Under review as a conference paper at ICLR 2026

SPEC-RL: ACCELERATING ON-POLICY REINFORCE-
MENT LEARNING VIA SPECULATIVE ROLLOUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) increasingly rely on reinforcement learning with
verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However,
the training process remains bottlenecked by the computationally expensive roll-
out stage. Existing acceleration methods—such as parallelization, objective- and
data-driven modifications, and replay buffers—either incur diminishing returns,
introduce bias, or overlook redundancy across iterations. We identify that rollouts
from consecutive training epochs frequently share a large portion of overlapping
segments, wasting computation. To address this, we propose SPEC-RL, a novel
framework that integrates SPECulative decoding with the RL rollout process.
SPEC-RL reuses prior trajectory segments as speculative prefixes and extends
them via a draft-and-verify mechanism, avoiding redundant generation while en-
suring policy consistency. Experiments on diverse math reasoning and gener-
alization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-
STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2—-3 x with-
out compromising policy quality. As a purely rollout-stage enhancement, SPEC-
RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO),
offering a general and practical path to scale RLVR for large reasoning models.

Baseline I with SPEC-RL

20 x10
683 608.5
»
663 663 P T 4
§ £ Sraoms 1.94x 2.88x
= Speedup oe .
5 =g l Speedup Speedup
5] = ¥
S =] l
< 2
S 21
o~
0 d
GRPO PPO DAPO GRPO PPO DAPO
(a) Average Performance (b) Training Rollout Time

Figure 1: SPEC-RL achieves a 2-3x reduction in rollout time while maintaining average perfor-
mance on Qwen-3-8B-Base across different algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved substantial progress on challenging
reasoning-intensive tasks, such as mathematical problem-solving (Lewkowycz et al., 2022b), pro-
gram synthesis (Chen et all 2021} [Li et al., 2022), and multi-step agentic planning (Yao et all
[2023bjfa). A key enabler of these advances is reinforcement learning with verifiable rewards
(RLVR) (Lambert et al, 2024} |[Guo et al} 2025} [Yue et al., 2025)), which has emerged as a widely
adopted paradigm for incentivizing models to produce faithful and reliable chain-of-thought (CoT)
reasoning 2022). However, RLVR training pipelines remain constrained by the rollout
stage, a fundamental efficiency bottleneck, despite its demonstrated efficacy (Zheng et al, [2025).
During this stage, the model must generate large quantities of trajectories through interaction with
the environment, a process that is computationally expensive and scales poorly with model size.

Under review as a conference paper at ICLR 2026

As a result, the cost and latency of trajectory generation dominate overall training time, severely
limiting the practicality of scaling RLVR to increasingly capable LLMs.

To mitigate rollout inefficiency, prior work has explored three directions. First, parallelized rollout
generation increases throughput by producing many trajectories per iteration (Xu et al., 2025)), but
its benefits fade as computational and synchronization costs rise. Second, model-based accelerations
reduce environment interaction through modified objectives (Brantley et al.|[2025; Lin et al., 2025)),
data restructuring (Liu et al., 2025} [Zhang et al.| 2025b), or sample selection heuristics (Yu et al.,
2025; [Zheng et al.l 2025), though these approaches often introduce bias and added complexity.
Third, caching methods such as replay buffers reuse prior trajectories (Zhang et al.| [2025a), thereby
improving data utilization, but still require fresh on-policy rollouts and struggle when policies shift
significantly.

In this paper, we identify a key opportunity through a pre-
liminary study that measures the token overlap ratio be-

tween consecutive epochs, using ROUGE-1 (Lin, [2004), 0707 —— GRPO =4
across different algorithms (GRPO, PPO, and DAPO). [PDi?)O //

We find that the overlap is already substantial from the
second epoch (around 0.5) and gradually increases as
training progresses, stabilizing around 0.7 in later epochs
(Figure [2). This indicates that a substantial portion
of sampled trajectories is repeatedly regenerated across
training rounds, reflecting a strong potential for reducing
rollout cost. Such redundancy naturally arises due to in-
cremental policy updates, with the current policy often
behaving similarly to the previous one. Moreover, in en-
vironments with fixed initial states or tasks (e.g., repeated
prompts in an LLM reasoning task), the early parts of tra-
jectories tend to overlap across iterations. As a result,
significant computation is wasted regenerating these over-
lapping segments. This motivates the central question of
our work: can such redundancy be systematically ex-
ploited to accelerate rollouts?

S

o

by
1

Overlap Ratio
=)
3

o

wn

<
1

0.50 7

2 4 6 8 10 12 14 16
Epoch

Figure 2: Token overlap ratio per
epoch under GRPO, PPO, and DAPO.
We compute the ratio using ROUGE-1,
comparing rollout response tokens from
We answer this question by proposing SPEC-RL, anovel each epoch against those from the pre-
framework that integrates SPECulative decoding with the vious consecutive epoch.

RL rollout process. Rather than regenerating full trajec-

tories from scratch, SPEC-RL treats old rollouts from the

previous epoch as implicit drafts: following the speculative decoding paradigm, old rollout tokens
are verified under the current policy to form a verified prefix. When the first rejection position is
reached, the current policy continues generation from that point onward, as illustrated in Figure [3]
This approach is directly analogous to draft-and-verify methods in text generation, where a draft
sequence is proposed and then validated in parallel by the target model (Leviathan et al., |2023).
By incorporating the same mechanism into RL rollouts, SPEC-RL leverages cached rollouts to skip
redundant computation while ensuring that the final outputs remain faithful to the current policy.
The verified prefix is quickly extended by the latest policy, ensuring that the final trajectory remains
consistent with the current policy’s behavior.

Our experiments demonstrate that SPEC-RL substantially improves training efficiency across di-
verse tasks and model scales. Concretely, SPEC-RL consistently reduces rollout generation time
by 2-3x on average, while maintaining or even improving final policy performance across a wide
range of math reasoning benchmarks (GSMS8K (Cobbe et al., [2021), MATH-500 (Hendrycks et al.,
2021), Minerva Math (Lewkowycz et al.l|2022a)), OlympiadBench (He et al.;,[2024), AMC 2023 (Art;
of Problem Solving|, [2024)) and out-of-distribution benchmarks (MMLU-STEM (Hendrycks et al.,
2020), IFEval (Zhou et al., 2023)). Importantly, SPEC-RL is designed as a modular enhancement
to the data collection phase, making it readily applicable to a wide range of mainstream RLVR
algorithms, such as GRPO, DAPO, and PPO.

In summary, we identify substantial rollout redundancy in RLVR and show that reusing overlapping
trajectory segments can greatly reduce sampling cost. Building on this insight, we introduce SPEC-
RL, the first framework to incorporate speculative decoding into RL rollouts by treating previous-

Under review as a conference paper at ICLR 2026

1
Vanilla RLVR i SPEC-RL
i New Rollout
| Verified Prefix W A \
New Rollout { LD \ \ | ; \
, A \ Y TV Tw tx t t 1
T \ T \ T \ T \ T Policy Model (verify) Policy Model (generate)
i
Policy Model ! | S S R N t .t ! L., \ |
AL\ \ Y / Verifi "
Prompt old Rtollout Prompt Verified Prefix
Prompt E E DU
| - -—
1 Cached Rollouts from Epoch;_ 1 Cached Rollouts from Epoch;
1

Figure 3: Comparison of the rollout process in Vanilla RLVR and SPEC-RL. Vanilla RLVR re-
generates full responses at each epoch. In SPEC-RL, at each epoch ¢ = 1,...,T, cached rollouts
from the previous epoch are verified in parallel to retain verified prefixes, the remaining tokens are
discarded, and generation resumes from the rejection position before assembling the final response.

epoch trajectories as implicit drafts and verifying reusable prefixes. This design integrates smoothly
with mainstream RL algorithms and yields significant rollout acceleration while maintaining policy
performance.

