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ABSTRACT

Expansive Matching of Experts (EMOE) is a novel method that utilizes support-
expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty
based rejection on out-of-distribution (OOD) points. We propose an expansive data
augmentation technique that generates OOD instances in a latent space, and an
empirical trial based approach to filter out augmented expansive points for pseudo-
labeling. EMOE utilizes a diverse set of multiple base experts as pseudo-labelers
on the augmented data to improve OOD performance through a shared MLP with
multiple heads (one per expert). We demonstrate that EMOE achieves superior
performance compared to state-of-the-art methods on both image and tabular data.

1 INTRODUCTION
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Figure 1: Mockup. Our approach trains a set
of diverse base experts on training data. After,
we consider a novel augmentation to expand
the distributional support in a latent space.
Then, using a shared neural network (MLP)
with multiple heads (one per expert) we train
the network to match the expert labels on the
expanded data.

It is well-known that the generalization capabilities
of models can be severely limited when tested on
out-of-distribution (OOD) data that deviates from
the distribution seen at training time (Torralba and
Efros, 2011; Liu et al., 2021; Freiesleben and Grote,
2023). This in turn affects many real-world applica-
tions where models may be evaluated on distribution-
shifted data during deployment. For instance, these
issues commonly arise in medical applications where
patient distributions at inference time may deviate
from the training data (Lee et al., 2023). A potential
strategy for the safe deployment of models in real-
world applications is to employ novelty-based rejec-
tion (Dubuisson and Masson, 1993; Hendrickx et al.,
2024), where predictions are rejected whenever the
model is evaluated on an instance that deviates from
the data distribution seen during training. While such
an approach is appropriate in certain scenarios (for
example, whenever it is expected that a human will
be in the loop and thus can easily intervene upon re-
jection), this prevalent strategy is overly-conservative
as it foregoes any potential extrapolation1 by design.
That is, novelty-rejection forbids any form of extrap-
olation (predictions outside of the training data sup-
port), even when the model may be capable. Instead, in this work we attempt to better assess (and
improve) the limits of models’ ability to extrapolate based on dataset augmentation and self-training
on a set of experts (see Fig. 1).

Broader Impacts As a motivating application, consider the use of ML models for scientific
discovery. In such discovery applications, ML models should, by definition, characterize data that
is novel and distinct from what has been previously characterized. These, however, are exactly the
sort of inferences that are disallowed by novelty-rejection methods, which essentially forbid any

1We use the term extrapolation to loosely encompass prediction outside of the training data distribution
support (without consideration of the data’s convex-hull).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Predictions

Experiments

Virtual Screen
OOD Inputs

{ }, ,
Training Data

ML Model

(a) Poor Extrapolative Rejection

Filtered
Preds

Experiments

Virtual Screen
OOD Inputs

{ }, ,
Training Data

ML Model

(b) Filtration on Extrapolative Data.

Figure 2: Virtual screening. (a) Of-
ten, ML models yield unreliable pre-
dictions that will waste resources on
unsuccessful experiments (Kimber
et al., 2021). (b) We seek reliable ex-
trapolatory predictions (✓) for better
use of experimental resources.

potential characterization of instances that expand the support
of characterized data (regardless of a model’s capability to
do so). Take, for instance, drug discovery (a driving appli-
cation for this paper) where one hopes to predict desirable
properties of molecules that are quite distinct from molecules
that have been previously characterized. (I.e., “scaffold hop-
ing” (Hu et al., 2017), leveraging existing data to discover a
desirable molecule with significantly different chemical struc-
ture.) Novelty-based rejection would reject any prediction on
molecules that do not fall firmly in the support of what has been
previously characterized and used for model training. There-
fore, these typical rejection techniques only allow predictions
on molecules that are similar to those already characterized in
the training set (akin to the notion of ‘interpolation’) prevent-
ing their utility in discovering structurally novel molecules.
Instead, we wish gain a better understanding of what OOD
(‘extrapolatory’) instances may be well predicted by our model.
In drug discovery, the use of models with poor confidence fil-
tration will result in false positives that waste resources on
unsuccessful experiments where screened molecules do not
present desirable properties (see Fig. 2); hence, it is key that
high-confidence predictions on OOD instances correspond
with accuracy (i.e., that confidence filtration on OOD instances
leads to higher-quality predictions).
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Figure 3: Tally of datasets where
respective methods lead in met-
rics: AUPRC for recall less than
.2 (AUPRC@R< .2), AUPRC, and
AUROC. (See further details in §4.)

Contributions Unfortunately, in-distribution confidence
based measurements fail to properly characterize model ca-
pabilities on OOD data (Arjovsky et al., 2019; Creager et al.,
2020). In this work we show that we can improve confidence-
based filtration of predictions (as measured by area under
precision-recall and receiver operating characteristic curves,
AURPC/AUROC) on OOD instances with a novel training
scheme of a multi-headed network based on matching with
augmented (expanded) data (see Fig. 1, Alg. 1). In particu-
lar, our contributions are as follows: 1) we propose a novel
expansive data augmentation technique that generates OOD
instances in a latent space; 2) we propose a novel empirical
trial based approach to filter out augmented expansive points
for psuedo-labeling; 3) we develop a straight-forward but ef-
fective strategy that yields a strong, diverse set of base-experts
for self-training; 4) we develop our novel EMOE approach
for training a multi-headed network; 5) we show state-of-the-art (SOTA) performance in rejecting
predictions via estimated confidences via AUPRC-based metrics (see Fig. 3) in a single-source
generalization setting (Qiao et al., 2020).

Algorithm 1 Expansive Matching of Experts (EMOE) Approach

1: Learn a latent space.
2: Train a set of base experts.
3: Expand training set with data that falls beyond the support in the latent space.
4: Train a network with multiple heads (one per base expert) matching the experts on expanded and

original training dataset.
5: Infer with a combination of the base experts and network heads.

2 RELATED WORK

Domain Generalization Domain generalization (DG) aims to learn a model that is able to gener-
alize to multiple domains. A typical approach is to learn a domain invariant representation across

2
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multiple source domains. Domain invariant representation learning can be done by minimizing
variations in feature distributions (Li et al., 2018; Ding et al., 2022) and imposing a regularizer to
balance between predictive power and invariance (Arjovsky et al., 2019; Koyama and Yamaguchi,
2020). Another line of research incorporates data augmentation to improve generalizability. Basic
transformations like rotation and translation, varying in magnitude, are commonly used on images
to diversify the training data (Cubuk et al., 2019; Berthelot et al., 2020). More sophisticated aug-
mentation techniques have recently surfaced: (Zhang et al., 2018) introduced mixup, which linearly
combines two training samples; (Yun et al., 2019) proposed CutMix, blending two images by re-
placing a cutout patch with a patch from another image; (Zhong et al., 2022) adversarially augment
images to prevent over fitting to source domains. We focus on augmentations that are general and
applicable across modalities.

