©® N o g B~ @ N =

- o ©

12

8

19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

Sync or Sink: Bounds on Algorithmic Collective
Action with Noise and Multiple Groups

Anonymous Author(s)
Affiliation
Address

email

Abstract

Collective action against algorithmic systems, which enables groups to promote
their own interests, is poised to grow. Hence, there will be growth in the size and
the number of distinct collectives. Currently, there is no formal analysis of how
coordination challenges within a collective can impact downstream outcomes, or
how multiple collectives may affect each other’s success. In this work, we aim to
provide guarantees on the success of collective action in the presence of both co-
ordination noise and multiple groups. Our insight is that data generated by either
multiple collectives or by coordination noise can be viewed as originating from
multiple data distributions. Using this framing, we derive bounds on the success
of collective action. We conduct experiments to study the effects of noise on col-
lective action. We find that sufficiently high levels of noise can reduce the success
of collective action. In certain scenarios, large noise can sink a collective suc-
cess rate from 100% to just under 60%. We identify potential trade-offs between
collective size and coordination noise; for example, a collective that is twice as
big but with four times more noise experiencing worse outcomes than the smaller,
more coordinated one. This work highlights the importance of understanding nu-
anced dynamics of strategic behavior in algorithmic systems.

1 Introduction

As large platforms (social media, e-commerce) grow, groups within them find it increasingly im-
portant and necessary to act strategically (e.g., by changing ratings) in these platforms to get their
desired outcome. From delivery drivers coordinating to earn higher wages [SHMD24], to fans pro-
moting their favorite artist [XZF25, Nug21], to protesting controversial businesses [Pay24], this
type of strategic behavior is poised to grow. Strategic behavior ultimately affects the downstream
data distributions used to train models. As the incentive to participate increases, we need a more
nuanced understanding of the impacts on a system; this includes both understanding what happens
with multiple distinct collectives acting on a system as well as considering how internal collective
dynamics may impact outcomes. These factors will all impact the downstream data distribution.
However, currently, there are no tools or analytical frameworks that incorporate these factors (coor-
dination noise, multiple collectives) to assess their impact on the success of collective action.

In classical collective action problems related to managing common-pool resources, Ostrom notes
that smaller, more homogeneous groups are more effective at overcoming barriers to collective ac-
tion [Ost90]. She finds that a clear organizational structure and well-defined roles are crucial—one
possible interpretation is that smaller groups can more readily and faithfully implement and coor-
dinate their actions. An analogy in the computational world is “noise”: unwanted modifications
or deviations from intended behavior (e.g., signal processing). This “noise” can result from poor
coordination and may reduce effectiveness.
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In algorithmic settings, collective action is mediated through strategic data modifications to influence
model behavior. These changes in data distribution can have significant downstream ramifications.
[HMMDZ23] provided theoretical bounds on the success of collective action in the case of a sin-
gle, unified collective. The collective modifies their data (e.g., by inserting a watermark), which is
then used in training. The learning algorithm observes a distribution P: a mixture of data induced
by the collective’s action (P;) and the underlying data distribution Py. These bounds help iden-
tify the conditions under which collective action may be more successful. However, this analysis
assumes perfect coordination within the collective. [KVKS25] developed a framework to identify
the factors affecting collective action involving multiple collectives, using simulations to illustrate
several outcomes. However, they do not provide any theoretical bounds on success based on the data
distributions induced by each collective. A formal understanding of how both noise and multiple
collectives interact is key to understanding real-world algorithmic collective action.

In this work, we provide new guarantees on algorithmic collective action in both the presence of
noise and multiple distinct collectives. We do this by introducing multiple distributions that feed the
ultimate observed data distribution P. Instead of considering just a mixture of Py and P;, we study
how the addition of P, affects a collective’s success. Importantly, the source of these distributions
can vary: it could occur from multiple distinct collectives or because of coordination challenges
within a single collective inducing a new, second data distribution.