2 PRELIMINARIES

2.1 ON-PoOLICY REINFORCEMENT LEARNING

Reinforcement learning with verifiable rewards (RLVR) formulates the answer generation of an
LLM as a conditional sampling policy. Given a dataset of reasoning pairs (x,y*) ~ D, where x is
a prompt and y* is the ground-truth answer, the policy 7y (- | x) generates a candidate response y.
A reward function R(y,y”*) evaluates whether the generated response y matches the ground-truth
answer y*. Training relies on on-policy rollouts, where samples are drawn from the current policy at
every iteration. This ensures that training data remain consistent with the current policy distribution,
avoiding the distribution mismatch issues common in off-policy methods and yielding more stable
learning. However, the downside is that new trajectories must be regenerated at each update, and the
cost of producing long sequences makes rollout the dominant efficiency bottleneck in RLVR. The
objective of on-policy RL is simply to maximize the expected reward of the generated responses:

J(0) = E(x.y-)~D.y~mo (1) [R(Y, ¥)]- (1)

In this work, we keep the RL objective and policy update unchanged and focus on improving the
efficiency of the rollout stage.

2.2 SPECULATIVE DECODING

Speculative decoding follows a draft-and—verify paradigm: an efficient draft model p (e.g., a smaller
LM) first drafts multiple future tokens, and the target model ¢ verifies them in parallel. A drafted
token z; ~ p(- | x,z<;) is accepted with

oz | X,2<;) = min{l, w},)
p(zz | Xaz<i)

which guarantees that the resulting procedure samples exactly from the target distribution and thus
preserves fidelity to the target model g. It accelerates generation by reducing the number of expen-
sive target computations. The actual speedup is mainly determined by the acceptance rate and the
cost gap between the draft and target model.

_ =
= =

Under review as a conference paper at ICLR 2026

3 METHOD

The goal of SPEC-RL is to accelerate RL rollouts by avoiding redundant regeneration. Instead
of sampling complete trajectories from scratch at every step, we leverage cached rollouts from the
previous epoch and reuse as much of them as possible, only generating the minimal continuation
that is inconsistent with the current policy (Figure [3). This reduces the number of decoded tokens
and directly cuts rollout latency. The detailed procedure is described in Algorithm

3.1 SPECULATIVE DECODING OVER CACHED ROLLOUTS WITH LENIENCE

At the core of SPEC-RL is adapting speculative decoding to the RL setting by treating cached
rollouts as draft sequences. For a prompt x, let y°!'¢ = {y¢/?} denote the cached rollout produced
when this prompt was last seen in training. Instead of generating from scratch, we verify each
cached token under the current policy and decide whether it can be reused. Formally, following
the standard draft-and-verify formulation in Equation[2] we replace the draft distribution p with the
previous policy g4 and the target distribution ¢ with the current policy 7 at epoch ¢, yielding the

acceptance rule

mu(y" | %,y

. 3)
o (91 | x, yilfl))

o = Inin(l7

While the vanilla rule ensures exact consistency with the current policy, it can be overly strict in
practice, limiting the amount of reuse. To further improve reuse, we introduce a lenience parameter
¢ following prior work on speculative decoding (Chen et all 2024). Lenience relaxes the accep-
tance condition, effectively shifting the decision boundary and permitting more tokens to be reused.
Formally, the acceptance rule becomes

ﬂ-t(y?ld ‘ Xayo<lid)

) @

Tona (¥ | %, 5%

a; = min(l, -

Each cached token is accepted if u ~ (0, 1) satisfies u < @;, and rejected otherwise. When ¢ = 1,
this reduces to the vanilla speculative rule; £ > 1 increases acceptance and yields longer reused
prefixes; ¢ — oo corresponds to full reuse; and ¢ — 0 recovers standard RLVR without reuse. This
simple knob provides a flexible way to balance rollout efficiency and exploration.

After applying the acceptance rule, the procedure identifies the first rejection position n. All tokens
before this rejection position are retained as the verified prefix y‘;l,d“ while the remaining suffix is
discarded. The current policy m; then resumes generation from this point onward, producing a new
suffix y2". Finally, the verified prefix and the regenerated suffix are concatenated to form the new
rollout y™“*. This end-to-end process—uverification, generation, and assembly—is summarized in

Algorithm T}

Algorithm 1: SPEC-RL

Input: Current policy m;; Prompt x; old response y°!¢ = {y?¢'4} with probability p°'¢;
lenience ¢ > 1.
Compute probability in parallel p?** < m;(y?'¢ | x, y‘;lf),i =1,y

new

Compute acceptance probability & = min(1, ¢ - ’;Oﬁ);

old|;

Initialize rejection position n + [y°!¢| + 1,
for i = 1 to [y°'?| do
Sample u ~ U(0,1);
if u > &; then
Assign rejection position n — ;
L break;

new oldy.
Generate response y25 < (- | X, y25,);

Assemble response y" « {y%d, yiewl;
return y"°"

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTING SPEC-RL IN RLVR TRAINING

To enable practical use in RLVR pipelines, SPEC-RL introduces a lightweight cache module that
stores rollouts from the previous epoch and continuously refreshes them as training proceeds. When
the same prompt reappears, its cached response is retrieved and verified under the current policy.
Verified prefixes are reused directly, while rejected suffixes are scheduled for continuation. This
reuse—continue mechanism is implemented in Algorithm [T} which shows how verified prefixes and
regenerated suffixes are combined into the final response. For efficient batching, all requests are
packed into a single call to the rollout engine. Verified prefixes and prompts are aligned through left
padding, so that different requests can be processed in parallel without fragmentation. This design
ensures that SPEC-RL operates as a drop-in module: it modifies only the rollout stage, requires
no change to reward computation or policy updates, and is compatible with mainstream algorithms
such as GRPO, PPO, and DAPO.

3.3 DISCUSSION

To further understand SPEC-RL, we discuss its connections and differences with both standard
speculative decoding and existing RLVR training. This comparison helps situate the method more
clearly and highlight its key contributions.

Relation to speculative decoding. SPEC-RL follows the draft-and—verify paradigm of specula-
tive decoding, but in a simplified, single-round form. Vanilla speculative decoding typically requires
a separate draft model, loading extra parameters, scheduling overhead, and multiple verification
rounds. In contrast, SPEC-RL reuses the previous policy as the draft, with cached rollouts available
“for free”. The current policy 7; performs only one parallel verification pass; after the first rejection,
the suffix is generated directly. This eliminates the need for auxiliary models while preserving the
fidelity guarantees of speculative decoding.

Relation to vanilla RLVR. Compared to standard RLVR, SPEC-RL modifies only the rollout
stage. In vanilla training, every epoch regenerates full trajectories from scratch, even though large
portions of tokens are already shared between consecutive epochs, as shown in Figure[2] SPEC-RL
exploits this redundancy by verifying cached rollouts, reusing the accepted prefix, and regenerating
only the suffix. Fully accepted responses can be reused without any generation, directly reducing
rollout cost while ensuring consistency with the current policy.

Why lenience matters. RLVR training proceeds through incremental updates, so adjacent poli-
cies remain closely aligned. This makes lenience a natural fit: with moderate ¢ values, one can reuse
tokens that are close to the current policy distribution without deviating significantly. Moreover,
since the draft model corresponds to the model from the previous epoch, it remains naturally close
to the current policy, thereby ensuring that cached rollouts are still informative. Such relaxation pre-
serves learning signals while substantially reducing rollout cost, as parallel verification over cached
rollouts is far cheaper than regenerating entire trajectories.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We train our models using the verl (Sheng et al.| 2025) framework with vLLM (Kwon et al., [2023))
as the rollout engine, on data sampled from DeepMath (6,144 examples, denoted as DeepMath-
6K) (He et al., [2025]) and SimpleRL (8,192 examples, denoted as SimpleRL-8K) (Zeng et al.,[2025)).
All experiments use a prompt batch size of 1,024 and a maximum response length of 4,096 tokens,
conducted on a single node with 8x NVIDIA H100 GPUs. Rollout is performed at a temperature
of 1.0. "I;he actor learning rate is fixed at 5 x 10~7, and for PPO we set the critic learning rate to
1 x107°.