Self-Training Self-training aims to utilize an earlier model as a pseudo-labeler to populate the
training data with more labelled instances by labelling unlabelled data at each iteration. Then, the
new labelled set is combined with the previous training set to train a new model. The concept of
pseudo-labeling was initially proposed by (Lee, 2013), suggesting a straightforward approach of
retaining instances where the teacher model has high prediction probabilities. Following (Lee, 2013;
Zou et al., 2018) proposed to use a proportion of the most confident unlabelled data points instead
of a fixed threshold. Researchers then combined curriculum learning with pseudo labeling, where
thresholds for acquiring unlabeled data for each class is dynamically adjusted at different time steps,
allowing the most informative unlabeled data to be incorporated (Cascante-Bonilla et al., 2020;
Zhang et al., 2021). Another line of research improves robustness of pseudo-labeling by encouraging
diversity in the pseudo-labeler. In their work, Ghosh et al. (2021) employed an ensemble of models
as teacher to provide pseudo-labels for the student model. On the other hand, (Xie et al., 2019)
injected noise into the pseudo-labeler model by incorporating Dropout (Srivastava et al., 2014) and
data augmentation techniques to provide more robust pseudo-labels. In this work we show how to
utilize multiple pseudo-labelers on extrapolatory augmented data to improve OOD performance.

Selective Classification Reject option methods (also known as selective classification) aim to
identify instances where the model should not predict. Many selective classification approaches
rely on a post-training processing strategy. Following this strategy, once the model has finished
training, a rejection metric is computed. Then, predictions are rejected or accepted based on a
predefined threshold. A simple choice for a rejection metric is to utilize the conditional output
probability from ML models (Stefano et al., 2000; Fumera et al., 2000). Building upon these works,
(Devries and Taylor, 2018) proposed to train a confidence branch alongside of the prediction branch
by incentivizing a neural network to produce a confidence measure during training; Geifman and
El-Yaniv (2017) proposed a method for constructing a probability-calibrated selective classifier with
guaranteed control over the true risk. Recently, methods adopting end-to-end training approaches
have been proposed (Thulasidasan et al., 2019) (Ziyin et al., 2019) (Geifman and El-Yaniv, 2019). In
these works, an extra class is added when predictions are made. If the extra class has the highest class
probability for a sample, the sample is rejected. Most reject-option approaches are geared towards
in-distribution rejection and utilize novelty-rejection when encountering any OOD points (Torralba
and Efros, 2011; Liu et al., 2021; Freiesleben and Grote, 2023); instead, we propose to learn better
conditional output probabilities on OOD data for more effective, capability-aware rejection.

Ensemble Modeling Ensemble techniques aim to utilize a diverse set of models jointly for better
performance. Early methodologies for ensembles aggregate (bag) predictions from all models
(Dietterich, 2007)(Kussul et al., 2010) or a subset of the models in the ensemble (Jordan and Jacobs,
1993), (Eigen et al., 2013). In the OOD setting, prior works addressed this problem by enforcing
prediction diversity on OOD data (Pagliardini et al., 2023), ensembling moving average models
(Arpit et al., 2022a), and training an ensemble of domain specific classifiers (Yao et al., 2023). EMOE
adopts a multi-headed architecture that produces an ensemble to improve predictions on OOD data.

3 METHOD

Training Data Throughout, we assume the ‘single-source’ generalization setting (Qiao et al., 2020),
where we observe a single in-distribution (ID) training dataset D = {(xi, yi)}Ni=1, and instances
are drawn iid (xi, yi) ∼ Pin without any accompanying environmental/domain/source information
nor any labeled/unlabeled OOD instances. For simplicity, we write to the binary classification case,
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yi ∈ {0, 1}, but our methodology is easily extendable to other supervised tasks. We design our
method to work in general, non-modality specific2 (e.g., image, text, audio) settings such as the
real-valued case xi ∈ Rd.

Base Collection of Experts EMOE leverages a set of diverse initial experts {gk}Kk=1 to guide the
training of a secondary model. There are many mixture of experts (Jordan and Jacobs, 1993), (Eigen
et al., 2013) (Du et al., 2021) and ensembling (Arpit et al., 2022a) (Dietterich, 2007) (Pagliardini
et al., 2023) (Yao et al., 2023) methods available; we observe good empirical performance (see Sec. 4)
using a collection of strong base-learners trained on uniform sub-selections of instances and features
(akin to the construction of a random forest).

3.1 EXPANSIVE AUGMENTATION OF TRAINING DATA

Figure 4: Expansion
in latent space: points
(black) are augmented
(gray) and expand the
distributional support.

We begin with the simple intuition that if we want to improve extrapolatory
performance of models, then we should consider training signals on instances
that lie outside of the original data support. While there has been much recent
attention in strong augmentations to improve OOD performance in modality-
specific settings (Zhong et al., 2022) (Xie et al., 2019), performing such
augmentations on general data remains a challenge. To reason about the
support of the training data, and how to expand past it, we propose to leverage
a latent factor space, φ : Rd 7→ Rs. While learning semantically meaningful
latent factor spaces remains an active area of research, we observed strong
performance utilizing autoencoding techniques (see Sec. 4), which carry
a corresponding decoder γ : Rs 7→ Rd. Without loss of generality, we
consider centered latent spaces such that E[φ(X)] = 0.

We propose a novel, yet straightforward strategy to expand data outside of
training distributional support: perturb instances to lie further away from the origin in latent space.
In particular, if we have latent vector z = φ(x), we propose to consider perturbations of the form
z′ = (1 + |ϵ|)z where ϵ ∼ N (0, 1), and one can utilize the decoder x′ = γ(z′). That is, we define
our expansion operation on a set of points as:

Ex({xi}Ni=1) ≡ {γ ((1 + |ϵi|)φ(xi)) | ϵi ∼ N (0, 1)}Ni=1 . (1)

Ex will be a stochastic mapping. Clearly, the perturbed latent codes will tend away from areas of
support (see Fig. 4). However, unlike with small jitter-based perturbations, where one can retain an
original instance label, it is less clear how to derive an accompanying training signal for expansive
augmentations. Here, we propose to leverage a pseudo-labeling scheme where we derive K labels
with the base experts (f1(x′), . . . , fK(x′))3. We expound on utilizing the base expert labels below.

