the experiments. Subsection B.1 explains the environment further, subsections B.2
and B.3 discuss further algorithmic details, subsection B.4 discusses the type and amount of compute used, and in
subsection B.5 we sanity-check if the comparison presented in the main paper is fair.

B.1 EXPLANATION OF THE ENVIRONMENT

The experimental setting is an adapted version of the one from Mandal et al. [2023]. We consider the grid world environment
depicted in figure 2. There is one actor in this grid-world environment, which is controlled by two agents, agent A1 and
agent A2. The actor starts randomly in one of the S states, with uniform probability. A1 can decide where the actor goes by
choosing one of the directions left, right, up or down. A2 can decide to intervene on the direction which A1 chose. The
actions of A2 are not-intervene, left, right, up or down. In case A2 chooses not-intervene, the direction chosen by A1 is used.
Otherwise, the direction chosen by A2 gets used.

Both agents are reinforcement learners with different goals. A1 optimizes according to the grid-world in figure 2. A2

optimizes according to a perturbed grid-world, where each blank, F or H cell is the same as for A1 with probability 0.7.
With probability 0.3, it gets changed to either blank, F or H (chosen uniformely at random).

A1 and A2 get a negative reward of −0.01 if the actor visits a blank or an S cell, a slightly increased negative reward of
−0.02 if visiting a F cell and a large negative reward of −0.5 for H cells. Additionally, when A2 decides to intervene, an
additional cost of −0.05 is inflicted on it.

A1 is the main learner which performs RR, DRR or MDRR. A2 models the response of the environment.

A2 starts by playing the policy which does never intervene. In each iteration, first A1 optimizes its policy, and then A2

responds to the policy played by A1. A2 slowly adapts to the current played policy by agent 1 in each round, by using a
mixture between the last played policy of A2 and the softmax over the current optimal Q-values, as described in equation (8)
in the main paper.

Furthermore, we use γ = 0.9 for both A1 and A2 and a maximum trajectory length of 50, i.e. after 50 steps, the trajectory is

S S
S
S
S F

S S
F

H
H

H
G

Figure 2: The grid-world.



cut off. Instead of using the exact occupancy measures di in the optimization, we approximate them using the trajectories.

B.2 COMPUTING SAMPLE LISTS FOR MDRR

In this subsection we describe a practical way to compute samples from MDRR.

Recall that MDRR uses mik+t = wtUi samples in iteration i from round t, where wt =
(v−1)vt−1

vk−1
and Ui is the total

number of samples used in for the i-th retraining. In practice, we assume that the learner is given some samples for each
round.

In practice, we use a slightly different algorithm to compute the number of samples MDRR uses, because of two reasons.
The first reason is that wtUi could be non-integral. The second reason is that even though MDRR needs mt samples in
round t, samples from rounds after t could also count towards this, if the same policy was applied in the rounds between.
This is because those samples are collected after more repeated applications of the same policy. Therefore the environment
at this point is closer to the limiting environment than in round t and using additional samples from higher rounds would
increase performance more than using samples from round t.

To calculate the number of samples MDRR uses from each round, we propose Algorithm 3, which we explain in the
following. In the following we use the terms list and sequence somewhat loosely to refer to linked lists of samples and
linked lists of linked lists of samples respectively.

Algorithm 3 takes as input a sequence of lists of samples S1, . . . , Sk and weights w1, . . . , wk ∈ R+. We can think of S1 to
be the number of samples in step ik + 1 for some i, S2 to be the number of samples in step ik + 2, etc. . Algorithm 3 fulfills
the following property.

Theorem 6. Algorithm 3 outputs a sequence F = [F1, . . . , Fk], which contains the maximal number of samples |F| such
that

1. Ft ⊆ St for all t ∈ {1, . . . , k} and

2. |[Ft, . . . , Fk]| ≥
∑k
t′=t wt′ |F| for all t ∈ {1, . . . , k} .

where we denote by |[Ft, . . . , Fk]| the number of samples in total in Ft, . . . , Fk. Similarly |F| is the number of samples in
F .

Item 1 guarantees that Ft only contains samples from St. Item 2 guarantees that for each round t, there is a sufficient number
of samples assigned to this step either by samples from rounds greater than t, which are not yet assigned to any round or
directly from round t. To see this, notice that the total number of samples in this iteration is Ui = |F|. Therefore, for round
t, we need at least wt|F| samples. Those samples have to be from Ft, Ft+1, . . . , Fk and must not be assigned to another
round t′ ̸= t. Assume that this already holds for all t′′ > t. Then we only need to ensure that the amount of samples which
are not yet assigned to any round plus the samples from round t are greater equal wi|F|. This amount of not yet assigned
samples plus the samples from round t is equal to |[Ft+1, . . . , Fk]| −

∑k
t′=t+1 wt′ |F|+ |Ft|. Item 2 follows from assuming

that this is bigger than wt|F|.

We now prove Theorem 6 via a loop-invariant argument.

Proof of Theorem 6. Item 1 trivially holds, since only samples from St are added to Ft.

We now show that item 2 also holds and that |F| is maximal. We define the following proposition Bt for every t ∈ {1, . . . , k}.
Bt holds iff for every j ≥ t, it holds that

Fj ⊆ Sj and |[Fj , . . . , Fk]| ≥
k∑

t′=j

wt′ |F| (9)

We define the following loop invariant Ct. Ct holds iff after iteration t of the loop, M ′ is the maximum integer such that Bt
holds and using M ′ − |F| samples for F1, . . . , Ft does not lead to a violation of Bt.

If Ct holds for every t ∈ {1, . . . , k}, the theorem is shown.



Algorithm 3: Practical algorithm to compute the samples used by MDRR

1: Input: A sequence S1, . . . , Sk of lists of samples and corresponding weights w1, . . . , wk ∈ R+ such that
∑k
t=1 wt = 1

2: Output: A sequence F = [F1, . . . , Fk] of lists of samples such that Ft ⊆ St, |[Ft, . . . , Fk]| ≥
∑k
t′=t wt′ |F| and |F| is

maximal.

3: M ′ ← +∞
4: Let F be a sequence of k empty lists
5: for t = k, . . . , 1 do
6: if M ′ − |F| ≤ |St| then
7: Append M ′ − |F| samples from St to Ft
8: Return F
9: Ft ← St

10: W ←
∑k
t′=t wt′

11: M ′ ←
⌊
min

(
|F|
W ,M ′

)⌋

We prove that Ct holds via induction. Ck+1 holds before the loop starts, since we can think of t to be equal to k + 1 at this
time, M ′ is infinity and F empty.

The induction step goes from t+ 1 to t. Assume Ct+1 holds. The if-statement in line 6 then ensures that if there are more
samples in St than are still possible, Ft is set equal to this number of samples and the algorithm returns. We know this is
correct, since M ′ is maximal. Otherwise Ft is set to St, because this capacity is still there for samples from St.

Then in line 11, the min
(

|F|
W ,M ′

)
defines the number of samples which can maximally be taken in total. The first argument

of the minimum ensures that (9) holds for j = t. The second argument of the minimum, M ′ + |F| ensures that Bt+1 holds
via the induction hypothesis. Then Bt holds and the induction step is shown.

B.3 SOLVING THE MIN-MAX OPTIMIZATION PROBLEM

In this subsection we describe how the learner solves the min-max problem (6) and the min-max problem in line 7 of
Algorithm 2 in the experiments.

To solve the min-max problem of the empirical Lagrangians in equation (6) we use Algorithm 1 from Mandal et al. [2023].

To solve the min-max problem for MDRR (line 7 of Algorithm 2), we use Algorithm 4. It works the same as Algorithm 1 of
Mandal et al. [2023], the only difference is in the conditions on d in line 8, where we condition d(s, a)/dt(s, a) ≤ B for all
steps since the last update of the policy. We use parameters, N = 10 and β = λ

2 = 0.05.

Algorithm 4: FTRL algorithm to calculate an approximization for the finite sample optimization problem ((6) and (45))

1: Input: regularizing factor β, occupancy measures since the last update of the policy dt for t ∈ {1, . . . , k}
2: d0 ← 0
3: for j = 0, 1, . . . , N − 1 do
4: if j = 0 then
5: hj ← argminh L̂M (d0, h) + β ∥h∥22 s.t. ∥h∥2 ≤ 3|S|

(1−γ)2
6: else
7: hj ← argminh

∑j
j′=1 L̂M (dj′ , h) + β ∥h∥22 s.t. ∥h∥2 ≤ 3|S|

(1−γ)2

8: dj+1 ← argmaxd L̂M (d, hj) s.t. maxs,a d(s, a)/dt(s, a) ≤ B for all t ∈ {1, . . . , k}
9: Return

∑N
j=1 dj/N

For the experiments with w = 0.85 and w = 0.95, we used machines with two AMD EPYC 7702 64-Core Processors and
2TB of RAM.



Table 2: Compute Times of the Experiments in Figures 1 and 3

Algorithm k w v time (rounded)
RR N\A 0.5 N\A ∼ 94 hrs
DRR 3 0.5 N\A ∼ 78 hrs
MDRR 3 0.5 1.1 ∼ 90 hrs
RR N\A 0.15 N\A ∼ 105 hrs
DRR 3 0.15 N\A ∼ 88 hrs
MDRR 3 0.15 1.1 ∼ 100 hrs
MDRR 5 0.5 1.1 ∼ 85 hrs
MDRR 5 0.5 1.5 ∼ 77 hrs
MDRR 5 0.5 1.8 ∼ 78 hrs
MDRR 10 0.5 1.1 ∼ 83 hrs
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Figure 3: A sanity check if the algorithms reach valid solutions. Since the values of the three algorithms are close to one
another, we assert that none of them reaches a much less optimal solution than another one, thereby validating all three
approaches.