A collective that is highly coordinated is one where the size of P is small and similar to P, while
ones with less cohesion have a larger gap between P; and P,. Multiple collectives can be analyzed
as behavior coming from two distinct distributions. Our contributions are as follows:

Theoretical bounds with multiple distributions: We are the first to establish the lower bounds for
the success of collective action in the presence of multiple distributions. Prior work has either only
analyzed a single distribution coming from a single collective or provided empirical outcomes with
multiple collectives [KVKS25, HMMDZ23]. We are able to relate this bound to the similarity of
the distributions and collective size. This approach can effectively handle many different scenarios:
including when there’s a fraction of a collective performing actions imperfectly or when multiple
distinct collectives are acting upon a system.

Empirical impact of noise: We study the impact of noise in collective action. Prior work
[HMMDZ23] has only shown outcomes with perfectly coordinated collectives. We find that differ-
ent types of noise can impact the success of collective action and find in some situations, smaller,
less noisy groups perform better than larger groups with more noise.

We first present a formulation of the algorithmic collective action problem. We establish bounds on
the success of collective action with multiple distributions. Our experiments extend [HMMDZ23]
by considering a text classification task with noise. We find scenarios where noise sinks the success
of a task from nearly 100% without noise to under 60%. We discuss possible trade-offs in size and
noise where small groups with less noise (0.25% collective size with 10% noise) outperform larger
ones with more noise (0.5% with 40% noise), which can inform organizers of collective action.

2 Related Work

Collective action against algorithms has been documented in contexts such as ridesharing [Lei2l,
WAC21, WVM21, JGV21, Has20] and in data campaigns aimed at promoting pro-social out-
comes [MF22, VH21, VLT+21, WED22]. [SHMD24] provides a specific computational model
for the delivery driver case, which can be used to analyze incentives and outcomes in these scenar-
ios. [XZF*25, XFST25] examine some of the real-world structures involved in promoting online
collective action, such as what motivates certain users to act as organizers. They also discuss prac-
tical challenges in influencing online marketplaces, including coordinating across different types of
devices and teaching users how to engage effectively with the platform to achieve a specific goal.
The concept of noise has been used to simulate communication challenges in agent-based model-
ing [WSLA13, ASJCB02, BBG23] and in modeling bounded rationality [Kah03, Con96, Qui07].
Howeyver, it has not been studied in the context of online collective action.

Other work has examined collective action in algorithmic settings. [HMMDZ23] first examines
how different types of strategies can enable small collectives to have a substantial impact on clas-
sification outcomes. [BMD24] extends this analysis to examples involving recommender sys-
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tems. [BDFSS24] examines how the specifics of the learning algorithm impact collective action.
[KVKS25] empirically analyzes the interaction between two collectives. None of these works, how-
ever, offer formal guarantees for successful collective action involving multiple data distributions.
Our work offers a more comprehensive theoretical understanding of realistic strategic dynamics.

3 Problem Formulation

Here we first will describe collective action as described by [HMMDZ23]. We will then extend this
scenario to include a second distribution. For convenience, Appendix A summarizes the notation.

3.1 Algorithmic Collective Action with One Distribution

We consider the case where a firm wishes to deploy a classifier f trained on some data. Let f :
X — ). We define a classifier to be ¢; suboptimal under a distribution P; if there exists a P’ with
TV (Py, P') < €1 such that f = arg max, ¢y, P'(y|x) where TV is the total variation distance.

The firm’s goal is to minimize the loss with respect to some objective function. The data they train
on exists in Z = & x ) representing the features X’ and labels ). For our purposes, we can think of
every data point z € Z as belonging to an individual. A collective wishes to work together in order
to create a specific outcome on this classifier for a certain set of inputs which we formalize below.

Consider the base distribution Py on Z. We define P; to be the distribution induced by the collec-
tive’s intended action. This is operationalized by strategy, h; : Z — Z where h; € H the set of
all available strategies. Examples of potential strategies may include watching a video for a certain
amount of time, giving a specific review score, etc. In implementing this strategy, the collective
wishes to create an association between the specific inputs to a target label y*.

The collective plants a “signal”, which is done via function g; : X — X which takes some original
input x ~ Py and modifies it. Examples may include adding certain words to text, adding a water-
mark to a video, or reviewing an extra product on a marketplace. This planted signal is intended to
create the association between the set of inputs generated by g1 () and a target label y*.