3.2 TRUSTWORTHY EXPANSIVE SIGNALS WITH EXTRAPOLATORY DIRECTIONAL MINING

Recent works have noted that confidence based filtration of pseudo-labels improves self-training
techniques (Lee, 2013; Sohn et al., 2020). Here we present a novel, complementary approach to
filter out pseudo-labels on expansive augmented data (as above). We wish to filter out expansive
augmentations where predicted labels may not be accurate or helpful. Of course, predicting the
quality of extrapolatory performance is in itself a difficult task, since we do no have access to any
OOD data in our setting. Our approach is based on empirical non-iid held-out trials to judge the
difficulty of labeling extrapolatory instances in some direction (in latent space), and keep track of
directions that are easiest to extrapolate to for later augmentation. That is, for a given direction on
the hyper-sphere v ∈ Ss−1, we withhold the training instances that have the highest projections
w.r.t. v (are in the highest q-th quantile), T held

v ≡ {(x, y) ∈ D | φ(x)T v ≥ tv,q}, where tv,q is the
threshold of the q-th quantile for projections of training latent vectors onto v. The remaining points
in the training set are then used to train a model for our trial on direction v: T train

v ≡ D \ T held
v . We

train a simple parametric model (e.g., a linear logistic-regression model) on T train
v , fv and evaluate

a performance metric, ρ (e.g., accuracy, F1-score, etc.), on the held-out trial data ρ(T held
v , fv). We

take well-performing trials (based on ρ(T held
v , fv)) as evidence that extrapolation to extreme values

2In particular, we avoid any modality or domain-specific augmentation of data.
3One may also train base experts directly on the latent space, (f1(z′), . . . , fK(z′)), and avoid the decoder.
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in v is possible with the data, and hence accrue instances in T held
v into a large collection E for

pseudo-labeling with the base experts (see Alg. 2 for details).

Algorithm 2 Extrapolatory Directional Mining

1: procedure GET DIRECTIONAL EXPANSION POINTS(φ,M, T, q,D) ▷ get quality points to
expand, E , based on top M (of T ) performing (based on metric ρ) directional empirical held-out
trials withholding the q-th percentile of projections in latent space φ.

2: heap.init()
3: for j ∈ {1, . . . , T} do
4: v ← Unif({ x

∥x∥ | (x, y) ∈ D}) ▷ random direction
5: tv,q ← quantile({φ(x)T v | (x, y) ∈ D}, q)
6: T held

v ← {(x, y) ∈ D | φ(x)T v ≥ tv,q} ▷ withhold extreme points on direction
7: T train

v ← D \ T held
v . ▷ train on rest

8: fv ← model.fit(T train
v )

9: heap.push(ρ(T held
v , fv), T held

v ) ▷ order based on performance
10: end for
11: E = [ ]
12: for j ∈ {1, . . . ,M} do ▷ get points in top M trials
13: T ← heap.pop()
14: E.append({x | (x, y) ∈ T })
15: end for
16: return E
17: end procedure

3.3 MATCHING NETWORK WITH EXPERTS ON EXPANSIVE DATA

We propose learning a multi-headed network based on self-training with base experts’ predictions on
the (filtered) expanded set of training data, E . That is, we propose learning a network composed of a
shared multilayer perceptron (MLP), ϕ : Rd 7→ Rm, and K expert matching heads, h1, . . . , hK ; e.g.,
mapping to logit space for binary classification, hj : Rm 7→ R. Our loss incorporates a per head loss
that matches experts on a set S:

Lmatch(ϕ, {hj}Kj=1, {gj}Kj=1;S) ≡
1

|S|K
∑
x∈S

K∑
j=1

ℓ(hj(ϕ(x)), gj(x)), (2)

where ℓ(ŷ, y) is a supervised loss (e.g., the cross-entropy loss). Moreover, we will utilize a mean-
matching L1 loss

Lmean(ϕ, {hj}Kj=1, {gj}Kj=1;S) ≡
1

|S|
∑
x∈S

∥∥∥∥∥∥ 1

K

K∑
j=1

σ(hj(ϕ(x)))−
1

K

K∑
j=1

gj(x))

∥∥∥∥∥∥
1

, (3)

where σ(·) is the sigmoid. Our full expansive matching of experts loss is then:

LEMOE(ϕ, {hj}Kj=1, {gj}Kj=1;D,Ex(E)) ≡ Lmean(ϕ, {hj}Kj=1, {gj}Kj=1;D) (4)

+ Lmatch(ϕ, {hj}Kj=1, {gj}Kj=1;D) (5)

+ λLmatch(ϕ, {hj}Kj=1, {gj}Kj=1;Ex(E)), (6)

where E is our set of points to expand (e.g., using Alg. 2). Note that we provide additional supervisory
losses on non-augmentedD via Lmean. In practice, we considered simple linear heads. At an intuitive
level, this forces the MLP to learn a robust feature embedding that can ‘mimic’ the diverse views that
the base experts provide. Empirical results show (see Sec. 4) that the network heads learn an effective
(often better) estimator than the base expects. However, we see more consistent improvements by not
forgetting the base experts and bagging as:

fEMOE(x) ≡
1

2K

K∑
j=1

gj(x) + hj(ϕ(x)). (7)

5
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Motivation Below we include high-level hypotheses on how the EMOE approach may learn
better estimates on OOD data through variance reduction and regularization. Previous work has
decomposed OOD generalization into bias/variance terms (Yang et al., 2020; Arpit et al., 2022b):

E(x,y)∼Pout
ED∼Pin [CE(y, f(x;D))] = E(x,y)[CE(y, f̄(x))] + Ex,D[KL(f̄(x), f(x;D))] (8)

where CE is the cross-entropy loss, f(x; T ) is the model fit on dataset T , f̄(x) = ED[f(x;D)] is
the expected prediction when averaging out draws on the (in-distribution) training dataset D, and
Pout is the OOD data distribution at inference time. Letting ḡ(x) ≡ 1

K

∑K
j=1 gj(x), we may view

ḡ(x) as a bootstrap-like estimate for f̄(x). One may then take Ex,D[KL(ḡ(x), f(x;D))] as a proxy
for Ex,D[KL(f̄(x), f(x;D))] and roughly consider

E(x,y)∼Pout
ED∼Pin [CE(y, f(x;D))] ≈ E(x,y)[CE(y, f̄(x))] + Ex,D[KL(ḡ(x), f(x;D))], (9)

which connects to (eq. 5) when interpreting our expanded points as a proxy for the OOD distribution
Pout and Lmatch(ϕ, {hj}Kj=1, {gj}Kj=1;Ex(E)) as a proxy for Ex,D[KL(ḡ(x), f(x;D))].