B.4 TOTAL AMOUNT OF COMPUTE AND TYPE OF RESOURCES

The experiments of the main part (Figure 1) were run on a compute cluster with each machine having 4 Intel Xeon E7-8857
v2 CPUs (4 times 12 cores) and 1.5 TB of RAM.

In Table 2, we detail how long each experiment took to complete on these machines.

For the experiments with w = 0.85 and w = 0.95, we used machines with two AMD EPYC 7702 64-Core Processors and
2TB of RAM.

B.5 SANITY-CHECK THE FAIRNESS OF THE COMPARISON

By only presenting Figures 1a and 1b in the main paper, we can not rule out that some of the algorithms converge to very
suboptimal solutions. In this case the comparison would be unfair.

Therefore, in order to sanity-check the fairness of the comparison, we also investigate the expected value, V dt
t . This is not

directly associated to finding a stable occupancy measure, but should rather be seen as a check to see if the algorithms we
propose reach similar solutions. We compute V dt

t using the rewards derived from the training sample trajectories. In other
words, when Trt is the set of trajectories sampled in round t, and for each trajectory τ , the reward in step k is rt(τk), then
V dt
t =

∑
τ∈Trt

∑l(τ)
k=0 γ

k · rt(τk). Here l(τ) is the length of trajectory τ .

We see the expected values of the algorithms in Figure 3. As we see, after they settled down, the three algorithms have rather
close expected values. We believe that the differences stem from the initialization of the environment of the second agent
rather than from some inherent differences in the algorithms.



B.6 ADDITIONAL RESULTS FOR LARGE VALUES OF w

We additionally ran experiments for larger values of w, in particular w = 0.85 and w = 0.95. The results are depicted in
Figure 4. Suprisingly, we see that even with this large values of w, MDRR outperforms RR and DRR. This is somewhat
counterintuitive, since at such large values of w the environment is almost non-stateful, and we would expect RR to have
an advantage here. We believe that this phenomenon is due to the fact that MDRR uses more samples than RR and DRR
and therefore has a lower variance, even at the cost of a large bias. This seems to lead to a much better convergence in the
settings we studied.
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Figure 4: Convergence plots for less stationary environments, i.e. larger values of w. Data generated as in Figure 1. Also
here MDRR outperforms the other algorithms.

C ADDITIONAL THEORETICAL RESULTS

C.1 EXAMPLE FOR ASSUMPTION 1

We now give an example to illustrate Assumption 1. For simplicity we assume that only the probability transition function P
changes and not the reward r. We consider a response model P which is defined in the following way:

P(d, P, r) = wP + (1− w)P ∗(πd)

for some decay rate w ∈ (0, 1) and some response function P ∗(πd). We can think of P being determined by a population
and in each time-step a (1− w) fraction of the population responds to the newly deployed policy πd. Similar settings have
been studied in performative prediction [Ray et al., 2022].

We also assume that the change in P ∗ is bounded, i.e. |P ∗(πd)(s
′|s, a)− P ∗(πd′)(s

′|s, a)| ≤ c||d− d′||2 for all s, s′ ∈ S,
a ∈ A and some constant c > 0. We can then derive the following Proposition.

Proposition 1. With the conditions set in this subsection, it holds that

||P(d, P, r)− P(d′, P ′, r′)||2 ≤ w||P − P ′||2 + (1− w)c|S|
√
|A| · ||d− d′||2.



Proof.

||P(d, P, r)− P(d′, P ′, r′)||22
=
∑
s,a,s′

(w · (P (s′|s, a)− P ′(s′|s, a)) + (1− w) · P ∗(πd)(s
′|a, s)− P ∗(πd′)(s

′|a, s))2

≤
∑
s,a,s′

(w · (P (s′|s, a)− P ′(s′|s, a)) + (1− w) · c · ||d− d′||2)2

≤
∑
s,a,s′

(w · (P (s′|s, a)− P ′(s′|s, a)))2 +
∑
s,a,s′

((1− w) · c · ||d− d′||2)2

+
∑
s,a,s′

2((1− w) · c · ||d− d′||2)(w · (P (s′|s, a)− P ′(s′|s, a)))

≤ w2||P − P ′||22 + |S|2|A| · ((1− w)c)2 · ||d− d′||22 + 2 · (1− w) · c · ||d− d′||2 · w · ||P − P ′||1
≤ w2||P − P ′||22 + |S|2|A| · ((1− w)c)2 · ||d− d′||22 + 2|S|

√
|A| · (1− w) · c · ||d− d′||2 · w · ||P − P ′||2

Taking the square root on both sides gives the desired result.

Given this proposition, we choose ϵp,p = w and ιp = (1 − w)c|S|
√
|A| (all other ι and ϵ parameters are 0). Now if

ιp = (1− w)c|S|
√
|A| < 1, Assumption 1 holds. That (1− w)c|S|

√
|A| is smaller than 1 is likely in many cases where w

is large and / or c is small. The value of w being large means that in each time-step, only a small fraction of the population
responds to the new policy. This could likely be the case if each time-step encompasses a small amount of time. Additionally
the total difference ||P ∗(πd)− P ∗(πd′)||1 can be in the order of c · |S|2|A| · ||d− d′||2, so the value of c might likely be
small.

C.2 EXISTENCE OF STABLE POINTS

Using arguments similar to Mandal et al. [2023], we show that there exists a stable point.

Proposition 2. If Assumption 1 holds, optimization problem (2) has a fixed point.

Proof. This proposition is very similar to Proposition 1 from Mandal et al. [2023]. The proof follows theirs, and we don’t
repeat the arguments made in their proof. However in order to make use of their arguments, we need to show that Pd
and rd are continuous in d, which is not immediately clear. Recall that Pd and rd map from occupancy measure d to the
environment the process converges to, if the learner always deploys πd. We now prove that Pd and rd are continuous in d.

We define ϵ := max(ϵp, ϵr). Then we see that

∥Pd − Pd′∥2 + ∥rd + rd′∥2 ≤ ι ∥d− d′∥2 + ϵ (∥Pd − Pd′∥2 + ∥rd − rd′∥2)

≤ · · · ≤
∞∑
i=0

ιϵi ∥d− d′∥2 =
ι

1− ϵ
∥d− d′∥2

(10)

The inequalities follow from Assumption 1. Thus Pd and rd are continuous in d and the rest of the proof follows from the
same arguments as the proof of Proposition 1 from Mandal et al. [2023].

C.3 APPROXIMATING THE UNREGULARIZED OBJECTIVE

Using arguments similar to Mandal et al. [2023], we can show the following approximation guarantee for the regularized
objective.

Theorem 7. For each setting RR, DRR and MDRR, when they approximate a stable policy dS with respect to the regularized
objective (3), the following guarantee holds:∑

s,a

rdS (s, a) · dS(s, a) ≥ max
d∈C(dS)

∑
s,a

rdS (s, a) · d(s, a)−O
(

λ

(1− γ)2

)
Here C(dS) denotes the set of occupancy measures which are feasible with respect to PdS .



Proof. Since dS is a stable point with respect to objective (3), it holds that∑
s,a

rdS (s, a) · dS(s, a)−
λ

2
∥dS∥22 ≥ max

d∈C(dS)

∑
s,a

rdS (s, a) · d(s, a)−
λ

2
∥d∥22

Therefore, ∑
s,a

rdS (s, a) · dS(s, a) ≥ max
d∈C(dS)

∑
s,a

rdS (s, a) · d(s, a)−
λ

2
∥d∥22

≥ max
d∈C(dS)

∑
s,a

rdS (s, a) · d(s, a)−
λ

2(1− γ)2

The last inequality uses ∥d∥22 =
∑
s,a d(s, a)

2 = (1 − γ)−2
∑
s,a ((1− γ)d(s, a))

2 ≤ (1 − γ)−2
∑
s,a(1 − γ)d(s, a) =

(1− γ)−2.

C.4 CONTRACTION

In contrast to the main paper, in the appendix ϵ refers to ϵ := max(ϵp, ϵr), which signifies the dependency of the environment
on the previous environment.

We define the following distances.

Definition 3. For any occupancy measures d, d′, probability transition functions P, P ′ and reward functions r, r′, we define
the distance between (d, P, r) and (d′, P ′, r′) to be equal to

dist((d, P, r), (d′, P ′, r′)) := ∥d− d′∥2 + ∥P − P ′∥2 + ∥r − r′∥2 .

We overload notation to also define

dist((P, r), (P ′, r′)) := ∥P − P ′∥2 + ∥r − r′∥2 .

As described in section 2, show that the mapping from (P, r) to the successor environment (P(d, P, r),R(d, P, r)) is a
contraction.

Proposition 3. Let d be some occupancy measure. When Assumption 1 holds, in particular ϵp, ϵr < 1, the mapping
gd(P, r) := (P(d, P, r),R(d, P, r)) is a contraction with Lipschitz coefficient ϵ.

Proof. Let P, P ′ be arbitrary probability transition functions and r, r′ arbitrary reward functions.

