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Abstract

Learning meaningful behaviors in the absence of
a task-specific reward function is a challenging
problem in reinforcement learning. A desirable
unsupervised objective is to learn a set of diverse
skills that provide a thorough coverage of the state
space while being directed, i.e., reliably reaching
distinct regions of the environment. At test time,
an agent could then leverage these skills to solve
sparse reward problems by performing efficient
exploration and finding an effective goal-directed
policy with little-to-no additional learning. Un-
fortunately, it is challenging to learn skills with
such properties, as diffusing (e.g., stochastic poli-
cies performing good coverage) skills are not reli-
able in targeting specific states, whereas directed
(e.g., goal-based policies) skills provide limited
coverage. In this paper, inspired by the mutual
information framework, we propose a novel al-
gorithm designed to maximize coverage while
ensuring a constraint on the directedness of each
skill. In particular, we design skills with a decou-
pled policy structure, with a first part trained to
be directed and a second diffusing part that en-
sures local coverage. Furthermore, we leverage
the directedness constraint to adaptively add or
remove skills as well as incrementally compose
them along a tree that is grown to achieve a thor-
ough coverage of the environment. We illustrate
how our learned skills enable to efficiently solve
sparse-reward downstream tasks in navigation en-
vironments, comparing favorably with existing
baselines.
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1. Introduction
Deep reinforcement learning (RL) algorithms have been
shown to effectively solve a wide variety of complex prob-
lems (e.g., Mnih et al., 2015; Bellemare et al., 2013; Silver
et al., 2017; Gu et al., 2017; Andrychowicz et al., 2017;
Schulman et al., 2017). However, they are often designed
to solve one single task at a time and they need to restart
the learning process from scratch for any new problem,
even when it is defined on the very same environment (e.g.,
navigating to different locations in the same apartment).
Recently, unsupervised RL (URL) has been proposed as
an approach to address this limitation. In URL, the agent
first interacts with the environment without any extrinsic
reward signal. Afterward, the agent leverages the experi-
ence accumulated during the unsupervised learning phase
to efficiently solve a variety of downstream tasks defined on
the same environment.

In this paper, we consider the URL setting where the agent
starts from an initial state s0 and it resets to it every time the
policy terminates. We focus on sparse-reward downstream
tasks, which require effective exploration (i.e., via a thor-
ough coverage of the state space) to find the goal as well as
learning a policy reliably reaching the goal (i.e., a directed
policy).

We build on the insight that mutual information (MI) effec-
tively formalizes the dual objective of learning skills that
both cover and navigate the environment efficiently (e.g.,
Gregor et al., 2016). Specifically, given the state variable S
and some variables Z on which the skill policies are condi-
tioned, MI is defined as

I(S;Z) = H(S)︸ ︷︷ ︸
coverage

−H(S|Z)︸ ︷︷ ︸
directedness

= H(Z)−H(Z|S), (1)

where I denotes the MI andH is the entropy function. The
first expression, known as the forward form of MI, explic-
itly balances the two sought-after properties of coverage —
captured by the entropy over the state space H(S) — and
directedness, i.e., the ability to reliably reach specific states
S depending on Z — captured by the negative conditional
entropy −H(S|Z). The second expression of (1), often eas-
ier to optimize and referred to as the reverse form, stipulates
that the skills should be sampled as diversely as possible
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Figure 1: Overview of UPSIDE. The black dot corresponds to the initial state s0. (A) A set of random skills is initialized, each skill
being composed of a directed part (illustrated as a black arrow) and a diffusing part (red arrows) which induces a local coverage (colored
circles). (B) The policies associated to the directed part of each skill are then updated to maximize the discriminability of the states
reached by their diffusing part (Sect. 3.1). (C) The least discriminable skills are iteratively removed while the policies of the remaining
skills are re-optimized. This is executed until the discriminability of each skill satisfies a given constraint (see Sect. 3.2). In this example
three skills are kept. (D) One of these learned skill is then used as basis to add new skills, which are then optimized following the same
procedure. For the “red” and “purple” skills, UPSIDE is not able to find sub-skills of sufficient quality and thus they are not expanded any
further. (E) At the end of the process, UPSIDE has created a tree of directed skills covering the state space (Sect. 3.3). These covering
skills can then be used to solve downstream tasks. Moreover, the discriminator learned together with the skills can be used to select the
skill to reach any specific goal region, where the directed parts get close to the goal, while the diffusing part provides the local coverage to
attain the goal. The complete algorithm is detailed in Sect. 3.4 and App. A.

while being discriminable.

Maximizing (1) has been shown to be a powerful approach
for encouraging exploration in RL (Houthooft et al., 2016;
Mohamed & Rezende, 2015) and for unsupervised skill dis-
covery (e.g., Gregor et al., 2016; Eysenbach et al., 2019;
Achiam et al., 2018; Sharma et al., 2020; Campos et al.,
2020). Nonetheless, learning skills that maximize the MI
is a challenging optimization problem. Several approxima-
tions have been proposed to simplify the problem at the cost
of possibly deviating from the original objective of cover-
age and directedness (see Sect. 4 for a review of related
work). In this paper, we propose UPSIDE (UnsuPervised
Skills that dIrect then DiffusE) to learn skills that can be
effectively used to solve goal-based downstream tasks. Our
solution builds on the following components (see Fig. 1 for
an illustration of UPSIDE):

• Skill structure. In order to balance coverage and direct-
edness, we design skills composed of two parts: 1) a
directed part that is trained to reach a distinct region of
the environment, and 2) a diffusing part that covers the
states around the region attained by the first part.

• Optimization. We further strengthen the coverage and
directedness properties of the skills by turning the MI ob-
jective into a constrained optimization problem designed
to maximize coverage under the constraint that each skill
achieves a minimum level of discriminability. This in
turn enables UPSIDE to adaptively add skills to improve
coverage when all the initial skills meet the constraint, or

remove those that violate the constraint to guarantee that
each skill is directed and reaches a distinct region of the
environment.

