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ABSTRACT

Humanizing methods of AI-generated texts are emerging, which leads to severe
performance degradation of current AI text detectors. Most existing detectors
are struggling to ensure consistent performance in the huge span from detecting
simple AI texts to detecting AI texts humanized in various ways. In addition, the
monolithic threshold-based scoring mechanism they rely on is vulnerable, and
some humanized AI texts can escape sanction after a single detection. Targetedly,
we propose HiDet, which contains coarse module and subdivision module to
give AI texts a double check. We decouple the complete detection process into
simple sample detection and difficult sample detection, the coarse module of
HiDet filters out simple samples, while hard-to-detect samples like humanized
AI texts will be carefully discriminated through the subdivision module which
applies a multi-grained contrastive learning strategy. This hierarchical framework
makes up for the loophole that humanized AI texts can successfully escape the
traditional detector after a single detection, and shows excellent robustness in the
task of detecting humanized AI texts. Meanwhile, our framework is flexiable,
the subdivision module can be deployed separately on the existing detector as
a plug-and-play patch to tremendously improve their performance when facing
large-scale humanized AI texts. We hope our work can inspire new sparks in the
field of AI-generated text detection, codes and datasets will be open soon.

1 INTRODUCTION

The explosive rise of LLMs (Claude AI, 2024; DeepSeek-AI, 2025; Gemini, 2024) makes it easy
for people to get AI-generated texts. However, new problems emerge when the text generation
function of LLMs facilitates people’s work and life. Researchers have demonstrated various mali-
cious applications of LLMs, including academic fraud (Perkins, 2023), spam generation, and false
information dissemination (Hazell, 2023; Weidinger et al., 2022). For instance, by leveraging Chat-
GPT’s powerful writing capabilities, attackers create a large number of automated bots on social
networks, successfully manipulating people’s political choices during elections (Solaiman et al.,
2019b; Goldstein et al., 2023). In addition, many studies have pointed out that students complete
the entire content of papers and assignments through LLMs, which leads to the spread of academic
misconduct (Bhaskar and Rana, 2024; Mitchell, 2022). In order to prevent AI-generated texts from
leaning into the wrong direction, AI text detectors come into being to correct the development of
LLMs. Existing detectors include those based on statistics and mathematics (Mitchell et al., 2023;
Tian and Cui, 2023), watermarks (Gu et al., 2022; Kirchenbauer et al., 2023), classifiers (Guo et al.,
2023; Wang et al., 2023) and other frameworks1, they together establish defence against harmful
usage of AI texts.

However, the defence they build is not impenetrable. A great number of humanizing methods created
by attackers with ulterior motives are attempting to break the defence and researchers have conducted
solid work to point out that current AI text detectors are vulnerable (Zhou et al., 2024; Dugan et al.,
2024; Krishna et al., 2024; Liu et al., 2024b; Huang et al., 2024; Wang et al., 2024). As an illustration,
Dugan (Dugan et al., 2024) designs a variety of perturbations, finding that with only 5% of the text

1Detailed introduction for other detectors is in Appendix F.
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Figure 1: Illustration of two challenges: (1) The difficulty of catching AI texts humanized in various
ways and different levels. (2) The difficulty of catching AI texts through one detection.

content being modified, the detection accuracy drops by an average of 37.2%. No doubt, current
detectors are facing challenges.In our view, two main critical challenges should be sovled to further
break the bottleneck and improve AI detectors’ robustness, illustrating in Figure 1.

For the first challenge, various humanizing methods disguise AI texts and are making them more
difficult to detect. Humanizing methods, which can be roughly divided into four levels: character,
word, sentence, and paragraph (Zhou et al., 2024), include simulating human spelling errors, word
replacement, sentence back translation and new methods are appearing wildly. In order to address this
challenge, researchers have actively explored and tentatively proposed many robust detector (Hans
et al., 2024; Hu et al., 2023; Tian and Cui, 2023). While they do show resistance to certain attacks,
some of them still fail to defend the wide range attack from char level to paragraph level (Dugan
et al., 2024; Liu et al., 2024b).

The second challenge is that single detection often struggles to effectively manage diverse and
complex scenarios (Fariello et al., 2024). To illustrate, a great number of detectors are based on a
monolithic threshold-based scoring mechanism. They compare the score of the input text with a
certain threshold and directly reach a conclusion that whether the text is generated by human or AI.
As the current LLMs are getting more skilled at simulating human writing (Chang et al., 2024), and
the humanizing methods for AI texts are becoming more and more diverse (Nguyen-Son et al., 2022),
the difficulty of catching all AI texts through one detection and one method is rising sharply. Faced
with this dilemma, we engage in proactive thinking: Is it possible to catch the AI texts that escaped
detection step by step through multiple rounds of detection?

To solve the two challenges mentioned above, we propose HiDet, a hierarchical AI text detection
framework with coarse filtering and multi-grained contrastive learning. Detailedly, we break the
whole detection process into simple sample detection and difficult sample detection, and design two
modules from coarse to fine accordingly. Coarse module aims to give texts a rough filtering, when
the scores of texts are within the AI category, these texts are unhumanized and easily detectable
AI texts so the detection results are directly reached. When the texts’ scores are within the human
category, the texts may not only be human written, but also humanized AI texts, thus will enter
the subdivision module for fine-grained detection. In the subdivision module, we divide the texts
into four granularities: (1) AI texts humanized in the same method, (2) AI texts with humanized
methods of the same level, (3) humanized AI texts and original AI texts, (4) human texts and AI texts,
and our multi-grained contrastive Learning is introduced to further dig into the nuances of AI texts.
Through our framework, we not only catch samples that escape detection in one round by giving
them a second check, but also effectively defend against humanized AI text attacks with a subdivision
module designed specifically for humanized samples. The two modules each perform their respective
functions and together build a wall to resist AI text invasion.