Then

dist(gd(P, r)− gd(P
′, r′)) = ∥P(d, P, r)− P(d, P ′, r′)∥2 + ∥R(d, P, r)−R(d, P

′, r′)∥2
≤ ϵp,p ∥P − P ′∥2 + ϵp,r ∥r − r′∥2 + ϵr,p ∥P − P ′∥2 + ϵr,r ∥r − r′∥2
≤ ϵ ∥P − P ′∥2 + ϵ ∥r − r′∥2 = ϵ · dist((P, r), (P ′, r′)) .

Where the first inequality follows from Assumption 1 and the second one follows from the defintion of ϵp, ϵr and ϵ. From
this the proposition follows.

D PROOFS FOR REPEATED RETRAINING (RR) (SECTION 3)

D.1 DEFINITIONS

We define the following numbers



Definition 4. We define

α :=
√
3 +

√
7|S|

√
|S|

(1− γ)2
and

β :=
(4
√
7γ + 3

√
6)|S|

(1− γ)2
+

18
√
7γ|S|2

√
|S|

(1− γ)4
.

Definition 5. Let GD(P, r) be the solution to the regularized optimization problem, with probability transition function P
and reward function r, i.e.

GD(P, r) := argmax
d≥0

∑
s,a

d(s, a)r(s, a)− λ

2
∥d∥22

s.t.
∑
a

d(s, a) = ρ(s) + γ ·
∑
s′,a

d(s′, a)P (s′, a, s) ∀s .

D.2 RR IN THE EXACT SETTING (THEOREM 1)

We show the following more general version of Theorem 1.

Theorem 8. Assume that Assumption 1 holds and

λ > max
{
(1− ϵp)

−1β, (1− ϵr)
−1α

}
Then for any δ > 0, we have

∥dt − dS∥2 ≤ δ for all t ≥
ln
(

∥d0−dS∥2+∥P0−PS∥2+∥r0−rS∥2

δ

)
ln

((
max

{
ι, ϵp +

β
λ , ϵr +

α
λ

})−1
) + 1,

with α and β defined in Definition 4.

We first discuss how to obtain Theorem 1 from Theorem 8. Assumption 2 ensures that β ≥ α, ϵp = ϵr = ϵ and ι ≤ ϵ.
We further bound ∥d0 − dS∥2 ≤

2
1−γ , ∥P0 − PS∥2 ≤

√
2|S||A| and ∥r0 − rS∥2 ≤

√
|S||A|. Choosing λ = 2β(1− ϵ)−1

then provides the desired bounds.

The proof of Theorem 8 has a similar structure to the proof of Theorem 4 in Brown et al. [2022].

Proof of Theorem 8. We define by f the mapping from (dt−1, Pt−1, rt−1) to (dt, Pt, rt), i.e.

f(d, P, r) := (GD(P, r),P(d, P, r),R(d, P, r)) .

We analyze dist(f(d, P, r), f(d′, P ′, r′)).

dist(f(d, P, r), f(d′, P ′, r′)) =∥GD(P, r)−GD(P ′, r′)∥2
+ ∥P(d, P, r)− P(d′, P ′, r′)∥2
+ ∥R(d, P, r)−R(d′, P ′, r′)∥2

(11)

The last two terms of this sum can be bounded by using Assumption 1 :

∥P(d, P, r))− P(d′, P ′, r′))∥2 + ∥R(d, P, r))−R(d′, P ′, r′))∥2
≤ (ιp + ιr)∥d− d′∥2 + (ϵp,p + ϵr,p)∥P − P ′∥2 + (ϵp,r + ϵr,r)∥r − r′∥2

(12)

We now bound the first term of (11), i.e. ∥GD(P, r)−GD(P ′, r′)∥2.



From Lemma 1, we get

∥GD(P, r)−GD(P ′, r′)∥2 ≤
α

λ
∥r − r′∥2 +

β

λ
∥P − P ′∥2 (13)

Combining (11), (12) and (13) we get

dist(f(d, P, r), f(d′, P ′, r′)) ≤ ιd∥d− d′∥2

+

(
ϵp +

β

λ

)
∥P − P ′∥2 +

(
ϵr +

α

λ

)
∥r − r′∥2

(14)

We define q := max
(
ιd, ϵp +

β
λ , ϵr +

α
λ

)
. From (14) and the definition of q, it follows that

dist((dt, Pt, rt), (dS , PS , rS)) = dist(f(dt−1, Pt−1, rt−1), f(dS , PS , rS))

≤q dist((dt−1, Pt−1, rt−1), (dS , PS , rS)) ≤ qt (∥d0 − dS∥2 + ∥P0 − PS∥2 + ∥r0 − rS∥2) ,

where the first equality follows from the fact that (dS , PS , rS) is a fixed point of f .

Note that by the conditions on λ, ι, ϵp and ϵr, it holds that q < 1.

Therefore, if we set t ≥ ln(dist((d1, P0, r0), (dS , PS , rS))/δ)/ ln(1/q) + 1, then we get that

dist((dt, Pt−1, rt−1), (dS , PS , rS)) ≤ δ.

Then also ∥dt − dS∥2 ≤ δ.

Lemma 1 (similar to lemma 2 of Brown et al. [2022]). Let P, P̂ be two probability transition functions and r, r̂ be two
reward functions. Then

∥GD(P, r)−GD(P̂ , r̂)∥2 ≤
α

λ
∥r − r̂∥2 +

β

λ
∥P − P̂∥2

with α and β from Definition 4.

Proof. Let M and M̂ be two MDPs and r and r̂ be the corresponding reward functions and P and P̂ be the corresponding
transition probability functions.

In the following we use some arguments from Mandal et al. [2023]. Those arguments apply here as well, since we use the
same optimization problem as they do.

Let h and ĥ be the optimal solution to the dual objective (12) in Mandal et al. [2023] to M and M̂ respectively.

From Mandal et al. [2023] we get that (page 16, after “We now substitute the above bound in equation 15.”)

−|A|(1− γ)2

λ

∥∥∥h− ĥ
∥∥∥2
2
≥ −

∥∥∥h− ĥ
∥∥∥
2

∥∥∥∇L(ĥ;M)−∇L(ĥ, M̂)
∥∥∥
2

(15)

and also from Mandal et al. [2023]

∥∥∥∇L(ĥ;M)−∇L(ĥ, M̂)
∥∥∥
2
≤

4|S|
√
|A|

λ
∥r − r̂∥2 +

(
4γ
√
|S||A|
λ

+
6γ
√
|A||S|
λ

∥∥∥ĥ∥∥∥
2

)∥∥∥P − P̂
∥∥∥
2

≤
4|S|

√
|A|

λ
∥r − r̂∥2 +

(
4γ
√
|S||A|
λ

+
6γ
√
|A||S|
λ

3|S|
(1− γ)2

)∥∥∥P − P̂
∥∥∥
2

(16)

The first inequality is due to lemma 3 of Mandal et al. [2023] and the second inequality is due to lemma 4 in Mandal et al.
[2023].



Combining (15) and (16) we get:∥∥∥h− ĥ
∥∥∥
2
≤ λ

|A|(1− γ)2

∥∥∥∇L(ĥ;M)−∇L(ĥ, M̂)
∥∥∥
2

≤ λ

|A|(1− γ)2

(
4|S|

√
|A|

λ
∥r − r̂∥2 +

(
4γ
√
|S||A|
λ

+
6γ
√
|A||S|
λ

3|S|
(1− γ)2

)∥∥∥P − P̂
∥∥∥
2

)
(17)

Another result from Mandal et al. [2023], which is found in the proof of lemma 1 is:∥∥∥GD(P, r)−GD(P̂ , r̂)
∥∥∥2
2
≤ 3

λ2
∥r − r̂∥22 +

7|A||S|
λ2

∥∥∥h− ĥ
∥∥∥2
2
+

6

λ2

∥∥∥ĥ∥∥∥2
2

∥∥∥P − P̂
∥∥∥2
2

(18)

Combining (17) and (18) it follows that∥∥∥GD(P, r)−GD(P̂ , r̂)
∥∥∥
2
≤
√
3

λ
∥r − r̂∥2 +

√
7|A||S|
λ

∥∥∥h− ĥ
∥∥∥
2
+

√
6

λ

∥∥∥ĥ∥∥∥
2

∥∥∥P − P̂
∥∥∥
2

≤
√
3

λ
∥r − r̂∥2 +

√
7|A||S|
λ

∥∥∥h− ĥ
∥∥∥
2
+

√
6

λ

3|S|
(1− γ)2

∥∥∥P − P̂
∥∥∥
2

(19)

where the last inequality follows from lemma 4 of Mandal et al. [2023].

Combining (17) and (19) we get:

∥∥∥GD(P, r)−GD(P̂ , r̂)
∥∥∥
2
≤
√
3

λ
∥r − r̂∥2 +

√
7|A||S|
λ

λ

|A|(1− γ)2

(
4|S|

√
|A|

λ
∥r − r̂∥2

+

(
4γ
√
|S||A|
λ

+
6γ
√
|A||S|
λ

3|S|
(1− γ)2

)∥∥∥P − P̂
∥∥∥
2

)
+

√
6

λ

3|S|
(1− γ)2

∥∥∥P − P̂
∥∥∥
2

=

(√
3

λ
+

√
7|A||S|
λ

λ

|A|(1− γ)2
4|S|

√
|A|

λ

)
∥r − r̂∥2

+

(√
7|A||S|
λ

λ

|A|(1− γ)2

(
4γ
√
|S||A|
λ

+
6γ
√
|A||S|
λ

3|S|
(1− γ)2

)
+

√
6

λ

3|S|
(1− γ)2

)∥∥∥P − P̂
∥∥∥
2

=

(√
3

λ
+

√
7|S|

√
|S|

(1− γ)2λ

)
∥r − r̂∥2 +

(
(4
√
7γ + 3

√
6)|S|

(1− γ)2λ
+

18
√
7γ|S|2

√
|S|

(1− γ)4λ

)∥∥∥P − P̂
∥∥∥
2

D.3 RR WITH FINITE SAMPLES (THEOREM 2)

In general we note that using our sample generation model, it is easy to get an estimate of the current occupancy measure
d, by comparing how many samples were drawn for each pair (s, a) and how many samples were drawn overall. It is
also straightforward to bound those estimates using standard methods such as Hoeffding’s inequality. For simplicity, we
implicitly assume that those occupancy measures are provided. More concretely, in Lagrangians (5) and (7) we assume that
dj is given.