• Tree structure. When the agent starts from a fixed initial
state, the skills’ length is a crucial parameter, where short
skills do not allow for proper coverage, and long skills
are difficult to train. In UPSIDE we consider short skills
to make the optimization easier, while composing them
along a tree structure that ensures an adaptive and deep
coverage of the environment.

We study how our learned skill structure enables to both per-
form efficient exploration and learn effective goal-reaching
policies in navigation environments and we compare its
performance to relevant baselines.

2. Setting
We consider the URL setting where the agent interacts with
a Markov decision process (MDP) M with state space S,
action space A, dynamics p(s′|s, a), and no reward. The
agent starts each episode from a designated initial state
s0 ∈ S. Upon termination of the chosen policy, the agent
is then reset to s0. This setting is particularly challenging
from an exploration point of view since the agent cannot
rely on the initial distribution to cover the state space.

We recall the MI-based unsupervised skill discovery ap-
proach (see e.g., Gregor et al., 2016). Denote by Z some
(latent) variables on which the skills of length T are con-
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ditioned. There are three optimization variables: (i) the
support of the skills denoted by |Z| (we consider it to be
discrete so |Z| is the number of skills), (ii) the policy π(z)
associated to skill z, and (iii) the sampling rule ρ (i.e., ρ(z)
is the probability of sampling skill z at the beginning of
the episode). Let the variable ST be the random (final)
state induced by sampling a skill z from ρ and executing
the associated policy π(z) from s0 for an episode. We
denote by pπ(z)(sT ) the distribution over (final) states in-
duced by executing the policy of skill z, by p(z|sT ) the
probability of z being the skill to induce state sT , and let
p(sT ) =

∑
z∈Z ρ(z)pπ(z)(sT ). Then maximizing the MI

between Z and ST can be written as

max
|Z|, ρ, π

I(ST ;Z) (1)

= H(ST )−H(ST |Z)
= −

∑
sT

p(sT ) log p(sT ) +
∑
z∈Z

ρ(z)EsT
[
log pπ(z)(sT )

]
= H(Z)−H(Z|ST )
= −

∑
z∈Z

ρ(z) log ρ(z) +
∑
z∈Z

ρ(z)EsT [log p(z|sT )] ,

where in the expectations sT ∼ pπ(z)(sT ). As discussed in
Sect. 1, learning the optimal |Z|, ρ, and π is a challenging
problem (see e.g., Gregor et al., 2016; Eysenbach et al.,
2019; Campos et al., 2020).

3. Algorithm Structure
UPSIDE is based on three main components: a) the skill
learning corresponding to stage A and B of Fig. 1 and de-
scribed in Sect. 3.1, b) a constrained optimization problem
used to optimize the number of skills (stage C and Sect. 3.2)
and c) a tree-building procedure (stage D and Sect. 3.3). To-
gether, these components allow UPSIDE to discover skills
that combine coverage and directedness.

3.1. Skill Structure and Optimization

As shown in e.g., (Eysenbach et al., 2019; Sharma et al.,
2020; Zhang et al., 2021), the level of stochasticity of each
skill (e.g., induced via a regularization on the entropy over
the actions) plays a key role in trading off coverage and
directedness. In fact, while randomness promotes broader
coverage, it may compromise the directedness of the skills.
Indeed a highly stochastic skill tends to induce a distribution
pπ(z)(sT ) over final states with high entropy (thus decreas-
ing −H(ST |Z)), which prevents the skill to be reusable
in solving sparse-reward downstream tasks where the ob-
jective is to reliably reach a specific goal state of the en-
vironment. Determining how much stochasticity to inject
to adequately balance both objectives and optimize (1) is a

difficult problem.1

We propose to design skills with a decoupled policy struc-
ture:

• A directed part (of length T ) with low stochasticity and
trained to reach a specific region of the environment. It is
responsible for increasing the −H(S|Z) term in (1).

• A diffusing part (of length H)
with high stochasticity to
promote local coverage of
the states around the region
reached by the directed part.
It is responsible for increasing
theH(S) term in (1).

Figure 2: Directed and dif-
fusing parts of the skill.

Similar to prior work (e.g., Gregor et al., 2016; Eysenbach
et al., 2019), the policy associated to the directed part of
skill z is trained to maximize an intrinsic reward rz(s) ≈
p(z|s),2 where p(z|s) measures the “discriminability” of the
skill z given the state s. More formally, π(z) maximizes the
cumulative reward Eπ(z)

[∑T+H
t=T+1 rz(st)

]
over the states

traversed by the policy during the diffusing part. In practice,
we also add a small entropy regularizationH(π(·|z, st)) to
the directed policy in order to ensure a minimum level of
exploration and make the learning more robust. For the
diffusing part, we rely on a simple random walk policy (i.e.,
a stochastic policy with uniform distribution over actions).

Intuitively, the diffusing part defines a cluster of states that
is used as a goal for the directed part. This allows us to
“ground” the latent variable representations of the skills Z
to specific regions of the environment (i.e., the clusters). As
a result, maximizing the MI over such skills can be seen as
learning a set of “cluster-conditioned”, and thus directed,
policies.

3.2. Skill Support and Sampling Rule

The MI objective (1) crucially depends on the number of
skills (|Z|) and the distribution ρ(z). Unfortunately, it has
been shown (e.g., Campos et al., 2020) that solving (1) is
particularly challenging. In order to simplify the optimiza-
tion and the associated learning problem, we modify (1) in
two ways.

First, coherently with the skill optimization detailed in

1In RL, stochasticity is injected at “train time” to boost explo-
ration or improve robustness, while the policy executed at “test
time” is deterministic in many cases. Here we refer to stochasticity
introduced to better optimize (1).

