
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPEC-RL: ACCELERATING ON-POLICY REINFORCE-
MENT LEARNING VIA SPECULATIVE ROLLOUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) increasingly rely on reinforcement learning with
verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However,
the training process remains bottlenecked by the computationally expensive roll-
out stage. Existing acceleration methods—such as parallelization, objective- and
data-driven modifications, and replay buffers—either incur diminishing returns,
introduce bias, or overlook redundancy across iterations. We identify that rollouts
from consecutive training epochs frequently share a large portion of overlapping
segments, wasting computation. To address this, we propose SPEC-RL, a novel
framework that integrates SPECulative decoding with the RL rollout process.
SPEC-RL reuses prior trajectory segments as speculative prefixes and extends
them via a draft-and-verify mechanism, avoiding redundant generation while en-
suring policy consistency. Experiments on diverse math reasoning and gener-
alization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-
STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2–3×with-
out compromising policy quality. As a purely rollout-stage enhancement, SPEC-
RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO),
offering a general and practical path to scale RLVR for large reasoning models.

GRPO PPO DAPO
60

62

64

66

68

70

A
cc

ur
ac

y

68.3 68.5

67.1 67.5
66.3 66.3

(a) Average Performance
GRPO PPO DAPO

0

2

4

6

R
ol

lo
ut

 T
im

e
(s

)

×104

2.51×
Speedup

1.94×
Speedup 2.88×

Speedup

(b) Training Rollout Time

Baseline with SPEC-RL

Figure 1: SPEC-RL achieves a 2–3× reduction in rollout time while maintaining average perfor-
mance on Qwen-3-8B-Base across different algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved substantial progress on challenging
reasoning-intensive tasks, such as mathematical problem-solving (Lewkowycz et al., 2022b), pro-
gram synthesis (Chen et al., 2021; Li et al., 2022), and multi-step agentic planning (Yao et al.,
2023b;a). A key enabler of these advances is reinforcement learning with verifiable rewards
(RLVR) (Lambert et al., 2024; Guo et al., 2025; Yue et al., 2025), which has emerged as a widely
adopted paradigm for incentivizing models to produce faithful and reliable chain-of-thought (CoT)
reasoning (Wei et al., 2022). However, RLVR training pipelines remain constrained by the rollout
stage, a fundamental efficiency bottleneck, despite its demonstrated efficacy (Zheng et al., 2025).
During this stage, the model must generate large quantities of trajectories through interaction with
the environment, a process that is computationally expensive and scales poorly with model size.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

As a result, the cost and latency of trajectory generation dominate overall training time, severely
limiting the practicality of scaling RLVR to increasingly capable LLMs.

To mitigate rollout inefficiency, prior work has explored three directions. First, parallelized rollout
generation increases throughput by producing many trajectories per iteration (Xu et al., 2025), but
its benefits fade as computational and synchronization costs rise. Second, model-based accelerations
reduce environment interaction through modified objectives (Brantley et al., 2025; Lin et al., 2025),
data restructuring (Liu et al., 2025; Zhang et al., 2025b), or sample selection heuristics (Yu et al.,
2025; Zheng et al., 2025), though these approaches often introduce bias and added complexity.
Third, caching methods such as replay buffers reuse prior trajectories (Zhang et al., 2025a), thereby
improving data utilization, but still require fresh on-policy rollouts and struggle when policies shift
significantly.

2 4 6 8 10 12 14 16
Epoch

0.50

0.55

0.60

0.65

0.70

O
ve

rla
p

R
at

io

GRPO
PPO
DAPO

Figure 2: Token overlap ratio per
epoch under GRPO, PPO, and DAPO.
We compute the ratio using ROUGE-1,
comparing rollout response tokens from
each epoch against those from the pre-
vious consecutive epoch.

In this paper, we identify a key opportunity through a pre-
liminary study that measures the token overlap ratio be-
tween consecutive epochs, using ROUGE-1 (Lin, 2004),
across different algorithms (GRPO, PPO, and DAPO).
We find that the overlap is already substantial from the
second epoch (around 0.5) and gradually increases as
training progresses, stabilizing around 0.7 in later epochs
(Figure 2). This indicates that a substantial portion
of sampled trajectories is repeatedly regenerated across
training rounds, reflecting a strong potential for reducing
rollout cost. Such redundancy naturally arises due to in-
cremental policy updates, with the current policy often
behaving similarly to the previous one. Moreover, in en-
vironments with fixed initial states or tasks (e.g., repeated
prompts in an LLM reasoning task), the early parts of tra-
jectories tend to overlap across iterations. As a result,
significant computation is wasted regenerating these over-
lapping segments. This motivates the central question of
our work: can such redundancy be systematically ex-
ploited to accelerate rollouts?

We answer this question by proposing SPEC-RL, a novel
framework that integrates SPECulative decoding with the
RL rollout process. Rather than regenerating full trajec-
tories from scratch, SPEC-RL treats old rollouts from the
previous epoch as implicit drafts: following the speculative decoding paradigm, old rollout tokens
are verified under the current policy to form a verified prefix. When the first rejection position is
reached, the current policy continues generation from that point onward, as illustrated in Figure 3.
This approach is directly analogous to draft-and-verify methods in text generation, where a draft
sequence is proposed and then validated in parallel by the target model (Leviathan et al., 2023).
By incorporating the same mechanism into RL rollouts, SPEC-RL leverages cached rollouts to skip
redundant computation while ensuring that the final outputs remain faithful to the current policy.
The verified prefix is quickly extended by the latest policy, ensuring that the final trajectory remains
consistent with the current policy’s behavior.

Our experiments demonstrate that SPEC-RL substantially improves training efficiency across di-
verse tasks and model scales. Concretely, SPEC-RL consistently reduces rollout generation time
by 2–3× on average, while maintaining or even improving final policy performance across a wide
range of math reasoning benchmarks (GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al.,
2021), Minerva Math (Lewkowycz et al., 2022a), OlympiadBench (He et al., 2024), AMC 2023 (Art
of Problem Solving, 2024)) and out-of-distribution benchmarks (MMLU-STEM (Hendrycks et al.,
2020), IFEval (Zhou et al., 2023)). Importantly, SPEC-RL is designed as a modular enhancement
to the data collection phase, making it readily applicable to a wide range of mainstream RLVR
algorithms, such as GRPO, DAPO, and PPO.

In summary, we identify substantial rollout redundancy in RLVR and show that reusing overlapping
trajectory segments can greatly reduce sampling cost. Building on this insight, we introduce SPEC-
RL, the first framework to incorporate speculative decoding into RL rollouts by treating previous-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Policy Model (verify)

New Rollout

Policy Model (generate)

Verified Prefix

Verified PrefixPrompt Prompt
Old Rollout

= ≠

Policy Model

Prompt

Vanilla RLVR SPEC-RL

New Rollout

Cached Rollouts from Epoch𝒕 − 𝟏

裁剪框

Cached Rollouts from Epoch𝒕

Figure 3: Comparison of the rollout process in Vanilla RLVR and SPEC-RL. Vanilla RLVR re-
generates full responses at each epoch. In SPEC-RL, at each epoch t = 1, . . . , T , cached rollouts
from the previous epoch are verified in parallel to retain verified prefixes, the remaining tokens are
discarded, and generation resumes from the rejection position before assembling the final response.

epoch trajectories as implicit drafts and verifying reusable prefixes. This design integrates smoothly
with mainstream RL algorithms and yields significant rollout acceleration while maintaining policy
performance.

2 PRELIMINARIES

2.1 ON-POLICY REINFORCEMENT LEARNING

Reinforcement learning with verifiable rewards (RLVR) formulates the answer generation of an
LLM as a conditional sampling policy. Given a dataset of reasoning pairs (x,y∗) ∼ D, where x is
a prompt and y∗ is the ground-truth answer, the policy πθ(· | x) generates a candidate response y.
A reward function R(y,y∗) evaluates whether the generated response y matches the ground-truth
answer y∗. Training relies on on-policy rollouts, where samples are drawn from the current policy at
every iteration. This ensures that training data remain consistent with the current policy distribution,
avoiding the distribution mismatch issues common in off-policy methods and yielding more stable
learning. However, the downside is that new trajectories must be regenerated at each update, and the
cost of producing long sequences makes rollout the dominant efficiency bottleneck in RLVR. The
objective of on-policy RL is simply to maximize the expected reward of the generated responses:

J(θ) = E(x,y∗)∼D,y∼πθ(·|x)
[
R(y,y∗)

]
. (1)

In this work, we keep the RL objective and policy update unchanged and focus on improving the
efficiency of the rollout stage.

2.2 SPECULATIVE DECODING

Speculative decoding follows a draft–and–verify paradigm: an efficient draft model p (e.g., a smaller
LM) first drafts multiple future tokens, and the target model q verifies them in parallel. A drafted
token zi ∼ p(· | x, z<i) is accepted with

α(zi | x, z<i) = min
{
1,

q(zi | x, z<i)

p(zi | x, z<i)

}
, (2)

which guarantees that the resulting procedure samples exactly from the target distribution and thus
preserves fidelity to the target model q. It accelerates generation by reducing the number of expen-
sive target computations. The actual speedup is mainly determined by the acceptance rate and the
cost gap between the draft and target model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

The goal of SPEC-RL is to accelerate RL rollouts by avoiding redundant regeneration. Instead
of sampling complete trajectories from scratch at every step, we leverage cached rollouts from the
previous epoch and reuse as much of them as possible, only generating the minimal continuation
that is inconsistent with the current policy (Figure 3). This reduces the number of decoded tokens
and directly cuts rollout latency. The detailed procedure is described in Algorithm 1.

3.1 SPECULATIVE DECODING OVER CACHED ROLLOUTS WITH LENIENCE

At the core of SPEC-RL is adapting speculative decoding to the RL setting by treating cached
rollouts as draft sequences. For a prompt x, let yold = {yoldi } denote the cached rollout produced
when this prompt was last seen in training. Instead of generating from scratch, we verify each
cached token under the current policy and decide whether it can be reused. Formally, following
the standard draft-and-verify formulation in Equation 2, we replace the draft distribution p with the
previous policy πold and the target distribution q with the current policy πt at epoch t, yielding the
acceptance rule

αi = min
(
1,

πt(y
old
i | x,yold

<i)

πold(yoldi | x,yold
<i)

)
. (3)

While the vanilla rule ensures exact consistency with the current policy, it can be overly strict in
practice, limiting the amount of reuse. To further improve reuse, we introduce a lenience parameter
ℓ following prior work on speculative decoding (Chen et al., 2024). Lenience relaxes the accep-
tance condition, effectively shifting the decision boundary and permitting more tokens to be reused.
Formally, the acceptance rule becomes

α̃i = min
(
1, ℓ ·

πt(y
old
i | x,yold

<i)

πold(yoldi | x,yold
<i)

)
. (4)

Each cached token is accepted if u ∼ U(0, 1) satisfies u ≤ α̃i, and rejected otherwise. When ℓ = 1,
this reduces to the vanilla speculative rule; ℓ > 1 increases acceptance and yields longer reused
prefixes; ℓ→∞ corresponds to full reuse; and ℓ→ 0 recovers standard RLVR without reuse. This
simple knob provides a flexible way to balance rollout efficiency and exploration.