We achieve State-Of-The-Art (SOTA) performance in not only detecting original AI texts but also
humanized AI texts through this coarse-to-fine detection framework, which indicates HiDet’s great
robustness in defending various attack. What’s more, as our subdivision module are specially designed
for humanized AI texts, we add it to the current AI text detectors, successfully alleviating their stress
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under large scale humanized AI texts attack. This result further shows that our work is flexiable and
has great practical significance: The subdivision module can serve as a possible plug-and-play patch
to further improve some current detectors’ performance in detecting humanized AI texts.

In short, our work is multifaceted and can be summarized as follows:

• We propose a new framework for training detectors, with coarse module targeting at detecting
original AI texts and subdivison module focusing on humanized AI texts, providing ideas
for detector designers to resist the humanizing attacks.

• We design multi-grained contrastive learning in subdivision module to achieve distinction
between human texts and AI texts humanized at different levels, which can also be used as a
plug-and-play patch to improve the robustness of existing detectors.

• We conduct extensive experiments on two tasks of detecting original AI texts and humanized
AI texts, results show that our detector has achieved SOTA performance. We also apply
our subdivision module to some detectors and achieve significant improvements in their
performance.

2 RELATED WORKS

Multi-stage detection. The advantage of multi-stage detection is that it can subdivide the detection
process and make it more granular. Jiang (Jiang et al., 2024) and Feng (Feng et al., 2024) divide the
software vulnerability detection process into coarse-grained detection and fine-grained positioning.
Cao (Cao et al., 2024) proposes a two-stage tax evasion detection. Concone (Concone et al., 2023)
uses low-cost computing features to quickly filter easy-to-classify samples in spam detection and only
performs fine-grained distinction on difficult samples. Duan (Duan et al., 2020) uses two classifiers
to coperform object detection. The multi-stage detection framework is also widely used in detecting
video event abnormality, network attack, conversation emotion, false information, and so on (Wang
et al., 2018; 2025; Li et al., 2024; Lin et al., 2024; Li et al., 2021).

Humanizing methods of AI texts. Many researchers have pointed out the vulnerability of current
detectors, indicating even a small perturbation attack can cause the performance of the detector to
drop sharply (Zhou et al., 2024; Dugan et al., 2024; Krishna et al., 2024; Liu et al., 2024b; Huang
et al., 2024; Wang et al., 2024). Specifically, Liu (Liu et al., 2024b) points out that DetectGPT
relies on the threshold setting of the logit regression module, which is sensitive to the detection
results, and perturbations of deletion, duplication, insertion, replacement imposed on the test data
cause the performance of detector to drop significantly; Dugan (Dugan et al., 2024) designs a variety
of perturbations such as local vocabulary replacement, syntactic structure adjustment, semantic
preservation rewriting, finding that with only 5% of the text content being modified, the detection
accuracy drops by an average of 37.2%; Zhou (Zhou et al., 2024) concludes humanizing methods
into four levels of character, word, sentence, and paragraph on a variety of research (we apply this
idea), pointing out that current detectors need to be trained with adversarial texts. Their works show
that lacerating the mask of humanized texts is an urgent affair which needs high attention.

3 MODEL AND METHODOLOGY

3.1 FRAMEWORK OVERVIEW

There are two tasks for AI text detectors. Task 1 only involves human texts and original AI texts
thus are relatively simple. Task 2 takes humanized AI texts into consideration and is more realistic,
we choose 19 humanizing methods and summarize them into four levels, detailed introduction is in
Appendix C. We define the two tasks below:

Task 1 : Detecting human texts and AI texts
Task 2 : Detecting human texts, AI texts and humanized AI texts

Our goal is to ultimately determine whether sample s is AI generated or not. For Task 1, coarse
module will complete most of the work ,very few AI texts will bypass it and subdivision module

3
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Figure 2: HiDet’s framework overview. Coarse module filters easy-to-detect samples, while difficult
samples will be detected again by subdivision module with multi-grained contrastive learning.

will detect them again. For Task 2, the process is similar. Sample s will first pass through the
coarse module, the final text’s score is compared with the threshold and if it is in the AI range, then
the conclusion that s is AI generated is directly reached, indicating that some simple AI samples
are successfully filtered by the first module. If the text is judged to be human written, the text
may be real human text or AI written text with humanizing methods. Next, it will undergo the
subdivision module with multi-grained contrastive learning for fine-grained differentiation, ultimately
determining whether s is indeed a humanized AI text.

3.2 COARSE MODULE

The coarse module is a traditional classifier-based detector. Its purpose is to perform coarse-grained
screening of input batch texts. This module can also be used as a representative of the current detector
that has not been specially trained with text perturbations. Training on unhumanized datasets, a good
coarse module should be able to filter out most of the original AI texts that have not been humanized.
Its loss function is as follows,in which x represents true label, y represents predicted label:

Lce = − 1

N

N∑
i=1

xi · log(yi) + (1− xi) · log(1− yi), (1)

For input s ∈ S, the text encoding Φ(s), the output is:

Prediction(s) =

{
human, score(Φ(s)) > threshold

machine, scores(Φ(s)) < threshold
(2)

The classification threshold is determined by experimental parameter adjustment, detailed in Sec-
tion 4.2.