4 EXPERIMENTS

We conduct experiments on a varied set of real-world datasets to test the OOD generalizabil-
ity of EMOE. We considered the single source domain generalization setting (e.g., (Qiao et al.,
2020)), where our model is trained solely on ID data without any (labeled or unlabelled) OOD data
during training/validation (e.g., precluding typical semi-supervised approaches), and without any
accompanying environmental/domain/source information from ID training instances. Moreover, we
note that we avoided utilizing any modality-specific information in EMOE (e.g., we do not utilize
any domain specific augmentations) for generality. We utilized XGB Classifiers (Chen and Guestrin,
2016) fitted to random subsets of data instances and features as the base collection of experts. For
a fair/realistic evaluation, we avoided any hyper-parameter tuning on EMOE and utilized a fixed
architecture of a 2 layer 512 ELU (Clevert et al., 2015) hidden-unit MLP with 1024 linear-output
heads (please see other hyperparameters in Supp. Mat.A.1). For our latent space, we utilize PCA with
128 components. While OOD generalization is an active field of research (Freiesleben and Grote,
2023; Liu et al., 2021), methodology for general (non-modality specific) single source domain gener-
alization is more limited. Given that EMOE integrates numerous techniques, we provide context for
our results and compared EMOE with existing strong domain generalization methods that approach
the problem from various perspectives and strategies (and are applicable in the single-source setting).

In our experiments, we include two baselines that utilize data augmentation: AdvStyle (Zhong et al.,
2022) and Mixup (Zhang et al., 2018), as well as two baselines employing ensemble methods: D-BAT
(Pagliardini et al., 2023) and EoA (Arpit et al., 2022a). Mixup linearly combines two ID samples,
AdvStyle adversarially augments ID data, D-BAT enforces prediction diversity on OOD data, and EoA
ensembles moving average models. For prediction thresholding (rejection), we directly utilize the
conditional probability P (Y = 1 | X = x) generated by the models. Many real-world applications
(e.g. in drug discovery and virtual screen, see Fig. 2) shall utilize only high-confidence predictions.
Thus, alongside AUPRC and AUROC, we paid close attention to high-confidence filtration and
reported percent of AUPRC at conservative recall thresholds (e.g., ‘AURPC@R≤.2’). This metric
is computed as the area under the PR-curve up to the specified recall threshold and dividing by the
maximum possible area for that threshold (i.e., the threshold). We report both base expert (‘EMOE
Base’) and EMOE (eq. 7) ensemble performance. Our implementation shall be open-sourced upon
publication.

4.1 CHEMICAL DATASETS

To test how well EMOE generalizes to data with domain shifts in chemical domains, we consid-
ered a total of seven datasets from ChEMBL (Gaulton et al., 2011), Therapeutics Data Commons
(Huang et al., 2021), and DrugOOD (Ji et al., 2022). For all datasets, we represented molecules
using extended-connectivity fingerprints (Rogers and Hahn, 2010) with radius 2 (ECFP4) and with
dimensionality 1024. ECFP4 is a standard method for molecular representation and was chosen for
its simplicity in calculation as well as its ability to perform comparably to learned representations,
such as those generated by graph neural networks on relevant classification tasks (Zagidullin et al.,

6
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2021). Datasets for inhibition of human Ether-à-go-go-Related Gene (hERG), cytotoxicity of human
A549 cells (A549 cells), and agonists for Cytochrome P450 2D6 (cyp 2D6) were collected from
ChEMBL (Gaulton et al., 2011). For these datasets, binary classification labels were generated using
a pChEMBL threshold of 5.0. We also considered an additional binary classification dataset for Ames
mutagenicity (Ames) that was taken from Therapeutics Data Commons (TDC) (Huang et al., 2021).
For the ChEMBL and TDC datasets (hERG, A549 cells, cyp 2D6, and Ames), ID and OOD splits
were determined based on the Murko scaffold of a molecule, such that OOD data have molecular
scaffolds not present in the ID data, mimicking the “scaffold domain” approach utilized in DrugOOD
(Ji et al., 2022).

Moreover, we considered the “core ec50,” “refined ec50,” and “core ic50” ligand-based affinity
prediction datasets (lbap) from DrugOOD (Ji et al., 2022) (the three hardest OOD performance gap
datasets). For these datasets ID and OOD splits were determined based on size, or the number of
atoms in a molecule, such that larger molecules are considered the OOD set and smaller molecules,
the ID set. Datasets are organized by domain and subsequently divided into training, OOD validation,
and OOD testing sets in sequential order. Hence, the OOD validation set from DrugOOD differs in
distribution from the OOD testing set. While larger in samples, the DrugOOD datasets ignore the
impact of biological targets on label, resulting in a modeling task that has limited relevance to drug
discovery. The additional ChEMBL and TDC datasets, though smaller, have direct relevance for drug

Table 1: Experiment results on ChEMBL (Gaulton et al., 2011) and Therapeutics Data Commons
(Huang et al., 2021) datasets. We bold best scores based on the mean minus 1 standard deviation.

hERG A549 cells cyp 2D6 Ames

AUPRC@ D-BAT 84.48±3.90 98.26±0.32 91.40±2.20 99.04±0.53
R<0.2 AdvStyle 88.21±1.73 97.77±0.63 84.83±2.08 99.05±0.38

EoA 63.80±0.94 61.31±0.70 61.77±0.92 78.74±0.96
Mixup 82.25±3.37 95.04±0.56 87.09±5.18 91.02±2.36
EMOE base 94.49±0.54 98.29±0.24 94.96±0.41 98.14±0.22
EMOE 95.18±0.79 98.95±0.22 96.38±0.65 98.66±0.37

AUPRC D-BAT 54.60±3.55 67.04±1.18 47.42±1.91 70.44±1.70
AdvStyle 51.54±2.08 65.02±1.60 44.41±2.15 74.98±1.09
EoA 43.30±1.15 44.95±0.54 37.37±2.12 59.43±0.41
Mixup 42.42±1.91 50.52±1.11 27.79±3.34 60.94±1.78
EMOE base 72.51±0.23 84.09±0.10 72.72±0.20 87.50±0.07
EMOE 73.73±0.42 84.67±0.09 73.77±0.32 88.53±0.19

AUROC D-BAT 76.58±1.01 78.16±0.51 67.54±1.06 83.82±0.34
AdvStyle 75.84±1.02 76.13±0.62 65.51±1.39 85.56±1.59
EoA 68.02±0.76 68.33±0.53 60.50±1.07 74.77±0.55
Mixup 73.96±0.57 76.57±0.94 67.53±2.02 78.43±1.09
EMOE base 74.87±0.10 79.17±0.07 70.30±0.20 81.86±0.11
EMOE 76.16±0.28 79.54±0.07 70.54±0.42 83.59±0.24

Table 2: Experiment results on DrugOOD (Ji et al., 2022) datasets. We bold best scores based on the
mean minus 1 standard deviation.