After applying the acceptance rule, the procedure identifies the first rejection position n. All tokens
before this rejection position are retained as the verified prefix yold

<n, while the remaining suffix is
discarded. The current policy πt then resumes generation from this point onward, producing a new
suffix ynew

≥n . Finally, the verified prefix and the regenerated suffix are concatenated to form the new
rollout ynew. This end-to-end process—verification, generation, and assembly—is summarized in
Algorithm 1.

Algorithm 1: SPEC-RL

Input: Current policy πt; Prompt x; old response yold = {yoldi } with probability pold;
lenience ℓ ≥ 1.

1 Compute probability in parallel pnewi ← πt(y
old
i | x,yold

<i), i = 1, ..., |yold|;
2 Compute acceptance probability α̃ = min(1, ℓ · p

new

pold);
3 Initialize rejection position n← |yold|+ 1;
4 for i = 1 to |yold| do
5 Sample u ∼ U(0, 1);
6 if u > α̃i then
7 Assign rejection position n← i;
8 break;

9 Generate response ynew
≥n ← πt(· | x,yold

<n);
10 Assemble response ynew ← {yold

<n,y
new
≥n };

11 return ynew

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTING SPEC-RL IN RLVR TRAINING

To enable practical use in RLVR pipelines, SPEC-RL introduces a lightweight cache module that
stores rollouts from the previous epoch and continuously refreshes them as training proceeds. When
the same prompt reappears, its cached response is retrieved and verified under the current policy.
Verified prefixes are reused directly, while rejected suffixes are scheduled for continuation. This
reuse–continue mechanism is implemented in Algorithm 1, which shows how verified prefixes and
regenerated suffixes are combined into the final response. For efficient batching, all requests are
packed into a single call to the rollout engine. Verified prefixes and prompts are aligned through left
padding, so that different requests can be processed in parallel without fragmentation. This design
ensures that SPEC-RL operates as a drop-in module: it modifies only the rollout stage, requires
no change to reward computation or policy updates, and is compatible with mainstream algorithms
such as GRPO, PPO, and DAPO.

3.3 DISCUSSION

To further understand SPEC-RL, we discuss its connections and differences with both standard
speculative decoding and existing RLVR training. This comparison helps situate the method more
clearly and highlight its key contributions.

Relation to speculative decoding. SPEC-RL follows the draft–and–verify paradigm of specula-
tive decoding, but in a simplified, single-round form. Vanilla speculative decoding typically requires
a separate draft model, loading extra parameters, scheduling overhead, and multiple verification
rounds. In contrast, SPEC-RL reuses the previous policy as the draft, with cached rollouts available
“for free”. The current policy πt performs only one parallel verification pass; after the first rejection,
the suffix is generated directly. This eliminates the need for auxiliary models while preserving the
fidelity guarantees of speculative decoding.

Relation to vanilla RLVR. Compared to standard RLVR, SPEC-RL modifies only the rollout
stage. In vanilla training, every epoch regenerates full trajectories from scratch, even though large
portions of tokens are already shared between consecutive epochs, as shown in Figure 2. SPEC-RL
exploits this redundancy by verifying cached rollouts, reusing the accepted prefix, and regenerating
only the suffix. Fully accepted responses can be reused without any generation, directly reducing
rollout cost while ensuring consistency with the current policy.

Why lenience matters. RLVR training proceeds through incremental updates, so adjacent poli-
cies remain closely aligned. This makes lenience a natural fit: with moderate ℓ values, one can reuse
tokens that are close to the current policy distribution without deviating significantly. Moreover,
since the draft model corresponds to the model from the previous epoch, it remains naturally close
to the current policy, thereby ensuring that cached rollouts are still informative. Such relaxation pre-
serves learning signals while substantially reducing rollout cost, as parallel verification over cached
rollouts is far cheaper than regenerating entire trajectories.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We train our models using the verl (Sheng et al., 2025) framework with vLLM (Kwon et al., 2023)
as the rollout engine, on data sampled from DeepMath (6,144 examples, denoted as DeepMath-
6K) (He et al., 2025) and SimpleRL (8,192 examples, denoted as SimpleRL-8K) (Zeng et al., 2025).
All experiments use a prompt batch size of 1,024 and a maximum response length of 4,096 tokens,
conducted on a single node with 8× NVIDIA H100 GPUs. Rollout is performed at a temperature
of 1.0. The actor learning rate is fixed at 5 × 10−7, and for PPO we set the critic learning rate to
1× 10−5.

Benchmarks and metrics. We evaluate rollout efficiency and accuracy on a broad suite of bench-
marks. Rollout efficiency is reported as the number of generated tokens and the relative speedup
(baseline time divided by method time). Math reasoning benchmarks include AMC 2023 (Art of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Problem Solving, 2024), GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021), Min-
erva Math (Lewkowycz et al., 2022a), and OlympiadBench (He et al., 2024). Out-of-distribution
(OOD) benchmarks include MMLU-STEM (Hendrycks et al., 2020) and IFEval (Zhou et al.,
2023), which evaluate the generalization capability of the model. Full hyperparameter and eval-
uation details are provided in Appendices A.1 and A.2.

4.2 MAIN PERFORMANCE

Overall performance on various models and algorithms. We evaluate SPEC-RL across mul-
tiple model families (Qwen, LLaMA) and RL algorithms (GRPO, PPO, DAPO), with results sum-
marized in Table 1. Across nine model–algorithm settings, SPEC-RL yields an average speedup of
2.31× by reducing generated tokens by 66The largest gain is with Qwen-3-8B-Base under DAPO
(1,052.2M → 326.2M tokens; 2.88×), while even the smallest case (Qwen-3-8B-Base with PPO)
achieves 1.94× without accuracy loss. These improvements closely track the reduction in generated
tokens, confirming that token-level savings drive the acceleration.

On math benchmarks, accuracy remains broadly stable: larger models are highly robust, while
smaller models show only small fluctuations. For OOD tasks, MMLU-STEM stays nearly un-
changed, and IFEval improves in several cases—for example, +6.5 points on Qwen-3-8B-Base with
GRPO. Overall, SPEC-RL accelerates rollout generation substantially without degrading reasoning
quality, and sometimes even improves out-of-distribution generalization.

Table 1: Overall results across models (Qwen, LLaMA) and algorithms (GRPO, PPO, DAPO)
on DeepMath-6K. For each model size and family, we report the performance of its base model,
the results of different RL algorithms, and the corresponding rollout efficiency and accuracy when
equipped with SPEC-RL.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Qwen-3-1.7B-Base
Base Model - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

PPO 565.1 1.00× 35.0 82.0 63.0 26.8 25.3 59.4 25.5 45.3
↪→ + SPEC-RL 230.8 1.94× 35.0 82.0 64.8 25.4 25.9 58.6 25.9 45.4

DAPO 543.1 1.00× 30.0 79.6 60.8 24.6 23.0 52.2 24.8 42.1
↪→ + SPEC-RL 171.6 2.17× 22.5 80.1 60.0 25.7 25.5 53.5 27.0 42.0

Qwen-3-8B-Base
Base Model - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
GRPO 1033.1 1.00× 75.0 94.1 86.4 43.8 53.0 84.6 41.2 68.3
↪→ + SPEC-RL 336.6 2.51× 70.0 94.5 87.8 44.1 51.0 84.5 47.7 68.5

PPO 984.0 1.00× 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
↪→ + SPEC-RL 400.1 1.94× 75.0 92.9 85.2 43.4 50.8 84.4 41.0 67.5

DAPO 1052.2 1.00× 75.0 93.3 84.8 40.1 48.6 82.4 39.6 66.3
↪→ + SPEC-RL 326.2 2.88× 65.0 93.8 84.4 43.8 50.4 82.2 44.4 66.3

LLaMA-3.2-1B-Instruct
Base Model - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
GRPO 553.9 1.00× 5.0 28.1 19.2 3.3 4.9 33.1 37.0 18.7
↪→ + SPEC-RL 162.5 2.60× 7.5 28.7 19.4 1.8 5.0 34.5 37.2 19.2

PPO 521.5 1.00× 10.0 31.6 20.8 4.0 6.4 34.3 42.7 21.4
↪→ + SPEC-RL 210.6 2.01× 10.0 32.4 20.2 5.5 5.0 35.3 40.7 21.3

DAPO 482.6 1.00× 7.5 29.6 19.2 4.0 5.5 33.0 38.6 19.6
↪→ + SPEC-RL 123.1 2.48× 10.0 34.9 20.2 4.0 5.5 35.5 38.4 21.2

Table 2: Comparison between SPEC-RL and a random reuse baseline on GRPO. In the random
reuse setting, the rejection position for each sequence is drawn uniformly at random, resulting in
roughly half of the tokens being reused on average.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + Random Reuse 304.5 2.35× 37.5 80.0 60.4 21.7 25.3 53.1 24.0 43.1
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Ablation on lenience parameter ℓ on the DeepMath-6K. Here ℓ = 1 corresponds to vanilla
speculative decoding, while ℓ =∞ corresponds to full reuse.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = 1 419.1 1.22× 40.0 81.8 63.8 28.7 26.5 59.6 25.9 46.6
↪→ + SPEC-RL ℓ = e0.2 246.7 1.86× 37.5 83.3 66.4 29.8 29.6 58.5 25.9 47.3
↪→ + SPEC-RL ℓ = e0.5 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0
↪→ + SPEC-RL ℓ = e0.8 144.8 2.64× 37.5 83.5 63.6 27.2 25.0 61.7 26.2 46.4
↪→ + SPEC-RL ℓ = e1.0 123.0 2.91× 37.5 83.9 62.4 25.7 24.9 54.8 28.3 45.4
↪→ + SPEC-RL ℓ = e2.0 114.4 3.05× 30.0 80.4 55.0 21.0 21.9 53.5 29.0 41.5
↪→ + SPEC-RL ℓ =∞ 40.0 14.86× 32.5 78.1 60.4 19.9 23.7 44.1 22.0 40.1

Additional analyses—including per-step training curves, wall-clock breakdowns, comparisons on
DeepMath-6K and SimpleRL-8K, and the effect of training-set size—are provided in Appen-
dices A.3, A.4, A.5, and A.6.

Comparison with random reuse strategy. We further compare SPEC-RL with a random reuse
baseline, where rejection positions are sampled uniformly at random, leading to roughly half of the
tokens being reused on average. As shown in Table 2, random reuse reduces rollout cost (304.5M vs.
554.8M tokens) and improves efficiency (2.35× speedup), but causes a substantial drop in accuracy
(43.1 vs. 46.7). In particular, it degrades performance on high-stakes benchmarks such as MATH-
500 (60.4 vs. 64.4) and Minerva Math (21.7 vs. 26.5). By contrast, SPEC-RL achieves comparable
or better efficiency gains (182.7M tokens, 2.29× speedup) while preserving accuracy. This con-
trast highlights that naive reuse introduces harmful noise, whereas SPEC-RL leverages speculative
verification to retain policy fidelity while accelerating training. The detailed intermediate training
results of random reuse are reported in Appendix A.7

4.3 ABLATION STUDY

We conduct ablation experiments on Qwen-3-1.7B-Base with GRPO using the DeepMath-6K
dataset with a batch size of 1,024. Under this setting, one epoch corresponds to 6 steps, and the
results are summarized in Table 3 and Figures 4, 5, and 6.