In some situations, it may also be possible for the collective to act on both the input data (X) and
potentially the output label ()). For the feature-label strategy, members can each change their
feature and label. These strategies, using /i and signal g1, induce the collective’s distribution P; .
Let o be the fraction of users participating in the collective. We can write the distribution seen by
the learning algorithm as a mixture of the distribution of the collective’s data and the unmodified
data
P=ai1P1+ (1 - Oq)Po

where P; represents the distribution of %, (z) where z ~ Py. The collective’s objective is to asso-
ciate the signal g; with the target y*. The success rate can be written as

S(en) = Pr [f(gi(x)) = y7]

Success also depends on how the signals generated by the collective conflict or compete with data
present in the underlying distribution. Let X1 = {g1(x) : © € X'} the signal set. We define this as
suboptimality gap of & on distribution Py for a target y* as

AO *) _ *
1(y") = max(max Po(y|z) — Po(y’|2))

Pr
x~Po

We also use Py(X}) to refer to the background overlap of signal set X} - intuitively, this represents
how common the modified input X; is in the background distribution Py Based on these defini-
tions, [HMMDZ23] finds a lower bound on the success for this classifier in the single, perfectly
coordinated collective for the feature-label strategy, restated here.

Theorem 1 (Feature-label). [HMMDZ23] The success rate of a collective with size c; on a €
classifier with target yi with signal set X, is bounded below by

(1—e)AVyi) + @
X,
(651) ,PO( 1) 1-— 261

1—041

S((Xl) Z 1-—

However, these theorems do not consider a second distribution. We first develop our multiple distri-
bution setup, which we will use to expand beyond the above bounds.
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3.2 Collective Action with Multiple Distributions

Here, we extend beyond [HMMDZ23] by considering another data distribution. This may arise from
internal coordination challenges or a separate collective.

We consider distribution P, induced by a strategy ha. ho can be completely distinct from /; or can
represent a noisy version of k1 (e.g ha(z) = hi(2z)+9). P, is the distribution of ha(z), 2 ~ Py. For
example, suppose a collective aims to create an association between a word A existing at the top of
a document and being rated as an important user y*. Members could mistakenly use a similar word
B instead of A or place A at the end of the text instead — this would be represented by Ps.

We can write the final distribution observed by the learning model as
P=o1P1+asPs+ (1 —a)Py

where o represents the fraction of people who implemented collective one’s strategy, co represents
a separate group’s interactions. This can arise because the correct “action” was not properly shared
with all group members, people getting confused about what exactly to do and not executing faith-
fully, or potential infiltrators within the group. We let « = a3 + as be the total fraction of people
attempting to implement some strategy. We can also equivalently consider r = —%1— = <L as the

aytas
fraction of people implementing the correct strategy.

Suppose a collective that wants to plant a single g(x) where x € X. Let the signal set X; =
{g1(z) : x € X). Another group implements another signal, which may be a noisy version of g;.
Let g, represent the set of signals produced by the second group. X = {g2(z) : z € X'}.

The presence of another distribution requires us to expand upon our definition of suboptimality to
consider, across any two distributions, how often the signals from set X; are present on the distribu-
tion P;. Our expanded definition of suboptimality is:

Tl %\ . D (*
A (y )—gggg(gjlgg%(ylw) Pi(y*lz))

Intuitively, this measures how “‘confusing” signals from X; looks to P; when targeting y*.

4 Multiple Distributions and Success of Collective Action

Based on our expanded definitions, we can quantify the impact that multiple distributions have on
the effectiveness of a collective. We consider the feature-label strategy. We state the theorem for two
distributions here and defer the proof and generalization to n distributions to the Appendix D. While
earlier work focused on a single, perfectly coordinated collective, we quantify how either internal
disruptions or the presence of a second collective affects the original group’s success. Conceptually,
the proofs follow by considering the new mixture distribution and the interaction between the new
distributions.