core ec50 val core ec50 test refined ec50 val refined ec50 test core ic50 test core ic50 test

AUPRC@ D-BAT 93.81±0.49 84.35±3.01 96.97±0.36 88.78±0.90 98.13±0.19 91.79±0.84
R<0.2 AdvStyle 94.84±0.69 84.51±5.27 95.13±0.29 88.21±0.83 97.04±0.38 89.05±0.50

EoA 81.85±0.53 71.84±1.01 85.03±0.14 78.79±0.32 88.56±0.12 77.03±0.29
Mixup 83.97±1.37 73.04±0.94 85.39±0.52 79.78±0.75 88.99±0.96 78.07±1.36
EMOE base 97.88±0.30 68.91±0.57 98.18±0.22 89.38±0.68 99.13±0.02 94.10±0.26
EMOE 98.56±0.19 70.68±1.04 98.22±0.15 89.99±0.63 99.11±0.07 94.45±0.17

AUPRC D-BAT 76.64±1.10 54.87±2.21 84.70±1.15 70.08±1.55 90.84±0.62 73.45±2.02
AdvStyle 81.17±3.85 58.40±4.88 83.01±2.01 69.48±4.83 88.54±3.22 72.11±3.33
EoA 64.16±1.14 36.50±3.30 69.66±1.06 57.71±1.77 79.12±0.21 56.52±0.95
Mixup 73.03±3.73 60.84±9.64 80.36±1.96 72.88±3.73 86.88±0.32 74.99±0.33
EMOE base 88.48±0.10 71.94±0.13 91.26±0.08 82.55±0.18 94.87±0.04 84.14±0.11
EMOE 89.58±0.13 71.55±0.50 91.59±0.07 83.27±0.32 95.31±0.04 84.77±0.08

AUROC D-BAT 75.26±0.62 58.21±0.58 72.09±0.43 60.32±0.56 80.31±0.18 64.82±0.41
AdvStyle 75.97±0.88 58.86±0.55 70.78±0.78 59.62±0.68 78.36±0.52 64.14±0.60
EoA 64.91±0.75 52.71±0.98 59.27±0.44 54.63±0.54 62.99±0.35 55.83±0.41
Mixup 68.20±1.48 56.33±1.00 60.39±0.90 56.50±0.82 64.24±2.75 57.75±1.79
EMOE base 73.69±0.09 56.58±0.09 70.26±0.10 59.72±0.19 77.66±0.11 64.93±0.12
EMOE 75.69±0.20 54.62±0.69 71.47±0.22 60.90±0.63 79.77±0.13 66.04±0.15
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Table 3: Experiment results on PACS (Li et al., 2017) and Tableshift (Gardner et al., 2023) datasets.
We bold best scores based on the mean minus 1 standard deviation.

PACS PACS Childhood Lead FICO HELOC Hospital Sepsis
dog-elephant giraffe-horse Readmission

AUPRC@ D-BAT 58.35±7.27 80.20±2.58 62.82±0.00 91.20±0.54 78.84±0.28 75.37±0.85
@R≤.2 AdvStyle 55.83±5.64 84.77±6.41 64.96±0.02 88.71±1.46 72.91±1.29 59.83±1.41

EoA 45.16±6.39 68.53±4.25 77.43±2.17 59.53 ±5.02 51.83±3.71 41.10±3.50
Mixup 56.46±6.74 81.51±5.45 50.00±0.00 91.16±4.70 69.19±8.84 66.09±2.57
EMOE base 60.36±0.39 82.86±0.36 97.21±0.53 89.84±0.62 58.30±0.21 84.27±3.95
EMOE 61.94±1.82 84.10±1.44 97.77±0.82 92.12±1.17 67.57±0.26 82.35±3.24

AUPRC D-BAT 54.27±2.78 66.10±1.74 71.85±0.02 80.91±0.39 63.29±0.19 58.17±0.48
AdvStyle 53.52±2.00 67.94±3.99 48.37±6.19 79.63±3.70 38.13±8.49 54.34±0.60
EoA 45.42±5.95 68.40±4.41 49.48±0.42 59.53±5.02 29.45±11.08 11.21±4.94
Mixup 54.05±1.80 67.99±2.66 50.00±0.00 80.95±1.40 14.15±2.37 56.80±0.89
EMOE base 54.47±0.01 73.10±0.64 85.79±0.13 83.73±0.13 62.83±0.07 67.16±2.75
EMOE 56.64±1.47 72.76±1.25 85.85±0.37 83.99±0.28 63.62±0.19 63.53±1.96

AUROC D-BAT 56.44±2.66 63.96±2.38 79.13±0.04 76.13±0.07 63.22±0.07 57.95±0.08
AdvStyle 56.24±1.28 65.88±3.53 74.45±0.08 77.23±3.78 61.32±0.77 55.31±0.75
EoA 49.82±0.92 54.93±3.95 72.62±0.72 54.67±5.71 51.65±3.81 49.14±5.82
Mixup 57.39±1.16 64.12±2.78 50.00±0.00 78.74±0.38 63.37±0.55 56.82±0.58
EMOE base 56.94±0.15 72.86±0.61 84.45±0.41 83.50±0.08 63.18±0.06 65.13±2.65
EMOE 59.99±2.12 72.38±1.18 87.16±0.23 82.98±0.11 63.65±0.16 61.53±1.58

discovery tasks. In our experiments, we assessed performance on both of these sets. Our results are
shown in Table 1 and Table 2.

4.2 OTHER REAL WORLD DATASETS

Next, we further evaluate our method in non-chemical domains, and tested across a diverse range of
real-world OOD scenerios using both the Tableshift datasets (Gardner et al., 2023) and images from
the Photo-Art-Cartoon-Sketch (PACS) dataset (Li et al., 2017). We selected a diverse collection of
Tableshift datasets, based on unrestricted availability and in/out-of-domain performance discrepancy,
coverings areas including: finance, education, and healthcare. Each dataset has an associated
real-world shift and a related prediction target (see (Gardner et al., 2023) for further details). The
PACS dataset includes images from four distinct domains: photo, art painting, cartoon, and sketch.
Specifically, we focus on the animal classes (dog, elephant, giraffe, and horse) to create 2 challenging
binary classification tasks. Models were trained on the ‘photo’, ‘art’, and ‘cartoon’ domains; they
were tested on the unseen fourth domain, ‘sketch’, to assess generalization performance. Results on
the PACS and Tableshift are shown in Tab. 3. As before, we consider the same single-source domain
generalization setting. We can see that even over diverse applications, our EMOE method is able to
perform well and is often outperforming our strong competing baselines.

4.3 ABLATION STUDIES

We empirically validate our per expert matching, and trail-based filtration (Sec. 3.2) with ablations.