Benchmarks and metrics. We evaluate rollout efficiency and accuracy on a broad suite of bench-
marks. Rollout efficiency is reported as the number of generated tokens and the relative speedup
(baseline time divided by method time). Math reasoning benchmarks include AMC 2023 (Art of]

Under review as a conference paper at ICLR 2026

Problem Solving, [2024), GSMS8K (Cobbe et al., [2021), MATH-500 (Hendrycks et al., 2021)), Min-
erva Math (Lewkowycz et al., 2022a), and OlympiadBench (He et al., |2024)). Out-of-distribution
(O0OD) benchmarks include MMLU-STEM (Hendrycks et al., [2020) and IFEval (Zhou et al.
2023)), which evaluate the generalization capability of the model. Full hyperparameter and eval-
uation details are provided in Appendices and

4.2 MAIN PERFORMANCE

Overall performance on various models and algorithms. We evaluate SPEC-RL across mul-
tiple model families (Qwen, LLaMA) and RL algorithms (GRPO, PPO, DAPO), with results sum-
marized in Table[I] Across nine model-algorithm settings, SPEC-RL yields an average speedup of
2.31x by reducing generated tokens by 66The largest gain is with Qwen-3-8B-Base under DAPO
(1,052.2M — 326.2M tokens; 2.88 %), while even the smallest case (Qwen-3-8B-Base with PPO)
achieves 1.94 x without accuracy loss. These improvements closely track the reduction in generated
tokens, confirming that token-level savings drive the acceleration.

On math benchmarks, accuracy remains broadly stable: larger models are highly robust, while
smaller models show only small fluctuations. For OOD tasks, MMLU-STEM stays nearly un-
changed, and IFEval improves in several cases—for example, +6.5 points on Qwen-3-8B-Base with
GRPO. Overall, SPEC-RL accelerates rollout generation substantially without degrading reasoning
quality, and sometimes even improves out-of-distribution generalization.

Table 1: Overall results across models (Qwen, LLaMA) and algorithms (GRPO, PPO, DAPO)
on DeepMath-6K. For each model size and family, we report the performance of its base model,
the results of different RL algorithms, and the corresponding rollout efficiency and accuracy when
equipped with SPEC-RL.

Rollout Efficiency Math Reasoning (00))]
Algorithm MATH Minerva Olympiad MMLU AVG
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
QOwen-3-1.7B-Base
Base Model - - 225 59.1 45.0 12.5 16.7 393 179 304
GRPO 554.8 1.00x 42.5 82.6 64.4 26.5 25.5 60.7 244 46.7
— + SPEC-RL 182.7 2.29x 375 84.4 68.0 29.4 29.3 583 28.8 48.0
PPO 565.1 1.00x 35.0 82.0 63.0 26.8 25.3 59.4 255 453
— + SPEC-RL 230.8 1.94x 35.0 82.0 64.8 25.4 25.9 58.6 259 454
DAPO 543.1 1.00x 30.0 79.6 60.8 24.6 23.0 52.2 248 421
— + SPEC-RL 171.6 2.17% 225 80.1 60.0 25.7 25.5 53.5 27.0 420
QOwen-3-8B-Base
Base Model - - 40.0 83.0 67.4 27.2 34.1 60.4 299 489
GRPO 1033.1 1.00x 75.0 94.1 86.4 43.8 53.0 84.6 412 683
— + SPEC-RL 336.6 2.51x 70.0 94.5 87.8 44.1 51.0 84.5 477 68.5
PPO 984.0 1.00x 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
— + SPEC-RL 400.1 1.94 x 75.0 929 85.2 434 50.8 844 41.0 67.5
DAPO 1052.2 1.00x 75.0 933 84.8 40.1 48.6 824 39.6 663
< + SPEC-RL 326.2 2.88x 65.0 93.8 84.4 43.8 50.4 822 444 663
LLaMA-3.2-1B-Instruct
Base Model - - 0.0 26.7 14.2 4.0 2.8 32.6 370 168
GRPO 553.9 1.00x 5.0 28.1 19.2 33 49 33.1 37.0 187
— + SPEC-RL 162.5 2.60x 7.5 28.7 194 1.8 5.0 34.5 372 192
PPO 521.5 1.00x 10.0 31.6 20.8 4.0 6.4 343 427 214
— + SPEC-RL 210.6 2.01x 10.0 324 20.2 5.5 5.0 353 40.7 213
DAPO 482.6 1.00x 7.5 29.6 19.2 4.0 5.5 33.0 38.6 19.6
— + SPEC-RL 123.1 2.48 % 10.0 34.9 20.2 4.0 SI5] 35.5 384 212

Table 2: Comparison between SPEC-RL and a random reuse baseline on GRPO. In the random
reuse setting, the rejection position for each sequence is drawn uniformly at random, resulting in
roughly half of the tokens being reused on average.

Rollout Efficiency Math Reasoning [00)))
Algorithm : . AVG
Tokens (M) Speedup AMC23 GSMSK “agptl Minera Og;‘l‘c’;f‘d Nins IFEval
GRPO 5548 1.00x 425 826 644 265 255 607 244 467
<+ + Random Reuse 3045 235% 375 80.0 604 217 253 531 240 4311
< + SPEC-RL 1827 229x 37.5 844 68.0 294 293 583 288 480

Under review as a conference paper at ICLR 2026

Table 3: Ablation on lenience parameter ¢ on the DeepMath-6K. Here ¢ = 1 corresponds to vanilla
speculative decoding, while £ = oo corresponds to full reuse.

Rollout Efficiency Math Reasoning (610))]
Algorithm . . AVG
Tokens (M) Speedup AMC23 GSMK Vepotl Minerva Omplad - MVIU ppgya)

GRPO 5548 100x 425 826 644 265 255 607 244 467
<+ SPEC-RL { = 1 4190 122%x 400 818 638 287 25 596 250 466
<5+ SPEC-RL £ — 02 2467 186x 375 833 664 298 296 85 250 473
4+ SPEC-RL £ = 0 1827 2.29x 375 844 680 29.4 203 583 288 480
<5 + SPEC-RL £ — &0 1448 2.64x 375 835 636 272 250 617 262 464
<5+ SPEC-RL { — ¢10 1230 291x 375 830 624 257 249 548 283 454
<5+ SPEC-RL { — ¢20 1144 3.05x 30.0 804 550 210 210 535 290 415
<5 + SPEC-RL £ = oo 400 1486 3.5 781 604 199 237 a1 220 401

Additional analyses—including per-step training curves, wall-clock breakdowns, comparisons on
DeepMath-6K and SimpleRL-8K, and the effect of training-set size—are provided in Appen-

dices[A3][A. 4 [A3] and[A.6]

Comparison with random reuse strategy. We further compare SPEC-RL with a random reuse
baseline, where rejection positions are sampled uniformly at random, leading to roughly half of the
tokens being reused on average. As shown in Table[2] random reuse reduces rollout cost (304.5M vs.
554.8M tokens) and improves efficiency (2.35x speedup), but causes a substantial drop in accuracy
(43.1 vs. 46.7). In particular, it degrades performance on high-stakes benchmarks such as MATH-
500 (60.4 vs. 64.4) and Minerva Math (21.7 vs. 26.5). By contrast, SPEC-RL achieves comparable
or better efficiency gains (182.7M tokens, 2.29x speedup) while preserving accuracy. This con-
trast highlights that naive reuse introduces harmful noise, whereas SPEC-RL leverages speculative
verification to retain policy fidelity while accelerating training. The detailed intermediate training
results of random reuse are reported in Appendix [A.7]