2Although (Gregor et al., 2016; Eysenbach et al., 2019) employ
rewards in the log domain, we find that using a reward that is a
non-linear transformation into [0, 1] works better in practice, as
also observed in (Warde-Farley et al., 2019; Baumli et al., 2021).
Furthermore, in practice we replace p(z|s) by the predictions of a
learned discriminator qφ(z|s) as explained in Sect. 3.4.
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Algorithm 1: UPSIDE
Initialize: Discriminability threshold η ∈ (0, 1), branching

factor N0 ≥ 1, patience K
Initialize: Tree T initialized as a root node indexed by 0,

queue of parent nodesW = {0}.
while W 6= ∅ do // tree expansion

1 Dequeue a node/skill w ∈ W and expand T at w by
adding a set C(w) of N0 nodes/skills

2 Create random policies πz, ∀z ∈ C(w)
3 Initialize discriminator qφ with |T | classes
4 Continue = true; Saturated = false
5 while Continue do
6 for K iterations do
7 Sample a skill z from T at random
8 Extract the sequence of nodes z(1), . . . , z in T

leading to z
9 Execute the composed (directed part) policy

(πz(1) , . . . , πz) followed by the diffusing part
10 Add states observed during the diffusion part to

state buffer Bz
11 Update discriminator qφ with SGD on Bz to

predict label z
12 if z ∈ C(w) then // Update only new

policies, other policies kept
fixed

13 Update policy πz using SAC to optimize the
discriminator reward as in Sect. 3.1.

14 For all z ∈ C(w) compute the skill-discriminability
d(z) = q̂(B)

φ (z) = 1
|Bz |

∑
s∈Bz

qφ(z|s).
15 if minz∈C(w) d(z) < η then // Node removal
16 Remove the node/skill z = argminz∈C(w) d(z)

from C(w) and T
17 Set Saturate = true
18 else if not Saturated then
19 Add one new node/skill to C(w) and T
20 else
21 Set Continue = false

22 Enqueue inW the consolidated nodes C(w)

Sect. 3.1, the random variable S in the conditional entropy
is any state reached during the diffusing part of the skill and
not just the terminal state. More formally, we denote by Sdiff
the random variable and its distribution for a specific skill z
is pπ(z)(sdiff) = 1/H

∑T+H
t=T+1 pπ(z)(st), i.e., the distribu-

tion over states obtained by averaging the distributions at
any of the steps in the diffusing part. Similarly, p(z|sdiff)
now denotes the probability of z being the skill to traverse
sdiff during its diffusing part. As a result, training the skills
to maximize MI naturally leads the diffusing parts to “push”
the directed parts away so as to reach diverse regions of
the environment. The combination of “global” coverage of
the directed parts and “local” coverage of the diffusing part
ensures that the whole environment is properly visited with
|Z| � S skills.3

3Notice that (1) is maximized by setting |Z| = |S| (since
maxY I(X,Y ) = I(X,X) = H(X)), i.e., where each skills is
a goal-conditioned policy reaching a different state. This implies

Second, we introduce an alternative problem that simplifies
the optimization while preserving the coverage and direct-
edness properties of MI. This is achieved by introducing
a stronger requirement on the discriminability. While the
conditional entropy term −H(Z|S) in (1) promotes the dis-
criminability of skills on average, we argue that a more
suitable objective is to constrain each skill to achieve a min-
imum level of discriminability. First, we move from the
average to the minimum over skills by lower bounding the
conditional entropy as

−H(Z|Sdiff) =
∑
z∈Z

ρ(z)Esdiff [log p(z|sdiff)] (2)

≥ min
z∈Z

Esdiff [log p(z|sdiff)] , (3)

which leads to the following optimization (assuming π is
fixed for convenience)

max
|Z|=N,ρ

{
H(Z) + min

z∈[N ]
Esdiff [log p(z|sdiff)]

}
, (4)

where with an abuse of notation we use z ∈ [N ] to denote
all skills in a set Z with cardinality N . Since (4) is a lower
bound to MI, it tends to promote the same type of covering
and directed skills. Furthermore, (2) no longer depends on
the distribution over skills and the entropy term H(Z) is
maximized by setting ρ to the uniform distribution over N
skills (i.e., maxρH(Z) = log(N)), thus simplifying the
optimization, which now only depends on N .

While optimizing (4) promotes a cardinality N such that all
skills have good discriminability, a more convenient formu-
lation is to explicitly set a minimum level of discriminability
for all skills through the following constrained optimization
problem:

max
N≥1

log(N) s.t. min
z∈[N ]

Esdiff [log p(z|sdiff)] ≥ log η. (5)

where η is a parameter that defines the discriminabil-
ity threshold. A skill z is said to be η-consolidated
if it satisfies the constraint. Crucially, let PN :=
minz∈[N ] Esdiff [log p(z|sdiff)], then the sequence (PN )N≥1
is non-increasing with P1 = 0 (i.e., the more skills the
harder it is to meet the constraint). As a result, (5) can be
optimized following a simple greedy strategy incrementally
adding skills until the constraint is violated. The optimal
N thus defines the effective number of η-consolidated skills
and it corresponds to the largest number of skills that are
guaranteed to display sufficient discriminability. Alterna-
tively, we can interpret (5) as finding the largest number
of clusters (i.e., the region reached by the directed part of
a skill and covered by its associated diffusing part) with
a minimum level of inter-cluster distance. This effect is

having as many policies as states, which makes the learning partic-
ularly challenging as the complexity of the environment increases.
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qualitatively illustrated in Fig. 1, where the states attained
by the directed part of the skills attain different regions that
are locally covered by their diffusing parts.

3.3. Composing Skills in a Tree Structure

The MI optimization problem as well as our constrained
variant (5) depend on the initial state s0 and on the length of
each skill. Although these quantities are usually predefined
and only appear implicitly in the equations, they have a
crucial impact on the obtained behavior. In fact, resetting
after each skill execution unavoidably restricts the coverage
to a radius of at most T + H steps around s0. This may
suggest to set T andH to a large value. However, increasing
the horizon makes the training of the skills more challenging,
as learning π requires solving a difficult RL problem itself.