Table 4: ChEMBL datasets’
mean ∆AUPRC over base ex-
perts ablating augmentation.

∆@R<.2 ∆@R<1

SH MLP + MM 0.59 0.45
MH MLP + MM 0.25 0.55
EMOE 1.11 1.03

Matching Ablations We begin by ablating the matching scheme
on base experts and explore a mean-only matching approach on ex-
panded points as an alternative. First, we consider a similar training
scheme to EMOE (eq. 5), but utilizing a single-headed (SH) MLP,
f(x) (512→ 512→ 1), which is trained via a mean matching loss
LMM(f, {gj}Kj=1;S) ≡ 1

|S|
∑

x∈S ℓ(f(x), 1
K

∑K
j=1 gj(x)), rather

than the per-expert matching loss, Lmatch (eq. 2) We also explored
the effect of training our multi-headed (MH) architecture (512 →
512→ 1024) using mean-matching, L′

MM({hj}Kj=1, {gj}Kj=1;S) ≡
1
|S|

∑
x∈S ℓ( 1

K

∑K
j=1 σ(hj(x)),

1
K

∑K
j=1 gj(x)). Lastly, we com-

pare these ablations to our EMOE approach which trains the multi-headed architecture with per-expert
matching (eq. 5). We report results as the average change (∆) in performance for AUPRC using the
EMOE predictions (eq. 7) vs the base experts at various recall thresholds. (Greater values indicate
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greater improvement over the base experts.) As seen in Tab. 4, individual expert matching yielded the
best results.

Table 5: ChEMBL datasets’
mean ∆AUPRC over base ex-
perts ablating augmentation.

∆@R<.2 ∆@R<1

EMOE Conf. 0.93 0.96
EMOE 1.11 1.03

Trial Based Filtration Next we ablate our augmentation strat-
egy. We considered an alternative generic confidence based strategy
(‘Conf.’), that expands the dataset on randomly drawn points and
also performs random convex combinations of pairs of points. These
points are then labeled with the EMOE base experts and those with
high confidence are kept for matching. In contrast, in our EMOE ap-
proach we only expand those points that were contained in successful
trials (see Sec. 3.2), and filter them further based on confidence. Al-
though our approach is stable w.r.t. different augmentation strategies
we see the best results by incorporating our extrapolatory trials for filtration as shown in Tab. 5.

4.4 DISCUSSION

Figure 6: Mean predicted probabilities
from EMOE and EMOE base model.
Starred points denote instances where
the base model initially makes incorrect
predictions but are corrected when we
average the predicted probabilities from
EMOE and EMOE base.

Below we expound on major takeaways from our results.
First, it is worth noting the base-experts are providing rel-
atively competitive performance compared to the more
complicated baselines. This motivates our philosophy of
building on, and strengthening, the predictions of the base
experts. Moreover, we see consistent improvements by
EMOE, indicated by its leading tally of 33 across all met-
rics/datasets compared to the next highest score of 4 from
the strong competing baseline D-Bat (Pagliardini et al.,
2023) as shown in Tab. 6. Despite its elevated performance,
EMOE does not incur an out-sized computational cost. For
example on the ‘hERG’ dataset, the wall clock time for an
unoptimized implementation of EMOE’s base models, and
neural network amounts to 10.8 (which can parallelized
for further efficiency) and 23.2 minutes respectively, which
places it between the quicker baselines like Mixup (1.2
minutes) and D-Bat (3.5 minutes) and the slower ones like
EoA (67.9 minutes).

EMOE especially stands out for its precision at lower recall
values; we can visualize reasons for the improvement in
performance as follows. As can be seen in the scatter plot
(Fig. 6) the multi-headed network rectifies several of the base expert’s mistakes on OOD data.

Figure 5: Experts correlations between EMOE base experts and EMOE network heads on “Ames”
dataset. (a) EMOE experts has a high correlation with EMOE base experts on sample the base experts
makes correct predictions. (b) EMOE experts shown low correlations with EMOE base experts on
sample the base experts makes incorrect predictions.
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Moreover, it can be seen that the multi-headed network is also increasing the certainty of predictions
on OOD data as predictions are moving away from 0.5. It is well-known that diversity in ensembles
improve performance (Fort et al., 2019); however, we want diversity of ensemble on potentially
erroneous predictions. This is exactly the behavior that we observe in Fig. 5; while the heads of the
EMOE network show significant agreement on OOD samples where the base experts make correct
predictions, they display significantly less agreement (more diversity) on OOD samples where base
experts make incorrect predictions. This diversity contributes to improved performance.

Table 6: Experiment results summary. Number of datasets where respective methods lead in metrics
(tallied from tables above).

EMOE EMOE base D-Bat Advstyle EoA Mixup

metric AUPRC@R<0.2 11 2 2 1 0 0
AUPRC 13 3 0 0 0 0
AUROC 9 3 2 2 0 0
Total 33 8 4 3 0 0

5 CONCLUSION

In summary, this work presents Expansive Matching on Experts (EMOE), a novel method that
utilizes support-expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty
based rejection on OOD points. Our techniques are general and not specific to any data-modality,
nor do they require additional unlabeled data or domain information. Moreover, they are largely
complementary to other existing approaches. Thus, we envision the potential for future work that
incorporates our methodology jointly with other OOD generalization techniques. Moreover, we are
encouraged by results in chemical-property prediction and shall further explore future work in these
directions.
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A APPENDIX

A ADDTIONAL EXPERIMENT DETAILS

A.1 EMOE TRAINING DETAILS

In all of our experiments we used the Adam (Kingma and Ba, 2014) optimizer and mini-batches of
size 256. One Nvidia A100 GPU with 40GB GPU memory was used to run our experiments, and
duration for model training is approximately 0.5 hours. During the extrapolatory directional mining
trials, we held out 0.1 of the data for each of the 1000 trials. Subsequently, from the top-performing
trials, determined by accuracy evaluation, we selected the top held-out points from 0.15 of the
best-performing trials for data expansion. λ = 0.5 was used for the Lmatch for the expanded points.
As noted in Sec. 3.1 we trained the EMOE models directly in the latent space to avoid the need for the
decoder (and also allowed baselines to do this if it aided their performance). In the experiments on
hERF, A549 cells, CYP 2D6, Ames, core ec50, refined ec50, EMOE was trained for 20000 iterations.
Arithmetic mean between EMOE and EMOE base was reported. On the M/C-D and M/F-D datasets,
we took the raw pixel values as input and trained EMOE networks for 4000 iterations due to lower
observed losses. Harmonic mean between EMOE and EMOE base was reported on these datasets.
We performed 8 trails on each of the datasets for EMOE.