4.3 ABLATION STUDY

We conduct ablation experiments on Qwen-3-1.7B-Base with GRPO using the DeepMath-6K
dataset with a batch size of 1,024. Under this setting, one epoch corresponds to 6 steps, and the
results are summarized in Table [3]and Figures 4] [5] and|[6}

Impact of lenience ¢. As shown in Table [3] increasing ¢ consistently improves rollout efficiency:
starting from vanilla speculative decoding at / = 1 with a speedup of only 1.22 %, the acceleration
rises steadily and reaches 14.86x when ¢ — oco. Accuracy, however, does not follow the same

(a) Rollout Time (s) b) Average Verified Prefix Length (c) Full Reuse Ratio
350 1.0
Mo, A 8001
300 1
0.8
250 1 600]
200 1 0.6
] 400 {
150 044
1004
200 021
50
0 01 0.0
0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Step Step Step
—o— vanilla £ =e0! L =e03 L =e0> 1=e% — p=e% — y=el¥ — /=
1=1 f=e02 [=e04 [=e06 [=08 f=el0 [=e20

Figure 4: Training dynamics of SPEC-RL under different /. (a) Rollout time per training step
decreases as { increases, where the dashed line indicates the step at which speculative decoding be-
gins. (b) Average verified prefix length grows both with larger ¢ and across training steps, reflecting
stronger policy alignment. (c) Full reuse ratio—the fraction of samples fully reusing cached roll-
outs—also rises, complementing prefix length and jointly explaining the observed efficiency gains.

Under review as a conference paper at ICLR 2026

(a) Reward (b) Average Performance

0.551
0.50 4
0.45 4
0.40 4
0.351
0.301
0.251

0.20 1 o A R 304E
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Step Step
—eo— vanilla =gl {=ge03 [=ge% 1=e% — p=e% — y=el¥ — =0
1=1 g =e02 [=04 [=g06 — y=g08 — =gl — y=g20

Figure 5: Effect of lenience ¢ on learning outcomes. (a) Reward trajectories show that moderate ¢
maintains stability and eventually surpasses vanilla GRPO, while overly large ¢ slows progress. (b)
Average performance follows the same trend: moderate ¢ preserves accuracy, whereas aggressive
reuse (¢ > e':%) degrades both reward and final performance.

trend—performance peaks at ¢ = ¢°-° with 48.0, but declines when reuse becomes overly aggressive,
dropping to 40.1 at £ — oo. Overall, moderate lenience values strike the best balance, yielding 2-3 x
rollout speedups while preserving or slightly improving accuracy, whereas extreme reuse sacrifices
performance despite dramatic acceleration. The detailed intermediate results throughout training are
provided in Appendix [A.8]

Acceleration is jointly driven by lenience and policy alignment. Cached responses become
reusable from the second epoch (e.g., step 7), at which point rollout time shows the first sharp
drop (Figure 4| (a)). Before that, all curves overlap because no old policy exists. Once reuse starts,
the SPEC-RL curves immediately diverge and rollout time falls substantially. Along the lenience
axis, vanilla GRPO stabilizes near 300s per step, while even the default setting (¢ = 1) lowers this
to slightly above 200s. Larger ¢ yields further gains—for example, at £ = €2 the later rollout
time is already below half of the baseline (150s), with even more reduction for higher ¢ (Figure
(a)). Correspondingly, both accepted-prefix lengths and skip ratios grow with increasing ¢ (Figure@
(b,c)). Along the training axis, accepted-prefix length is initially high, dips around steps 10-20
due to early policy shifts, and then rises again as the policy aligns (Figure [(b)). Meanwhile,
the skip ratio increases steadily throughout training (Figure] (c)). Together, these patterns show
that efficiency gains in SPEC-RL stem from both lenience-controlled acceptance and the growing
alignment between successive policies.

Excessive reuse stresses optimization. When ¢ — oo, reuse becomes complete and every cached
response is fully reused from the second epoch onward. As shown in Figure [6] (a—), entropy, KL
loss, and the gradient clipping ratio all rise dramatically compared with vanilla GRPO and settings
with £ < 2, quickly shooting beyond the plotting range, indicating severe instability. Because
exploration collapses under complete reuse, the outputs of all subsequent epochs become identical,
and the training reward exhibits a clear cyclic fluctuation with the period of one epoch (6 steps in
our setup), as illustrated in Figure [5] (a). These unstable dynamics further translate into a sharp
degradation of downstream accuracy: the average math performance drops markedly (Figure [3] (b)
and Table [3). Overall, extreme acceleration from complete reuse comes at the cost of exploration
collapse and unstable optimization dynamics.

Moderate reuse preserves healthy learning signals. In contrast to the instability observed at
extreme reuse, moderate lenience values (around ¢ = ¢°-%) maintain well-behaved optimization dy-
namics. As shown in Figure E] (a—c), entropy and KL loss remain close to those of vanilla GRPO,
and clipping is not abnormally triggered. Meanwhile, reward trajectories under moderate ¢ maintain
stability and eventually surpass the baseline (Figure[5](a)), while average math performance is pre-
served or slightly improved (Figure[5] (b)), consistent with the peak average score of 48.0 reported in
Table|3] These results demonstrate that moderate lenience values enable 2—3 x acceleration without

Under review as a conference paper at ICLR 2026

(a) Entropy (b) KL Divergence (c) Policy Gradient Clip
12 0.5 0.006
1.04 041 0.005
0.81
0.3 0.004 1
0.6 1
0.2 0.003
0.44
0.1 0.002 4
0.2 Y
0.0 0.01 0.001 4
"0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Step Step Step
—o— vanilla 1=e01 L=e03 L =e0> {=e% —— f=e%° — y=el® — f=w
1=1 g =e02 [=04 [=g06 g =e08 f=elo §=e20

Figure 6: Training dynamics of SPEC-RL under different /. (a) Entropy decreases more rapidly
with larger ¢. (b) KL Divergence gradually rises with more steps, especially under larger £. (c)
Policy Gradient Clip ratio first increases and then stabilizes, with higher ¢ leading to larger values.

sacrificing reward signals or downstream reasoning accuracy. Case studies in Appendix [B] further
show how SPEC-RL reuses verified prefixes while keeping the reasoning chain intact, illustrating
why moderate reuse achieves the best trade-off.

5 RELATED WORK

Efficiency in RLVR. Prior work improves RLVR efficiency mostly at the trajectory level—via
parallel rollouts (Xu et al., [2025)), modified objectives (Brantley et al.| |2025; [Lin et al., [2025), data-
centric batch restructuring (Liu et al., 2025} |Zhang et al., | 2025b), system heuristics (Yu et al., 2025}
Zheng et al.| [2025), or trajectory replay (Zhang et al.,|2025a)). These approaches reduce the number
of trajectories or stabilize optimization, but do not shrink the token count per trajectory, which
dominates rollout time. Our method targets this missing dimension by reusing verified prefixes,
improving token-level efficiency while keeping RLVR objectives unchanged.

Speculative decoding. Speculative decoding proposes tokens with a draft model and verifies them
with a stronger model (Leviathan et al., 2023)), with later variants improving parallelism or multi-
token acceptance (Cai et al., [2024; |Chen et al., [2024; Qin et al.| 2024} [Sun et al., [2024). While
designed for inference and typically requiring extra modules, we repurpose speculative decoding
for RLVR by using the previous policy’s outputs as drafts, enabling prefix reuse without additional
models.

6 CONCLUSION

We address the rollout bottleneck in reinforcement learning with verifiable rewards (RLVR) by intro-
ducing SPEC-RL, which integrates speculative decoding into rollout generation. Instead of regen-
erating trajectories from scratch, SPEC-RL treats previous-epoch rollouts as implicit drafts: tokens
are verified under the current policy to form a verified prefix, then generation resumes from the first
rejection position. A lenience parameter ¢ modulates the acceptance rule, trading off reuse and ex-
ploration. Experiments on Qwen and LLaMA models with GRPO, PPO, and DAPO show consistent
2-3x rollout speedups with largely preserved, and sometimes improved, reasoning and OOD per-
formance. This demonstrates that rollout redundancy can be systematically exploited without modi-
fying objectives, rewards, or update rules. Limitations include dependence on cached responses and
potential under-exploration with high lenience. Future work includes adaptive scheduling of ¢ and
extending speculative reuse to multi-turn and large-scale RLVR settings. Overall, SPEC-RL offers
a simple, model-agnostic way to substantially reduce the cost of RLVR training.