Instead, we propose to “extend” the length of the skills
through composition. Indeed, the decoupled skill structure
and the constraint in (5) entail that the directed part of each
of the η-consolidated skills reliably reach a specific (and
distinct) region of the environment and it is thus re-usable
and amenable to composition. We propose to chain the di-
rected part of the skills in order to reach further and further
parts of the state space. Specifically, we build a growing
tree, where the root is the initial state s0, the edges repre-
sent the directed part of the skills, and the nodes represent
the diffusing part of skills. As such, whenever a skill z is
selected, the directed part of all the policies associated to its
predecessor skills in the tree are executed first (see Fig. 1
for an illustration of the tree structure).

As a result, the agent naturally builds a curriculum on the
episode lengths, which grow as the sequence (iT +H)i≥1.
As such, it does not require prior knowledge on an ade-
quate horizon of the downstream goal-based task.4 Here
this knowledge is replaced by T and H which are more
environment-agnostic and task-agnostic quantities, as their
choice rather has an impact on the size and shape of the
learned tree (e.g., the smaller T and H , the bigger the tree).

3.4. The UPSIDE Algorithm

We are now ready to introduce UPSIDE, which provides a
specific implementation of the components described before
(see Fig. 1 for a qualitative illustration and Alg. 1 for the
detailed pseudo-code).

We perform standard approximations to make the constraint
in (5) easier to estimate. We approximate the unknown
posterior p(z|s) with a learned discriminator qφ(z|s) with
parameters φ. We also remove the logarithm from the con-
straint to have an estimation range of [0, 1] and thus lower

4See e.g., the discussion in (Mutti et al., 2021) on the “impor-
tance of properly choosing the training horizon in accordance with
the downstream-task horizon the policy will eventually face.”

variance2. Finally, we replace the expectation over s with
an empirical estimate q̂(B)

φ (z) averaging the value of the dis-
criminator evaluated on the last B states observed while
executing the diffusing part of z. Integrating these approxi-
mations in (5) leads to

max
N≥1,π

N s.t. min
z∈[N ]

q̂(B)

φ (z) ≥ η. (6)

As discussed in Sect. 3.2, this problem can be conveniently
optimized using a greedy strategy. We then integrate the
optimization of (6) into an adaptive tree expansion strategy:
(Generating new skills) Given a tree structure as described
in Sect. 3.3, we expand the tree at a leaf w by adding N0

new nodes/skills following a breadth-first-search approach
(lines 1, 2). Then (Skill Learning) the new skills are opti-
mized by: i) sampling random skills in the tree to update the
discriminator (lines 7-11), and ii) by updating the policies to
optimize the discriminability reward (Sect. 3.1) computed
using the discriminator (lines 13). To speed up convergence,
we only update the policies that have been added to the tree
structure, keeping all the previous policies fixed (line 12).
Note that in the update of the discriminator we leverage
the states observed in previous phases of the algorithm by
maintaining a (small) replay buffer of states for each skill.
(Node Consolidation) After a patience period (line 6), if
all skills are η-consolidated, we tentatively add more skills
to the leaf w (line 19). On the other hand, if any skill does
not meet the discriminability threshold, we remove it and
consolidate the remaining skills into the tree (lines 16, 17)
and we repeat the process.

Model selection. A core aspect of any RL algorithm is
model selection, i.e., finding the best configuration of hy-
perparameters. In URL with no prior knowledge of the
downstream task(s), it is non-trivial to devise an adequate
criterion for model selection and this aspect is rarely ad-
dressed, despite being crucial in practice. For instance,
while the coverage of the state space may be a good proxy
for the performance of a URL algorithm (see e.g., Campos
et al., 2020), it may be difficult to measure in continuous
problems. Interestingly, our optimization problem directly
provides a single, task-agnostic and environment-agnostic
criterion for model selection, which is the number N of
η-consolidated skills discovered by the agent. Indeed in all
of our experiments we simply select the model (i.e., set of
hyperparameters) that maximizes N . This is a significant
advantage w.r.t. existing methods, such as VIC and DIAYN,
for which no principled approach to model selection is pro-
vided.

4. Related work
Unsupervised Reinforcement Learning methods can be
broadly decomposed according to the way they summarize
the experience accumulated during the unsupervised phase



Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching

into reusable knowledge to solve downstream tasks. This
includes both off-policy model-free (e.g., Pong et al., 2020)
and model-based (e.g., Sekar et al., 2020) methods that seek
to populate a representative replay buffer and build accurate
value or model estimates, which are used to solve a given
downstream task in a zero- or few-shot manner. The accumu-
lated experience during train time can also be compressed
into a low-dimensional representation for value functions
as well as policies and to improve exploration (e.g., Yarats
et al., 2021). An alternative line of work focuses on the
discovery of a set of skills in an unsupervised manner. Our
approach falls in this category, on which we now focus our
related work review.

Skill discovery based on MI maximization was first pro-
posed in VIC (Gregor et al., 2016), where only the final
states of each trajectory are considered in the reverse form
of (1) and where both the skills and their sampling rules
are simultaneously learned (with a fixed support |Z|, i.e.,
a fixed number of skills). DIAYN (Eysenbach et al., 2019)
fixes the sampling rule to be uniform, and weighs the skills
with an action-entropy coefficient (i.e., it additionally min-
imizes the MI between actions and skills given the state),
so as to push the skills away from each other and enhance
coverage. DADS (Sharma et al., 2020) learns skills that
are not only diverse but also predictable by learned dynam-
ics models, by using a generative model over observations
(rather than over skills) and optimizing a forward form of
MI, namely I(s′; z|s) between the next state s′ and current
skill z (with continuous latent) conditioned on the current
state s. EDL (Campos et al., 2020) shows that existing skill
discovery approaches can provide insufficient coverage, and
instead proposes to rely on a fixed distribution over states
p(s) which is either provided by an oracle or learned. In
SMM (Lee et al., 2019), the MI formalism is used to learn
a policy for which the state marginal distribution matches
a given target state distribution (e.g., uniform), which can
be seen as a more scalable way of tackling the problem of
maximum entropy over the state space (Hazan et al., 2019),
and as a way to encourage skills to go through unknown
state regions. Other MI-based skill discovery methods in-
clude (Florensa et al., 2017; Hansen et al., 2019; Modhe
et al., 2020; Baumli et al., 2021; Xie et al., 2021), as well
as (Xu et al., 2020; Lu et al., 2020) which investigate skill
discovery in non-episodic settings.