For the feature-label strategy, we have the following result (see Appendix C for full proof):

Theorem 2 (Feature-label with two distributions). Consider distribution Py and Ps which are dis-
tributed according to hy(x) and ha(x) respectively, where x ~ Py. Let y} be the target class. Then
success for the first collective against an €, classifier to be lower bounded by

1 —e)A2(yr 1— 1—e)AYyr
e)Ai(yr) +ea 047)0()(1)( e1)AY(y1) + e
1—2¢ o1 1—2¢

S(ar) >1— %7)2(2(1)(

Compared with Theorem 1, Theorem 2 introduces another term that describes the relationship be-
tween P; and Ps independently of the relationship between Py and P;. It consists of the cross-signal
overlap between signal set & on distribution Py the suboptimality gap of the target ] of signal set
X1 and Pa. (A%(y;)) and the relative sizes of said groups 22

g’

The theorem illustrate how and to what extent the presence of a second distribution can hinder
the first collective. If we consider the second distribution to be a noisy variation of the first one,
this helps relate the noise characteristics to the success rate. For a second collective, these bounds
provide insights into which scenarios collectives may be simultaneously successful or hindering
each other. We examine these implications in Section 7.1.
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S Experimental Setup

To demonstrate the empirical implications, we study the case of noisy collective action. We extend
[HMMDZ23] experiment on resume classification. We use the resume dataset introduced by [JT21]
to finetune a BERT-based model for a multilabel prediction task. The goal for the classifier is to
predict which set of careers someone is suited for based on the text in the resume. Members of the
collective intend to plant a signal in their resume to get the resume classified to some target class
y* inserting a specific character in a certain pattern. The intended signal in this case is to place this
specific character every 20 words (full details in Appendix B).

We vary r, the proportion of users who perform an imperfect collective action by performing a noisy
variation. Specifically, we consider the following types of noise variations.

Correct Character Usage The collective attempts to place a specific character into the resume.
A noisy variation involves using a different character. We consider variations where the wrong
character is sampled across a small subset (Random-Subset), as well sampled randomly across all
possible characters (Random-Full).

Modification Location The collective intended action to place their character every 20 words. A
noisy variation places the character in arbitrary locations (Displaced).

These choices are motivated by considering “benign” ways a group of people may misinterpret
instructions. If the intended instruction is ‘“Place character ‘A’ every 20 words”, some users may
focus more on the 20 words part and not use the right character, or some users may focus on using
“A” and not place it every 20 words. We define the full set of variations in Table 2. Based on these
factors, we consider whether frequency of noise (larger r’s) affect success more than noise variation.

6 Results

We consider the several types of noise variations (as described in Table 2 full details of experiments
can be found in Appendix B). The z-axis represents the collective size while the y-axis show the
collective’s success criteria. Figure 1 shows how different noise variations result in different effica-
cies, both for low levels of noise (Figure 1a) and higher levels (Figure 1b). We find that different
levels of noise have more of an impact when the collective size is relatively small; for sufficiently
high levels of participation, all variants perform similarly and comparable to the baseline even with
noise. At this lower levels, there is a sensitivity to the set of “wrong” characters to choose from: the
Random-Subset strategy performs better than the Random-Full strategy. We see displacement while
keeping the original character performs better than the Random-Subset - which keeps the placement
consistent. For this specific model, this may imply that it is more sensitive to character coordination
than the specific placement. We also find that across the different noise types, the size of the collec-
tive seems can overcome noise. In Figure 1c, we consider the case when noise affects both features
and labels. We see with moderate levels of participation (0.5%) that noise has a major impact (from
nearly 100% success rate to below 60%). Even at higher levels of participation (1%) we see, at the
high end, noise impacting success.

7 Discussion

7.1 Analysis on Multiple Collectives

[KVKS25] examined how two distinct collectives with different objectives impact each other’s effi-
cacy — in short, when the same signal set is being used to target different classes, both collective’s
success rate is reduced. This can be explained by the suboptimality gap (A2(y7)) and the cross-
signal overlap (P2(X7)). This overlap will be high since the two groups use the same signal. Be-
cause they are targeting two different classes, the suboptimality gap may also be large. They also
find a case where two collectives, with different target classes and different character usage, still
sinks both of their success rates. This can also be explained by the cross-signal overlap - if these
character modifications look sufficiently “close” to each other, this term may be large and cause
conflicts.
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0.30% 0.40% 0.50% 0.60% .10 0.30% 0.10% 0.30% 0.60% 10.0% 200% 30.0% 50.0%
. reent, of t