Impact of lenience ℓ. As shown in Table 3, increasing ℓ consistently improves rollout efficiency:
starting from vanilla speculative decoding at ℓ = 1 with a speedup of only 1.22×, the acceleration
rises steadily and reaches 14.86× when ℓ → ∞. Accuracy, however, does not follow the same

0 10 20 30 40 50 60 70 80 90
Step

0

50

100

150

200

250

300

350
(a) Rollout Time (s)

10 20 30 40 50 60 70 80 90
Step

0

200

400

600

800

(b) Average Verified Prefix Length

10 20 30 40 50 60 70 80 90
Step

0.0

0.2

0.4

0.6

0.8

1.0
(c) Full Reuse Ratio

vanilla
ℓ = 1

ℓ= e0.1
ℓ = e0.2

ℓ = e0.3
ℓ = e0.4

ℓ = e0.5
ℓ = e0.6

ℓ = e0.7
ℓ = e0.8

ℓ = e0.9
ℓ = e1.0

ℓ = e1.5
ℓ = e2.0

ℓ =∞

Figure 4: Training dynamics of SPEC-RL under different ℓ. (a) Rollout time per training step
decreases as ℓ increases, where the dashed line indicates the step at which speculative decoding be-
gins. (b) Average verified prefix length grows both with larger ℓ and across training steps, reflecting
stronger policy alignment. (c) Full reuse ratio—the fraction of samples fully reusing cached roll-
outs—also rises, complementing prefix length and jointly explaining the observed efficiency gains.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90
Step

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

(a) Reward

0 10 20 30 40 50 60 70 80 90
Step

30

32

34

36

38

40

42

44

46
(b) Average Performance

vanilla
ℓ=1

ℓ= e0.1

ℓ= e0.2
ℓ= e0.3

ℓ= e0.4
ℓ= e0.5

ℓ= e0.6
ℓ= e0.7

ℓ= e0.8
ℓ= e0.9

ℓ= e1.0
ℓ= e1.5

ℓ= e2.0
ℓ=∞

Figure 5: Effect of lenience ℓ on learning outcomes. (a) Reward trajectories show that moderate ℓ
maintains stability and eventually surpasses vanilla GRPO, while overly large ℓ slows progress. (b)
Average performance follows the same trend: moderate ℓ preserves accuracy, whereas aggressive
reuse (ℓ ≥ e1.0) degrades both reward and final performance.

trend—performance peaks at ℓ = e0.5 with 48.0, but declines when reuse becomes overly aggressive,
dropping to 40.1 at ℓ→∞. Overall, moderate lenience values strike the best balance, yielding 2–3×
rollout speedups while preserving or slightly improving accuracy, whereas extreme reuse sacrifices
performance despite dramatic acceleration. The detailed intermediate results throughout training are
provided in Appendix A.8.

Acceleration is jointly driven by lenience and policy alignment. Cached responses become
reusable from the second epoch (e.g., step 7), at which point rollout time shows the first sharp
drop (Figure 4 (a)). Before that, all curves overlap because no old policy exists. Once reuse starts,
the SPEC-RL curves immediately diverge and rollout time falls substantially. Along the lenience
axis, vanilla GRPO stabilizes near 300s per step, while even the default setting (ℓ = 1) lowers this
to slightly above 200s. Larger ℓ yields further gains—for example, at ℓ = e0.2 the later rollout
time is already below half of the baseline (150s), with even more reduction for higher ℓ (Figure 4
(a)). Correspondingly, both accepted-prefix lengths and skip ratios grow with increasing ℓ (Figure 4
(b,c)). Along the training axis, accepted-prefix length is initially high, dips around steps 10–20
due to early policy shifts, and then rises again as the policy aligns (Figure 4 (b)). Meanwhile,
the skip ratio increases steadily throughout training (Figure 4 (c)). Together, these patterns show
that efficiency gains in SPEC-RL stem from both lenience-controlled acceptance and the growing
alignment between successive policies.

Excessive reuse stresses optimization. When ℓ→∞, reuse becomes complete and every cached
response is fully reused from the second epoch onward. As shown in Figure 6 (a–c), entropy, KL
loss, and the gradient clipping ratio all rise dramatically compared with vanilla GRPO and settings
with ℓ ≤ e2.0, quickly shooting beyond the plotting range, indicating severe instability. Because
exploration collapses under complete reuse, the outputs of all subsequent epochs become identical,
and the training reward exhibits a clear cyclic fluctuation with the period of one epoch (6 steps in
our setup), as illustrated in Figure 5 (a). These unstable dynamics further translate into a sharp
degradation of downstream accuracy: the average math performance drops markedly (Figure 5 (b)
and Table 3). Overall, extreme acceleration from complete reuse comes at the cost of exploration
collapse and unstable optimization dynamics.

Moderate reuse preserves healthy learning signals. In contrast to the instability observed at
extreme reuse, moderate lenience values (around ℓ = e0.5) maintain well-behaved optimization dy-
namics. As shown in Figure 6 (a–c), entropy and KL loss remain close to those of vanilla GRPO,
and clipping is not abnormally triggered. Meanwhile, reward trajectories under moderate ℓ maintain
stability and eventually surpass the baseline (Figure 5 (a)), while average math performance is pre-
served or slightly improved (Figure 5 (b)), consistent with the peak average score of 48.0 reported in
Table 3. These results demonstrate that moderate lenience values enable 2–3× acceleration without

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(a) Entropy

0 10 20 30 40 50 60 70 80 90
Step

0.0

0.1

0.2

0.3

0.4

0.5
(b) KL Divergence

0 10 20 30 40 50 60 70 80 90
Step

0.001

0.002

0.003

0.004

0.005

0.006
(c) Policy Gradient Clip

vanilla
ℓ=1

ℓ= e0.1

ℓ= e0.2
ℓ= e0.3

ℓ= e0.4
ℓ= e0.5

ℓ= e0.6
ℓ= e0.7

ℓ= e0.8
ℓ= e0.9

ℓ= e1.0
ℓ= e1.5

ℓ= e2.0
ℓ=∞

Figure 6: Training dynamics of SPEC-RL under different ℓ. (a) Entropy decreases more rapidly
with larger ℓ. (b) KL Divergence gradually rises with more steps, especially under larger ℓ. (c)
Policy Gradient Clip ratio first increases and then stabilizes, with higher ℓ leading to larger values.

sacrificing reward signals or downstream reasoning accuracy. Case studies in Appendix B further
show how SPEC-RL reuses verified prefixes while keeping the reasoning chain intact, illustrating
why moderate reuse achieves the best trade-off.

5 RELATED WORK

Efficiency in RLVR. Prior work improves RLVR efficiency mostly at the trajectory level—via
parallel rollouts (Xu et al., 2025), modified objectives (Brantley et al., 2025; Lin et al., 2025), data-
centric batch restructuring (Liu et al., 2025; Zhang et al., 2025b), system heuristics (Yu et al., 2025;
Zheng et al., 2025), or trajectory replay (Zhang et al., 2025a). These approaches reduce the number
of trajectories or stabilize optimization, but do not shrink the token count per trajectory, which
dominates rollout time. Our method targets this missing dimension by reusing verified prefixes,
improving token-level efficiency while keeping RLVR objectives unchanged.

Speculative decoding. Speculative decoding proposes tokens with a draft model and verifies them
with a stronger model (Leviathan et al., 2023), with later variants improving parallelism or multi-
token acceptance (Cai et al., 2024; Chen et al., 2024; Qin et al., 2024; Sun et al., 2024). While
designed for inference and typically requiring extra modules, we repurpose speculative decoding
for RLVR by using the previous policy’s outputs as drafts, enabling prefix reuse without additional
models.

6 CONCLUSION

We address the rollout bottleneck in reinforcement learning with verifiable rewards (RLVR) by intro-
ducing SPEC-RL, which integrates speculative decoding into rollout generation. Instead of regen-
erating trajectories from scratch, SPEC-RL treats previous-epoch rollouts as implicit drafts: tokens
are verified under the current policy to form a verified prefix, then generation resumes from the first
rejection position. A lenience parameter ℓ modulates the acceptance rule, trading off reuse and ex-
ploration. Experiments on Qwen and LLaMA models with GRPO, PPO, and DAPO show consistent
2–3× rollout speedups with largely preserved, and sometimes improved, reasoning and OOD per-
formance. This demonstrates that rollout redundancy can be systematically exploited without modi-
fying objectives, rewards, or update rules. Limitations include dependence on cached responses and
potential under-exploration with high lenience. Future work includes adaptive scheduling of ℓ and
extending speculative reuse to multi-turn and large-scale RLVR settings. Overall, SPEC-RL offers
a simple, model-agnostic way to substantially reduce the cost of RLVR training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Art of Problem Solving. Amc problems and solutions. https://artofproblemsolving.
com/wiki/index.php?title=AMC_Problems_and_Solutions, 2024. Accessed:
2025-04-20.

Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou
Zhang. Accelerating rl for llm reasoning with optimal advantage regression, 2025. URL https:
//arxiv.org/abs/2505.20686.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226–86242, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

10

https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2401.10774
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via spec-
ulative decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19274–19286. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022a.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022b.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. A diversity-promoting
objective function for neural conversation models. In Proceedings of the 2016 conference of
the North American chapter of the association for computational linguistics: human language
technologies, pp. 110–119, 2016.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models, 2025. URL https://arxiv.org/
abs/2503.22342.

Zikang Liu, Tongtian Yue, Yepeng Tang, Longteng Guo, Junxian Cai, Qingbin Liu, Xi Chen, and
Jing Liu. Prefix grouper: Efficient grpo training through shared-prefix forward, 2025. URL
https://arxiv.org/abs/2506.05433.

Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, and Yizhou Sun. Optimized multi-
token joint decoding with auxiliary model for llm inference. arXiv preprint arXiv:2407.09722,
2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

11

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2506.05433

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou.
Rlep: Reinforcement learning with experience replay for llm reasoning. arXiv preprint
arXiv:2507.07451, 2025a.

Yiqi Zhang, Huiqiang Jiang, Xufang Luo, Zhihe Yang, Chengruidong Zhang, Yifei Shen, Dong-
sheng Li, Yuqing Yang, Lili Qiu, and Yang You. SortedRL: Accelerating RL training for
LLMs through online length-aware scheduling. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models, 2025b. URL https://openreview.net/forum?id=
YoV9lIZ827.

Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts, 2025. URL https://arxiv.org/abs/2506.02177.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In The 41st international ACM SIGIR
conference on research & development in information retrieval, pp. 1097–1100, 2018.

12

https://arxiv.org/abs/2503.14476
https://openreview.net/forum?id=YoV9lIZ827
https://openreview.net/forum?id=YoV9lIZ827
https://arxiv.org/abs/2506.02177

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MORE DETAILS OF SPEC-RL

This appendix provides additional details on experimental settings, hyperparameters, and reward de-
sign, as well as extended ablation studies and full step-level results. We begin with shared training
configurations and evaluation setups, then report intermediate training trajectories, efficiency analy-
ses, and end-to-end time breakdowns. Finally, we present ablations across datasets (DeepMath-6K
vs. SimpleRL-8K) and training-set sizes (2K–6K), additional baseline comparisons, and case studies
that illustrate the behavior of SPEC-RL in practice.