Definition 6. We denote by ĜD(dt, F ) the solution to optimization problem corresponding to L̂, i.e.

ĜD(dt, F ) := argmax
d

min
h

−λ

2
∥d∥22 +

∑
s

h(s)ρ(s) +
∑

(s,a,r,s′)∈F

d(s, a)

dt(s, a)
· r − h(s) + γh(s′)

|F | (1− γ)


︸ ︷︷ ︸

=L̂

We use the following result from Mandal et al. [2023].



Lemma 2. Given an arbitrary occupancy measure d, probability transition function P and reward function r, suppose
that GD(P, r)(s, a)/d(s, a) ≤ B for all (s, a) ∈ S ×A, where d is the occupancy measure of πd in an environment with
transition probabilities P . Furthermore, let F be a set of samples drawn according to the occupancy measure d with r being
the reward function. We assume

|F | ≥ 1

µ2

|A| ln( 2

δ1

)
+ ln

(
12|S|

µ(1− γ)2

)
+ 2|A| ln

 ln
(

3|S|2|A|B
µ(1−γ)2

)
µ

 ,

for arbitrary µ, δ1 > 0. Then the following bound holds with probability at least 1− δ1.

∥GD(P, r)− ĜD(d, F )∥2 ≤
6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
1√
λ

This lemma follows from the equation which comes second after equation (23) in the work from Mandal et al. [2023] on
page 30, after the text “Rearranging and using lemma 12 we get the following bound”. The conditions follow from the
conditions under which this equation holds in the work from Mandal et al. [2023]. Note that we write µ instead of ϵ, which
is the variable name used in Mandal et al. [2023]. The same arguments as in Mandal et al. [2023] hold, since they also look
at the one step updates optimizing L and L̂, which are the same in this work.

We can then show a more general version of Theorem 2.

Theorem 9. Suppose that overlap Assumption 3 holds for k = 1 and parameter B and Assumption 1 holds. Let (xp, xr) ∈
{(ιp, ιr), (ϵp,p, ϵr,p), (ϵp,r, ϵr,r)} be the pair maximizing

(
α
λ + 1

)
xr +

(
β
λ + 1

)
xp. We then assume that

λ > max

{
(1− ϵp)

−1β, (1− ϵr)
−1α,

αxr + βxp
1− ζ − xr − xp

}
.

Furthermore assume that

mt ≥
(

ξ

λζ2

)2
|A| ln(4t2

p

)
+ ln

(
12|S|ξ

λζ2(1− γ)2

)
+ 2|A| ln

ξ ln
(

3|S||A|Bξ
λζ2(1−γ)2

)
λζ2

 ,

with ξ =
36|S|1.5(B+

√
|A|)

δ2(1−γ)3 . Then for any δ > 0, we have

∥dt − dS∥2 ≤ δ for all t ≥
ln
(

∥d1−dS∥2+∥P0−PS∥2+∥r0−rS∥2

δ

)
ln
(
1/
(
ζ +

(
α
λ + 1

)
xr +

(
β
λ + 1

)
xp

)) + 1.

Here ζ can be chosen to be an arbitrary value between 0 and 1− xr − xp. It defines a trade-off between the conditions on
the regularization parameter λ and on the number of samples mt.

Theorem 2 follows from Theorem 9 in the following way. We set ζ = (1− ϵ)/2, and λ = 2ϵ(α+β)
1−ϵ .

Then for the denominator of the number of retrainings, we derive

ζ +
(α
λ
+ 1
) ϵ
2
+
(β
λ
+ 1
) ϵ
2
=

1

2
+

ϵ

2
+

ϵ(α+ β)

2λ
=

1

2
+

ϵ

2
+

1− ϵ

4
=

3

4
+

ϵ

4

We can bound ∥d1 − dS∥2, ∥P0 − PS∥2 and ∥r0 − rS∥2 like above, to obtain

t ≥
ln

(
2

1−γ +(1+
√
2)
√

|S||A|
δ

)
ln
(
1/
(
3
4 + ϵ

4

)) + 1



Proof of Theorem 9. From lemma 2, we get that with probability 1− δ1

∥GD(Pt, rt)− ĜD(dt, Ft)∥2 ≤
6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
1√
λ
, (20)

as long as

mt ≥
1

µ2

|A| ln( 2

δ1

)
+ ln

(
12|S|

µ(1− γ)2

)
+ 2|A| ln

 ln
(

3|S|2|A|B
µ(1−γ)2

)
µ

 .

If we set δ1 = p/2t2 in step t, we get that event (20) holds with probability at least 1− p/2t2 in round t. Via a union bound
over all rounds, we get that event (20) holds with probability at least 1− p in all rounds.

Let ĝ(dt+1, Pt, rt) be the result after one round, i.e.

ĝ(dt+1, Pt, rt) = (ĜD(dt+1, Ft+1),P(dt+1, Pt, rt),R(dt+1, Pt, rt)) .

I.e. it holds that (dt+2, Pt+1, rt+1) = ĝ(dt+1, Pt, rt).

We analyze

dist(ĝ(dt+1, Pt, rt), (dS , PS , rS)) = ∥ĜD(dt+1, Ft+1)− dS∥2
+ ∥P(dt+1, Pt, rt)− P(dS , PS , rS)∥2 + ∥R(dt+1, Pt, rt)−R(dS , PS , rS)∥2

≤ ∥ĜD(dt+1, Ft+1)− dS∥2
+ ιd∥dt+1 − dS∥2 + ϵp∥Pt − PS∥2 + ϵr∥rt − rS∥2

(21)

where the last inequality is due to Assumption 1.

It remains to analyze ∥ĜD(dt+1, Ft+1)− dS∥2. Using equation (20), we see that

∥ĜD(dt+1, Ft+1)− dS∥2 ≤ ∥ĜD(dt+1, Ft+1)−GD(Pt+1, rt+1)∥2 + ∥GD(Pt+1, rt+1)− dS∥2

≤
6
√
|S|1.5(B +

√
|A|)ϵ

(1− γ)1.5
1√
λ
+ ∥GD(Pt+1, rt+1)−GD(PS , rS)∥2 (22)

Furthermore we can derive

∥GD(Pt+1, rt+1)−GD(PS , rS)∥2 ≤
α

λ
∥rt+1 − rS∥2 +

β

λ
∥Pt+1 − PS∥2

=
α

λ
∥R(dt+1, Pt, rt)−R(dS , PS , rS)∥2 +

β

λ
∥P(dt+1, Pt, rt)− P(dS , PS , rS)∥2

≤α

λ
(ιr∥dt+1 − dS∥2 + ϵr,p∥Pt − PS∥2 + ϵr,r∥rt − rS∥2)

+
β

λ
(ιp∥dt+1 − dS∥2 + ϵp,p∥Pt − PS∥2 + ϵp,r∥rt − rS∥2)

(23)

where the first inequality follows from lemma 1, in the equality we use the fact that Pt+1 = P(dt+1, Pt, rt), rt+1 =
R(dt+1, Pt, rt), PS = P(dS , PS , rS), rS = R(dS , PS , rS) and Assumption 1.

Inserting (23) into (22) and the result into (21), we get

dist(ĝ(dt+1, Pt, rt), (dS , PS , rS)) ≤
6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
1√
λ

+

((α
λ
+ 1
)
ιr +

(
β

λ
+ 1

)
ιp

)
∥dt+1 − dS∥2

+

((α
λ
+ 1
)
ϵr,p +

(
β

λ
+ 1

)
ϵp,p

)
∥Pt − PS∥2

+

((α
λ
+ 1
)
ϵr,r +

(
β

λ
+ 1

)
ϵp,r

)
∥rt − rS∥2

(24)



We now introduce a new parameter ζ ∈ (0, 1− xr − xp), which is mentioned in the theorem. We set µ = ζ2δ2λ(1−γ)3

36|S|1.5(B+
√

|A|)
.

This allows us to rewrite (24) into

dist(ĝ(dt+1, Pt, rt), (dS , PS , rS)) ≤ζδ

+

((α
λ
+ 1
)
ιr +

(
β

λ
+ 1

)
ιp

)
∥dt+1 − dS∥2

+

((α
λ
+ 1
)
ϵr,p +

(
β

λ
+ 1

)
ϵp,p

)
∥Pt − PS∥2

+

((α
λ
+ 1
)
ϵr,r +

(
β

λ
+ 1

)
ϵp,r

)
∥rt − rS∥2

≤ζδ +
((α

λ
+ 1
)
xr +

(
β

λ
+ 1

)
xp

)
· (∥dt+1 − dS∥2 + ∥Pt − PS∥2 + ∥rt − rS∥2)

(25)

Where we select (xp, xr) ∈ {(ιp, ιr), (ϵp,p, ϵr,p), (ϵp,r, ϵr,r)} to be the pair maximizing
(
α
λ + 1

)
xr +

(
β
λ + 1

)
xp.