Under review as a conference paper at ICLR 2026

REFERENCES

Art of Problem Solving. Amc problems and solutions. https://artofproblemsolving.
com/wiki/index.php?title=AMC_Problems_and_Solutions, 2024. Accessed:
2025-04-20.

Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou
Zhang. Accelerating rl for 1lm reasoning with optimal advantage regression, 2025. URL https:
//arxiv.org/abs/2505.20686

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226-86242, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydlicek, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-

man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

10

https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2401.10774
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via spec-
ulative decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19274-19286. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.htmll

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843-3857, 2022a.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022b.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. A diversity-promoting
objective function for neural conversation models. In Proceedings of the 2016 conference of
the North American chapter of the association for computational linguistics: human language
technologies, pp. 110-119, 2016.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models, 2025. URL https://arxiv.org/
abs/2503.22342.

Zikang Liu, Tongtian Yue, Yepeng Tang, Longteng Guo, Junxian Cai, Qingbin Liu, Xi Chen, and
Jing Liu. Prefix grouper: Efficient grpo training through shared-prefix forward, 2025. URL
https://arxiv.org/abs/2506.05433.

Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, and Yizhou Sun. Optimized multi-
token joint decoding with auxiliary model for 1lm inference. arXiv preprint arXiv:2407.09722,
2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023a.

11

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2506.05433

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476l

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou.
Rlep: Reinforcement learning with experience replay for llm reasoning. arXiv preprint
arXiv:2507.07451, 2025a.

Yiqi Zhang, Huiqiang Jiang, Xufang Luo, Zhihe Yang, Chengruidong Zhang, Yifei Shen, Dong-
sheng Li, Yuqging Yang, Lili Qiu, and Yang You. SortedRL: Accelerating RL training for
LLMs through online length-aware scheduling. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models, 2025b. URL https://openreview.net/forum?id=
YoVOl1lIZ827.

Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for 1lm reasoning via selective
rollouts, 2025. URL https://arxiv.org/abs/2506.02177.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In The 41st international ACM SIGIR
conference on research & development in information retrieval, pp. 1097-1100, 2018.

12

https://arxiv.org/abs/2503.14476
https://openreview.net/forum?id=YoV9lIZ827
https://openreview.net/forum?id=YoV9lIZ827
https://arxiv.org/abs/2506.02177

Under review as a conference paper at ICLR 2026

A MORE DETAILS OF SPEC-RL

This appendix provides additional details on experimental settings, hyperparameters, and reward de-
sign, as well as extended ablation studies and full step-level results. We begin with shared training
configurations and evaluation setups, then report intermediate training trajectories, efficiency analy-
ses, and end-to-end time breakdowns. Finally, we present ablations across datasets (DeepMath-6K
vs. SimpleRL-8K) and training-set sizes (2K-6K), additional baseline comparisons, and case studies
that illustrate the behavior of SPEC-RL in practice.

A.1 HYPERPARAMETERS

We report the shared training settings (model families, rollout engine, batch size, sequence lengths,
training steps, and optimizer details), as well as the algorithm-specific configurations. All experi-
ments use Qwen-3-1.7B-Base, Qwen-3-8B-Base, and LLaMA-3.2-1B as backbone models. Roll-
outs are generated using VLLM (rollout N = 8) with a global batch size of 1024. The maximum
prompt length is 1,024 tokens, and the maximum response length is 4,096 tokens. For optimization,
the actor is trained using AdamW (learning rate 5 x 10~7, weight decay 0.01, and gradient clipping
of 1.0). For PPO, the critic is additionally optimized with AdamW (learning rate 1 x 10~°, weight
decay 0.01, clipping 1.0). Algorithm-specific differences are as follows. GRPO enables KL regu-
larization with a coefficient of 0.0001, whereas PPO and DAPO disable KL regularization. DAPO
further adopts a wider clipping range (high = 0.28, ¢ = 10) compared to GRPO and PPO (high =
0.2, ¢ = 3). Additionally, DAPO utilizes dynamic sampling. To ensure fair comparison with GRPO
and PPO, we control for the total amount of rollout data: each training step in DAPO corresponds to
multiple generation steps, and the evaluation interval is reduced from every 10 steps to every 5 steps.
SPEC-RL uses default lenience values of €2 for GRPO, €2 for PPO, and €°1° for DAPO, chosen
via grid search to balance rollout efficiency and stability. All methods employ the math-verify
reward, which assigns +1 if the final boxed or numeric answer matches the ground truth and 0 oth-
erwise. This simple, deterministic design ensures that the reward is aligned with evaluation metrics
across benchmarks.

We use a rule-based reward function that depends solely on the correctness of the final answer.
Specifically, we utilize the math-verify library to verify each generated solution: if the pre-
dicted answer matches the reference, the model receives a reward of +1, and otherwise, 0. The
math-verify library is responsible for parsing the model output, extracting the final boxed or
numeric answer, and checking it against the ground truth. No format-based shaping or auxiliary
heuristics are used. This choice maintains a simple, deterministic, and aligned reward signal across
all benchmarks, aligning with the evaluation objective.

A.2 DETAILED EVALUATION SETUPS

Our evaluation setup largely follows prior work (Zeng et al., 2025} |Yang et al.l [2024), ensuring
consistency and comparability with established baselines. For all math reasoning benchmarks, in-
cluding AMC23, GSM8K, MATH-500, Minerva Math, OlympiadBench, and MMLU-STEM, we
use a maximum generation length of 16,000 tokens, with nucleus sampling (p = 0.95) and temper-
ature set to 1.0. For IFEval, we employ the lighteval (Habib et al.| 2023) framework for evaluation,
maintaining the same decoding parameters as those used in the math reasoning benchmarks. This
uniform setup ensures that all comparisons focus on the effects of SPEC-RL, rather than variations
in decoding configurations. For experiments on DeepMath-6K, we report the performance at step
90 (corresponding to 15 epochs with 6,144 examples and a batch size of 1,024). For SimpleRL-8K,
we report the performance at step 100.

A.3 PERFORMANCE OVER TRAINING STEPS

To provide a more complete view of model behavior and enhance the robustness of our method, we
also report performance trajectories throughout training. For each setting, results are shown every
10 steps, comparing the vanilla algorithm with its SPEC-RL variant, as shown in Tables 4] [3] [6l
[} L 10} [TT} [[2] This step-wise view complements the main results by illustrating how rollout
efficiency and accuracy evolve consistently during training, rather than only at the final checkpoint.