A.1 HYPERPARAMETERS

We report the shared training settings (model families, rollout engine, batch size, sequence lengths,
training steps, and optimizer details), as well as the algorithm-specific configurations. All experi-
ments use Qwen-3-1.7B-Base, Qwen-3-8B-Base, and LLaMA-3.2-1B as backbone models. Roll-
outs are generated using vLLM (rollout N = 8) with a global batch size of 1024. The maximum
prompt length is 1,024 tokens, and the maximum response length is 4,096 tokens. For optimization,
the actor is trained using AdamW (learning rate 5× 10−7, weight decay 0.01, and gradient clipping
of 1.0). For PPO, the critic is additionally optimized with AdamW (learning rate 1 × 10−5, weight
decay 0.01, clipping 1.0). Algorithm-specific differences are as follows. GRPO enables KL regu-
larization with a coefficient of 0.0001, whereas PPO and DAPO disable KL regularization. DAPO
further adopts a wider clipping range (high = 0.28, c = 10) compared to GRPO and PPO (high =
0.2, c = 3). Additionally, DAPO utilizes dynamic sampling. To ensure fair comparison with GRPO
and PPO, we control for the total amount of rollout data: each training step in DAPO corresponds to
multiple generation steps, and the evaluation interval is reduced from every 10 steps to every 5 steps.
SPEC-RL uses default lenience values of e0.5 for GRPO, e0.3 for PPO, and e0.15 for DAPO, chosen
via grid search to balance rollout efficiency and stability. All methods employ the math-verify
reward, which assigns +1 if the final boxed or numeric answer matches the ground truth and 0 oth-
erwise. This simple, deterministic design ensures that the reward is aligned with evaluation metrics
across benchmarks.

We use a rule-based reward function that depends solely on the correctness of the final answer.
Specifically, we utilize the math-verify library to verify each generated solution: if the pre-
dicted answer matches the reference, the model receives a reward of +1, and otherwise, 0. The
math-verify library is responsible for parsing the model output, extracting the final boxed or
numeric answer, and checking it against the ground truth. No format-based shaping or auxiliary
heuristics are used. This choice maintains a simple, deterministic, and aligned reward signal across
all benchmarks, aligning with the evaluation objective.

A.2 DETAILED EVALUATION SETUPS

Our evaluation setup largely follows prior work (Zeng et al., 2025; Yang et al., 2024), ensuring
consistency and comparability with established baselines. For all math reasoning benchmarks, in-
cluding AMC23, GSM8K, MATH-500, Minerva Math, OlympiadBench, and MMLU-STEM, we
use a maximum generation length of 16,000 tokens, with nucleus sampling (p = 0.95) and temper-
ature set to 1.0. For IFEval, we employ the lighteval (Habib et al., 2023) framework for evaluation,
maintaining the same decoding parameters as those used in the math reasoning benchmarks. This
uniform setup ensures that all comparisons focus on the effects of SPEC-RL, rather than variations
in decoding configurations. For experiments on DeepMath-6K, we report the performance at step
90 (corresponding to 15 epochs with 6,144 examples and a batch size of 1,024). For SimpleRL-8K,
we report the performance at step 100.

A.3 PERFORMANCE OVER TRAINING STEPS

To provide a more complete view of model behavior and enhance the robustness of our method, we
also report performance trajectories throughout training. For each setting, results are shown every
10 steps, comparing the vanilla algorithm with its SPEC-RL variant, as shown in Tables 4, 5, 6,
7, 8, 9, 10, 11, 12. This step-wise view complements the main results by illustrating how rollout
efficiency and accuracy evolve consistently during training, rather than only at the final checkpoint.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL 10 43.6 1.41× 27.5 75.7 55.8 21.7 21.8 43.0 22.4 38.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL 20 67.2 1.66× 30.0 80.0 63.0 25.0 24.6 46.9 22.2 41.7

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL 30 85.1 1.85× 30.0 81.0 64.0 25.4 27.6 51.1 26.2 43.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL 40 102.9 1.96× 37.5 80.7 63.8 26.5 26.1 52.2 23.5 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL 50 119.4 2.06× 32.5 81.1 64.4 28.7 28.0 55.6 27.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL 60 135.1 2.14× 27.5 83.4 66.4 26.5 29.9 54.7 28.8 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL 70 153.2 2.18× 40.0 82.5 65.4 26.5 29.9 55.6 27.4 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL 80 168.1 2.24× 45.0 83.7 67.0 29.8 29.6 57.1 28.3 48.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 90 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

Table 5: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with GRPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL
variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
GRPO 10 71.9 1.00× 60.0 91.5 80.0 32.7 44.3 64.7 34.4 58.2
↪→ + SPEC-RL 10 53.0 1.36× 60.0 92.0 80.0 37.1 43.9 64.2 37.2 59.2

GRPO 20 158.2 1.00× 62.5 93.6 82.8 40.4 49.3 77.3 39.0 63.6
↪→ + SPEC-RL 20 76.4 1.96× 65.0 93.3 83.6 42.6 48.6 72.2 43.4 64.1

GRPO 30 278.1 1.00× 70.0 92.7 84.2 39.7 48.9 80.4 35.7 64.5
↪→ + SPEC-RL 30 116.7 2.18× 65.0 93.5 85.0 43.0 49.5 80.4 47.9 66.3

GRPO 40 404.2 1.00× 67.5 93.5 85.2 40.8 50.2 82.0 37.9 65.3
↪→ + SPEC-RL 40 156.4 2.31× 75.0 94.1 84.2 44.5 49.0 83.3 46.8 68.1

GRPO 50 532.0 1.00× 70.0 93.5 85.4 42.6 49.5 82.8 40.1 66.3
↪→ + SPEC-RL 50 194.4 2.36× 77.5 93.3 84.8 44.1 52.3 83.2 45.7 68.7

GRPO 60 659.3 1.00× 72.5 93.1 84.8 44.1 51.4 83.0 38.8 66.8
↪→ + SPEC-RL 60 235.7 2.36× 72.5 94.4 85.4 43.0 51.1 84.4 44.9 68.0

GRPO 70 785.6 1.00× 65.0 93.3 84.8 43.4 51.3 84.3 34.8 65.3
↪→ + SPEC-RL 70 279.2 2.36× 62.5 94.4 87.0 43.8 51.7 84.7 47.5 67.4

GRPO 80 910.2 1.00× 67.5 94.0 85.8 43.4 50.2 84.7 40.1 66.5
↪→ + SPEC-RL 80 311.1 2.42× 75.0 93.4 87.4 43.4 52.1 85.2 48.2 69.2

GRPO 90 1033.1 1.00× 75.0 94.1 86.4 43.8 53.0 84.6 41.2 68.3
↪→ + SPEC-RL 90 336.6 2.51× 70.0 94.5 87.8 44.1 51.0 84.5 47.7 68.5

Training Dynamics and Efficiency Across Different RL Algorithms. We present the efficiency
of our method across RL algorithms in Figures 7, 8, and compare rewards and rollout time against
baselines in Figures 9, 10. Across all three algorithms, SPEC-RL substantially reduces rollout time
while preserving learning quality: rewards match or exceed the vanilla baselines under PPO and
GRPO, and are largely on par under DAPO (with a minor late-stage gap on Qwen3-8B). The ef-
ficiency gains align with stronger speculative reuse signals: the full reuse ratio quickly rises and
stabilizes around 0.6–0.85 after early transients, and the average verified prefix length remains large
(hundreds to 1.2k tokens) and generally increases over training—most prominently on Qwen3-8B
for GRPO/DAPO. Together, these curves indicate that SPEC-RL learns to reuse long, verified pre-
fixes, trading decoding for reuse, which yields lower per-step generation cost without compromising
reward progress.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
GRPO 10 72.1 1.00× 7.5 27.2 14.2 2.9 3.4 31.7 38.8 18.0
↪→ + SPEC-RL 10 47.8 1.38× 5.0 27.1 12.8 2.6 3.4 32.8 38.6 17.5

GRPO 20 141.2 1.00× 5.0 28.3 15.6 2.6 3.9 33.5 39.7 18.4
↪→ + SPEC-RL 20 78.5 1.57× 7.5 28.7 18.0 3.7 3.9 35.0 38.6 19.3

GRPO 30 204.5 1.00× 5.0 27.1 17.4 2.9 4.4 35.1 38.3 18.6
↪→ + SPEC-RL 30 100.7 1.73× 5.0 32.3 18.4 2.6 4.9 33.4 40.5 19.6

GRPO 40 266.8 1.00× 10.0 29.5 15.4 3.3 4.4 33.2 41.2 19.6
↪→ + SPEC-RL 40 115.0 1.94× 10.0 31.2 18.6 4.4 5.5 34.2 38.8 20.4

GRPO 50 326.2 1.00× 12.5 27.9 17.6 3.7 5.3 34.3 38.1 19.9
↪→ + SPEC-RL 50 126.3 2.12× 7.5 31.5 20.2 4.4 4.7 36.0 39.6 20.6

GRPO 60 382.9 1.00× 15.0 28.4 17.8 3.3 5.2 34.0 40.5 20.6
↪→ + SPEC-RL 60 134.7 2.29× 7.5 31.8 19.0 4.4 5.5 35.6 37.9 20.2

GRPO 70 438.3 1.00× 15.0 30.1 17.6 4.8 5.5 34.6 37.3 20.7
↪→ + SPEC-RL 70 143.6 2.41× 12.5 29.7 19.8 5.1 5.8 36.1 37.2 20.9

GRPO 80 495.3 1.00× 5.0 25.9 17.6 4.0 3.9 33.3 37.2 18.1
↪→ + SPEC-RL 80 152.8 2.52× 7.5 29.3 19.4 2.9 3.9 35.6 42.7 20.2

GRPO 90 553.9 1.00× 5.0 28.1 19.2 3.3 4.9 33.1 37.0 18.7
↪→ + SPEC-RL 90 162.5 2.60× 7.5 28.7 19.4 1.8 5.0 34.5 37.2 19.2

Table 7: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with PPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL
variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
PPO 10 66.6 1.00× 35.0 71.3 54.8 19.9 21.3 42.6 19.2 37.7
↪→ + SPEC-RL 10 46.5 1.34× 27.5 73.2 56.8 17.6 23.3 42.9 19.4 37.2

PPO 20 129.2 1.00× 35.0 77.3 60.4 22.8 25.0 46.6 21.8 41.3
↪→ + SPEC-RL 20 80.0 1.44× 37.5 78.8 58.0 23.2 23.4 46.9 20.9 41.2

PPO 30 191.5 1.00× 37.5 78.5 59.4 22.8 26.5 47.8 19.6 41.7
↪→ + SPEC-RL 30 106.2 1.56× 37.5 78.3 62.6 23.5 25.6 49.8 22.7 42.9

PPO 40 253.6 1.00× 40.0 77.7 61.4 23.5 25.3 50.7 22.7 43.0
↪→ + SPEC-RL 40 126.2 1.69× 37.5 80.4 63.2 22.4 27.3 51.3 23.7 43.7

PPO 50 315.7 1.00× 35.0 79.5 61.8 26.8 25.6 51.5 21.8 43.1
↪→ + SPEC-RL 50 157.3 1.68× 40.0 80.9 64.4 26.1 25.9 54.2 26.6 45.4

PPO 60 377.7 1.00× 27.5 81.6 63.8 29.4 26.8 53.9 23.3 43.8
↪→ + SPEC-RL 60 172.0 1.79× 35.0 82.0 64.2 23.5 27.0 53.8 24.4 44.3

PPO 70 440.0 1.00× 35.0 79.5 60.6 25.7 26.7 55.0 22.9 43.6
↪→ + SPEC-RL 70 194.7 1.83× 35.0 80.7 65.8 27.6 26.8 55.1 25.9 45.3