3.3 SUBDIVISION MODULE

As elaborated in section 3.1 and Figure 2, there are four granularities of multi-grained contrastive
learning in the subdivision module: AI texts using the same humanizing method and AI texts with
different humanizing methods, AI texts using the same level of humanizing method and AI texts
with different levels of humanizing methods, humanized AI texts and original AI texts, human texts
and AI texts. Given a text label tuple (p, q, r, l), where p represents the humanizing method used,
q represents the level of the humanizing method, r represents whether humanizing method is used
or not, and l represents the source of the sample (human or AI). Given text sample si and sj , text
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encoder Φ, the cosine similarity between two samples is defined as:

Sim(Φ(si),Φ(sj)) =
Φ(si) · Φ(sj)

||Φ(si)|| · ||Φ(sj)||
(3)

we have the cosine similarity constraints at different granularities:
Sim(Φ(s1),Φ(s2)) > Sim(Φ(s1),Φ(s3)), p(s1) = p(s2), p(s1) ̸= p(s3)
Sim(Φ(s4),Φ(s5)) > Sim(Φ(s4),Φ(s6)), q(s4) = q(s5), q(s4) ̸= q(s6)
Sim(Φ(s7),Φ(s8)) > Sim(Φ(s7),Φ(s9)), r(s7) = r(s8), r(s7) ̸= r(s9)
Sim(Φ(s10),Φ(s11)) > Sim(Φ(s10),Φ(s12)), l(s10) = l(s11), l(s10) ̸= l(s12)

(4)

From top to bottom, the constraints aim to ensure that the similarity of AI texts humanized by the
same method is greater than that of AI texts humanized by different methods; the similarity of AI
texts humanized to the same level is greater than that of AI texts humanized to different levels; the
similarity of AI texts that both either use or do not use humanizing strategy is greater than that
between one that uses it and one that does not; and finally, the similarity of texts from the same source
is greater than that of texts from different sources.

For contrastive learning at a specific granularity, we use the contrastive loss based on Guo’s frame-
work (Guo et al., 2024), which takes the form of a negative logarithmic aggregation function, for
label p, we have the loss expression Eq. 5, in which Nm represents the number of AI samples in a
batch, z+i,p is the average similarity between sample i and the positive samples, z−i,p is the average
similarity between sample i and the negative samples, τ is the temperature coefficient:

Lp =
1

Nm

Nm∑
i=1

− log
exp

(
z+i,p/τ

)
exp

(
z+i,p/τ

)
+ exp

(
z−i,p/τ

) (5)

For z+i,p and z−i,p, calculating method is similar, take the former as example, we have the expression
Eq. 6, where M represents the number of samples in a batch, Ip(i,j) is an indicator function that
equals 1 if sample j has the same label p with sample i, and 0 otherwise, ϵ is a small constant to
prevent division by zero:

z+i,p =

∑M
j=1 Sim(Φ(si),Φ(sj)) · Ip(i,j)∑M

j=1 Ip(i,j) + ϵ
(6)

We take contrastive loss in label p as example,label q, r and l’s loss are consistent with the above
equation, they together demonstrate our fine-grained differentiation for AI samples.

The final contrastive learning loss should be the sum of the contrastive loss at different granularities
above, so we have Eq. 7, where li represents the label l that whether the ith sample belongs to human
or AI, K indicates the sum of all samples entering the subdivision module, β, γ, δ, η are weight
coefficients, α = β+ γ+ δ+ η, and Lp, Lq , Lr and Ll represents the loss of the subdivision module
at different granularities:

Lcontra−tot =

K∑
i=1

α · li · Ll−human + (1− li) · (β · Lp + γ · Lq + δ · Lr + η · Ll−AI). (7)

Through multi-grained contrastive loss function propagation, the model can distinguish the differences
between AI texts in a fine-grained manner. We introduce the cross-entropy loss function Eq. 1 to
drive the model to improve performance in the final binary classification task, the final loss is:

Lfinal−loss = λ · Lcontra−tot + (1− λ) · Lce. (8)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use three datasets that are widely used for detector training and detection. Detailed
dataset information is in Appendix D. HC3 (Guo et al., 2023): A high-quality dataset containing QA
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question-answer pairs in numerous fields, each question corresponds to at least one human answer
and one machine-generated answer, focusing on multiple open-ended questions such as finance and
medicine. SeqXGPT-Bench (Wang et al., 2023): A benchmark dataset designed specifically for
sentence-level AI generated text detection tasks, containing text generated from multiple LLMs (such
as GPT-2, GPT-Neo, GPT-J, LLaMa, and GPT-3). CheckGPT (Liu et al., 2024c): This dataset
contains 900,000 samples, generated by ChatGPT based on prompts, covering diverse fields such as
news, reviews, and literatures.

Evaluating Metrics. We use Accuracy (ACC), F1-score (F1), and Recall as the main standard
(since our work can be seen as a classification task). We also introduce AUROC, FPR@95%TPR, and
AUPR: AUROC measures the model’s overall ability to distinguish positives from negatives across
all thresholds; FPR@95%TPR (we use F95T for short) reports the false-positive rate incurred when
95% of positives are recalled (the lower the better); AUPR summarizes the precision-recall curve and
reflects minority-class performance when positives are rare.

Baseline Detectors. We select the following five representative detectors as baselines and compare
them with HiDet. SimpleAI (Guo et al., 2023): Fine-tune the pre-trained RoBERTa model with
high-quality datasets. Watermark (Kirchenbauer et al., 2023): watermark methods embed the
signal during generation, and determine whether the text is generated by AI through detecting the
signal. CoCo (Liu et al., 2023): By constructing a coherence graph to capture the entity interaction
structure of the text and introducing a supervised contrastive learning framework, the model’s
understanding of language patterns is enhanced. RADAR (Hu et al., 2023): Using the adversarial
learning framework of GAN, model shows excellent robustness and transferability. PECOLA (Liu
et al., 2024b): The noise introduced by random perturbations is reduced through selective perturbation
strategies, and contrastive learning strategy is further used to enhance robustness. We also compare
with DeTeCtive (Guo et al., 2024), Binoculars (Hans et al., 2024), Fast-detectgpt (Bao et al., 2023),
Dna-gpt (Yang et al., 2023), detailed in Appendix J.