13

Under review as a conference paper at ICLR 2026

Table 4: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Rollout Efficiency Math Reasoning [010))]
Algorithm Step . . AVG
Tokens (M) Speedup AMC23 GSMSK “aoo' “apond Oympad MUY tpEva
Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 43.9 203 38.8
— + SPEC-RL 10 43.6 1.41x 27.5 75.7 55.8 21.7 21.8 43.0 224 383
GRPO 20 127.4 1.00% 27.5 78.2 57.8 254 24.7 45.5 203 399
< + SPEC-RL 20 67.2 1.66 % 30.0 80.0 63.0 25.0 24.6 46.9 222 417
GRPO 30 187.7 1.00x 37.5 80.1 60.4 224 25.0 479 209 420
— + SPEC-RL 30 85.1 1.85x 30.0 81.0 64.0 254 27.6 51.1 262 436
GRPO 40 248.3 1.00x 325 79.9 65.0 23.5 24.7 50.7 213 425
— + SPEC-RL 40 102.9 1.96 % 37.5 80.7 63.8 26.5 26.1 522 235 443
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
— + SPEC-RL 50 1194 2.06x 325 81.1 64.4 28.7 28.0 55.6 277 454
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 24.0 450
— + SPEC-RL 60 135.1 2.14x 27.5 83.4 66.4 26.5 29.9 54.7 28.8 453
GRPO 70 431.9 1.00x 425 823 61.8 26.5 28.1 55.5 262 46.1
— + SPEC-RL 70 1532 2.18x% 40.0 82.5 65.4 26.5 299 55.6 274 468
GRPO 80 493.5 1.00x 25.0 82.0 64.4 243 26.4 59.4 250 438
— + SPEC-RL 80 168.1 2.24x 45.0 83.7 67.0 29.8 29.6 57.1 283 48.6
GRPO 90 554.8 1.00x 425 82.6 64.4 26.5 25.5 60.7 244 467
— + SPEC-RL 90 182.7 2.29% 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

Table 5: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with GRPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL
variant interleaved.

Rollout Efficiency Math Reasoning (010)))
Algorithm Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 40.0 83.0 67.4 272 34.1 60.4 299 489
GRPO 10 71.9 1.00x 60.0 91.5 80.0 32.7 443 64.7 344 582
— + SPEC-RL 10 53.0 1.36% 60.0 92.0 80.0 37.1 439 64.2 372 592
GRPO 20 158.2 1.00x 62.5 93.6 82.8 40.4 49.3 713 39.0 63.6
— + SPEC-RL 20 76.4 1.96x 65.0 933 83.6 42.6 48.6 722 434 641
GRPO 30 278.1 1.00x 70.0 92.7 842 39.7 48.9 80.4 357 645
— + SPEC-RL 30 116.7 2.18x% 65.0 93.5 85.0 43.0 49.5 80.4 479 663
GRPO 40 404.2 1.00x 67.5 93.5 852 40.8 50.2 82.0 379 653
— + SPEC-RL 40 156.4 2.31x 75.0 94.1 84.2 445 49.0 833 46.8 68.1
GRPO 50 532.0 1.00x 70.0 93.5 85.4 42.6 49.5 82.8 40.1 663
— + SPEC-RL 50 194.4 2.36% 77.5 93.3 84.8 44.1 52.3 83.2 457 687
GRPO 60 659.3 1.00x 72.5 93.1 84.8 44.1 51.4 83.0 38.8 66.8
< + SPEC-RL 60 235.7 2.36% 72.5 94.4 85.4 43.0 51.1 84.4 449 68.0
GRPO 70 785.6 1.00x 65.0 933 84.8 434 51.3 843 348 653
— + SPEC-RL 70 279.2 2.36x% 62.5 94.4 87.0 438 51.7 84.7 475 674
GRPO 80 910.2 1.00x 67.5 94.0 85.8 434 50.2 84.7 40.1 665
— + SPEC-RL 80 311.1 2.42x 75.0 934 874 434 52.1 852 482 692
GRPO 90 1033.1 1.00x 75.0 94.1 86.4 43.8 53.0 84.6 412 683
— + SPEC-RL 90 336.6 2.51% 70.0 94.5 87.8 44.1 51.0 84.5 477 685

Training Dynamics and Efficiency Across Different RL Algorithms. We present the efficiency
of our method across RL algorithms in Figures[7] [§] and compare rewards and rollout time against
baselines in Figures[9] [T0] Across all three algorithms, SPEC-RL substantially reduces rollout time
while preserving learning quality: rewards match or exceed the vanilla baselines under PPO and
GRPO, and are largely on par under DAPO (with a minor late-stage gap on Qwen3-8B). The ef-
ficiency gains align with stronger speculative reuse signals: the full reuse ratio quickly rises and
stabilizes around 0.6-0.85 after early transients, and the average verified prefix length remains large
(hundreds to 1.2k tokens) and generally increases over training—most prominently on Qwen3-8B
for GRPO/DAPO. Together, these curves indicate that SPEC-RL learns to reuse long, verified pre-
fixes, trading decoding for reuse, which yields lower per-step generation cost without compromising
reward progress.

14

Under review as a conference paper at ICLR 2026

Table 6: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Rollout Efficiency Math Reasoning (070))]
Algorithm Step - . AVG
Tokens (M) Speedup AMC23 GSMSK “art Miterva - Olympiad Nap TFEval
Base Model 0 - - 0.0 26.7 142 4.0 2.8 32.6 37.0 168
GRPO 10 72.1 1.00% 7.5 272 14.2 29 34 31.7 388 18.0
— + SPEC-RL 10 47.8 1.38x 5.0 27.1 12.8 2.6 34 32.8 386 175
GRPO 20 141.2 1.00x 5.0 28.3 15.6 2.6 39 335 397 184
— + SPEC-RL 20 78.5 1.57x% 7.5 28.7 18.0 3.7 3.9 35.0 386 193
GRPO 30 204.5 1.00x 5.0 27.1 17.4 29 4.4 35.1 38.3 18.6
— + SPEC-RL 30 100.7 1.73% 5.0 323 18.4 2.6 4.9 334 40.5 19.6
GRPO 40 266.8 1.00x 10.0 29.5 154 33 4.4 332 412 19.6
— + SPEC-RL 40 115.0 1.94 % 10.0 31.2 18.6 4.4 55 342 38.8 204
GRPO 50 326.2 1.00x 12.5 279 17.6 3.7 53 34.3 38.1 19.9
— + SPEC-RL 50 126.3 2.12x 75 31.5 20.2 4.4 4.7 36.0 39.6 20.6
GRPO 60 382.9 1.00x 15.0 284 17.8 33 52 34.0 40.5 20.6
— + SPEC-RL 60 134.7 2.29%x 7.5 31.8 19.0 4.4 5.5 35.6 379 202
GRPO 70 438.3 1.00x 15.0 30.1 17.6 4.8 5.5 34.6 37.3 207
— + SPEC-RL 70 143.6 2.41x 12.5 29.7 19.8 5.1 5.8 36.1 372 209
GRPO 80 495.3 1.00x 5.0 259 17.6 4.0 3.9 333 372 18.1
< + SPEC-RL 80 152.8 2.52x 7.5 29.3 194 29 39 35.6 427 202
GRPO 90 553.9 1.00x 5.0 28.1 19.2 33 4.9 33.1 37.0 187
— + SPEC-RL 90 162.5 2.60x 75 28.7 19.4 1.8 5.0 34.5 372 192

Table 7: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with PPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL
variant interleaved.

Rollout Efficiency Math Reasoning (00)))
Algorithm Step MATH Minerva Olympi AVG
ympiad MMLU g
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 179 304
PPO 10 66.6 1.00x 35.0 71.3 54.8 19.9 213 42.6 192 377
— + SPEC-RL 10 46.5 1.34 % 27.5 73.2 56.8 17.6 233 429 194 372
PPO 20 129.2 1.00x 35.0 71.3 60.4 22.8 25.0 46.6 21.8 413
— + SPEC-RL 20 80.0 1.44x 37.5 78.8 58.0 232 234 46.9 209 412
PPO 30 191.5 1.00x 375 78.5 59.4 22.8 26.5 47.8 19.6 417
— + SPEC-RL 30 106.2 1.56x 375 783 62.6 23.5 25.6 49.8 227 429
PPO 40 253.6 1.00x 40.0 7.7 61.4 23.5 253 50.7 227 430
— + SPEC-RL 40 126.2 1.69x 37.5 80.4 63.2 224 273 51.3 237 437
PPO 50 315.7 1.00x 35.0 79.5 61.8 26.8 25.6 51.5 21.8 43.1
— + SPEC-RL 50 157.3 1.68 % 40.0 80.9 64.4 26.1 259 54.2 266 454
PPO 60 371.7 1.00x 27.5 81.6 63.8 29.4 26.8 539 233 438
— + SPEC-RL 60 172.0 1.79% 35.0 82.0 64.2 23.5 27.0 53.8 244 443
PPO 70 440.0 1.00x 35.0 79.5 60.6 257 26.7 55.0 229 436
— + SPEC-RL 70 194.7 1.83x 35.0 80.7 65.8 27.6 26.8 55.1 259 453
PPO 80 503.0 1.00x 45.0 81.4 63.8 254 29.3 58.6 237 46.7
— + SPEC-RL 80 207.2 1.93 % 40.0 82.6 63.6 29.8 28.0 54.3 257 463
PPO 90 565.1 1.00x 35.0 82.0 63.0 26.8 253 59.4 255 453
— + SPEC-RL 90 230.8 1.94 % 35.0 82.0 64.8 254 259 58.6 259 454

15

Under review as a conference paper at ICLR 2026

Table 8: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with PPO and SPEC-
RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL
variant interleaved.