A.2 BASELINE SETUP

We re-implemented all baselines we are comparing against EMOE following the implementation
details in their paper and/or using Github implementations (if available). Since the fingerprints
representation of chemicals are quite sparse, we preformed dimension reduction using PCA with
128 components on all chemical datasets. For D-BAT(Pagliardini et al., 2023) with existing im-
plementations designed for tabular data, we utilized their original model architectures. For the
other three baseline methods without implementation specifically for tabular data, we adopted a
structure comprising two 512 ELU(Clevert et al., 2015) layers to closely mimic the EMOE network
architecture. The Adam (Kingma and Ba, 2014) optimizer was used for training baseline models.

D-BAT In our experiments, the D-Bat(Pagliardini et al., 2023) models used MLP architecture with one
128 LeakyRelu(Maas, 2013) layer following the architecture in their Github. Their paper (Pagliardini
et al., 2023) discussed two settings, and we focused on the scenario where perturbation data differs
from the distribution of test data, adhering to the single-source domain generalization setting. We
trained an ensemble of five models sequentially for the D-bat baseline models and the predictions
from the 5 models were averaged to obtain the final prediction.

EoA We trained an ensemble of 5 simple moving average model following the method described in
(Arpit et al., 2022a). We start calculating the moving average at iteration 50 and trained the models
for 200 iterations. The predictions from the 5 models were averaged to obtain the final prediction for
EoA.

For AdvStyle (Zhong et al., 2022) and Mixup(Zhang et al., 2018), the methodologies were straight-
forward. We experimented with training using various numbers of iterations and reported the
most promising results. Note that we used alpha=0.7 when combining the 2 samples for Mixup.
We executed all baseline experiments five times on each dataset to ensure a precise estimation of
performance.

A.3 EXAMPLES OF PACS DATASETS

B ADDITIONAL EXPERIMENT AND ABLATION RESULTS

B.1 FULL EXPERIMENT RESULTS ON CHEMBL AND THERAPEUTICS DATA COMMONS

In Table 7, we report the full results on hERG, A549 cells, cyp 2D6. and Ames.
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Table 7: Full experiment results on ChEMBL (Gaulton et al., 2011) and Therapeutics Data Commons
(Huang et al., 2021) datasets. We bold best scores based on the mean minus 1 standard deviation.

hERG A549 cells cyp 2D6 Ames

AUPRC D-BAT 88.55±3.75 98.57±0.36 95.71±1.99 99.07±0.52
@R≤.1 AdvStyle 93.27±1.25 96.89±0.66 84.21±4.62 99.52±0.26

EoA 63.80±0.94 61.31±0.70 61.77±0.92 78.74±0.96
Mixup 82.80±3.49 95.04±0.56 87.39±6.91 91.02±2.36
EMOE base 96.69±0.62 99.79±0.11 99.55±0.58 99.30±0.25
EMOE 98.98±0.56 99.85±0.14 99.26±0.59 99.76±0.37

AUPRC@ D-BAT 84.48±3.90 98.26±0.32 91.40±2.20 99.04±0.53
@R≤.2 AdvStyle 88.21±1.73 97.77±0.63 84.83±2.08 99.05±0.38

EoA 63.80±0.94 61.31±0.70 61.77±0.92 78.74±0.96
Mixup 82.25±3.37 95.04±0.56 87.09±5.18 91.02±2.36
EMOE base 94.49±0.54 98.29±0.24 94.96±0.41 98.14±0.22
EMOE 95.18±0.79 98.95±0.22 96.38±0.65 98.66±0.37

AUPRC@ D-BAT 82.44±3.56 97.37±0.53 87.65±1.29 98.61±0.53
@R≤.3 AdvStyle 85.05±1.93 96.47±0.64 82.76±2.13 98.71±0.44

EoA 63.80±0.94 61.31±0.70 61.77±0.92 78.74±0.96
Mixup 81.51±3.01 94.95±0.55 84.53±6.46 90.88±2.24
EMOE base 91.05±0.50 97.34±0.21 91.60±0.32 98.05±0.15
EMOE 91.57±0.61 98.11±0.25 93.10±0.81 98.41±0.29

AUPRC D-BAT 54.60±3.55 67.04±1.18 47.42±1.91 70.44±1.70
AdvStyle 51.54±2.08 65.02±1.60 44.41±2.15 74.98±1.09
EoA 43.30±1.15 44.95±0.54 37.37±2.12 59.43±0.41
Mixup 42.42±1.91 50.52±1.11 27.79±3.34 60.94±1.78
EMOE base 72.51±0.23 84.09±0.10 72.72±0.20 87.50±0.07
EMOE 73.73±0.42 84.67±0.09 73.77±0.32 88.53±0.19

AUROC D-BAT 76.58±1.01 78.16±0.51 67.54±1.06 83.82±0.34
AdvStyle 75.84±1.02 76.13±0.62 65.51±1.39 85.56±1.59
EoA 68.02±0.76 68.33±0.53 60.50±1.07 74.77±0.55
Mixup 73.96±0.57 76.57±0.94 67.53±2.02 78.43±1.09
EMOE base 74.87±0.10 79.17±0.07 70.30±0.20 81.86±0.11
EMOE 76.16±0.28 79.54±0.07 70.54±0.42 83.59±0.24

B.2 FULL EXPERIMENT RESULTS ON DRUGOOD

In Table 8, we report the full results on core ec50, refined ec 50, and core ic50 from DrugOOD (Ji
et al., 2022).

B.3 FULL EXPERIMENT RESULTS ON PACS DATASET

In Table 9, we report the full results on images from PACS (Li et al., 2017).

B.4 ABLATIONS RESULTS ON VANILLA AND MOE MODELS WITHOUT ENSEMBLE BASE
MODEL

In this ablation study, we focused on examining the impact of the vanilla vs. Mixture of Experts
(MoE) architecture on OOD performance. Both the MoE MLP and Vanilla MLP were configured
with two layers of 512 ELU units. The MoE MLP has 1024 output heads, whereas the vanilla MLP
had only one. For noisy augmentation, we applied small perturbations drawn from a standard normal
distribution to the training set while retaining the original labels. We run 3 trials on each of the
CheMBL dataset and the results are shown in Table 10 . Although we observed that the MoE model
achieved a AUPRC compared to the vanilla MLP, we found that simple noisy augmentation did not
lead to any significant difference in performance.