Note that by this formulation of µ, the bound on mt becomes

mt ≥

(
36|S|1.5(B +

√
|A|)

ζ2δ2λ(1− γ)3

)2(
|A| ln

(
4t2

p

)
+ ln

(
432|S|2.5(B +

√
|A|)

ζ2δ2λ(1− γ)5

)

+ 2|A| ln

36|S|1.5(B +
√
|A|) ln

(
108|S|3.5|A|B(B+

√
|A|)

ζ2δ2λ(1−γ)5

)
ζ2δ2λ(1− γ)3


)

We now apply lemma 3 on the sequence {(dt+1, Pt, rt)}t∈N using (25). We can do this, because by our assumption, we
know that λ >

αxr+βxp

1−ζ−xr−xp
and 1 > ζ + xr + xp, so

ζ +
(α
λ
+ 1
)
xr +

(β
λ
+ 1
)
xp

<ζ + xr + xp +
αxr(1− ζ − xr − xp)

αxr + βxp
+

βxp(1− ζ − xr − xp)

αxr + βxp
= 1 .

The bound stated in the Theorem follows by the application of lemma 3 and the fact that ∥dt+1 − dS∥2 ≤
dist((dt+1, Pt, rt), (dS , PS , rS)).

We use of the following argument, which is often used in the performative prediction setting [Perdomo et al., 2020, Brown
et al., 2022, Mandal et al., 2023].

Lemma 3. Let (M,dist) be a metric space and x1, x2 ≥ 0 with x1 + x2 < 1. Assume that {pi}i∈N is a sequence of points
inM such that there exists a unique pS ∈M with

dist(pi+1, pS) ≤ x1δ + x2 dist(pi, pS) for all i ≥ 0 .

Then for n ≥ ln(dist(p0,pS)/δ)
ln(1/(x1+x2))

, it holds that dist(pn, pS) ≤ δ.

Proof. We see this via the following case distinction. Let i ≥ 0 be arbitrary.

Case 1: dist(pi, pS) ≥ δ.
Then

dist(pi+1, pS) ≤ dist(pi, pS)(x1 + x2) .

Case 2: dist(pi, pS) < δ.
Then

dist(pi+1, pS) ≤ δ(x1 + x2) .



By this case distinction, via induction we get that dist(pi, pS) ≤ max((x1 + x2)
i dist(p0, pS), δ). In particular for

n = ln(dist(p0,pS)/δ)
ln(1/(x1+x2))

it holds that

dist(pn, pS) ≤ max((x1 + x2)
n dist(p0, pS), δ) ≤ δ .

E PROOFS FOR DELAYED REPEATED RETRAINING (DRR) (SECTION 4)

E.1 DRR IN THE EXACT SETTING (THEOREM 3)

We show a more general version of the Theorem 3.

Theorem 10. Suppose Assumption 1 holds and λ > 2ιϕ
1−ϵ , where ϕ := max(α, β) and α, β as in Definition 4. Then with di

being calculated by DRR in the exact setting, with k = ln−1
(
1
ϵ

)
ln
(

dP,r

δι

)
, it holds that

∥di − dS∥2 ≤ δ for all i ≥ ln

(
∥d0 − dS∥2

δ

)
/ ln

(
λ(1− ϵ)

2ϕι

)
.

We first discuss how Theorem 3 follows from Theorem 10. Assumption 2 ensures that β ≥ α, ϵp = ϵr = ϵ and ι ≤ ϵ. We
bound ∥d0 − dS∥2 ≤

2
1−γ . Choosing λ = 2eιβ(1− ϵ)−1 then provides the desired bounds.

For proving Theorem 10, we use arguments similar to the ones Brown et al. [2022] use for proving Theorem 8.

Proof of Theorem 10. Let P0 and r0 be some arbitrary initial probability transition and reward function respectively. Denote
by (P̃d, r̃d) the transition probability and reward function after k repeated deployments of d.

Note that di+1 = GD(P̃di , r̃di) and dS = GD(PS , rS).

lemma 1 gives

∥di+1 − dS∥2 = ∥GD(P̃di , r̃di)−GD(PS , rS)∥2 ≤
α

λ
∥r̃di − rS∥2 +

β

λ
∥P̃di − PS∥2

≤ ϕ

λ
(dist((P̃di , r̃di), (PS , rS)) (26)

We can decompose

dist((P̃di , r̃di), (PS , rS)) ≤ dist((P̃di , r̃di), (Pdi , rdi)) + dist((Pdi , rdi), (PS , rS)) (27)

The first term of 27 can be bounded by lemma 5, the second term by lemma 4:

dist((P̃di , r̃di), (PS , rS)) ≤
ι

1− ϵ
δ +

ι

1− ϵ
∥di − dS∥2 (28)

Using 26 and 28 we get

∥di+1 − dS∥2 ≤
ϕι

λ(1− ϵ)
δ +

ϕι

λ(1− ϵ)
∥di − dS∥2 (29)

We can apply lemma 3 on {di}i∈N, since 2ϕι
λ(1−ϵ) < 1 holds due to the assumptions on λ. Lemma 3, bounds the number of

iterations until di converges to a δ radius around dS and the statement of the theorem follows from this bound.

We now describe and prove the lemmas used in the proof of Theorem 10.

Lemma 4 (similar to lemma 3 of Brown et al. [2022]). Suppose Assumption 1 holds.

Let d, d′ ∈ D be arbitrary occupancy measures and let P := Pd, r := rd (and respectively P ′ := Pd′ , r
′ := rd′) be the

probability transition and reward functions to which the system asymptotically converges, if d (respectively d′) is applied
repeatedly. It holds that

∥P − P ′∥2 + ∥r − r′∥2 ≤
ι

1−max(ϵp, ϵr)
∥d− d′∥2 (30)



Proof. Because of Assumption 1, it holds that

∥P − P ′∥2 + ∥r − r′∥2
= ∥P(d, P, r)− P(d′, P ′, r′)∥2 + ∥R(d, P, r)−R(d′, P ′, r′)∥2
≤ ι∥d− d′∥2 + ϵp∥P − P ′∥2 + ϵr∥r − r′∥2
≤ ι∥d− d′∥2 +max(ϵp, ϵr)(∥P − P ′∥2 + ∥r − r′∥2)

Where the equality holds because (P, r) and (P ′, r′) are the long-term transition probabilities and reward functions for d
and d′ respectively. The inequality holds because of Assumption 1.

The statement of the lemma follows from this equation.

Lemma 5 (similar to lemma 4 of Brown et al. [2022]). Assume Assumption 1 holds with ϵp, ϵr < 1. Given a policy π,

denote by (P̃π, r̃π) the transition probability and reward function after k = ln−1( 1ϵ ) ln
(

dist((P0,r0),(P1,r1))
ν

)
deployments

of π, for any initial probability transition function P0 and reward function r0. It holds that∥∥∥Pπ − P̃π

∥∥∥
2
+ ∥rπ − r̃π∥2 ≤

ν

1− ϵ
.

Proof. Using Proposition 3, we see that

dist((P̃π, r̃π), (Pπ, rπ))(1− ϵ) ≤ ϵk dist((P0, r0), (Pπ, rπ))(1− ϵ)

≤ϵk dist((P0, r0), (Pπ, rπ))− ϵk dist((P1, r1), (Pπ, rπ))

≤ϵk dist((P0, r0), (P1, r1)).

Therefore

dist((P̃π, r̃π), (Pπ, rπ)) ≤
ϵk

1− ϵ
dist((P0, r0), (P1, r1)). (31)

Using k ≥ ln−1
(
1
ϵ

)
ln
(

dist((P0,r0),(P1,r1))
ν

)
, we get ϵk ≤ ν

dist((P0,r0),(P1,r1))
. If we insert this into 31, we get the desired

bound.

E.2 DRR WITH FINITE SAMPLES (THEOREM 4)

We show a more general version of the Theorem 4.

Theorem 11. Let di be computed by finite sample DRR with k = ln−1
(
1
ϵ

)
ln
(

5 dP,r

δι

)
. Suppose Assumption 1 holds and

Assumption 3 holds for k and parameter B. Furthermore assume λ > max
(
5.76ξµ, ξµ+ ιϕ

(1−ϵ)

(
1 + 1

4.8ξµ

))
, with ξ as

defined above. Furthermore assume that

mi ≥
1

µ2

(
|A| ln

(
4i2

p

)
+ ln

(
12|S|

(1− γ)2µ

)

+ 2|A| ln

 ln
(

3|S|2|A|B
(1−γ2)µ

)
µ

) .

Then for any δ > 0, we have
∥di − dS∥2 ≤ δ

for all i ≥
ln
(

∥d1−dS∥2

δ

)
ln

((√
ξµ
λ + 1.2ιϕ

λ(1−ϵ)

)−1
) + 1.

Here µ > 0 can be chosen arbitrarily and defines a trade-off between the conditions on the number of samples mi and on
the regularization factor λ.