Our approach shares a similar motivation to prior MI-based
works of targeting skills that are both directed and state-
covering. In particular, the decoupled structure introduced
in Sect. 3.1 can be seen as a more suitable way to achieve
the objective of improving the coverage of VIC as done in
DIAYN and SMM, without compromising the directedness
of the skills.

While most skill discovery approaches consider a fixed num-

ber of skills, a curriculum with increasing number of skills
is studied in (Achiam et al., 2018; Aubret et al., 2020). We
consider a similar discriminability criterion and cast it as a
proxy to measure the skills’ amenability to be composed. By
enforcing a discriminability constraint in our optimization
problem, we maintain skills that can be readily composed
along a tree structure. The latter can either increase or
decrease the support of available skills depending on the
region of the state space.

Recently, (Zhang et al., 2021) propose a hierarchical RL
method that discovers abstract and task-agnostic skills while
jointly learning a higher-level policy that is trained to maxi-
mize environment reward. Our approach builds on a similar
promise of composing skills instead of resetting to s0 after
each execution, yet we articulate the composition differently,
by exploiting the direct-then-diffuse structure to ground
learned skills to the state space instead of being abstract.

In addition, approaches such as DISCERN (Warde-Farley
et al., 2019) and Skew-Fit (Pong et al., 2020) learn a
goal-conditioned policy in an unsupervised way with an MI
objective. As explained in (Campos et al., 2020, Sect. 5),
this can be interpreted as a skill discovery approach with la-
tent Z = S, i.e., where each goal state can define a different
skill. Conditioning on either goal states or abstract latent
skills forms two extremes of the spectrum of unsupervised
RL. We target an intermediate approach, seeking to benefit
from the groundedness of the latent skill Z and the states S
(and thus amenability to composition) of goal-conditioned
RL, and from the reduced search space and sampling ease
of skill-based RL.

An alternative approach to skill discovery builds on “spec-
tral” properties of the dynamics of the MDP. This includes
eigenoptions (Machado et al., 2017; 2018) and covering
options (Jinnai et al., 2019; 2020), as well as the algorithm
of (Bagaria et al., 2021) that builds a discrete graph repre-
sentation which learns and composes spectral skills.

5. Experiments
In this section, we investigate the following questions:
i) Can the adaptive tree structure of UPSIDE incrementally
cover an unknown environment while preserving directed-
ness of the skills? ii) Following the unsupervised phase, how
can UPSIDE be leveraged to solve goal-based downstream
tasks?

We perform our experiments based on the RLStructures
framework (Denoyer et al., 2021). We consider navigation
problems in fully continuous 2D mazes, where the agent
observes its current position and outputs actions that control
its location, which is affected by collisions with walls.

We compare to different baselines. DIAYN-K, where K is
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UPSIDE DIAYN SMM

Figure 3: UPSIDE, DIAYN-curriculum and SMM-10 skills learned in a bottleneck maze (Top) and a U-maze (Bottom). For
both DIAYN and SMM we report the stochastic execution of the learned skills and for UPSIDE we report the deterministic
directed parts (that are composed) followed by the (stochastic) diffusing part, which is the same protocol used to evaluate
coverage.
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Figure 4: Normalized coverage in U-maze and bottleneck, averaged over 3 seeds.

a fixed number of skills, is the original algorithm proposed
in (Eysenbach et al., 2019). DIAYN-curriculum is a variant
where the number of skills is automatically tuned following
the same procedure as in UPSIDE ensuring a good discrim-
inability. We also compare to SMM (Lee et al., 2019), which
is similar to DIAYN, but it includes an exploration bonus
encouraging the policies to visit rarely encountered states.
In our implementation, the exploration bonus is obtained
by maintaining a multinomial distribution over “buckets of
states” obtained by discretization, which is more compu-
tationally efficient and stable than the original VAE-based
method in the environments that we consider. UPSIDE and
all baselines are implemented with Soft-Actor Critic (SAC)
(Haarnoja et al., 2018).

Unsupervised Phase. We run all methods until conver-
gence. We then do model selection according to the crite-
rion of either the final number of skills for UPSIDE and

DIAYN-curriculum, or the final average discriminability for
DIAYN-K and SMM. To compute the coverage, we perform
rollouts by first sampling a skill uniformly at random and
executing its associated policy until termination. We dis-
cretize states into buckets (50 interval per dimension) and
report the proportion of buckets reached by each method as
a function of the total number of steps executed in the envi-
ronment over multiple rollouts. Since only a small portion
of the discretized states can be reached, we normalize the
coverage such that the best method obtains 1.

We consider two topologies of mazes with size (height and
width) 50 × 50 such that exploration is non-trivial (i.e., a
random policy is only able to cover a small part of the state
space): a U-shaped maze and a Bottleneck maze (which is
a harder version of the one in Campos et al., 2020, Fig. 1
which is only of size 10 for the same action space). In
Fig. 3 we show that UPSIDE succeeds in covering the near-
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Figure 5:
(Left): Learning curves for “short” distance and (Middle) “medium” dis-
tance goals. (Right): Learned policies after fine-tuning (Top) U-maze.
(Bottom): Bottleneck maze.

UPSIDE

DIAYN/SMM
SAC

entirety of the state space by creating a tree of directed
skills. Moreover, UPSIDE creates directed skills with a low
entropy, while the two baselines tend to create skills that
are more stochastic. This is particularly evident for SMM,
whose state-entropy exploration bonus encourages broader
coverage yet makes skills less directed.

In Fig. 4 we report the coverage on the Bottleneck maze
and U-Maze. For UPSIDE, executing a skill corresponds
to executing the directed part of all the “parent” skills
in the tree and concluding with the diffusion part of the
skill. SMM achieves better coverage than DIAYN thanks to
the increased level of stochasticity (diffusion) of its skills.
UPSIDE outperforms both by reaching regions of the envi-
ronment that are not be achieved by other methods. Here,
we plot UPSIDE with T = 10 and H = 10, but we found
UPSIDE to be quite robust to these parameters as shown in
App. D.