4.2 RESULTS AND ANALYSIS

Task 1: Detecting human texts and AI texts. Results are shown in the Task 1 column of Table
1. For HC3 and SeqXGPT datasets, our method outperforms all baseline detectors in all evaluating
metrics. For the CheckGPT dataset, we achieve the best in F1, ACC, and also achieve the second
best in overall recall. Further, using the comprehensive evaluating metric of F1 to illustrate, HiDet
is 0.72% higher than the second place on the SeqXGPT dataset and 4.11% higher than the second
place on the CheckGPT dataset. For the HC3 dataset, all baseline detectors perform well, HiDet still
achieves a certain breakthrough with F1 0.54% higher than the second place. The above results show
that the cross-data adaptability of our two-module framework is commendable, and acquires the most
advanced performance in Task 1.

Task 2: Detecting human texts, AI texts and humanized AI texts. We humanize the AI texts
in the HC3, SeqXGPT and CheckGPT datasets, and retrain the baseline detector based on the
humanized datasets to compare with HiDet. Results correspond to the Task 2 column in Table 1.
Our detector HiDet has achieved SOTA performance on the three humanized datasets. In terms
of recall, F1, and ACC, HiDet is 17.06%, 0.90%, and 3.08% higher than the second place on the
HC3 dataset, and 3.58%, 0.96%, and 1.05% higher than the second place on the SeqXGPT dataset.
On the CheckGPT dataset, recall and ACC are both the first place, and F1 reaches the runner-up
performance. Furthermore, for the detector CoCo, which also has outstanding performance, although
its performance on the CheckGPT dataset is comparable to ours, it relies on the extraction of entities
in texts and the construction of a coherence graph. If the AI texts are relatively concise and short, its
performance will suddenly drop because of the failure in building coherence graphs.

We also notice that some detectors performed better on Task 2 than on Task 1, this suggests the
success of robust strategies applied by these detectors. These relatively high-performing detectors are
specifically trained for robustness against humanizing methods. Some humanized texts may introduce
artifacts due to its imitative nature, and these detectors have enhanced their recognition capabilities
through adversarial training.
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Dataset Detectors Task 1 Task 2

Recall F1 ACC Recall F1 ACC

HC3

SimpleAI 94.32 94.31 94.32 71.58 79.25 96.44
Watermark 94.75 95.13 94.88 76.03 69.05 55.16
CoCo 99.31 98.30 98.42 58.18 95.09 94.44
RADAR 89.57 90.39 89.57 79.20 89.40 81.75
PECOLA 99.25 99.24 99.23 64.03 70.59 95.44
HiDet 99.78 99.78 99.80 96.26 95.99 99.52

SeqXGPT

SimpleAI 94.38 94.36 94.37 81.74 86.18 97.04
Watermark 96.30 95.92 96.07 76.22 68.80 54.61
CoCo 82.36 79.54 80.67 93.65 93.06 98.16
RADAR 61.15 54.16 61.37 66.77 72.08 58.51
PECOLA 90.83 90.82 90.82 74.98 80.30 96.06
HiDet 96.70 96.64 96.66 98.92 97.13 98.97

CheckGPT

SimpleAI 87.82 88.78 88.77 88.58 70.21 90.52
Watermark 97.06 72.26 75.69 76.54 69.56 56.22
CoCo 84.90 85.97 84.55 85.63 98.21 96.60
RADAR 63.26 63.01 63.04 72.71 75.35 61.94
PECOLA 87.16 86.79 86.82 69.14 75.63 96.90
HiDet 93.33 92.89 93.55 96.08 95.71 99.63

Table 1: Combined performance results across original and humanized datasets. The best number is
highlighted in bold, while the second best one is underlined, below are the same.

Figure 3: "Patching" results for fine-tuned DeBERTa, SimpleAI, and RADAR.

"Patching" results for existing detectors. We further explore the effect of our framework in "patch-
ing" existing detectors, given that the coarse module plays an important role in the overall detection
effect, its initial screening of data directly affects the training and detection of the subdivision module.
We replace the first module based on traditional classification loss with fine-tuned DeBERTa (Wang
et al., 2024), along with baseline detectors SimpleAI (Guo et al., 2023) and RADAR (Hu et al., 2023).
Results are shown in Figure 3. Taking the F1 score as an example, for Task 1, the two detectors
still have steady improvements, SimpleAI from 88.78% to 92.22%, an increase of 3.44%; RADAR
from 63.01% to 80.43%, an increase of 17.42%. Furthermore, when facing humanized data sets, the
performance improvement is particularly obvious, such as SimpleAI’s F1 from 70.21% to 92.37%, a
huge leap of 22.16%. This further proves one of our intention of using two-module detection: To
give the existing detector robustness when facing large-scale humanized AI texts, offering a second
checkpoint to capture those humanized AI texts that bypass detection.

Deeper exploration for coarse module. For coarse module’s threshold, it is determined by experi-
mental parameter adjustment. Another advantage of Hidet is that it is not sensitive to this threshold

7
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Figure 4: Performance under different thresholds.

(the second module provides a backup, machine text that the first module misses will still be detected
by the second module). We chose 0.35 as threshold, the results are shown in Figure 4.