10.0%
Collective Size Collective Size Percent of users subject to noise (r)

(a)r=10% (b) r = 50% (c) Efficacy vs Noise

Figure 1: The impact of noise, collective size, and noise variations. In Figures la and 1b, the x-
axis here is the total collective size, measured by the percentage of population participating. The
y-axis is the success rate of causing resumes with the “true” signal to be classified to the target class.
The black dashed line represents success rate without noise and the noise being applied just to the
features. We observe that making more characters for mistakes leads to lower success (Random-
Subset vs Random-Full and Displaced-Original vs Displaced-Full). In Figure 1c, we consider the
Random-Subset noise type and modifying both the feature and label. Here we see, noise significantly
impacting effectiveness.

7.2 Trade-offs on Size and Noise

As strategic behavior on algorithmic systems continues to grow, understanding how deviations from
a single, unified collective impact on a group’s objective is crucial for both organizers of collective
action and system developers. [XZF*25] observes the heterogeneity of members of a fan collective
in terms of the actions available (e.g based on device type), as well as the detailed instructions they
must give to others, which provides room for misinterpretation.

This theoretical analysis can also be used to help define how and where organizers can place re-
sources. In particular, organizers can try to determine whether increasing the size of the collective
(1) is worth the trade-off in potentially increasing cross signal overlap, Pa (X7 ), or suboptimality
gap, A2(y7). This trade-off has a traditional analogy in managing common pool resources [Ost90]:
the importance of smaller, homogeneous groups to overcome barriers in collective action. We see
it is possible that a smaller group with less noise may be able to outperform a larger group. In Fig-
ure 1c we observe a collective of size 0.25% with 10% noise rate outperforms a collective of size
0.5% at 40% noise rate. Noise here can be used to characterize a group’s coordination efficiency.
Different types of collectives and algorithmic systems might exhibit trade-offs between size and
minimizing noise. For organizers of collective action knowledge of these characteristics can help to
decide whether to expand the total collective size or to more tightly coordinate within a small group.

7.3 Limitations and Future Work

We assumed that we could easily segregate between distributions. In some cases, this may be more
natural (multiple collectives) while in others (benign noise) may be difficult to do in practice. We
also considered a limited set of “noise” variations on a small set of data. Future work could explore
more ecologically motivated types of deviations, including non-independent noise and adversarial
actions. We also only considered a small classification task, different types of learning paradigms
may be affected by noise differently — this would be an important avenue for future work.

8 Conclusion

We investigated the role of multiple distributions on the success of collective action. We derived
lower bounds on the success rate in relation to the cross-signal overlap and suboptimality gap. We
empirically evaluated noise in collective action. We found that noise variation matters, and that
noise that affects labels more severally impacts collective action. We note that, for organizers, un-
derstanding the trade-offs between group size and the potential noise is important; different systems
and types of actions may push organizers to invest more in effective coordination in a small group
vs expansion. As strategic interest on algorithmic systems grows, both developers of algorithms
and organizers of collective action must be aware of the potential that differing distributions has on
system outcomes.
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Influence Algorithms Together: How Millions of Fans Build Collective Understand-
ing of Algorithms and Organize Coordinated Algorithmic Actions, February 2025.
arXiv:2409.10670 [cs].

A Notation Table

We use considerable notation for defining relationship between collectives. Here we provide a con-
cise table for reference as well as some intuition behind these symbols.