Downstream Tasks. Following the unsupervised phase,
UPSIDE has learned a tree of skills. We now investigate
how these skills are used to tackle a downstream task. In
that setting, we propose to use skill-based approaches (i.e
UPSIDE, DIAYN and SMM) in the following way: a) (ex-
ploration) first we sample rollouts over the different skills.
b) We then select the best skill based on the maximum cu-
mulative reward collected and c) we fine-tune this skill to
maximize the reward. We consider a sparse positive reward
when reaching a particular defined goal.5 We consider goals

5Notice that if the goal was known, the learned discriminator
could be directly used to identify the most promising skill to fine-
tune.

at different distances from the initial state s0, the further,
the harder. Fig. 5 shows the learning curves obtained when
fine-tuning the best skill for the different models and com-
pares to a classical SAC algorithm where a single policy is
learned from scratch. DIAYN/SMM signifies that we use the
best state-covering policies between DIAYN and SMM. For
the “close” goal setting, both UPSIDE and DIAYN/SMM are
able to learn to reach this goal efficiently while SAC solves
the task only for some of the training runs. Note that we
do not show DIAYN performance since it is lower than the
SMM one. For the “far” goal setting, only UPSIDE learns
to reach this goal. Obtained trajectories are illustrated in
Fig. 5.

6. Conclusion
We introduced UPSIDE, a novel algorithm for unsupervised
skill discovery designed to trade off between coverage and
directedness and develop a tree of skills that can be used
to both perform efficient exploration of the environment
and learn effective goal-directed policies. Natural venues
for future investigation are: 1) The diffusing part of each
skill could be explicitly trained to maximize local coverage;
2) UPSIDE assumes a good representation of the state is
provided as input, it would be interesting to pair UPSIDE
with effective representation learning techniques to tackle
problems with high-dimensional input (e.g., image-based
RL); 3) While UPSIDE is grounded on the solid principle of
MI maximization, a more thorough theoretical investigation
is needed to explicitly link the optimization problem and its
approximations to the downstream performance.
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A. UPSIDE Algorithm
We provide a diagram of the high-level approach of
UPSIDE in Fig. 6 and a detailed pseudo-code in Alg. 2.
UPSIDE initializes a tree structure T with root node 0 and
queue of parent nodesW = {0}. As long as the queue is
not empty, the following steps are performed:

• (Generating new skills) We expand the tree at a leaf
w ∈ W by adding N0 new nodes/skills denoted by C(w)
(lines 1, 2). We initialize a discriminator with |T | classes
to account for the newly created nodes (line 3).

• (Skill Learning) Then the new skills and discriminator
are optimized as follows:

- We sample (uniformly) and rollout the new skills z ∈
C(w) and add the states of their diffusing parts in their
corresponding buffers Bz (lines 8 to 11).

- We update the discriminator by leveraging the states
and skill labels in the buffers (lines 12 to 17). In particular,
the ratio µ signifies that we train more often the discrimi-
nator on the previously consolidated skills/classes than on
the new skills/classes in C(w), i.e., we sample pairs (label
z, state in Bz) with probability (I[z ∈ |C(w)|] + µI[z /∈
|C(w)|])/((1− µ)|C(w)|+ µ|T |). We give slightly more
weight to the already consolidated skills in the discrim-
inator training because the discriminator is reinitialized
whenever new classes (i.e., nodes) are added, thus we
seek to avoid the new classes from invading the territory
of the older classes that were previously correctly learned.
In addition, we only update the discriminator on recent
batches of data from the buffers via the window V (which
considers only the last V states in each skill buffer), which
is more sample efficient than doing the discriminator up-
date in a fully on-policy manner (e.g., Eysenbach et al.,
2019), especially in our setting where the discriminator
changes over training as new skill-nodes (i.e., classes) are
added.

- We update the policies of the new skills/nodes in C(w)
with SAC to optimize the intrinsic reward of the discrimi-
nator predictions as explained in Sect. 3.1 (line 19). Note
that we keep fixed the policies of the previously consoli-
dated nodes/skills, which makes the learning of the tree
more stable.

• (Node Consolidation) After a patience period character-
ized by K iterations of training (line 6), if all skills are
η-consolidated (i.e., the constraint of problem (6) is veri-
fied), we tentatively add more skills to the leaf w (line 25).
On the other hand, if any skill does not meet the discrim-
inability threshold, we remove it and seek to consolidate
the remaining skills into the tree (line 22). The role of
the Saturated and Continue booleans is to ensure

that the node addition operation cannot be performed if
a node removal operation has already been performed in
the training of the set C(w). Recall that the function is
monotone, so if a skill is removed, the optimum cannot
be larger. The (optional) Nmax value represents the max-
imum branching factor (i.e., number of children nodes)
imposed at each node of the tree.

B. Environment Details
Continuous mazes. We consider mazes with height and
width 50. The state space is continuous, and there are some
horizontal and verticals walls of width 1. The agent ob-
serves its current (x, y) Cartesian position (i.e., it does not
observe the walls) and it outputs actions [dx, dy] that con-
trol its location. The actions dx and dy are constrained to
be in [−1,+1]. The movement of the agent is affected by
collisions with walls: when the agent collides with a wall, it
stays in its original position.

C. Experimental Details
C.1. Baselines

For all methods, we augment the state space with the current
time-step because horizons are finite.

DIAYN-K. This corresponds to the original DIAYN algo-
rithm (Eysenbach et al., 2019) where K is the number of
skills to be learned. In order to make the architecture more
similar to UPSIDE, we use distinct policies for each skill,
i.e. they do not share weights as opposed to (Eysenbach
et al., 2019). While this may come at the price of sample ef-
ficiency, it may also help put lesser constraint on the model
(e.g. gradient interference).