4.3 PERFORMANCE FOR UNSEEN ATTACKS

To further demonstrate that Hidet’s multi-stage and multi-granularity strategy can effectively capture
the common features of AI humanized texts, we design several experiments to demonstrate Hidet’s
resilience to attacks:

Randomly masked humanizing methods. For the first experiment: during training, we randomly
mask several humanizing methods (removing spaces, simulating spelling errors, and repeating
sentences) and construct three new test datasets. Each dataset consisted of human texts, machine texts,
and machine texts humanized using one of the masked strategies (a 1:1:1 split). We evaluat the newly
trained Hidet on these new datasets, with the results shown in Table 2.(The first three rows in the
table show the performance of the newly trained Hidet under three unseen attacks. The last row is the
performance of Hidet on the seqxgpt dataset in the paper. We present it here for better comparison.)
Conclusions can be draw that although Hidet does experience a performance degradation of 1-2%, it
does not collapse and still demonstrate excellent performance.

Newly introduced humanizing methods. In order to simulate the generalization of Hidet in the
face of new humanizing strategies in reality, we introduce three unseen attack methods from Wang’s
work (Wang et al., 2024), they are: Homoglyph Alteration (change English characters into visually
similar Unicodes), Format Character Editing (change or insert formatting characters, including
zero-width whitespace insertion, and shift character editing), Emoji Co-Generation (compulsorily
generate or insert an emoji after finishing each sentence while recurrent generation and remove all
the emojis after finishing the whole text). We also construct a new test dataset (method is the same as
above) and test the generalization of Hidet under these new attacks, results shown in Table 2: Even in
the face of new humanized methods, Hidet performs very well, which demonstrates its robustness
against new attacks and indicates that it has successfully learned the commonalities of humanizing
strategies through our designed strategies.

Hybrid humanizing attacks. We consider that in real life, attackers may not be limited to using
only one humanizing method, we select representative humanizing methods from characters, words,
sentences, and paragraphs and mix them to simulate this situation and test Hidet, results shown in
Table 2. As can be seen from the table, Hidet has stable performance and maintains good robustness
in the face of hybrid attacks.

4.4 ABLATION STUDIES

To validate the effectiveness of our framework, we conduct ablation studies on both module design
and contrastive learning strategy. First, we verify that both the coarse and subdivision modules are
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Attack Type Acc Recall F1 AUROC F95T AUPR
Masked Attacks

spaceremove 0.9640 0.9558 0.9452 0.9915 0.0230 0.9817
typos 0.9634 0.9594 0.9562 0.9939 0.0135 0.9915
repeatsent 0.9709 0.9610 0.9552 0.9957 0.0103 0.9910
Hidet-sota 0.9897 0.9892 0.9713 0.9957 0.0004 0.9827

Unseen Attacks
Homoglyph Alteration 0.8783 0.8938 0.8374 0.9507 0.1675 0.9069
Format Character Edit 0.9750 0.9400 0.9616 0.9932 0.0100 0.9893
Emoji Co-Generation 0.9733 0.9650 0.9592 0.9955 0.0125 0.9912
Hidet-sota 0.9897 0.9892 0.9713 0.9957 0.0004 0.9827

Hybrid Attacks
punctremove+reverse 0.9853 0.9803 0.9778 0.9963 0.0030 0.9937
backtrans+spaceremove 0.9864 0.9816 0.9794 0.9956 0.0020 0.9933
para+typos 0.9864 0.9817 0.9793 0.9978 0.0021 0.9961
para+reverse 0.9860 0.9813 0.9788 0.9964 0.0023 0.9939
Hidet-sota 0.9897 0.9892 0.9713 0.9957 0.0004 0.9827

Table 2: Comparative Performance on different attack types, F95T means FPR@95%TPR.

Figure 5: Ablation studies for module design and contrastive learning strategy.

indispensable by training them separately on two tasks: detecting original AI texts (Task 1) and
humanized AI texts (Task 2). Results show that while the coarse module performs better on simple
detection tasks, the subdivision module excels at detecting humanized texts (F1 increased by 10% in
Task 2), with HiDet achieving the best performance in both tasks by leveraging their complementary
strengths. Second, we evaluate our multi-grained contrastive learning approach on the subdivision
module, demonstrating significant improvements over baselines (15% increase in human recall and
10% in F1), proving its effectiveness in capturing subtle patterns that prevent humanized AI texts
from evading detection, detailed results in Appendix I.

5 CONCLUSION

In this paper, we propose a coarse-to-fine AI generated text detector model and a novel training
paradigm. The coarse module quickly screens the original AI texts, and the subdivision module uses
multi-grained contrastive learning to carefully distinguish different levels of humanized AI texts. Our
detector HiDet has achieved SOTA performance in two main tasks. By decoupling the complete
process into simple samples detection and difficult samples detection, we set up solid defence towards
AI humanizing attacks. Moreover, our subdivision module is a plug-and-play patch that can be easily
applied to existing detectors to further improve their performance. We hope HiDet can better assist AI
text detection in real life, and that this hierarchical and multi-grained contrastive learning framework
can bring new maps and ideas to researchers in this field.
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A BROADER IMPACTS

The rapid development of LLMs has enabled a large amount of AI-generated texts to be obtained
quickly and at low cost. Given that it may lead to academic fraud, phishing emails, the spread of
false information and other problems, detecting and monitoring AI-generated texts is undoubtedly
a top priority. However, due to the fragility of current AI content detectors and the diversity of
text humanizing methods, AI texts can easily bypass detection after humanizing. Therefore, the
development of robust AI content detectors is urgent. Our paper introduces a new robust AI content
detector training paradigm, which demonstrates SOTA performance in multiple benchmarks. These
advances will bring the green development and use of LLMs with new power. In addition, our
subdivision module can be used as a "patch" to further improve the performance of current detectors
when facing large-scale humanized AI texts, which shows that our method has broad prospects for
practical application and rich significance.