Rollout Efficiency Math Reasoning (070))]
Algorithm Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 489
PPO 10 73.4 1.00x 425 91.1 75.4 335 43.4 63.2 322 545
— + SPEC-RL 10 51.9 1.30x 50.0 92.1 79.6 32.0 424 62.6 360 56.4
PPO 20 144.8 1.00x 60.0 93.1 81.0 393 453 67.0 351 60.1
— + SPEC-RL 20 85.6 1.48x 525 933 82.0 39.7 455 67.4 379 598
PPO 30 241.0 1.00x 62.5 934 82.8 38.6 46.7 77.6 373 627
— + SPEC-RL 30 115.6 1.75% 60.0 92.6 82.2 40.4 48.1 74.6 427 629
PPO 40 359.0 1.00x 60.0 92.9 83.6 41.9 49.3 79.5 36.6 634
— + SPEC-RL 40 159.4 1.87x 62.5 94.0 84.0 39.3 49.5 77.6 433 643
PPO 50 484.2 1.00x 65.0 93.5 86.0 41.2 51.6 82.1 39.7 65.6
— + SPEC-RL 50 197.9 1.98x 67.5 93.1 842 42.6 49.3 81.9 41.8 658
PPO 60 609.9 1.00x 75.0 94.2 85.4 42.6 49.9 829 420 674
— + SPEC-RL 60 2512 1.95x 67.5 933 84.6 438 52.0 81.7 436 66.6
PPO 70 735.0 1.00x 825 93.5 84.4 44.1 51.1 83.6 429 689
— + SPEC-RL 70 307.9 1.91x 70.0 93.7 84.6 42.6 50.8 84.0 447 672
PPO 80 859.9 1.00x 62.5 93.8 85.6 423 51.9 833 409 658
— + SPEC-RL 80 358.1 1.90x 75.0 93.5 83.4 44.1 50.2 84.4 431 6717
PPO 90 984.0 1.00x 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
— + SPEC-RL 90 400.1 1.94x 75.0 92.9 852 434 50.8 84.4 41.0 675

Table 9: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with PPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with PPO and its
SPEC-RL variant interleaved.

Rollout Efficiency Math Reasoning (00)))
Algorithm Step . . AVG
Tokens (M) Speedup AMC23 GSMSK “aoor “apea Oympiad MMIU ipEva
Base Model 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 370 168
PPO 10 65.5 1.00x 2.5 26.5 114 4.0 3.6 33.0 420 17.6
— + SPEC-RL 10 50.2 1.26x 20.0 25.8 14.0 2.6 3.7 32.5 410 199
PPO 20 131.1 1.00x 7.5 26.7 16.2 3.7 4.7 339 359 184
— + SPEC-RL 20 89.0 1.35% 7.5 27.9 16.2 2.9 5.0 34.1 412 193
PPO 30 192.0 1.00x 125 28.8 172 3.7 4.1 353 386 200
— + SPEC-RL 30 118.3 1.47x 10.0 29.8 17.4 44 6.4 342 388 201
PPO 40 250.3 1.00x 5.0 29.7 19.6 29 4.4 35.1 390 194
— + SPEC-RL 40 134.8 1.63 % 15.0 31.6 18.6 33 6.1 332 399 211
PPO 50 306.8 1.00x 5.0 31.3 19.2 4.8 4.6 323 40.1 19.6
— + SPEC-RL 50 147.2 1.78x 10.0 31.9 19.4 5.1 5.0 35.3 403 21.0
PPO 60 361.6 1.00x 7.5 30.3 18.4 5.1 43 35.1 416 203
< + SPEC-RL 60 160.5 1.89x 12.5 31.5 19.2 4.8 5.5 344 399 211
PPO 70 4154 1.00x 125 31.0 17.8 3.7 6.1 35.1 40.1 209
— + SPEC-RL 70 175.8 1.95x 12.5 326 19.6 33 5.5 349 399 212
PPO 80 469.0 1.00x 10.0 34.1 19.6 4.8 4.1 34.8 41.6 213
— + SPEC-RL 80 188.8 2.02x 15.0 335 19.0 5.5 6.4 36.1 403 223
PPO 90 521.5 1.00x 10.0 31.6 20.8 4.0 6.4 343 427 214
— + SPEC-RL 90 210.6 2.01x 10.0 324 20.2 5.5 5.0 35.3 40.7 213

16

Under review as a conference paper at ICLR 2026

Table 10: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multiple
generation steps; thus we additionally report the Gen-Step column to indicate how many rollout

batches the model has consumed.

Rollout Efficiency Math Reasoning (070))]
Algorithm Step Gen-Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 0 - - 225 59.1 45.0 12,5 16.7 393 179 304
DAPO 5 10 65.2 1.00x 25.0 69.8 50.0 17.6 20.0 41.5 20.1 349
< + SPEC-RL 5 10 46.7 1.25x 35.0 69.4 534 20.2 21.0 43.0 177 37.1
DAPO 10 20 1274 1.00x 325 76.0 584 19.1 224 429 19.6 387
— + SPEC-RL 10 20 70.6 1.52x 15.0 76.3 56.8 16.5 20.7 44.1 21.6 359
DAPO 15 30 187.7 1.00x 275 76.5 56.4 19.9 227 45.8 20.7 385
< + SPEC-RL 15 30 95.5 1.60x 25.0 78.2 584 239 24.9 45.0 26.1 402
DAPO 20 40 247.6 1.00x 35.0 78.0 54.8 232 21.8 46.8 233 404
< + SPEC-RL 20 40 109.5 1.74x 325 78.5 572 25.0 24.9 47.7 246 415
DAPO 25 50 307.5 1.00x 35.0 77.2 59.4 20.6 259 47.2 194 40.7
— + SPEC-RL 25 50 124.9 1.84x 37.5 77.8 59.0 22.8 23.0 49.2 257 421
DAPO 30 60 367.0 1.00x 35.0 79.1 60.6 25.0 243 48.0 222 420
— + SPEC-RL 30 60 137.7 1.94 x 325 79.4 60.4 24.6 25.0 50.4 262 42,6
DAPO 35 70 425.6 1.00x 375 78.5 59.8 279 243 49.7 227 429
— + SPEC-RL 35 70 149.1 2.02x 30.0 80.3 62.2 25.0 25.3 51.6 250 428
DAPO 40 80 484.6 1.00x 27.5 79.8 61.6 24.6 25.0 50.8 227 417
— + SPEC-RL 40 80 160.2 2.10x 40.0 79.2 60.2 254 26.5 53.7 274 446
DAPO 45 90 543.1 1.00x 30.0 79.6 60.8 24.6 23.0 522 248 421
< + SPEC-RL 45 90 171.6 2.17x 225 80.1 60.0 25.7 25.5 535 270 420

Table 11: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multi-
ple generation steps; thus we additionally report the Gen-Step column to indicate how many rollout
batches the model has consumed.