DIAYN-curriculum. We augment DIAYN with a curricu-
lum that enables to be less dependant on an adequate tuning
of the hyperparameter of the number of skills of DIAYN. We
consider the curriculum of UPSIDE where we start from ei-
ther a large or small number N0 of skills, learn skills during
a period of time/number of interactions. If the configuration
satisfies the discriminablity threshold η, a skill is added, oth-
erwise a skill is removed or learning stopped (as in Alg. 1,
lines 20-29). Note that the increasing version of this curricu-
lum is similar to the one proposed in VALOR (Achiam et al.,
2018, Sect. 3.3).

SMM. We used SMM (Lee et al., 2019) as it is state-of-
art in terms of coverage, at least on long-horizon control
problems, although (Campos et al., 2020) reported poor per-
formance in hard-to-explore bottleneck mazes. We tested
the regular SMM version, i.e. learning a state density model
with a VAE, yet we failed to make it work on the maze
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Figure 6: High-level approach of UPSIDE

Algorithm 2: UPSIDE
Initialize: Discriminability threshold η ∈ (0, 1), branching factor N0 ≥ 1 (to be adapted at each node), (optional) maximum

branching factor Nmax ≥ N0, patience K, window V , number of trajectory rollouts R per update of discriminator and policies,
batch size of Ndiscr to train the discriminator, ratio µ of probabilities between consolidated classes and new classes to train
discriminator

Initialize: Tree T initialized as a root node indexed by 0, queue of parent nodesW = {0}.
while W 6= ∅ do // tree expansion

1 Dequeue a node/skill w ∈ W and expand T at w by adding a set C(w) of N0 nodes/skills
2 Create random policies πz and buffers Bz , ∀z ∈ C(w)
3 Initialize discriminator qφ with |T | classes
4 Continue = true; Saturated = false
5 while Continue do
6 for K iterations do
7 for r ∈ [[1, R]] do // collect R trajectories
8 Sample a skill z from C(w) at random
9 Extract the sequence of nodes z(1), . . . , z in T leading to z

10 Execute the composed (directed part) policy (πz(1) , . . . , πz) followed by the diffusing part
11 Add states observed during the diffusing part to Bz
12 B = {} // Initialize batch to update the discriminator
13 while |B| < Ndiscr do
14 Sample a skill z from T w.p. (I[z ∈ |C(w)|] + µI[z /∈ |C(w)|])/((1− µ)|C(w)|+ µ|T |)
15 Sample a state s from the last V states of Bz
16 Add (s, z) to B
17 Update discriminator qφ with SGD on B to predict label z
18 for z ∈ C(w) do
19 Update policy πz using SAC to optimize the discriminator reward as in Sect. 3.1.
20 Compute the skill-discriminability d(z) = q̂(B)

φ (z) = 1
|B|

∑
(s,z)∈B qφ(z|s) for all z ∈ C(w)

21 if minz∈C(w) d(z) < η then // Node removal
22 Remove the node/skill z = argminz∈C(w) d(z) from C(w) and T
23 Set Saturate = true
24 else if not Saturated then
25 Add one new node/skill to C(w) and T
26 if |C(w)| = Nmax then
27 Set Saturate = true
28 else
29 Set Continue = false

30 Enqueue inW the consolidated nodes C(w)
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Algorithm 3: Unknown goal
Input: Unknown goal region G, Budget κ.
for κ iterations do // Find G

Sample z in T at random
Extract the sequence of nodes z(1), . . . , z in T
leading to z

Execute the composed (directed part) policy
(πz(1) , . . . , πz) followed by the diffusing part of z

Stop if G is reached.
if G was found then

Run Alg. 4 with goal G
else

Train SAC policy on the reward

domains that we consider. As we use the cartesian (x, y)
positions in maze domains, learning the identity function
on two-dimensional input data is too easy with a VAE, thus
preventing the benefits of using a density model to drive
exploration. Thus we considered a more straightforward im-
plementation of SMM by using the “real” state distribution
through counting. Specifically, we maintain a discretized
state distribution by counting states in buckets (similar to the
way we compute the achieved coverage). The distribution
is just computed by dividing by the sum over buckets. We
did not use a moving average so counts are not forgotten:
the state distribution is over all policies encountered since
the beginning of training (whereas the state distribution is
“online” in Lee et al., 2019).

C.2. Architecture and Hyperparameters

The architecture of the different methods remains the same
in all our experiments, except that the number of hidden
units changes across considered environments. We consider
decoupled actor and critic in SAC, they both have the same
(but unshared weights) state processing architectures. The
observation and the step are passed through non-linear MLP
with 1 hidden layer with units h, then are concatenated. The
concatenation is then mapped to an embedding. For the
actor, this embedding is mapped to a mean and variance
embedding, then passes through a Squashed Gaussian as
explained in (Haarnoja et al., 2018). For the critic, the em-
bedding is concatenated with a non-linear (1 hidden layer)
embedding of the action, then passed through a final non-
linear MLP (1 layer) to a one-dimensional value.

The discriminator is a two-hidden layer model with output
size the number of skills in the tree.

Common (for methods and environments) optimization
hyperparameters. (See App. A for meaning of each hyper-
parameter)

• SAC entropy: {0.1, 0.01, 0.001}
• discount factor: γ = 0.99

Algorithm 4: Known goal
Input: Known goal region G.
Compute skill-node

z∗ = argmax
z∈T

∑
g∈G

qφ(z|g).

Fine-tune the diffusing part of skill-node z∗ via RL
with reward rG(s) = 1[s ∈ G].

• Q-function soft updates τ = 0.005

• learning rates lrpolicy = 0.001,
lrdiscriminator = {0.0001, 0.001}

• discriminator batch size B = 1024

• µ = {2, 5}
• V = 100

• Replay buffer size: 1e6
• h = {16, 64} hidden units per layer for policy, and h =
128 hidden units per layer for discriminator

Note that hyperparameters are kept fixed for the downstream
tasks too.

For UPSIDE and DIAYN-curriculum, we set the patience
to be a time-limit instead of a number of iterations. We tried
both 300 and 600 seconds to avoid the running time getting
too high if the tree grows large.