PPO 80 503.0 1.00× 45.0 81.4 63.8 25.4 29.3 58.6 23.7 46.7
↪→ + SPEC-RL 80 207.2 1.93× 40.0 82.6 63.6 29.8 28.0 54.3 25.7 46.3

PPO 90 565.1 1.00× 35.0 82.0 63.0 26.8 25.3 59.4 25.5 45.3
↪→ + SPEC-RL 90 230.8 1.94× 35.0 82.0 64.8 25.4 25.9 58.6 25.9 45.4

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with PPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL
variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
PPO 10 73.4 1.00× 42.5 91.1 75.4 33.5 43.4 63.2 32.2 54.5
↪→ + SPEC-RL 10 51.9 1.30× 50.0 92.1 79.6 32.0 42.4 62.6 36.0 56.4

PPO 20 144.8 1.00× 60.0 93.1 81.0 39.3 45.3 67.0 35.1 60.1
↪→ + SPEC-RL 20 85.6 1.48× 52.5 93.3 82.0 39.7 45.5 67.4 37.9 59.8

PPO 30 241.0 1.00× 62.5 93.4 82.8 38.6 46.7 77.6 37.3 62.7
↪→ + SPEC-RL 30 115.6 1.75× 60.0 92.6 82.2 40.4 48.1 74.6 42.7 62.9

PPO 40 359.0 1.00× 60.0 92.9 83.6 41.9 49.3 79.5 36.6 63.4
↪→ + SPEC-RL 40 159.4 1.87× 62.5 94.0 84.0 39.3 49.5 77.6 43.3 64.3

PPO 50 484.2 1.00× 65.0 93.5 86.0 41.2 51.6 82.1 39.7 65.6
↪→ + SPEC-RL 50 197.9 1.98× 67.5 93.1 84.2 42.6 49.3 81.9 41.8 65.8

PPO 60 609.9 1.00× 75.0 94.2 85.4 42.6 49.9 82.9 42.0 67.4
↪→ + SPEC-RL 60 251.2 1.95× 67.5 93.3 84.6 43.8 52.0 81.7 43.6 66.6

PPO 70 735.0 1.00× 82.5 93.5 84.4 44.1 51.1 83.6 42.9 68.9
↪→ + SPEC-RL 70 307.9 1.91× 70.0 93.7 84.6 42.6 50.8 84.0 44.7 67.2

PPO 80 859.9 1.00× 62.5 93.8 85.6 42.3 51.9 83.3 40.9 65.8
↪→ + SPEC-RL 80 358.1 1.90× 75.0 93.5 83.4 44.1 50.2 84.4 43.1 67.7

PPO 90 984.0 1.00× 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
↪→ + SPEC-RL 90 400.1 1.94× 75.0 92.9 85.2 43.4 50.8 84.4 41.0 67.5

Table 9: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with PPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its
SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
PPO 10 65.5 1.00× 2.5 26.5 11.4 4.0 3.6 33.0 42.0 17.6
↪→ + SPEC-RL 10 50.2 1.26× 20.0 25.8 14.0 2.6 3.7 32.5 41.0 19.9

PPO 20 131.1 1.00× 7.5 26.7 16.2 3.7 4.7 33.9 35.9 18.4
↪→ + SPEC-RL 20 89.0 1.35× 7.5 27.9 16.2 2.9 5.0 34.1 41.2 19.3

PPO 30 192.0 1.00× 12.5 28.8 17.2 3.7 4.1 35.3 38.6 20.0
↪→ + SPEC-RL 30 118.3 1.47× 10.0 29.8 17.4 4.4 6.4 34.2 38.8 20.1

PPO 40 250.3 1.00× 5.0 29.7 19.6 2.9 4.4 35.1 39.0 19.4
↪→ + SPEC-RL 40 134.8 1.63× 15.0 31.6 18.6 3.3 6.1 33.2 39.9 21.1

PPO 50 306.8 1.00× 5.0 31.3 19.2 4.8 4.6 32.3 40.1 19.6
↪→ + SPEC-RL 50 147.2 1.78× 10.0 31.9 19.4 5.1 5.0 35.3 40.3 21.0

PPO 60 361.6 1.00× 7.5 30.3 18.4 5.1 4.3 35.1 41.6 20.3
↪→ + SPEC-RL 60 160.5 1.89× 12.5 31.5 19.2 4.8 5.5 34.4 39.9 21.1

PPO 70 415.4 1.00× 12.5 31.0 17.8 3.7 6.1 35.1 40.1 20.9
↪→ + SPEC-RL 70 175.8 1.95× 12.5 32.6 19.6 3.3 5.5 34.9 39.9 21.2

PPO 80 469.0 1.00× 10.0 34.1 19.6 4.8 4.1 34.8 41.6 21.3
↪→ + SPEC-RL 80 188.8 2.02× 15.0 33.5 19.0 5.5 6.4 36.1 40.3 22.3

PPO 90 521.5 1.00× 10.0 31.6 20.8 4.0 6.4 34.3 42.7 21.4
↪→ + SPEC-RL 90 210.6 2.01× 10.0 32.4 20.2 5.5 5.0 35.3 40.7 21.3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multiple
generation steps; thus we additionally report the Gen-Step column to indicate how many rollout
batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
DAPO 5 10 65.2 1.00× 25.0 69.8 50.0 17.6 20.0 41.5 20.1 34.9
↪→ + SPEC-RL 5 10 46.7 1.25× 35.0 69.4 53.4 20.2 21.0 43.0 17.7 37.1

DAPO 10 20 127.4 1.00× 32.5 76.0 58.4 19.1 22.4 42.9 19.6 38.7
↪→ + SPEC-RL 10 20 70.6 1.52× 15.0 76.3 56.8 16.5 20.7 44.1 21.6 35.9

DAPO 15 30 187.7 1.00× 27.5 76.5 56.4 19.9 22.7 45.8 20.7 38.5
↪→ + SPEC-RL 15 30 95.5 1.60× 25.0 78.2 58.4 23.9 24.9 45.0 26.1 40.2

DAPO 20 40 247.6 1.00× 35.0 78.0 54.8 23.2 21.8 46.8 23.3 40.4
↪→ + SPEC-RL 20 40 109.5 1.74× 32.5 78.5 57.2 25.0 24.9 47.7 24.6 41.5

DAPO 25 50 307.5 1.00× 35.0 77.2 59.4 20.6 25.9 47.2 19.4 40.7
↪→ + SPEC-RL 25 50 124.9 1.84× 37.5 77.8 59.0 22.8 23.0 49.2 25.7 42.1

DAPO 30 60 367.0 1.00× 35.0 79.1 60.6 25.0 24.3 48.0 22.2 42.0
↪→ + SPEC-RL 30 60 137.7 1.94× 32.5 79.4 60.4 24.6 25.0 50.4 26.2 42.6

DAPO 35 70 425.6 1.00× 37.5 78.5 59.8 27.9 24.3 49.7 22.7 42.9
↪→ + SPEC-RL 35 70 149.1 2.02× 30.0 80.3 62.2 25.0 25.3 51.6 25.0 42.8

DAPO 40 80 484.6 1.00× 27.5 79.8 61.6 24.6 25.0 50.8 22.7 41.7
↪→ + SPEC-RL 40 80 160.2 2.10× 40.0 79.2 60.2 25.4 26.5 53.7 27.4 44.6

DAPO 45 90 543.1 1.00× 30.0 79.6 60.8 24.6 23.0 52.2 24.8 42.1
↪→ + SPEC-RL 45 90 171.6 2.17× 22.5 80.1 60.0 25.7 25.5 53.5 27.0 42.0

Table 11: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multi-
ple generation steps; thus we additionally report the Gen-Step column to indicate how many rollout
batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Qwen-3-8B-DAPO-SPEC-RL
Base Model 0 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
DAPO 5 10 75.0 1.00× 62.5 89.8 73.6 27.9 39.1 60.5 32.0 55.1
↪→ + SPEC-RL 5 10 59.0 1.20× 55.0 90.9 75.0 32.7 38.8 63.3 34.0 55.7

DAPO 10 20 148.8 1.00× 60.0 91.9 78.6 36.8 43.4 64.0 36.0 58.7
↪→ + SPEC-RL 10 20 90.3 1.45× 60.0 92.8 79.0 37.1 40.7 63.0 34.2 58.1

DAPO 15 30 235.5 1.00× 67.5 93.3 80.6 39.7 47.4 70.6 38.1 62.5
↪→ + SPEC-RL 15 30 116.8 1.73× 60.0 91.9 81.8 42.6 47.9 69.6 39.0 61.8

DAPO 20 40 354.9 1.00× 62.5 93.1 84.6 41.2 46.1 77.5 36.4 63.1
↪→ + SPEC-RL 20 40 152.2 2.00× 70.0 93.5 83.8 39.0 49.8 75.4 38.1 64.2

DAPO 25 51 509.1 1.00× 62.5 93.1 83.4 39.3 49.6 79.8 38.8 63.8
↪→ + SPEC-RL 25 50 199.8 2.19× 72.5 92.6 85.4 41.5 47.9 78.7 42.1 65.8

DAPO 30 63 685.0 1.00× 62.5 92.5 83.8 44.5 48.9 81.1 39.2 64.6
↪→ + SPEC-RL 30 60 239.9 2.48× 70.0 93.9 84.0 39.7 48.7 80.2 40.3 65.3

DAPO 35 75 867.6 1.00× 75.0 92.6 82.8 40.8 49.5 81.9 38.1 65.8
↪→ + SPEC-RL 35 70 278.9 2.73× 72.5 93.6 84.8 40.4 49.9 80.8 44.4 66.6

DAPO 40 87 1052.2 1.00× 75.0 93.3 84.8 40.1 48.6 82.4 39.6 66.3
↪→ + SPEC-RL 40 82 326.2 2.88× 65.0 93.8 84.4 43.8 50.4 82.2 44.4 66.3

Table 12: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multiple
generation steps; thus we additionally report the Gen-Step column to indicate how many rollout
batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

LLaMA-3.2-1B-DAPO-SPEC-RL
Base Model 0 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
DAPO 5 15 105.6 1.00× 2.5 27.1 14.4 2.9 3.3 32.6 38.8 17.4
↪→ + SPEC-RL 5 15 52.4 1.95× 7.5 27.0 14.4 2.6 3.0 32.7 38.3 17.9

DAPO 10 27 179.8 1.00× 5.0 25.5 14.6 2.6 4.1 34.8 40.3 18.1
↪→ + SPEC-RL 10 28 69.2 2.16× 17.5 25.6 16.6 2.6 4.9 33.7 39.2 20.0

DAPO 15 38 239.8 1.00× 5.0 27.1 18.4 4.4 4.4 33.9 37.3 18.6
↪→ + SPEC-RL 15 39 79.2 2.19× 5.0 28.9 16.4 6.2 3.4 33.9 37.5 18.8

DAPO 20 53 322.1 1.00× 17.5 27.3 18.8 2.9 5.6 34.6 38.8 20.8
↪→ + SPEC-RL 20 53 92.4 2.31× 7.5 29.9 19.6 5.9 5.5 34.2 38.1 20.1

DAPO 25 68 402.9 1.00× 5.0 26.6 19.8 3.3 4.6 34.5 38.3 18.9
↪→ + SPEC-RL 25 68 105.3 2.43× 10.0 34.0 19.8 4.0 6.1 35.5 35.5 20.7

DAPO 30 83 482.6 1.00× 7.5 29.6 19.2 4.0 5.5 33.0 38.6 19.6
↪→ + SPEC-RL 30 83 123.1 2.48× 10.0 34.9 20.2 4.0 5.5 35.5 38.4 21.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60 70 80 90
Step

400

500

600

700

800

900

1000

1100

1200

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(a) GRPO

10 20 30 40 50 60 70 80 90
Step

300

400

500

600

700

800

900

1000

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

500

600

700

800

900

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(c) DAPO

LLaMA-3.2-1B-Instruct Qwen3-8B-Base Qwen3-1.7B-Base

Figure 7: Average verified prefix length trajectories of SPEC-RL under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports the average length of the verified speculative
prefix per training step, and the x-axis is the training step. colors denote model backbones: red:
LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-1.7B-Base.