C LIMITATIONS

It is important to acknowledge a reliance on the EMOE base model and the latent space; we observed
good performance with simple implementations, indicating the potential for better performance
with other choices. Moreover, to preserve generality, this work limited itself to augmentations in a
real-value vector setting; however, when it may be possible to exploit modality-specific augmentations
in applications.
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Table 8: Full experiment results on DrugOOD datasets. We bold best scores based on the mean
minus 1 standard deviation.

core ec50 val core ec50 test refined ec50 val refined ec50 test core ic50 test core ic 50 test

AUPRC@ D-BAT 94.04±0.55 86.59±3.17 97.19±0.43 88.93±1.07 98.25±0.21 91.89±0.86
@R≤.1 AdvStyle 95.79±0.45 84.56±5.28 96.37±0.72 88.69±0.95 98.10±0.37 89.39±0.73

EoA 81.85±0.53 71.84±1.01 85.03±0.14 78.79±0.32 88.56±0.12 77.03±0.29
Mixup 83.97±1.37 73.03±0.93 85.39±0.52 79.78±0.75 88.99±0.96 78.07±1.36
EMOE base 98.85±0.33 66.19±1.14 99.09±0.11 92.72±0.66 99.56±0.01 96.85±0.17
EMOE 99.05±0.26 68.12±1.16 98.85±0.20 91.26±0.80 99.38±0.08 96.37±0.31

AUPRC@ D-BAT 93.81±0.49 84.35±3.01 96.97±0.36 88.78±0.90 98.13±0.19 91.79±0.84
@R≤.2 AdvStyle 94.84±0.69 84.51±5.27 95.13±0.29 88.21±0.83 97.04±0.38 89.05±0.50

EoA 81.85±0.53 71.84±1.01 85.03±0.14 78.79±0.32 88.56±0.12 77.03±0.29
Mixup 83.97±1.37 73.04±0.94 85.39±0.52 79.78±0.75 88.99±0.96 78.07±1.36
EMOE base 97.88±0.30 68.91±0.57 98.18±0.22 89.38±0.68 99.13±0.02 94.10±0.26
EMOE 98.56±0.19 70.68±1.04 98.22±0.15 89.99±0.63 99.11±0.07 94.45±0.17

AUPRC@ D-BAT 93.73±0.48 81.40±2.00 96.89±0.33 87.77±0.71 98.08±0.19 90.71±1.17
@R≤.3 AdvStyle 94.52±0.82 83.57±4.65 94.71±0.29 88.05±0.81 96.69±0.48 88.93±0.42

EoA 81.85±0.53 71.84±1.01 85.03±0.14 78.79±0.32 88.56±0.12 77.03±0.29
Mixup 83.97±1.37 73.06±0.96 85.39±0.52 79.78±0.75 88.99±0.96 78.07±1.36
EMOE base 96.85±0.28 70.30±0.45 97.30±0.25 87.82±0.53 98.69±0.03 92.32±0.23
EMOE 97.86±0.20 71.35±0.87 97.49±0.09 89.01±0.54 98.84±0.07 93.11±0.13

AUPRC D-BAT 76.64±1.10 54.87±2.21 84.70±1.15 70.08±1.55 90.84±0.62 73.45±2.02
AdvStyle 81.17±3.85 58.40±4.88 83.01±2.01 69.48±4.83 88.54±3.22 72.11±3.33
EoA 64.16±1.14 36.50±3.30 69.66±1.06 57.71±1.77 79.12±0.21 56.52±0.95
Mixup 73.03±3.73 60.84±9.64 80.36±1.96 72.88±3.73 86.88±0.32 74.99±0.33
EMOE base 88.48±0.10 71.94±0.13 91.26±0.08 82.55±0.18 94.87±0.04 84.14±0.11
EMOE 89.58±0.13 71.55±0.50 91.59±0.07 83.27±0.32 95.31±0.04 84.77±0.08

AUROC D-BAT 75.26±0.62 58.21±0.58 72.09±0.43 60.32±0.56 80.31±0.18 64.82±0.41
AdvStyle 75.97±0.88 58.86±0.55 70.78±0.78 59.62±0.68 78.36±0.52 64.14±0.60
EoA 64.91±0.75 52.71±0.98 59.27±0.44 54.63±0.54 62.99±0.35 55.83±0.41
Mixup 68.20±1.48 56.33±1.00 60.39±0.90 56.50±0.82 64.24±2.75 57.75±1.79
EMOE base 73.69±0.09 56.58±0.09 70.26±0.10 59.72±0.19 77.66±0.11 64.93±0.12
EMOE 75.69±0.20 54.62±0.69 71.47±0.22 60.90±0.63 79.77±0.13 66.04±0.15

Table 9: Experiment results on PACS dataset. We bold best scores based on the mean minus 1
standard deviation.

PACS dog-elephant PACS giraffe-horse

AUPRC D-BAT 58.33±7.50 82.15±3.10
@R≤.1 AdvStyle 54.52±7.86 88.73±7.30

EoA 44.84±6.95 69.41±3.66
Mixup 65.20±7.80 84.07±4.53
EMOE base 66.58±1.27 83.23±0.71
EMOE 64.00±1.73 85.90±2.92

AUPRC@ D-BAT 58.35±7.27 80.20±2.58
@R≤.2 AdvStyle 55.83±5.64 84.77±6.41

EoA 45.16±6.39 68.53±4.25
Mixup 56.46±6.74 81.51±5.45
EMOE base 60.36±0.39 82.86±0.36
EMOE 61.94±1.82 84.10±1.44

AUPRC@ D-BAT 57.88±5.46 78.21±2.54
@R≤.3 AdvStyle 56.25±4.83 81.76±6.03

EoA 45.27±6.21 67.57±3.79
Mixup 56.33±6.51 79.40±4.96
EMOE base 58.62±0.07 82.69±0.43
EMOE 60.80±1.44 83.00±1.35

AUPRC D-BAT 54.27±2.78 66.10±1.74
AdvStyle 53.52±2.00 67.94±3.99
EoA 45.42±5.95 68.40±4.41
Mixup 54.05±1.80 67.99±2.66
EMOE base 54.47±0.01 73.10±0.64
EMOE 56.64±1.47 72.76±1.25

AUROC D-BAT 56.44±2.66 63.96±2.38
AdvStyle 56.24±1.28 65.88±3.53
EoA 49.82±0.92 54.93±3.95
Mixup 57.39±1.16 64.12±2.78
EMOE base 56.94±0.15 72.86±0.61
EMOE 59.99±2.12 72.38±1.18
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Table 10: Ablation results on MLP architectures with CheMBL datasets.

AUPRC@R≤.1 AUPRC@R≤.2 AUPRC@R≤.3 AUPRC AUROC

Vanilla MLP 68.96 68.96 68.96 49.73 68.26
Vanilla MLP+noisy aug 69.12 69.12 69.12 48.43 67.44
MH MLP 70.96 70.96 70.96 53.18 69.08
MH MLP+noisy aug 70.49 70.49 70.49 54.54 69.15

EMOE 99.04 96.21 92.90 73.73 70.59
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