B LIMITATIONS AND FUTURE WORK

In this paper, we take into consideration that AI texts may use different humanizing methods to evade
the detector and thus use multi-grained contrastive learning to strengthen the detector in a targeted
manner. However, since we mainly focus on the robustness task of detection, Hidet’s generalization
performance on other datasets may not be as good as zero-shot works. In the future, one possible
consideration in the field of AI text detection is how to combine the zero-shot method based on
statistics with the supervised training method based on deep learning to achieve better robustness and
generalization. We will continue to work in this direction.

C DETAILED HUMANIZING METHODS AND ITS LEVELS

Following Zhou’s work (Zhou et al., 2024), four types of humanizing methods are classified below:

1. char level: Attacks at this level include space deletion, space addition (Cai and Cui, 2023),
capitalization typo simulation, punctuation deletion, and random word merging.

2. word level: Attacks at this level include keyboard spelling errors, which replaces characters
in similar keyboard positions; swaping adjacent characters, inserting irrelevant characters,
and deleting specific characters, which simulate human negligence when typing; word
spelling errors, which simulates users’ incorrect spelling of words through a predefined
spelling error dictionary; adverb perturbations, which randomly inserts relevant adverbs
before verbs in the original text; word replacement, which uses the BERT model (Devlin
et al., 2019) to replace words in the text with synonyms.

3. sentence level: Attacks at this level include adding irrelevant sentences; repeating parts of
sentences; randomly selecting sentences for back-translation; and sentence-level replace-
ment, which randomly masks 2 to 5 sentences in the original text and replaces them using
the BART-large model (Lewis et al., 2020).

4. paragraph level: Attacks at this level include rewriting using the Dipper interpreter (Krishna
et al., 2024); back-translation using the Helsinki-NLP model (Tiedemann and Thottingal,
2020); and rearrangement of paragraph structure.

Given original AI texts X , we thus have humanized AI texts set:

Xhumanized = {Xchar, Xword, Xsent, Xpara}

which is illustrated in section 3.1.

D DETAILED CONSTRUCTION OF DATASET

For the simple binary classification task of detecting human texts and original AI texts, the distribution
of our samples is shown in Table 3. We ensure the distribution of human texts and AI texts (machine
texts) is approximately 1:1. The two-tuple (human, machine) in the table represents the number of
human texts and the number of AI texts. For the watermark detector, since it focuses on the hidden
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Dataset Train Test Valid

CheckGPT (2000,2000) (1921,2078) (2500,2500)
HC3 (5040,5000) (5040,5000) (2000,2000)
SeqXGPT (2467,2533) (1928,1872) (1005,995)

Table 3: Detailed composition of the dataset for detecting
human texts and original AI texts.

Watermark Human Machine

CheckGPT 566 570
HC3 438 538
SeqXGPT 600 520

Table 4: Detailed composition of the
dataset for watermarks.

Dataset Train Test Valid

CheckGPT (500,8500) (1101,23887) (500,8490)
HC3 (500,7500) (1500,22500) (500,7500)
SeqXGPT (500,7500) (1500,21004) (500,6494)

Table 5: Detailed composition of the dataset for detecting
human texts and humanized AI texts.

Watermark Human Machine

CheckGPT 566 8550
HC3 438 8098
SeqXGPT 600 520

Table 6: Detailed composition of the
humanized dataset for watermarks.

singal embedded in the data and does not require training, it only needs to build a test set. While
it takes a long time to process the watermark on the dataset, we did not generate a large test set.
The data are shown in Table 4. For the more realistic task of detecting human texts and humanized
AI texts, the distribution of our samples is shown in Table 5. We select 500 human texts and 500
original AI texts from the dataset respectively, and perform 16 humanizing methods on the AI texts
at the character, word, sentence, and paragraph levels, thereby constructing a perturbation dataset
containing human texts, original AI texts, and humanized AI texts. Therefore, the perturbed datasets
are mostly composed of AI texts, which are consistent with the current trend of a variety of machine
text humanizing methods and a flood of generation sources. For the watermark detector, similarly,
after the AI texts are injected with the watermark, we humanize them in sixteen different ways and
explore whether these humanizing attacks will cause the watermark to be covered and invalid. The
data distribution is shown in Table 6.

E COMPARISON OF DETECTORS IN COSTS

Detectors Preprocess Time Preprocess Memory Train Time Train Memory

PECOLA 22:17:04 642 00:08:55 9228
CoCo 04:42:56 10520 00:33:27 14556
Watermark 153:21:22 1290 00:01:31 840
Contra no need no need 00:12:40 10840
Coarse no need no need 00:08:40 10840
Subdivision no need no need 00:01:36 10840

Table 7: Detailed comparison of the detectors in terms of costs. Preprocess time means data should
be preprocessed before training.