10 20 30 40 50 60 70 80 90
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fu
ll

R
eu

se
 R

at
io

(a) GRPO

10 20 30 40 50 60 70 80 90
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fu
ll

R
eu

se
 R

at
io

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

0.4

0.5

0.6

0.7

0.8

Fu
ll

R
eu

se
 R

at
io

(c) DAPO

LLaMA-3.2-1B-Instruct Qwen3-8B-Base Qwen3-1.7B-Base

Figure 8: Full reuse ratio trajectories of SPEC-RL under three RL algorithms: (a) GRPO, (b) PPO,
and (c) DAPO. The y-axis reports the fraction of rollouts per step that are fully reused, and the x-axis
the training step. colors denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-
8B-Base, blue: Qwen3-1.7B-Base. Across settings, SPEC-RL quickly stabilizes at a high full reuse
ratio, indicating effective speculative reuse during training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

(a) GRPO

0 10 20 30 40 50 60 70 80 90
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

R
ew

ar
d

(c) DAPO

LLaMA-3.2-1B-Instruct (SPEC-RL)
LLaMA-3.2-1B-Instruct (Baseline)

Qwen3-8B-Base (SPEC-RL)
Qwen3-8B-Base (Baseline)

Qwen3-1.7B-Base (SPEC-RL)
Qwen3-1.7B-Base (Baseline)

Figure 9: Training reward trajectories of SPEC-RL versus baseline under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports reward, and the x-axis the training step. colors
denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-
1.7B-Base, while solid lines indicate SPEC-RL and dashed lines the corresponding vanilla base-
lines. SPEC-RL matches or exceeds baseline rewards under different algorithms across all back-
bones.

0 10 20 30 40 50 60 70 80 90
Step

200

400

600

800

R
ol

lo
ut

 T
im

e
(s

)

(a) GRPO

0 10 20 30 40 50 60 70 80 90
Step

100

200

300

400

500

600

700

800

R
ol

lo
ut

 T
im

e
(s

)

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

250

500

750

1000

1250

1500

1750

2000

2250

R
ol

lo
ut

 T
im

e
(s

)

(c) DAPO

LLaMA-3.2-1B-Instruct (SPEC-RL)
LLaMA-3.2-1B-Instruct (Baseline)

Qwen3-8B-Base (SPEC-RL)
Qwen3-8B-Base (Baseline)

Qwen3-1.7B-Base (SPEC-RL)
Qwen3-1.7B-Base (Baseline)

Figure 10: Training rollout time of SPEC-RL versus baseline under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports rollout time (seconds) and the x-axis the training
step. colors denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue:
Qwen3-1.7B-Base, while solid lines indicate SPEC-RL and dashed lines the corresponding vanilla
baselines. Across algorithms and models, SPEC-RL yields consistently lower rollout time than the
baselines.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: End-to-end training time comparison across models and algorithms. We report both the
wall-clock training hours (“End-to-end (h)”) and the average step time (“Total (s)”) with a detailed
breakdown. validation refers to our newly introduced speculative decoding process that verifies
old-policy rollouts in parallel; assemble denotes combining verified prefixes with newly generated
continuations to form complete rollouts; the remaining parts (reward, old-log-probs, ref, values, adv,
update-critic, update-actor, others) follow the standard pipeline of the verl framework in execution
order.

End-to-end (h) Average step time (s)
Algorithm Total Total ∆ vs. base verification rollout assembly reward old-log-probs ref values adv update-critic update-actor others

Qwen-3-1.7B-Base
GRPO 12.63 505.1 – – 309.9 – 91.0 17.2 15.8 – 0.4 – 56.0 14.9
↪→ + SPEC-RL 8.65 346.0 ↓ 159.1 22.1 135.2 (2.29×) 1.5 81.0 17.1 16.3 – 0.5 – 56.2 16.2

PPO 14.10 563.9 – – 308.1 – 100.5 17.2 – 14.0 4.7 46.0 56.5 16.9
↪→ + SPEC-RL 10.78 431.2 ↓ 132.7 22.7 158.6 (1.94×) 1.4 94.1 17.3 – 13.8 4.6 45.0 55.5 18.1

DAPO 11.10 443.8 – – 301.3 – 93.1 8.6 – – 0.3 – 25.9 14.6
↪→ + SPEC-RL 7.90 316.0 ↓ 127.9 21.0 139.0 (2.17×) 1.4 97.9 18.1 – – 0.2 – 25.9 12.7

Qwen-3-8B-Base
GRPO 31.66 1266.4 – – 768.2 – 73.2 66.8 66.9 – 4.2 – 263.8 23.4
↪→ + SPEC-RL 21.03 841.0 ↓ 425.4 74.7 305.8 (2.51×) 1.3 61.4 63.8 62.4 – 4.9 – 248.8 18.0

PPO 34.85 1393.9 – – 676.7 – 70.5 65.4 – 57.4 4.2 224.1 260.4 35.3
↪→ + SPEC-RL 26.97 1078.8 ↓ 315.1 71.5 349.3 (1.94×) 1.4 64.9 59.6 – 52.1 4.9 205.9 236.9 32.5

DAPO 24.29 971.8 – – 699.2 – 64.4 66.3 – – 0.1 – 121.1 20.7
↪→ + SPEC-RL 12.90 515.9 ↓ 455.9 51.0 243.0 (2.88×) 1.1 54.0 51.2 – – 0.1 – 97.5 18.0

LLaMA-3.2-1B-Instruct
GRPO 10.20 408.0 – – 229.7 – 105.8 12.6 11.5 – 0.4 – 34.7 13.2
↪→ + SPEC-RL 7.28 291.3 ↓ 116.7 17.2 88.3 (2.60×) 1.4 110.4 13.0 11.9 – 0.5 – 34.4 14.4

PPO 10.94 437.6 – – 218.9 – 117.6 12.5 – 10.0 4.8 10.0 32.6 31.3
↪→ + SPEC-RL 8.60 344.0 ↓ 93.6 17.5 108.9 (2.01×) 1.3 110.9 12.4 – 10.1 4.6 10.1 34.3 33.8

DAPO 9.77 328.4 – – 198.4 – 100.8 11.2 – – 0.1 – 9.6 8.5
↪→ + SPEC-RL 6.97 238.4 ↓ 90.0 13.4 80.0 (2.48×) 1.1 110.5 11.5 – – 0.1 – 9.9 12.0

A.4 END-TO-END TIME BREAKDOWN

Table 13 reports the per-stage breakdown of training time. In the vanilla baseline, rollout generation
dominates the runtime, often accounting for more than 60% of the total. With SPEC-RL, this
cost is largely shifted into a lightweight verification stage, where cached rollouts are first verified in
parallel under the current policy and then evaluated by the speculative decoding rule to determine the
rejection position, and a minimal assembly stage, where verified prefixes and regenerated suffixes
are merged into complete responses. Both stages add only minor overhead (on Qwen-3-1.7B-Base,
verification ∼20s and assembly ∼1–2s), while the total step time is reduced by about 129–161s,
making the extra cost negligible compared to the savings from reduced rollout. For instance, on
Qwen-3-8B-Base/GRPO, the rollout time decreases from 768.2s to 305.8s, while all other stages,
such as reward computation and policy updates, remain nearly unchanged. Overall, although these
new stages slightly increase non-rollout costs, the dominant effect is the 2–3 times reduction in
rollout tokens, yielding substantially faster end-to-end training.

A.5 GENERALITY ACROSS DATASETS

To examine whether the gains of SPEC-RL depend on a specific training corpus, we conduct ex-
periments on two distinct datasets: DeepMath-6K and SimpleRL-8K. Results in Table 14 show that
SPEC-RL consistently improves rollout efficiency across both settings. For example, on Qwen-
3-1.7B-Base with GRPO, rollout tokens drop from 554.8M to 182.7M on DeepMath-6K and from
639.4M to 354.0M on SimpleRL-8K. Accuracy remains comparable or slightly improved, confirm-
ing that the efficiency benefits of SPEC-RL are robust to the choice of dataset. Intermediate perfor-

Table 14: Ablation study on different training datasets. Results show that our method maintains im-
provements in rollout efficiency and accuracy across both Deepmath-6K and SimpleRL-8K settings.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Deepmath-6K (Qwen-3-1.7B-Base)
GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

SimpleRL-8K (Qwen-3-1.7B-Base)
GRPO 639.4 1.00× 45.0 83.8 68.2 27.2 30.5 49.4 24.0 46.9
↪→ + SPEC-RL 354.0 1.53× 40.0 85.1 72.2 27.2 32.1 57.4 27.7 48.8

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Intermediate training results of Qwen-3-1.7B-Base on SimpleRL-8K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 61.5 1.00× 35.0 76.7 57.6 19.1 22.7 44.4 21.1 39.5
↪→ + SPEC-RL 10 50.5 1.16× 25.0 75.9 57.8 19.1 24.9 44.9 21.3 38.4

GRPO 20 123.1 1.00× 27.5 78.5 60.6 22.1 25.9 46.1 23.7 40.6
↪→ + SPEC-RL 20 84.3 1.33× 25.0 79.3 62.2 20.6 28.0 46.4 20.9 40.3

GRPO 30 185.3 1.00× 45.0 80.2 63.8 24.3 27.0 46.1 23.7 44.3
↪→ + SPEC-RL 30 112.2 1.47× 45.0 81.5 61.4 26.8 28.7 49.0 25.1 45.4

GRPO 40 247.7 1.00× 32.5 80.1 63.0 22.4 28.1 46.9 21.1 42.0
↪→ + SPEC-RL 40 136.8 1.57× 37.5 81.3 65.8 24.3 29.5 49.8 26.1 44.9

GRPO 50 312.5 1.00× 37.5 79.7 65.2 27.2 26.8 48.7 23.1 44.0
↪→ + SPEC-RL 50 171.4 1.58× 35.0 83.9 66.2 28.7 30.8 52.9 26.2 46.2

GRPO 60 377.7 1.00× 40.0 82.0 64.6 26.5 28.0 48.5 23.3 44.7
↪→ + SPEC-RL 60 206.9 1.58× 47.5 83.1 67.8 26.8 32.0 53.5 25.5 48.0

GRPO 70 444.8 1.00× 37.5 81.7 66.0 26.5 26.5 48.6 20.9 44.0
↪→ + SPEC-RL 70 246.5 1.56× 47.5 83.2 70.0 28.3 31.3 53.8 27.9 48.9

GRPO 80 512.9 1.00× 45.0 82.3 66.8 26.5 30.5 47.5 25.0 46.2
↪→ + SPEC-RL 80 283.2 1.55× 47.5 83.9 68.4 26.5 31.7 55.5 25.0 48.4

GRPO 90 582.6 1.00× 42.5 83.2 66.6 25.7 29.5 48.4 24.6 45.8
↪→ + SPEC-RL 90 324.8 1.53× 35.0 83.5 70.4 27.9 31.9 55.4 27.0 47.3

GRPO 100 639.4 1.00× 45.0 83.8 68.2 27.2 30.5 49.4 24.0 46.9
↪→ + SPEC-RL 100 354.0 1.54× 40.0 85.1 72.2 27.2 32.1 57.4 27.7 48.8

mance on SimpleRL-8K is reported in Table 15, while the detailed results for DeepMath-6K can be
found in Table 4. These results suggest that the efficiency improvements of SPEC-RL do not rely
on a particular training distribution.