The total running time for DIAYN-K and SMM is the same
than the maximum running time of UPSIDE.

C.3. Model selection

We train all methods with a grid search over the set of hyper-
parameters described in App. C.2, for multiple seeds, which
we call unsupervised seeds, to evaluate robustness over both
the initialization of model weights and randomness of the
algorithm. For each unsupervised seed, we select the set of
hyperparameters that has maximum value for the criterion
of number of skills for UPSIDE, DIAYN-curriculum and
for the criterion of average discriminability for DIAYN-K
and SMM.

With this set of hyperparameters per seeds, we can then
report some measurement, e.g., coverage, averaged over
unsupervised seeds.

C.4. Downstream task scenario

We consider the downstream task of quickly finding and
then reliably reaching an unknown goal, summarized in
Alg. 3. There exists a goal region G with unknown coordi-
nates (xG , yG) that can be identified only once it is reached.
The unknown nature of the goal and its sparse identification
signal (i.e., reward rG(s) = 1[s ∈ G]) makes the problem
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Figure 7: Ablation on the values of T and H for UPSIDE on the bottleneck and U-maze.

Figure 8: Difficulty of UPSIDE to cover the mazes if the hyperparameters T,H are set too large w.r.t. the environment size
(here, T = H = 40, and we recall that the mazes are of size 50× 50). Top (resp. bottom) row corresponds to the stochastic
(resp. deterministic) executions of the policies of the directed parts of the skills.

challenging, as the agent must perform “blind” and exhaus-
tive exploration so as to encounter the goal as quickly as
possible. UPSIDE’s clustering of the state space with its
ability to navigate efficiently to any given cluster is a desir-
able property to tackle this problem. In Alg. 3, we uniformly
sample the nodes of the tree (i.e., execute the diffusing part
of each skill) until the goal is found. Note that we use a
budget of κ iterations (which could be either environment
interactions or time) for UPSIDE to find the goal with the
tree, otherwise we train a policy with SAC on the reward.

Once the goal is identified, this becomes a standard goal-
oriented task, where no distance-to-goal is available, i.e., the
reward signal is sparse, which makes the learning problem
more difficult. The design of UPSIDE enables to identify
the closest skill to the goal according to the learned dis-
criminator, and we then fine-tune its diffusing part into a
goal-oriented policy, as shown in Alg. 4.

The same approach is used for DIAYN and SMM. For SAC,
a plain policy is trained directly on the reward signal.

We thus see that this task calls for a dual property of cover-
age and directedness.

Goals g were sampled uniformly in the available state space,
but for the sake of simplicity, we only show in Sect. 5 two
representative goal positions, a moderately close goal and a
far goal. The goal region is a circle with radius 1, thus the
agent gets a reward of 1 at state s if ‖s− g‖22 < 1.

C.5. Evaluation protocol

1. We train the method in its unsupervised phase.
2. We then do model selection as explained in App. C.3,

which gives a model per method per unsupervised seed.
3. We rollout N episodes per model and compute coverage

as explained in the main paper in Sect. 5. Coverage is
averaged over unsupervised seeds.

4. For each model (associated to a method) and unsupervised
seed, we run the downstream tasks (explained in App. C.4),
with the same grid search over hyperparameters, with
additional seeds, which we call downstream seeds.
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Figure 9: (Top) Unbalanced tree-shaped maze and (Bottom)
the tree structure learned by UPSIDE. We see that it can
successfully map the environment’s underlying structure.

5. For each method and unsupervised seed, we do model se-
lection over downstream seeds on the criterion of reward.

6. We plot the reward averaged over unsupervised and down-
stream seeds, with error bars for each method.

D. Additional Experiments
In this section, we report additional experiments. We ran all
methods with 3 unsupervised seeds for each set of hyperpa-
rameters. All plots are generated according to the evaluation
protocol explained in App. C.5.

D.1. Ablation on the skill lengths T and H

We investigate the sensitiveness of UPSIDE w.r.t.T and H ,
the lengths of the directed and diffusing part of the skill,
respectively. Fig. 7 shows that the method is quite robust to
reasonable choices of T and H , although there exists con-
figurations where UPSIDE does not achieve full coverage,
in particular in the bottleneck maze when T and H are too
large (e.g., T = 40, H = 20), see also Fig. 8. This makes
sense as the environments require “narrow” exploration (e.g.,
the bottleneck region that the agent must “escape” from is
quite small), thus composing disproportionately long skills
may hinder the coverage. Moreover, increasing T and H
makes the RL training longer and more challenging (e.g.,
the reward is more delayed).
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Figure 10: Average discriminability of the skills during
training in Bottleneck maze and U-maze.

D.2. Visual example how the tree learned by UPSIDE
fits the environment

We investigate the adaptivity (w.r.t. the input branching fac-
tor) of the tree structure of UPSIDE and illustrate that it can
properly fit the unknown environment. As demonstrated
in Fig. 9, UPSIDE successfully covers a large part of the
tree maze, which is quite hard to explore given its narrow
corridors. Here T = 5 and H = 10, and the branching
factor N0 is set to 3. In the terminal region of skill 1 (yel-
low), it is crucial to consolidate two skills 2 and 3 so that the
tree can grow in both directions. While the tree may have
expanded two skills 4 and 5 straight from 3, we see that the
skill 4 (blue) overlaps with the intersection of the two small
corridors, thus it is the only one sufficiently discriminable at
this tree level, and UPSIDE covers the bottom right corridor
in the subsequent level (i.e., from skill 4 to skill 5 in purple).

D.3. Average discriminator performance

Fig. 10 reports the average discriminability of the skills
(UPSIDE, DIAYN-curriculum and DIAYN-50) during train-
ing in Bottleneck maze and U-maze. We observe that the
DIAYN-50 skills (green) suffer from low discriminability,
while UPSIDE (red) (as well as DIAYN-curriculum in yel-
low) achieves much higher discriminability by removing
redundant skills.