We first show how Theorem 4 follows from Theorem 11. Assumption 2 ensures that β ≥ α, ϵp = ϵr = ϵ, ι ≤ ϵ and β ≥ α

For Theorem 4, we use µ = λ
10ξ . We bound

λ > max

1,
40ιβ

9(1− ϵ)
,

1.2ιβ

(1− ϵ)
(
ϵ
4 + 3

4 −
1√
10

)


We then derive the bound on i in the following way. For the denominator of the bound on i, we can then derive
√

ξµ
λ +

1.2ιϕ
λ(1−ϵ) =

1√
10

+ 1.2ιβ
λ(1−ϵ) ≤

ϵ+3
4 . For the numerator of the bound on i, we use ∥d1 − dS∥2 ≤

2
1−γ .

The bound on the number of samples follows from the fact that 1
µ2 = 100ξ2

λ2 = O
(

|S|3(B+
√

|A|)2

δ4(1−γ)6λ2

)
.

Proof of Theorem 11. In general, we bound

∥di+1 − dS∥2 ≤ ∥di+1 − d∗i+1∥2︸ ︷︷ ︸
T1

+ ∥d∗i+1 − dS∥2︸ ︷︷ ︸
T2

(32)

where d∗i+1 is the occupancy measure optimizing the exact Lagrangian after k deployments of πdi , i.e. d∗i+1 =
GD(P(i+1)·k, r(i+1)·k).

We can apply lemma 2, since Assumption 3 holds. Let Ft be the samples of round t. By setting δ1 = p/2i2 we get with
probablility at least 1− p/2i2 in step i,

T1 =
∥∥∥ĜD(di, F(i+1)·k)−GD(P(i+1)·k, r(i+1)·k)

∥∥∥
2
≤

6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
1√
λ
, (33)

if ∣∣F(i+1)·k
∣∣ ≥ 1

µ2

(
|A| ln(4i2/p) + ln(12|S|/((1− γ)2µ)) + 2|A| ln(ln(3|S|2|A|B/((1− γ2)µ))/µ)

)
By a union bound over all rounds, we get that (33) holds with probability 1− p for every i ∈ N.

To bound T2, we can apply lemma 7 with parameter ν, to get

T2 =
∥∥d∗i+1 − dS

∥∥
2
≤ ϕν

λ(1− ϵ)
+

ϕι

λ(1− ϵ)
∥di − dS∥2 .

We determine ν later in the proof.

Inserting those bounds on T1 and T2 into (32), we get

∥di+1 − dS∥2 ≤
6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
1√
λ
+

ϕν

λ(1− ϵ)
+

ϕι

λ(1− ϵ)
∥di − dS∥2 = x1δ + x2 ∥di − dS∥2 (34)

where we define x1 :=
6
√

|S|1.5(B+
√

|A|)µ
(1−γ)1.5

√
λδ

+ ϕν
λ(1−ϵ)δ and x2 := ϕι

λ(1−ϵ) .

Note that we can write x1 + x2 as follows

x1 + x2 =
6
√
|S|1.5(B +

√
|A|)µ

(1− γ)1.5
√
λδ

+
(νδ + ι)ϕ

λ(1− ϵ)
(35)

We now derive conditions on λ for when x1 + x2 < 1, because then we can apply lemma 3 to bound the iterations until

which the sequence of {di}i∈N≥1
converges. To this end, we can apply lemma 6 with x = λ, a =

6
√

|S|1.5(B+
√

|A|)µ
(1−γ)1.5δ ,

b =
( ν
δ +ι)ϕ

1−ϵ and y = 2.4, to get that x1 + x2 < 1 holds, if

λ > max

(
5.76a2, a2 +

(νδ + ι)ϕ

1.2(1− ϵ)
+

(νδ + ι)ϕ

2.42(1− ϵ)a2

)
.



We get the bound for λ stated in the Theorem by setting ν = 0.2δι.

Thus we can apply lemma 3 on the sequence {di}i∈N≥1
, to see that if i ≥ ln

(
∥d1−dS∥2

δ

)
/ ln (1/(x1 + x2)) + 1, it holds

that ∥di − dS∥2 ≤ δ. The Theorem then follows from substituting x1 + x2 using equation (35) and ν = 0.2δι.

For the proof, we used the following lemmas.

Lemma 6. Let a, b, x ≥ 0 and y > 0 be arbitrary. If x > max(y2a2, a2 + 2b
y + b

y2a2 ), it holds that

1 >
a√
x
+

b

x
. (36)

Proof. When we multiply both sides of (36) with
√
x and square the resulting term, we see that (36) is equivalent to

x > a2 + 2
ab√
x
+

b

x
. (37)

If we assume that x > y2a2, we get

a2 + 2
ab√
x
+

b

x
< a2 +

2b

y
+

b

y2a2
< x,

This shows that equation 37 and thus also equation 36 hold.

Lemma 7. Suppose Assumption 1 holds with ιd, ϵp, ϵr < 1. Let d be some occupancy measure and P0, r0 be some
initial probability transition and reward functions. Let Pt, rt be the probability transition and reward function after t > 0

deployments of πd. Then for d′ = GD(Pk, rk) with k = ln−1
(
1
ϵ

)
ln
(

dist((P0,r0),(P1,r1))
ν

)
, it holds that

∥d′ − dS∥ ≤
ϕν

λ(1− ϵ)
+

ϕι

λ(1− ϵ)
∥d− dS∥2 ,

where ϕ = max(α, β) and α, β from Definition 4.

Proof. Note that

∥d′ − dS∥2 ≤ ∥d
′ −GD(Pd, rd)∥2 + ∥GD(Pd, rd)− dS∥2 (38)

Using lemmas 1 and 5, we can bound

∥d′ −GD(Pd, rd)∥2 ≤
ϕ

λ
dist((Pk, rk), (Pd, rd)) ≤

ϕν

λ(1− ϵ)
. (39)

Furthermore, by lemmas 1 and 4 we see that

∥GD(Pd, rd)− dS∥2 ≤
ϕ

λ
dist((Pd, rd), (PS , rS)) ≤

ϕι

λ(1− ϵ)
∥d− dS∥2 . (40)

Inserting (39) and (40) into (38) gives the desired bound.



F PROOF FOR MDRR (THEOREM 5)

F.1 PREPARATIONS FOR THE PROOF

For our derivations, we need an exact version of the empirical Lagrangian (7). To this end, consider the following optimization
problem, which works with multiple reward and probability transition functions from different rounds.

max
d≥0

∑
s,a

d(s, a)ri(s, a)−
λ

2
∥d∥22 (41)

s.t.
∑
a

d(s, a) = ρ(s) + γ ·
∑
s′,a

d(s′, a)P i(s
′, a, s) ∀s

where we define ri :=
∑k
g=1

mik+g

Ui
rik+g and P i :=

∑k
g=1

mik+g

Ui
Pik+g where mik+g ≥ 0 is arbitrary and Ui =∑k

g=1 mik+g . Equation (41) defines an objective for a mixture of probability transition and reward functions of the rounds
in which the learner repeatedly deployed πdi . Each reward and probability transition is weighted by a weight mik+g

Ui
. This

optimization problem does not use finite samples, but the true reward and probability transition functions.

We can now show that the Lagrangian of (41) looks similar to the empirical Lagrangian (7) of MDRR.

LM (d, h, i) = d⊤ri −
λ

2
∥d∥22 +

∑
s

h(s)

(
−
∑
a

d(s, a) + ρ(s) + γ ·
∑
s′,a

d(s′, a)P i(s|s′, a)
)

= d⊤
k∑
g=1

mik+g

Ui
rgi −

λ

2
∥d∥22 +

∑
s

h(s)

(
−
∑
a

d(s, a) + ρ(s) + γ ·
∑
s′,a

d(s′, a)

k∑
g=1

mik+g

Ui
Pi·k+g(s|s′, a)

)

= −λ

2
∥d∥22 +

∑
s

h(s)ρ(s) +

k∑
g=1

∑
s,a

mik+g

Ui
d(s, a)

(
rik+g(s, a)− h(s) + γ

∑
s′

Pi·k+g(s
′|s, a)h(s′)

)

= −λ

2
∥d∥22 +

∑
s

h(s)ρ(s) +

k∑
g=1

∑
s,a

dik+g(s, a)
mik+g

Ui

d(s, a)

dik+g(s, a)

(
rik+g(s, a)− h(s) + γ

∑
s′

Pi·k+g(s
′|s, a)h(s′)

)
(42)

We then show a kind of closeness of LM and L̂M in the following lemma. The lemma is a more general version of lemma 10
from Mandal et al. [2023]. The proof ideas follow theirs.

Lemma 8. Suppose we are given an occupancy measure d with maxs,a d(s, a)/dik+g(s, a) ≤ B for all g ∈ [k], an

∥h∥2 ≤ H and mik+g = wgUi with Ui ≥ 1
η2

(
|A| ln

(
2 ln(|S||A|BH/η)

η

)
+ ln

(
1 + 2H

η

)
+ ln(2/δ1)

|S|

)
. Furthermore assume

wg ≥ 0 and
∑k
g=1 wg = 1. Then the following bound holds with probability at least 1− δ1.

∣∣∣L̂M (d, h; i)− LM (d, h; i)
∣∣∣ ≤ 6(H + 1)

√
|S|(B +

√
|A|)η

1− γ
.

for any η > 0.

Proof. For this proof to simplify notation, we drop the ‘i · k’ in the subscript, and only use g, since we always consider the
same iteration i.

Note that m
g

M = wg .