A.6 IMPACT OF TRAINING SET SIZE ON ACCELERATION

Since SPEC-RL accelerates training by reusing cached rollouts from the previous epoch, accelera-
tion can only take effect starting from the second epoch. To study how dataset size influences this
effect, we vary the training set size to 2K, 3K, 4K, 5K, and 6K samples, and train Qwen-3-1.7B-Base
with GRPO. Figure 11 reports the rollout time across training steps.

We observe that smaller datasets lead to earlier reuse opportunities, since epochs finish more quickly
and the second epoch arrives sooner. For example, with 2K samples, the rollout time drops sharply
after step 3, whereas with 6K samples, the reduction is delayed until later steps. Across all set-
tings, rollout time decreases steadily once reuse begins, with larger speedups achieved as training
progresses. The markers in the figure denote the first reuse points (the first step of epoch 2), where
SPEC-RL begins to take effect. This analysis confirms that the efficiency gains of SPEC-RL de-
pend not only on algorithm and model choice, but also on the dataset size, which determines how
soon reuse can be activated during training.

A.7 RANDOM REUSE RESULTS

For completeness, we also report the full training trajectories of the Random Reuse baseline on
Qwen-3-1.7B-Base, trained with GRPO on DeepMath-6K.

Table 16 interleaves results of GRPO and Random Reuse every 10 training steps, providing a step-
wise view of rollout efficiency and accuracy. While Table 2 summarizes the overall comparison,
these detailed results illustrate how Random Reuse accelerates rollouts but produces unstable per-
formance over the course of training.

A.8 FULL LENIENCE ABLATION RESULTS

For completeness, we provide the step-level results corresponding to the lenience ablation in Sec-
tion 4.3. While Table 3 reports only the final-step outcomes for comparison across different le-
nience values, we include detailed intermediate results every 10 training steps here. These tables
document how rollout efficiency and accuracy evolve throughout training under various lenience

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12
Step

50

100

150

200

250

300

350

R
ol

lo
ut

 T
im

e
(s

)

2k 3k 4k 5k 6k vanilla

Figure 11: Rollout time under different training set sizes (2K–6K) with GRPO on Qwen-3-1.7B-
Base. Markers highlight the first reuse points at the start of epoch 2, when SPEC-RL begins to
accelerate rollouts.

0 20 40 60 80
Step

0.03

0.04

0.05

0.06

0.07

0.08

0.09

D
is

tin
ct

-1
 (

 D
iv

er
si

ty
)

(a) Distinct-1

0 20 40 60 80
Step

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350
Se

lf-
B

LE
U

 (
 D

iv
er

si
ty

)

(b) Self-BLEU

Baseline with SPEC-RL

Figure 12: Effects of SPEC-RL on rollout diversity. We compare GRPO and SPEC-RL using two
standard diversity metrics: Distinct-1, where higher values indicate greater unigram diversity, and
Self-BLEU, where lower values indicate greater sample diversity. Across identical training steps,
SPEC-RL attains diversity levels comparable to—or slightly higher than—the GRPO baseline.

settings (ℓ = 1, e0.2, e0.5, e0.8, e1.0, e2.0, and ℓ→∞), complementing the aggregated trends shown
in Table 3.

A.9 ANALYSIS OF ROLLOUT DIVERSITY

We further examine whether speculative reuse affects rollout diversity by comparing SPEC-RL with
the GRPO baseline at identical training steps. Diversity is measured using two standard metrics:
distinct-1 (Li et al., 2016), which captures unigram variability, and Self-BLEU (Zhu et al., 2018),
which measures sample similarity within a batch. As shown in Figure 12(a)–(b), SPEC-RL consis-
tently achieves equal or even higher diversity than the GRPO baseline throughout training. Although
SPEC-RL reuses prefixes generated by the previous policy, this reuse only makes the prefix region
more similar to the old policy’s outputs; it does not constrain the diversity of the current policy’s
rollouts produced at the same step, compared with standard GRPO. In practice, the variation across
trajectories at each step—the quantity that matters for exploration and effective learning—remains
fully preserved. Importantly, there is no empirical evidence that higher similarity between the cur-
rent policy and the old policy reduces trajectory-level diversity or negatively affects optimization.
The observed trends confirm that SPEC-RL maintains, and in some cases slightly improves, rollout
diversity without harming learning dynamics or final performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 16: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
Random Reuse. We report rollout efficiency and accuracy every 10 training steps, with GRPO and
its Random Reuse variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + Random Reuse 10 58.0 1.11× 37.5 74.1 57.8 21.0 21.0 42.9 22.0 39.5

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + Random Reuse 20 98.9 1.43× 25.0 77.6 59.4 24.6 24.1 46.0 25.9 40.4

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + Random Reuse 30 134.1 1.61× 35.0 78.9 63.2 26.8 24.9 50.6 29.2 44.1

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + Random Reuse 40 165.4 1.75× 40.0 80.9 64.0 26.1 28.4 56.8 27.7 46.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + Random Reuse 50 194.1 1.89× 35.0 81.0 63.2 27.9 27.0 57.7 25.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + Random Reuse 60 221.8 2.03× 22.5 80.2 64.2 24.6 25.9 59.2 26.1 43.2

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + Random Reuse 70 249.6 2.14× 32.5 80.7 63.2 27.2 26.1 60.9 25.5 45.2

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + Random Reuse 80 277.5 2.25× 25.0 78.7 57.0 21.7 22.7 44.6 22.4 38.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + Random Reuse 90 304.5 2.35× 37.5 80.0 60.4 21.7 25.3 53.1 24.0 43.1

Table 17: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = 1. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = 1 10 63.5 1.03× 30.0 74.8 55.2 20.2 21.2 44.5 18.9 37.8

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = 1 20 118.3 1.05× 35.0 78.2 61.6 25.4 22.4 45.1 22.9 41.5

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = 1 30 168.0 1.07× 20.0 79.5 61.2 25.0 25.0 49.9 23.7 40.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = 1 40 213.5 1.11× 40.0 80.2 63.0 27.2 24.9 51.7 22.4 44.2

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = 1 50 257.0 1.14× 42.5 80.3 63.2 29.0 24.7 54.0 24.4 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = 1 60 298.5 1.17× 42.5 80.2 64.2 26.8 26.7 55.6 23.7 45.7

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = 1 70 339.2 1.19× 35.0 81.0 62.6 28.7 28.0 58.0 26.8 45.7

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = 1 80 379.7 1.20× 37.5 81.4 67.4 22.8 28.0 60.2 23.7 45.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = 1 90 419.1 1.22× 40.0 81.8 63.8 28.7 26.5 59.6 25.9 46.6

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 18: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = e0.2. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.2 10 53.6 1.19× 32.5 73.2 55.6 19.1 22.1 42.4 20.0 37.8

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.2 20 92.7 1.29× 40.0 78.8 60.6 25.4 25.5 46.2 20.0 42.5

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.2 30 120.5 1.42× 32.5 79.6 60.8 26.8 27.0 49.5 22.9 42.7

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.2 40 143.6 1.54× 32.5 80.3 61.8 28.3 26.4 51.8 22.2 43.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.2 50 166.1 1.62× 37.5 80.4 65.2 27.6 25.9 54.4 25.5 45.2

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.2 60 186.1 1.70× 37.5 81.7 63.6 29.4 25.5 55.0 24.4 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.2 70 206.5 1.77× 42.5 80.4 64.6 27.2 29.5 58.4 25.1 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.2 80 226.3 1.82× 32.5 81.8 63.4 29.4 29.9 57.9 24.0 45.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.2 90 246.7 1.86× 37.5 83.3 66.4 29.8 29.6 58.5 25.9 47.3

Table 19: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = e0.5. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.5 10 43.6 1.41× 27.5 75.7 55.8 21.7 21.8 43.0 22.4 38.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.5 20 67.2 1.66× 30.0 80.0 63.0 25.0 24.6 46.9 22.2 41.7

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.5 30 85.1 1.85× 30.0 81.0 64.0 25.4 27.6 51.1 26.2 43.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.5 40 102.9 1.96× 37.5 80.7 63.8 26.5 26.1 52.2 23.5 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.5 50 119.4 2.06× 32.5 81.1 64.4 28.7 28.0 55.6 27.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.5 60 135.1 2.14× 27.5 83.4 66.4 26.5 29.9 54.7 28.8 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.5 70 153.2 2.18× 40.0 82.5 65.4 26.5 29.9 55.6 27.4 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.5 80 168.1 2.24× 45.0 83.7 67.0 29.8 29.6 57.1 28.3 48.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.5 90 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

Table 20: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = e0.8. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.8 10 41.9 1.46× 30.0 76.6 57.0 19.9 21.6 44.8 20.1 38.6

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.8 20 57.5 1.86× 27.5 80.0 60.0 26.1 24.4 46.2 23.3 41.1

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.8 30 70.1 2.12× 37.5 81.6 62.4 28.7 24.0 51.5 27.4 44.7

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.8 40 81.8 2.29× 37.5 82.0 63.8 26.8 27.7 53.8 28.5 45.7

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.8 50 97.5 2.35× 35.0 81.5 63.4 28.3 26.5 57.0 28.7 45.8

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.8 60 110.8 2.43× 47.5 82.2 61.8 26.8 25.8 57.7 25.5 46.8

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.8 70 120.0 2.54× 35.0 84.2 62.2 26.8 25.9 58.9 27.9 45.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.8 80 132.0 2.60× 32.5 84.1 63.6 27.6 26.5 58.4 28.3 45.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.8 90 144.8 2.64× 37.5 83.5 63.6 27.2 25.0 61.7 26.2 46.4

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 21: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = e1.0. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e1.0 10 41.5 1.46× 25.0 75.7 55.0 17.3 23.3 44.2 18.5 37.0

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e1.0 20 52.6 1.99× 25.0 79.0 60.0 25.0 22.4 46.7 23.1 40.2

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e1.0 30 64.8 2.23× 42.5 80.8 64.4 25.4 27.4 49.9 30.1 45.8

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e1.0 40 73.2 2.46× 32.5 81.3 65.0 24.6 27.7 52.1 27.2 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e1.0 50 86.6 2.55× 30.0 83.2 62.0 25.0 25.9 53.4 28.7 44.0

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e1.0 60 97.8 2.64× 32.5 84.1 62.0 28.3 27.1 52.9 28.1 45.0

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e1.0 70 107.7 2.72× 35.0 83.0 62.8 25.4 27.0 52.1 27.9 44.7