The baseline detectors SimpleAI and RADAR are similar to coarse module (which are also the
subjects of our patching experiments) thus are not considered here. Shown in Table 7, Contra means
we directly use contrastive learning to train the detector. The data processing and training time are
formed in hour: minute :second, and the memory occupied is in MB. Watermark does not require
additional training of the detector, and its training time is temporarily expressed as the detection time.
We uniformly set the training batch size to 16, the training round to 15, and trained on NVIDIA RTX
A6000. The high cost of contrastive learning is that it needs to calculate the similarity between all
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sample pairs, which has a time complexity of O(n2) while cross entropy of O(n), which will mainly
affect training time rather than memory usage. Compared with using contrastive learning directly,
the subdivision module only needs to process the filtered samples, and the training time is reduced
from 12 minutes to 1 minute 36 seconds. In addition, although PECOLA, CoCo and Watermark have
achieved good performance in detecting AI texts, their cumbersome and lengthy data preprocessing
process deserves high attention and needs to be considered seriously. Taking CoCo as an example, it
is slow in extracting entity graphs from texts, takeing nearly 5 hours to extract 8,000 training samples.
When large-scale machine text needs to be detected in real life, such as the 23005 samples in our
test data set, its data preprocessing takes an astonishing 17 hours, shown in Table 9. These situations
remind us that if we want to make an AI content detector with advanced performance and practical
significance, the time issue of data processing needs to be paid great attention to.

PECOLA Augment Select Total

Train 00:03:44 22:13:20 22:17:04
Eval 00:03:16 19:26:45 19:30:01
Test 00:09:48 56:56:28 57:06:16

Table 8: Detailed time cost for PECOLA in build-
ing train, eval and test sets. Augment means data
augmentation, Select means its selecting strategy.

CoCo Extract Build Total

Train 04:41:04 00:00:31 04:42:56
Eval 02:03:20 00:00:23 02:03:43
Test 17:06:38 00:01:21 17:07:59

Table 9: Detailed time cost for CoCo in build-
ing train, eval and test sets. Extract means ex-
tracting entity, Build means building graphs
according to the extracted entities.

F AI-GENERATED TEXT DETECTORS

In order to prevent AI-generated texts from being abused, numbers of detectors have been proposed
by researchers, thus consolidating the defense line of text detection. We classify the existing detectors
into the following four categories:

Statistical and mathematical based detectors: Using information entropy, cross perplexity, word
frequency statistics and other features to perform zero-shot detection. Mithcell (Mitchell et al., 2023)
quantifies the difference between machines and human in word selection via conditional probability
curvature. Su (Su et al., 2023) applies log-rank information to detect. Open source detecting platform
GPTZero and GLTR (Tian and Cui, 2023; Gehrmann et al., 2019) are also included.

Watermark based detectors: Watermark detection algorithms in AI texts detection track the source
of generated texts by embedding invisible identifiers. Representative works include: (Gu et al., 2022;
Liu et al., 2024a; Hou et al., 2024; Lu et al., 2024). Among them, Kirchenbauer (Kirchenbauer et al.,
2023) adds a fixed weight to the logit value of the predefined "green word list" and determine whether
the text is generated by the model by counting the proportion of green words in the texts.

Classifier based detectors: Researchers (Chen et al., 2023; Miao et al., 2024; Mireshghallah et al.,
2024; Wang et al., 2023; Liu et al., 2024c) typically employ RoBERTa (Liu et al., 2019) as the
backbone architecture for training supervised binary classifiers. Notable developments are seen in
OpenAI’s official detection toolkit (Solaiman et al., 2019a) and RADAR (Hu et al., 2023), which
enhances adversarial robustness against perturbation attacks through paraphrase-based adversarial
training.

Other methods based detecors: Soto (Soto et al., 2024b) uses style representations, Huang (Huang
et al., 2024) takes advantage of siamese neural network, Krishna (Krishna et al., 2024) achieves
success through retrieval methods. Zhu (Zhu et al., 2023) innovatively queries LLM to detect
LLM-generated texts.

G TRAINING DETAILS

In the experiment,we use SimCSE-RoBERTa(Gao et al., 2021) as encoder and freeze its embedding
module. For coarse module, we employ AdamW(Loshchilov and Hutter, 2017), learing rate at
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Figure 6: Illustration of contrastive learning and cross entropy on final texts’ embeddings. Para-mac
reffers to text using humanizing method of paragraph level, rest are the same.

Figure 7: Contrastive loss VS cross-entropy loss on HC3.

2e-5, β1 at 0.9, β2 at 0.98, warmed up 2000 steps, weight decay at 1e-4, maximum input token
length is 512, threshold 0.35. For subdivision module, we set learing rate at 1e-5, warmup at 1000,
β = γ = δ = η = 1 and epochs 15. For baselines, we retrain them on the three datasets of HC3,
SeqXGPT and CheckGPT according to the method described in their papers. RADAR does not
provide source code, so we use the pretrained model they provide. In addition, the watermark-based
detector does not need to be trained, its processing work is to add watermarks to the input dataset.

Figure 8: Comparison of coarse module with contrastive learning and cross-entropy on SeqXGPT.
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H CONTRASTIVE LEARING IN DETECTORS

There have been works showing that contrastive learning has excellent performance in the field of
natural language processing (Cheng et al., 2023). MixCSE (Zhang et al., 2022b), SimCSE (Gao et al.,
2021), VaSCL (Zhang et al., 2022a) use unsupervised contrastive learning framework to enhance
the semantic discrimination ability of the model; CoCo (Liu et al., 2023) use supervised contrastive
learning to make the model pay more attention to difficult negative samples in low-resource scenarios;
Soto and Guo (Soto et al., 2024a; Guo et al., 2024) use contrastive learning to distinguish the style
features of human and machine writing. By narrowing the distance between positive samples and
increasing the distance between negative samples, contrastive learning has shown great potential in
training AI content detectors (Liu et al., 2024b).