We see that the expected value of the L̂M equals LM as follows

E[L̂M (d, h, i)]

=− λ

2
∥d∥22 +

∑
s

h(s)ρ(s) +

k∑
g=1

|Fg|∑
l=1

1

|Fg|
wgE(s,a,s′)∼Mg

[
d(s, a)

dg(s, a)
· rg(s, a)− h(s) + γh(s′)

1− γ

]

=− λ

2
∥d∥22 +

∑
s

h(s)ρ(s) +

k∑
g=1

∑
s,a

dg(s, a)wg
d(s, a)

dg(s, a)

(
rg(s, a)− h(s) + γ

∑
s′

Pg(s
′|s, a)h(s′)

)
=LM (d, h, i)

where we use the notation (s, a, s′) ∼Mg to indicate that the tuple (s, a, s′) is distributed via the MDP in round g of this
iteration.

By the assumptions of this lemma, we see that∣∣∣∣ 1

1− γ

d(s, a)

dg(s, a)
(rg(s, a)− h(s) + γh(s′))

∣∣∣∣ ≤ B(H(1 + γ) + 1)

1− γ

By this, we can apply Hoeffding’s inequality to get

P

∣∣∣L̂(d, h, i)− L(d, h, i)∣∣∣ ≥ 2B(H(1 + γ) + 1)

1− γ

√√√√ k∑
g=1

w2
g

mt

ln(2/δ1)

2

 ≤ δ1

We now extend this bound to any occupancy measure d and h ∈ H = {h : ∥h∥2 ≤ H}. In order to do this, we first construct
an η-net for the set of possible hs,H := {h ∈ R|S| : ∥h∥2 ≤ H} and for the set of possible occupancy measures D which

formally equals D =
{
d : d(s,a)

dg(s,a)
≤ B for all (s, a, g) ∈ |S| × |A| × [k]

}
.

ForH, we can use lemma 5.2 from Vershynin [2010] to get a setHη of size at most
(
1 + 2H

η

)|S|
, such that for all h ∈ H,

there exists an hη ∈ Hη for which it holds that ∥h− hη∥2 ≤ η.

For D we choose a multiplicative η-net as follows. For each pair (s, a) we choose grid points dg(s, a), (1 + η)dg(s, a),

. . . , (1 + η)pdg(s, a) with p =
ln(B/dg(s,a))

ln(1+η) . Note that dg could be arbitrarily small, but without loss of generality, we can

assume that dg(s, a) ≥ η
4|S||A|BH . This is because if we ignore all (s, a, g) tuples in the sum in the second line of term (42),

the error we introduce to LM is at most η/4. Using this insight, we can thus choose p = 2 ln(|S||A|BH/η)
ln(1+η) . So we can choose

an η-net Dη of size at most
(

2 ln(|S||A|BH/η)
ln(1+η)

)|S||A|
≤
(

2 ln(|S||A|BH/η)
η

)|S||A|
, such that for every d ∈ D, there exists an

d̃ ∈ Dη such that d(s,a)
d̃(s,a)

≤ B.

With a union bound over the elements ofHη and Dη , we have that for all d ∈ Dη and h ∈ Hη ,

P

(∣∣∣L̂M (d, h, i)− LM (d, h, i)
∣∣∣

≥ B(H(1 + γ) + 1)

1− γ

√√√√ k∑
g=1

w2
g

mg

(
|S||A| ln

(
2 ln(|S||A|BH/η)

η

)
+ |S| ln

(
1 +

2H

η

)
+ ln

(
2

δ1

)))
≤ δ1

(43)

We next extend this bound to all elements in D andH. For every d ∈ D and h ∈ H there exits d̃ ∈ Dη and h̃ ∈ Hη such that

maxs,a d(s, a)/d̃(s, a) ≤ η and
∥∥∥h− h̃

∥∥∥
2
≤ η. Let LM0 (d, h; i) = LM (d, h; i) + λ

2 ∥d∥
2
2 −

∑
s h(s)ρ(s) and L̂M0 (d, h; i)

analogously.

Then ∣∣∣L̂M (d, h; i)− LM (d, h; i)
∣∣∣ ≤ ∣∣∣L̂M0 (d, h; i)− L̂M0 (d̃, h̃; i)

∣∣∣
+
∣∣∣L̂M (d̃, h̃; i)− LM (d̃, h̃; i)

∣∣∣+ ∣∣∣LM0 (d̃, h̃; i)− LM0 (d, h; i)
∣∣∣ (44)



Using lemma 11 from Mandal et al. [2023] we can bound∣∣∣L̂M0 (d, h; i)− L̂M0 (d̃, h̃; i)
∣∣∣ = k∑

g=1

wg

∣∣∣∣∣
( ∑

(s,a,r,s′)∈Fg

d(s, a)

dg(s, a)

r − h(s) + γ
∑
s′ h(s

′)

mg(1− γ)

−
∑

(s,a,r,s′)∈Fg

d̃(s, a)

dg(s, a)

r − h̃(s) + γ
∑
s′ h̃(s

′)

mg(1− γ)

)∣∣∣∣∣
≤
4BH

√
|S|η

1− γ

and ∣∣∣LM0 (d, h; i)− LM0 (d̃, h̃; i)
∣∣∣ =∣∣∣∣∣∑

s,a

d(s, a)

(
k∑
g=1

wgrg(s, a)︸ ︷︷ ︸
=r(s,a)

−h(s) + γ
∑
s′

h(s′)

k∑
g=1

wgPg(s
′|s, a)︸ ︷︷ ︸

=P (s′|s,a)

)

−
∑
s,a

d̃(s, a)

(
k∑
g=1

wgrg(s, a)︸ ︷︷ ︸
=r(s,a)

−h̃(s) + γ
∑
s′

h̃(s′)

k∑
g=1

wgPg(s
′|s, a)︸ ︷︷ ︸

=P (s′|s,a)

)∣∣∣∣∣
≤
6
√
|S||A|Hη

1− γ
.

Inserting these bounds and the bound from (43) into (44), we get∣∣∣L̂M (d, h; i)− LM (d, h; i)
∣∣∣ ≤

B(H(1 + γ) + 1)

1− γ

√√√√ k∑
g=1

w2
g

mg

(
|S||A| ln

(
2 ln(|S||A|BH/η)

η

)
+ |S| ln

(
1 +

2H

η

)
+ ln

(
2

δ1

))

+
4BH

√
|S|η

1− γ
+

6
√
|S||A|Hη

1− γ

In particular, if we use mik+g = Uiwg , we get∣∣∣L̂M (d, h; i)− LM (d, h; i)
∣∣∣ ≤

2B(H + 1)

1− γ

√
1

Ui

(
|S||A| ln

(
2 ln(|S||A|BH/η)

η

)
+ |S| ln

(
1 +

2H

η

)
+ ln

(
2

δ1

))
+

4BH
√
|S|η

1− γ
+

6
√
|S||A|Hη

1− γ

If we now choose Ui ≥ 1
η2

(
|A| ln

(
2 ln(|S||A|BH/η)

η

)
+ ln

(
1 + 2H

η

)
+ ln(2/δ1)

|S|

)
, we get

∣∣∣L̂M (d, h; i)− LM (d, h; i)
∣∣∣ ≤ 6(H + 1)

√
|S|(B +

√
|A|)η

1− γ
.

We need some further definitions and then go on to show the theorem on MDRR.

Definition 7. We define MRkw (di, Pi·k, ri·k) to be the solution to (41).

Furthermore we define M̂R
k

w (di, Pi·k, ri·k) to be the occupancy measure d optimizing the empirical Lagrangian for MDRR,
i.e.

max
d

min
h
L̂M (d, h, i) . (45)



After deploying πdi for k rounds, the learner updates its occupancy measure by di+1 = M̂R
k

w (di, Pi·k, ri·k).

F.2 FORMAL STATEMENT AND PROOF OF THEOREM 5 (MDRR)

We now show a more general version of the Theorem 5.

Theorem 12. Let di be computed by MDRR with k ≥
ln( ϵ(v−1)

vϵ−1 )+ln
(

5(1−ϵ) dP,r
ιδ

)
ln(1/ϵ) . Suppose Assumption 1 holds and

Assumption 3 holds for k and parameter B. Furthermore assume that λ > max
(
6.08ξη, 19

18ξη + ϕι
1−ϵ

(
1 + 1

5.06ξη

))
with

ξ being defined as above.

Further let Ui ≥ 1
η2

(
|A| ln

(
2 ln(|S||A|BH/η)

η

)
+ ln

(
1 + 2H

η

)
+ ln(4i2/p)

|S|

)
be the total number of samples in round i,

where the number of samples is given by mik+g = wgUi with wg =
v−1
vk−1

vg−1 and v > 1
ϵ . Then for any δ > 0 and p > 0,

with probability at least 1− p,
∥di − dS∥2 ≤ δ

for all i ≥
ln(∥d1, dS∥2 /δ)

ln

(
1/

(√
19ξη
18λ + 1.2ϕι

λ(1−ϵ)

)) + 1 .

Here η > 0 and v > 1
ϵ can be chosen arbitrarily.

The parameter η > 0 defines a trade-off between the number of samples, number of iterations and the conditions on λ. The
parameter v > 1

ϵ defines a trade-off between the number of deployments per retraining and the required number of samples
per deployment.

We first explain how Theorem 5 follows from Theorem 12. Assumption 2 ensures that β ≥ α, ϵp = ϵr = ϵ, ι ≤ ϵ and β ≥ α.