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e1.0 80 116.6 2.81× 30.0 82.3 63.4 26.1 27.0 54.0 29.0 44.5

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e1.0 90 123.0 2.91× 37.5 83.9 62.4 25.7 24.9 54.8 28.3 45.4

Table 22: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = e2.0. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e2.0 10 40.4 1.50× 37.5 75.3 55.4 21.7 21.8 44.0 19.6 39.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e2.0 20 43.9 2.24× 25.0 78.9 60.4 28.3 23.7 44.3 25.0 40.8

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e2.0 30 51.2 2.59× 30.0 81.1 61.0 26.1 25.6 49.8 29.2 43.3

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e2.0 40 54.5 2.93× 25.0 80.7 64.0 28.7 26.4 52.5 31.4 44.1

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e2.0 50 60.1 3.14× 37.5 82.1 61.6 25.7 24.1 52.4 29.2 44.7

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e2.0 60 67.2 3.24× 32.5 83.5 57.8 25.0 24.3 54.6 31.4 44.2

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e2.0 70 76.8 3.28× 22.5 82.4 57.4 21.7 23.7 52.5 28.7 41.3

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e2.0 80 90.5 3.24× 27.5 81.3 57.4 19.5 23.4 54.8 30.3 42.0

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e2.0 90 114.4 3.05× 30.0 80.4 55.0 21.0 21.9 53.5 29.0 41.5

Table 23: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ℓ = ∞. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ =∞ 10 40.0 1.75× 17.5 71.7 53.8 16.9 21.6 42.5 20.0 34.9

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ =∞ 20 40.0 3.39× 35.0 78.0 56.4 21.0 22.7 44.4 21.4 39.8

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ =∞ 30 40.0 5.03× 35.0 76.9 53.2 21.7 21.3 43.0 21.4 38.9

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ =∞ 40 40.0 6.65× 32.5 76.7 57.0 17.3 22.4 43.3 22.6 38.8

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ =∞ 50 40.0 8.29× 37.5 77.4 57.0 23.2 22.5 43.3 22.7 40.5

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ =∞ 60 40.0 9.93× 35.0 77.1 58.8 23.5 22.8 42.6 23.7 40.5

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ =∞ 70 40.0 11.56× 35.0 77.9 58.6 23.2 22.4 44.0 20.9 40.3

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ =∞ 80 40.0 13.21× 32.5 79.0 60.2 23.9 24.3 42.8 23.3 40.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ =∞ 90 40.0 14.86× 32.5 78.1 60.4 19.9 23.7 44.1 22.0 40.1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B CASE STUDY

To provide a more intuitive understanding of how SPEC-RL operates during training, we present
several case studies comparing cached rollouts from previous epochs with newly generated rollouts
under the current policy. These examples highlight how speculative prefixes are verified and reused,
and how continuation is triggered once a rejection occurs. They also illustrate typical scenarios
where SPEC-RL improves efficiency by avoiding redundant generation, while still correcting erro-
neous reasoning steps when necessary. Representative cases are shown in Figures 13, 14, 15, and
16.

Prompt

system

You are a helpful assistant.

user

Kim's birthday was 200 days ago. Today is Wednesday. On what day of the week did his birthday fall?

Please reason step by step, and put your final answer within \boxed{}.

assistant

To determine the day of the week Kim's birthday fell on, we can

follow these steps:

1. Identify the current day and the number of days since Kim's

birthday.

- Today is Wednesday.

- Kim's birthday was 200 days ago.

2. Determine the day of the week 200 days ago from Wednesday.

- We need to find the remainder when 200 is divided by 7,

because there are 7 days in a week. This will tell us how many

days forward or backward from Wednesday we need to count.

- Calculate 200 ÷ 7:

200 ÷ 7 = 28 rem𝑎𝑖𝑛𝑑𝑒𝑟 4
This means that 200 days is equivalent to 28 weeks and 4

days. So, 200 days ago from Wednesday is the same as 4 days

before Wednesday.

3. Count backward 4 days from Wednesday.

- Monday is 1 day before Wednesday.

- Sunday is 2 days before Wednesday.

- Saturday is 3 days before Wednesday.

- Friday is 4 days before Wednesday.

Therefore, 200 days ago from Wednesday was a Friday.

The final answer is \boxed{Friday}.

To determine the day of the week Kim's birthday fell on, we can

follow these steps:

1. Identify the current day and the number of days since Kim's

birthday.

- Today is Wednesday.

- Kim's birthday was 200 days ago.

2. Determine the day of the week 200 days ago from Wednesday.

- We need to find the remainder when 200 is divided by 7,

because there are 7 days in a week. This will tell us how many

days forward or backward from Wednesday we need to count.

- Calculate the remainder:

200 ÷ 7 = 28 rem𝑎𝑖𝑛𝑑𝑒𝑟 4
- This means that 200 days ago was 4 days before Wednesday.

3. Count backwards from Wednesday by 4 days.

- Wednesday - 1 day = Tuesday

- Tuesday - 1 day = Monday

- Monday - 1 day = Sunday

- Sunday - 1 day = Saturday

Therefore, Kim's birthday fell on a \boxed{\text{Saturday}.

1.7B, cur step: 96, pre step: 90

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 13: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Prompt

system

You are a helpful assistant.

user

The arithmetic mean of these five expressions is 24. What is the value of 𝑥?

𝑥 + 8 15 2𝑥 13 2𝑥 + 4
Please reason step by step, and put your final answer within \boxed{}.

assistant

To find the value of 𝑥, we start by understanding the

arithmetic mean of the given expressions and setting it equal

to 24. The expressions are:

1. 𝑥 + 8
2. 15
3. 2𝑥
4. 13
5. 2𝑥 + 4

The arithmetic mean of these expressions is given by:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5
= 24

First, we simplify and sum the expressions in the numerator:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5

=
x + 8 + 15 + 2x + 13 + 2x + 4

5

=
5x + 30

5

Setting this equal to 24, we get:
5x + 30

5
= 24

Next, we eliminate the fraction by multiplying both sides of

the equation by 5:

5𝑥 + 30 = 120

Then, we isolate 𝑥 by subtracting 30 from both sides:

5𝑥 = 90

Finally, we solve for 𝑥 by dividing both sides by 5:

𝑥 =
90

5
= 18

So, the value of 𝑥 is \boxed{18}.

To find the value of 𝑥, we start by understanding the

arithmetic mean of the given expressions and setting it equal

to 24. The expressions are:

1. 𝑥 + 8
2. 15
3. 2𝑥
4. 13
5. 2𝑥 + 4

The arithmetic mean of these expressions is given by:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5
= 24

First, we simplify the numerator:

(x + 8) + 15 + 2x + 13 + (2x + 4)

= x + 8 + 15 + 2x + 13 + 2x + 4

= 5x + 40

So the equation becomes:
5x + 40

5
= 24

Next, we eliminate the denominator by multiplying both sides

of the equation by 5:

5𝑥 + 40 = 120

Then, we solve for 𝑥 by isolating it on one side of the

equation. First, subtract 40 from both sides:

5𝑥 = 80

Finally, divide both sides by 5:

𝑥 = 16

Thus, the value of 𝑥 is \boxed{16}.

1.7B, cur step: 18, pre step: 12

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 14: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified prefix. The red box marks
incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

To find the units digit of 987
, we need to observe the pattern in

the units digit of powers of 9.

Let's start by computing the first few powers of 9 and noting

their units digits:

91 = 9 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
92 = 81 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

93 = 729 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
94 = 6561 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

From the above calculations, we see that the units digits

repeat every 2 powers: 9, 1, 9, 1, ...

So, the units digit of 9n is 9 if n is odd, and 1 if n is even.

Now, we need to determine if 87 is odd or even.

Since 87 is an odd power of 8, it will be odd as well (because

any positive power of an even number is even).

Therefore, the units digit of 987
will be the same as the units

digit of 91, which is 9.

Thus, the units digit of 987
is \boxed{9}.

To find the units digit of 987
, we need to observe the pattern in

the units digit of powers of 9.

Let's start by computing the first few powers of 9 and noting

their units digits:

91 = 9 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
92 = 81 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

93 = 729 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
94 = 6561 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

From the above, we can see that the units digits repeat every 2

powers: 9, 1, 9, 1, ...

So, the units digit of 9n is 9 if n is odd, and 1 if n is even.

Next, we need to determine if 87 is odd or even. Since 8 is

even, any power of 8 will also be even. Therefore, 87 is an

even number.

Since 87 is even, the units digit of 987
will be 1.

Thus, the units digit of 987
is \boxed{1}.

1.7B, cur step: 30, pre step: 24

Prompt

system

You are a helpful assistant.

user

Find the units digit of 987
.

Please reason step by step, and put your final answer within \boxed{}.

assistant

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 15: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

To solve the given inequality −3 ≤ x + 5 ≤ 8, we need to

isolate x on one side of the inequality. We can do this by

subtracting 5 from all parts of the inequality:

−3 − 5 ≤ x + 5 − 5 ≤ 8 − 5

Simplifying each part:

−8 ≤ x ≤ 3

Since x is an integer, the possible values for x are:

{−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3}

Next, we sum these possible values:

−8 + −7 + −6 + −5 + −4 + −3 + −2 + −1
+ 0 + 1 + 2 + 3

We can group the positive and negative terms:

(−8 + 3) + (−7 + 2) + (−6 + 1) + (−5 + 4) − 10
= −5 − 5 − 5 − 10 = −25

Thus, the sum of all the possible solutions is:

\boxed{-25}.

To solve the given inequality −3 ≤ x + 5 ≤ 8, we need to

isolate x on one side of the inequality. We can do this by

subtracting 5 from all parts of the inequality:

−3 − 5 ≤ x + 5 − 5 ≤ 8 − 5

Simplifying each part:

−8 ≤ x ≤ 3

Since x is an integer, the possible values for x are:

{−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3}

Next, we need to find the sum of all these possible values of x.

We can sum them directly:

−8 + −7 + −6 + −5 + −4 + −3 + −2 + −1
+ 0 + 1 + 2 + 3

We can simplify this by grouping the terms to make the

addition easier:

(−8 + 3) + (−7 + 2) + (−6 + 1) + (−5 + 0)
+ (−4 + (−2)) + (−3 + (−1))
= −5 + (−5) + (−5) + (−5) + (−6) + (−4) = −30

Thus, the sum of all the possible solutions is:

\boxed{-30}.

1.7B, cur step: 30, pre step: 24

Prompt

system

You are a helpful assistant.

user

If −3 ≤ x + 5 ≤ 8 and x is an integer, what is the sum of all the possible solutions?

Please reason step by step, and put your final answer within \boxed{}.

assistant

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 16: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

29

	Introduction
	Preliminaries
	On-Policy Reinforcement Learning
	Speculative Decoding

	Method
	Speculative Decoding over Cached Rollouts with Lenience
	Implementing SPEC-RL in RLVR Training
	Discussion

	Experiments
	Experiment Setup
	Main Performance
	Ablation Study

	Related Work
	Conclusion
	More Details of SPEC-RL
	Hyperparameters
	Detailed Evaluation Setups
	Performance over Training Steps
	End-to-End Time Breakdown
	Generality Across Datasets
	Impact of Training Set Size on Acceleration
	Random Reuse Results
	Full Lenience Ablation Results
	Analysis of Rollout Diversity

	Case Study