B Experimental Details

As described in the main body we finetune a distilbert-based-uncased [SDCW19] for five
epochs with default hyperparameters using Hugging Face transformer library [WDS¥20]. This
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Description

Total variation distance between two distributions

Classifier error

Classifier trained on the mixture distribution

The entire feature space

The set of labels

The space of all training data X x )

Observed mixture distribution

Base (non-strategic) data distribution

Distribution induced by collective one’s intended strategy
Distribution induced by noise or a second collective’s behavior
Strategies applied by collectives or noisy actors

Signal planting functions that modify the input

Fraction of population following strategy k1, ho respectively
Total participating fraction: o = a1 + g

Proportion of correctly aligned members: r = <L
Signal set induced by g (e.g X1 = {g1(x) | x € X'})
Cross-signal overlap of P; on signal set X
Suboptimality gap for X; under P;

Success probability for collective one

Target class label for collective one

Table 1: Summary of notation used in the paper.

experimental setting is the same as [HMMDZ23, KVKS25]. The resume dataset from [JT21] was
split into 20,000 training points and 5,000 test points. The default or baseline strategy was to place
a specific character (in this case the ‘{” character) every 20 words. We evaluated on targeting the
‘Software Developer’ class, except for the ‘low frequency class’ where the target was ‘Database

Administrator.

During training, each training point is select with a probability r (the noise fraction) to be affected
by a specific noise condition. If the point was selected to be noised, the noise would be applied to
the text, and, for certain contains, the label as well.

Variation Name

Variation Description

Baseline

All members use the same characters and place every 20 words

Random-Subset

Instead of the intended character, a character from the list [U+2E18,
4P, ©’] was selected uniformly at random to be used.

Random -Full

Same as above, but the character chosen was from the set of all single
characters in the vocabulary of the tokenizer.

Displaced-Original

Keep the intended character, but instead of placing every 20 words,
choose uniformly at random (5-30 instances) places to insert the char-
acter.

Displaced-Full

Combine the character selection of Random-Full with the placement
behavior of Displaced-Original.

Table 2: List of variations for noise deviations

To evaluate whether the signal was planted successfully, for each data point in the test set, we applied
the “true” signal and evaluated whether the trained classifier would predict the target class. We used
the top-one accuracy as done in [HMMDZ?23] as the metric of success.
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383
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All experimental conditions were run 15 times. Experiments were run on a ppc64le based cluster
with V100 Nvidia GPUs. Each iteration took 30 — 40 minutes to complete.

C Proof of Theorem 2

‘We restate the theorem here:

Theorem. Consider distribution Py and Py which are distributed according to hy(x) and ha(z)
respectively, where © ~ Py. Let yi be the target class. Then success for the first collective against
an €1 classifier to be lower bounded by

(1-e)Af(yi) +a 1-a (1 —e)AY(yi) + e

(&5)
S _
Sen) 21 a1p2(X1) 1—2¢ o Po(t1) 1-2¢

Proof. We follow the same proof strategy as [HMMDZ23].

We consider the multiple distributions present the overall data distribution P Py base distribution;
‘P group 1’s distribution; Py group 2’s distribution

We write the mixture distribution as :
P(z,y7) = arPi(z,y7) + a2Pa(x, y1) + (1 — a)Po(z, y1) (1
We also define the suboptimality gap on distribution ¢ for signal set j and target label y*
A](y") = max (max P, (yla) — Pi(y*[z)) 2)

reX) yeY

We define the suboptimality gap for a specific point = as
Al (y") = max P;(ylz) — Pi(y*|) 3)
yey

Our goal is to find, for which value of o; can we guarantee the model to classify a point z € A} to
the target class y7

First consider an € = 0 classifier. If the model f classifies any point z € X to yj , it must mean that
P(yi|x) > P(y1|z) or equivalently P(z,yT) — P(z,y1) > 0 for every y1 # yi.

In this strategy, both the features and labels are changed. Since P; is the distribution which correctly
performs the intended collective action, every point ] € X7 maps to y]. Therefore we can simplify
and get

P(x,y7) = arPi(z) + a2Pa2(z, y7) + (1 — a)Po(w, y7)

Now, for y # yj we have

Pl,y) = arPi(z,y) + a2Pa(z,y) + (1 — a)Po(,y)

Given P; maps everything to y] and nothing else this first term is 0 so we can write simplify to

P(z,y) = aaPa(z,y) + (1 — a)Po(z,y)

So we can write P(x,y5) — P(z,y) > 0 as

a1Pi(x) + aaPa(z,y1) + (1 — a)Po(x, y7) — (e2Pa(x, y) + (1 — a)Po(x,y)) > 0

After rearranging we have
a1 Pi(z) = azPa(x) * (P2(ylz) — Pa(ya]x)) + (1 — &) Po(@)(Po(ylz) — Polyi|z))