For Theorem 5, we use η = λ
10ξ and λ > max

(
1, 3.6 βι

1−ϵ ,
1.2βι

(1−ϵ)
(

ϵ+3
4 −
√

19
180

)). We now bound
√

19ξη
18λ + 1.2ϕι

λ(1−ϵ) in order

to bound the number of retrainings i. We see that√
19ξη

18λ
+

1.2βι

λ(1− ϵ)
=

√
19

180
+

1.2βι

λ(1− ϵ)
<

ϵ+ 3

4
.

where in the inequality, we use λ > 1.2βι

(1−ϵ)
(

ϵ+3
4 −
√

19
180

) .

Inserting the bounds on λ and η, we get the results described in Theorem 5.

Proof of Theorem 12. In general, we bound

∥di+1 − dS∥2 ≤
∥∥∥M̂R

k

w(di, Pik, rik)−MRkw(di, Pik, rik)
∥∥∥
2︸ ︷︷ ︸

T1

+
∥∥∥MRkw(di, Pik, rik)−GD(Pdi , rdi)

∥∥∥
2︸ ︷︷ ︸

T2

+ ∥GD(Pdi , rdi)− dS∥2︸ ︷︷ ︸
T3

where dS is some stable occupancy measure.

We begin by bounding T1. For this we argue similarly to the proof of Theorem 3 in Mandal et al. [2023].

Let ĥi+1 be the dual solution to L̂M corresponding to M̂R
k

w(di, Pik, rik). I.e.

(M̂R
k

w(di, Pik, rik), ĥi+1) = argmax
d

argmin
h

L̂M (d, h; i)

By strong duality, there has to exist a hi+1 such that

(MRkw(di, Pik, rik), hi+1) = argmax
d

argmin
h

LM (d, h; i)



Using lemma 4 of Mandal et al. [2023], we can bound the L2-norms of the dual solutions ĥi+1 and hi+1 by 3|S|
(1−γ)2 . We can

thus consider the restricted setH =
{
h : ∥h∥2 ≤

3|S|
(1−γ)2

}
. Then because Assumption 3 holds, we can apply lemma 8 with

δ1 = p/2i2 and H = 3|S|/(1− γ)2 to get,∣∣∣L̂M (di+1, hi+1; i)− LM (di+1, hi+1; i)
∣∣∣ ≤ 19|S|1.5(B +

√
|A|)η

(1− γ)3
(46)

if

Ui ≥
1

η2

(
|A| ln

(
2 ln(|S||A|BH/η)

η

)
+ ln

(
1 +

2H

η

)
+

ln
(
4i2/p

)
|S|

)
.

Note that event (46) holds with probability at least 1− p
2i2 . By a union bound over all rounds, the event holds with probability

at least 1− p for all rounds.

The objective LM (·, hi+1, i) is λ-strongly concave. Therefore, we have

LM (M̂R
k

w(di, Pik, rik), hi+1; i)− LM (MRkw(di, Pik, rik), hi+1)

≤− λ

2

∥∥∥M̂R
k

w(di, Pik, rik)−MRkw(di, Pik, rik)
∥∥∥2
2

We therefore find by rearranging and using lemma 12 from Mandal et al. [2023],

T1 =
∥∥∥M̂R

k

w(di, Pik, rik)−MRkw(di, Pik, rik)
∥∥∥
2

≤

√√√√2
(
LM (MRkw(di, Pik, rik), hi+1; i)− LM (M̂R

k

w(di, Pik, rik), hi+1; i)
)

λ

≤

√
38|S|1.5(B +

√
|A|)η

(1− γ)1.5
1√
λ

We now bound T2 using lemma 1

T2 =
∥∥∥MRkw(di, Pik, rik)−GD(Pdi , rdi)

∥∥∥
2
=
∥∥GD(P i, ri)−GD(Pdi , rdi)

∥∥
2

≤ ϕ

λ
dist((P i, ri), (Pdi , rdi))

with ϕ = max(α, β), with α and β from Definition 4.

We can further bound this using lemma 9.

ϕ

λ
dist((P i, ri), (Pdi , rdi)) ≤

ϕ

λ

vkϵk+1(v − 1)− vϵ+ ϵ

vk(vϵ− 1)− vϵ+ 1
dist((Pik, rik), (Pik+1, rik+1))

We can now bound T3 using lemmas 1 and 4.

T3 = ∥GD(Pdi , rdi)− dS∥2 ≤
ϕ

λ
dist((Pdi , rdi), (PS , rS)) ≤

ϕι

λ(1− ϵ)
∥di − dS∥2

In total we get

∥di+1 − dS∥2 ≤

√
38|S|1.5(B +

√
|A|)η

(1− γ)1.5
1√
λ
+

ϕ

λ
dist((P i, ri), (Pdi , rdi)) +

ϕι

λ(1− ϵ)
∥di − dS∥2

≤

√
38|S|1.5(B +

√
|A|)η

(1− γ)1.5
1√
λ
+

ϕ

λ

vkϵk+1(v − 1)− vϵ+ ϵ

vk(vϵ− 1)− vϵ+ 1
dist((Pik, rik), (Pik+1, rik+1)) +

ϕι

λ(1− ϵ)
∥di − dS∥2

=x1δ + x2 ∥di − dS∥2



Where we define x1 =

√
38|S|1.5(B+

√
|A|)η

(1−γ)1.5
√
λδ

+ ϕ
λδ

vkϵk+1(v−1)−vϵ+ϵ
vk(vϵ−1)−vϵ+1

dist((Pik, rik), (Pik+1, rik+1)) and x2 = ϕι
λ(1−ϵ) .

We now prove that after a certain number of update iterations i, the occupancy measure di is in a δ radius around a stable
occupancy measure dS . For this we can apply lemma 3, if we know that x1 + x2 < 1.

So we first derive criteria under which x1 + x2 < 1 holds.

From the conditions of the Theorem if follows that vϵ > 1. Using this we can derive that for any z > 0, if k >
ln( ϵ(v−1)

vϵ−1 )+ln(1/z)

ln(1/ϵ) , then vkϵk+1(v−1)−vϵ+ϵ
vk(vϵ−1)−vϵ+1

< z.

We now bound

ϕ

λδ

vkϵk+1(v − 1)− vϵ+ ϵ

vk(vϵ− 1)− vϵ+ 1
dist((Pik, rik), (Pik+1, rik+1)) ≤

0.2ϕι

λ(1− ϵ)
,

which holds if

k ≥
ln
(
ϵ(v−1)
vϵ−1

)
+ ln

(
5(1−ϵ) dist((Pik,rik),(Pik+1,rik+1))

ιδ

)
ln (1/ϵ)

.

We then have that

x1 + x2 ≤

√
38|S|1.5(B +

√
|A|)η

(1− γ)1.5
√
λδ

+
1.2ϕι

λ(1− ϵ)
.

Using lemma 6, with x = λ, a =

√
38|S|1.5(B+

√
|A|)η

(1−γ)1.5δ , b = 1.2ϕι
1−ϵ and y = 2.4 we get that if λ >

max
(
5.76a2, a2 + ϕι

1−ϵ
(
1 + 1

4.8a2

))
, then 1 > x1 + x2.

We can then apply lemma 3 to see that for i ≥ ln(∥d1−dS∥2/δ)

ln(1/(x1+x2))
+, it holds that ∥di − dS∥2 ≤ δ.

In the proof of Theorem 12 we use the following lemma.

Lemma 9. If Assumption 1 holds with ϵp, ϵr < 1, then if mik+t

Ui
= v−1

vk−1
vt−1, it holds that

dist((P i, ri), (Pdi , rdi)) ≤
vkϵk+1(v − 1)− vϵ+ ϵ

vk(vϵ− 1)− vϵ+ 1
dist((Pik, rik), (Pik+1, rik+1)) .

where ri :=
∑k
g=1

vg−1(v−1)
vk−1

rik+g and P i :=
∑k
g=1

vg−1(v−1)
vk−1

Pik+g for some v > 1.

Proof.

dist((P i, ri), (Pdi , rdi)) ≤
k∑
g=1

vg−1(v − 1)

vk − 1
(∥Pik+g − Pdi∥2 + ∥rik+g − rdi∥2)

Note that if Assumption 1 holds with ϵp, ϵr < 1, then the map gd is contractive with unique fixed point (Pdi , rdi) and



Lipschitz coefficient ϵ (see Proposition 3). So we have for vϵ ̸= 1:

(1− ϵ)

k∑
g=1

vg−1(v − 1)

vk − 1
(∥Pik+g − Pdi∥2 + ∥rik+g − rdi∥2)

≤ (1− ϵ)

k∑
g=1

ϵ(ϵv)g−1(v − 1)

vk − 1
(∥Pik − Pdi∥2 + ∥rik − rdi∥2)

≤
k∑
g=1

ϵ(ϵv)g−1(v − 1)

vk − 1
(∥Pik − Pdi∥2 + ∥rik − rdi∥2 − ∥Pik+1 − Pdi∥2 − ∥rik+1 − rdi∥2)

≤ ϵ(v − 1)

vk − 1
(∥Pik − Pik+1∥2 + ∥rik − rik+1∥2)

k∑
g=1

(ϵv)g−1

=
ϵ(v − 1)(vkϵk − 1)

(vk − 1)(vϵ− 1)
(∥Pik − Pik+1∥2 + ∥rik − rik+1∥2)

=
vk+1ϵk+1 − vϵ− vkϵk+1 + ϵ

vk+1ϵ− vk − vϵ+ 1
(∥Pik − Pik+1∥2 + ∥rik − rik+1∥2)

=
vkϵk+1(v − 1)− vϵ+ ϵ

vk(vϵ− 1)− vϵ+ 1
(∥Pik − Pik+1∥2 + ∥rik − rik+1∥2)
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