We introduce contrastive learning strategy in the subdivision module. For the coarse screening
module, only the cross entropy loss function is used. This has several advantages: first is better
performance, shown in Figure 8. Compared with coarse module using contrastive learning, Hidet
reaches the lead in AI recall, average recall, ACC and F1. In addition, HiDet using contrastive
learning in both stages also shows performance degradation, as the human recall rate regressed from
98.83% to 94.40%. Second, coarse module based on cross entropy converges faster and more stably,
and its training accuracy is higher than that of the module based on contrastive learning, illustrated in
Figure 7.

I DETAILED ABLATION STUDIES

Ablation study for modules. In this experiment, we aim to verify that the coarse module and
subdivision module are indispensable. We directly train the two modules on the CheckGPT dataset
in Task 1 and humanized CheckGPT dataset in Task 2, results are shown in Table 10. Since the
subdivision module is designed for detecting AI texts humanized in different level, it performs worse
than the coarse module in Task 1, which is a simple task of detecting original AI texts, but significantly
outperforms the coarse module in Task 2, a task which involves disguised AI texts (F1 increased
by nearly 10% from 74.95% to 85.51%). At the same time, all metrics of HiDet in the two tasks
are better than the previous two. This setting of making the coarse module focus on filtering simple
samples and the subdivision module focus on detecting difficult samples enables the two modules to
perform their respective duties, achieving the results of "one plus one greater than two".

Module Task 1 Task 2

Recall F1 ACC Recall F1 ACC

Coarse 88.75 90.07 90.60 83.43 74.95 96.94
Subdivision 88.16 87.09 88.40 88.42 85.51 97.83
HiDet 93.33 92.89 93.55 96.08 95.71 99.63

Table 10: Results of ablation study for modules. We directly train and apply each module on the two
tasks.

Ablation study for multi-grained contrastive learning. In this experiment, we aim to verify the
effectiveness of multi-grained contrastive learning on the subdivision module. While keeping the
coarse module the same, we retrain the subdivision module of different granularity on SeqXGPT
humanized dataset and set it as the contrast, results are shown in Table 11. The subdivision module
using multi-grained contrastive learning is better than the former in all metrics. In comparison with
the basical one, a significant increase of nearly 15% in human recall and a notable improvement of
10% in F1 are witnessed. The result proves that the multi-grained contrastive learning we designed
promotes better understanding of details and effectively solve the current problem of AI texts escaping
detection through humanizing methods.
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Weight
Coefficient

Metrics

Human-rec Machine-rec Recall F1-score ACC

β = γ = δ = 0 85.07 96.46 90.76 88.27 97.54
β = 0 95.26 97.84 96.55 96.46 98.54
γ = 0 95.27 97.89 96.58 96.85 98.60
δ = 0 95.86 97.84 96.85 96.80 98.59
HiDet 98.83 99.01 98.92 97.13 98.97

Table 11: Results of ablation study for multi-grained contrastive learning. We drop each component
of the loss function 7 and retrain the subdivision module.

J SUPPLEMENTARY EXPERIMENTS

To better evaluate our work ,we introduce new baselines DeTeCtive (Guo et al., 2024), Binocu-
lars (Hans et al., 2024), Fast-detectgpt (Bao et al., 2023), Dna-gpt (Yang et al., 2023) and introduce
more evaluation indicators. The results are shown in Table below, we do this on SeqXGPT dataset.

On both tasks, Hidet still achieved sota performance. This demonstrates the necessity of Hidet’s new
paradigm of multi-stage detection and the effectiveness of multi-granularity contrastive learning in
distinguishing humanized texts.

Table 12: Task 1: Detecting human vs. machine texts.
Detectors ACC Recall F1 AUROC FPR@95%TPR AUPR

Fast-detect 0.6460 0.5960 0.6274 0.6697 0.8420 0.6183
Binoculars 0.8070 0.8160 0.8087 0.8630 0.7200 0.8771
Dna-gpt 0.7150 0.8120 0.7273 0.7100 0.5950 0.7223
DeTeCtive 0.9461 0.9186 0.9453 0.9876 0.0748 0.9887
SimpleAI 0.9437 0.9438 0.9436 0.9831 0.0768 0.9858
Watermark 0.9607 0.9630 0.9592 0.9990 0.0000 0.9990
CoCo 0.8067 0.8236 0.7954 0.8942 0.2326 0.8978
RADAR 0.6137 0.6115 0.5415 0.6737 0.7230 0.6238
PECOLA 0.9082 0.9083 0.9082 0.9705 0.1680 0.9735
HiDet 0.9666 0.9670 0.9664 0.9931 0.0208 0.9923

Table 13: Task 2: Detecting human, machine, and humanized machine texts.
Detectors ACC Recall F1 AUROC FPR@95%TPR AUPR

Fast-detect 0.4159 0.3913 0.5569 0.5781 0.9950 0.9516
Binoculars 0.6758 0.6706 0.7951 0.7528 0.8996 0.9775
Dna-gpt 0.1979 0.1455 0.2486 0.4929 0.9890 0.9469
DeTeCtive 0.8502 0.8824 0.4446 0.9262 0.2128 0.3528
SimpleAI 0.9704 0.8174 0.8618 0.9550 0.2233 0.9962
Watermark 0.5461 0.7620 0.6879 0.9990 0.0000 0.9999
CoCo 0.9816 0.9365 0.9306 0.9732 0.0054 0.9789
RADAR 0.5850 0.6677 0.7207 0.7382 0.6726 0.9723
PECOLA 0.9606 0.7498 0.8030 0.9410 0.9952 0.2673
HiDet 0.9897 0.9892 0.9713 0.9957 0.0004 0.9827

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our work uses LLM as a general auxiliary tool. Its functions include assisting with image rendering
and beautification, assisting with paper writing and polishing, and data screening during training.
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