10



385 This must hold true for any y so we can replace the rhs terms by Az »(¥*), in other words we have
3gs  a sufficient condition for the size of o as

Po(z)

(1 - a)AY . (y1)

z~Pq
Pa(x) . Po(z) .
= Lf%;l{al > By () 20 1) + 50y (1= a)A?,zwl)}
_ PQ(‘T) * PO(:E) *
- 1,]VE771 1{&1 Z P1($) a2Aiz(y1) + Pl(l’) (1 - Q)A?,m(yl)}

202 o« Po(@
—A _
= 2Py |: 7)1(56) a l,m(yl) 7)1(1:) a

7% PQ(x) 2 | l—a ,PO(:E) 0 *
1 @ EINPl |:P1 (Z‘) Al,m(yl) o EINPl - Al,z(yl)
1

> 1 — 22D, (X)A2(y}) —
(63}

L Po(X)AY(y7)

aq

387 With the final line using the fact that the delta we max over all 2’s

sss  Now for distribution where TV (P, P’) < ¢;. By Lemma 11 in [HMMDZ23] we have that
sse  P'(y*|x) > P'(y|x) when P(y*|z) > P(ylx) + =

1761

30 We than write this as .
1

Pyile)P(x) > P(ylz)P(z) + P(x)

1—61

391 Following the same steps, procedure as before we get

o] > Q9

Pa(z) (1 —e)AS(y}) + e Po(z) (1 —e)Aj(yi) + e
P1(x) ( 1 +22€1 >+(1 B a)Pl(x) ( 1 +02611 )

se2  Computing the S« ) again we get the condition we get

1—e)AL(y?) + e = 1—e)ALy!) +¢€
( 11) 22(91) 1 Po(X1)( DA(YT) + @1
— 4€71 a1 1—261

393 ]

S(a1) >1— 2P, () -
aq

s« D Extension to many collectives

We can extend the mixture distribution to include an arbitrary number of distributions. This can be
written as

P=> aPi+(1-a)P
i=1
s5 wherea =Y.  a;

396 By following the same procedure in Appendix C we provide a claim for success for collective one
397 against an arbitrary number of distributions.

11
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399

Theorem 3. The success of collective action for the feature label strategy against many distributions
is lower bounded by

e 1—e)ANy: 1-— 1—e)A(y:
S(Oél)21— &PZ(X].) ( 61) z(y1)+61 _ aPO(Xl)( 61) O(y1)+€1
i—2 (6751 1-— 261 a1 1— 261

Proof. We repeat the same expansion in Appendix C for an arbitrary number of distributions.

P = ZCVZPZ + (1 — OZ)P()

=1

The rest follows the same procedure, as each additional mixture term can be handled independently.
O

12
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ”’[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”’

” provided a proper justification is given (e.g., ’error bars are not reported because it would be too
computationally expensive” or “we were unable to find the license for the dataset we used”). In
general, answering ”’ ”or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list”,

* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are backed by results and the
discussion.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: There is a separate Liminations section that discusses them.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state the assumptions in the text and provide the full proof in the technical
appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the high level details in the main body and the detailed version in
the Appendix. We aim to release the code upon acceptance.

14
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be open sourced if accepted as well as provided to reviewers in a
supplemental section.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15



557
558

559
560
561

562
563
564

565

566

567

568

569
570

571
572

573

574
575

576

577

578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599

600
601
602

603

604
605

606

607

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide them in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide 1 STD error bars to all plots.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the GPU and architecture that was used and the time per itera-
tions.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We abide by all ethical considerations in conducting this research.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We mention some of the socially important use cases of this work in the
introduction, and in the Discussion we mention that, while we intend for this analysis to
improve social impacts, we recognize, that with any data driven system, there are potential
negative ramifications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: No such risk
Guidelines:

e The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: None generated.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18



71
712
713

714

715

716

77

718
719
720
721
722
723
724

725
726

727
728
729
730

731

732

733

734

735

736
737
738

739
740
741

742
743

744

745
746
747
748

749

750

751

752
753

754

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: Not applicable
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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