Rollout Efficiency Math Reasoning (010))]
Algorithm Step Gen-Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Qwen-3-8B-DAPO-SPEC-RL
Base Model 0 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 299 489
DAPO 5 10 75.0 1.00x 62.5 89.8 73.6 279 39.1 60.5 320 551
— + SPEC-RL 5 10 59.0 1.20x 55.0 90.9 75.0 32.7 38.8 63.3 340 557
DAPO 10 20 148.8 1.00x 60.0 91.9 78.6 36.8 434 64.0 36.0 587
— + SPEC-RL 10 20 90.3 1.45% 60.0 92.8 79.0 37.1 40.7 63.0 342 581
DAPO 15 30 2355 1.00x 67.5 93.3 80.6 39.7 474 70.6 38.1 625
— + SPEC-RL 15 30 116.8 1.73x 60.0 91.9 81.8 42.6 479 69.6 390 618
DAPO 20 40 354.9 1.00x 62.5 93.1 84.6 41.2 46.1 71.5 364 63.1
< + SPEC-RL 20 40 1522 2.00x 70.0 93.5 83.8 39.0 49.8 75.4 38.1 642
DAPO 25 51 509.1 1.00x 62.5 93.1 83.4 39.3 49.6 79.8 388 638
— + SPEC-RL 25 50 199.8 2.19x 72.5 92.6 85.4 41.5 479 78.7 42.1 658
DAPO 30 63 685.0 1.00x 62.5 92.5 83.8 44.5 48.9 81.1 392 646
— + SPEC-RL 30 60 239.9 2.48x 70.0 93.9 84.0 39.7 48.7 80.2 403 653
DAPO 35 75 867.6 1.00x 75.0 92.6 82.8 40.8 49.5 81.9 38.1 658
< + SPEC-RL 35 70 278.9 2.73% 725 93.6 84.8 404 499 80.8 444 66.6
DAPO 40 87 1052.2 1.00x 75.0 93.3 84.8 40.1 48.6 824 39.6 663
— + SPEC-RL 40 82 326.2 2.88x 65.0 93.8 84.4 438 50.4 822 444 663

Table 12: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with DAPO and
SPEC-RL. Since DAPO adopts Dynamic Sampling, one training step may correspond to multiple
generation steps; thus we additionally report the Gen-Step column to indicate how many rollout
batches the model has consumed.

Rollout Efficiency Math Reasoning (0]0)))
Algorithm Step Gen-Step - By AVG
Tokens (M) Speedup AMC23 GSMSK MSI?){H MB‘;‘:trhV a Ol]{:l‘]‘;;lad “:%g‘\? IFEval
LLaMA-3.2-1B-DAPO-SPEC-RL
Base Model 0 0 - - 0.0 26.7 142 4.0 2.8 326 370 168
DAPO 5 15 105.6 1.00x 25 27.1 144 29 33 326 388 174
< + SPEC-RL 5 15 524 1.95x 75 27.0 144 26 3.0 327 383 179
DAPO 10 27 179.8 1.00x 5.0 255 14.6 26 4.1 348 403 18.1
< +SPEC-RL 10 28 692 2.16x 175 25.6 16.6 2.6 49 337 392 200
DAPO 15 38 2398 1.00x 5.0 27.1 18.4 44 44 339 373 186
< +SPEC-RL 15 39 792 2.19x 5.0 28.9 16.4 62 34 339 375 188
DAPO 20 53 322.1 1.00x 175 27.3 18.8 29 56 346 388 208
<> +SPEC-RL 20 53 924 231x 75 299 19.6 59 55 342 381 2011
DAPO 25 68 4029 1.00x 5.0 26.6 19.8 33 46 345 383 189
< +SPEC-RL 25 68 1053 243x 10.0 34.0 19.8 40 6.1 355 355 207
DAPO 30 83 4826 1.00x 75 29.6 192 4.0 5.5 330 386 196
< +SPEC-RL 30 83 1231 248x 10.0 349 202 4.0 55 355 384 212

17

Under review as a conference paper at ICLR 2026

(a) GRPO (b) PPO (c) DAPO
?:01200« ?:,31000« g,)
9001
S 1100 5] | 3
3] 900 S|
= 1 x x
& 1000 £ 5004 £ 8001
& 900 & 700 =
2 8001 32 B 700
=t 600 N o=t
e 700< - e
2 2 500 2 6001
%))
< o 4004 <]
§ 5001 § §500
< 4004 T T T T T T T T T < 3004 T T T T T T T T T < T T T T T T T T T
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 35 40 45
Step Step Step
——— LLaMA-3.2-1B-Instruct Qwen3-8B-Base —— Qwen3-1.7B-Base

Figure 7: Average verified prefix length trajectories of SPEC-RL under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports the average length of the verified speculative
prefix per training step, and the x-axis is the training step. colors denote model backbones: red:
LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-1.7B-Base.

(a) GRPO (b) PPO (c) DAPO
0.9
0.9
0.8 0.8 0.8
g 8 =
S 0.7 < 5]
& & & 07
2 g 061 N 2
= 0.6 =] v =1
D 5] O 0.6
& w 05 ~
Z 05 = 044 E
=~ = ~ 0.5
0.4 0.3
03 0.2 0.4
’ 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 35 40 45
Step Step Step
—— LLaMA-3.2-1B-Instruct Qwen3-8B-Base — Qwen3-1.7B-Base

Figure 8: Full reuse ratio trajectories of SPEC-RL under three RL algorithms: (a) GRPO, (b) PPO,
and (c) DAPO. The y-axis reports the fraction of rollouts per step that are fully reused, and the x-axis
the training step. colors denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-
8B-Base, blue: Qwen3-1.7B-Base. Across settings, SPEC-RL quickly stabilizes at a high full reuse
ratio, indicating effective speculative reuse during training.

18

Under review as a conference paper at ICLR 2026

(a) GRPO (b) PPO (c) DAPO
0.65
081 %1 0.60
0.71 071 0.551
0.6]
°) 0.50
S 0.5 s]
% % 0.45
o 041 o 0.401
0.3 1 0.354
0.2 0.301
0.1 0.254

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 35 40 45
Step Step Step
——— LLaMA-3.2-1B-Instruct (SPEC-RL) Qwen3-8B-Base (SPEC-RL) —— Qwen3-1.7B-Base (SPEC-RL)
=== LLaMA-3.2-1B-Instruct (Baseline) Qwen3-8B-Base (Baseline) === Qwen3-1.7B-Base (Baseline)

Figure 9: Training reward trajectories of SPEC-RL versus baseline under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports reward, and the x-axis the training step. colors
denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-
1.7B-Base, while solid lines indicate SPEC-RL and dashed lines the corresponding vanilla base-
lines. SPEC-RL matches or exceeds baseline rewards under different algorithms across all back-
bones.

(a) GRPO (b) PPO (c) DAPO
2250
800 1 20001
e @ 17501
2 600 g 1500
= E 12504

= =
3 400 2 1000
° ° J
2 ool S 750
500 1
2501
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 35 40 45
Step Step Step
——— LLaMA-3.2-1B-Instruct (SPEC-RL) Qwen3-8B-Base (SPEC-RL) —— Qwen3-1.7B-Base (SPEC-RL)
=== LLaMA-3.2-1B-Instruct (Baseline) Qwen3-8B-Base (Baseline) === Qwen3-1.7B-Base (Baseline)

Figure 10: Training rollout time of SPEC-RL versus baseline under three RL algorithms: (a)
GRPO, (b) PPO, and (c) DAPO. The y-axis reports rollout time (seconds) and the x-axis the training
step. colors denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue:
Qwen3-1.7B-Base, while solid lines indicate SPEC-RL and dashed lines the corresponding vanilla
baselines. Across algorithms and models, SPEC-RL yields consistently lower rollout time than the
baselines.

19

Under review as a conference paper at ICLR 2026

Table 13: End-to-end training time comparison across models and algorithms. We report both the
wall-clock training hours (“End-to-end (h)”) and the average step time (“Total (s)”) with a detailed
breakdown. validation refers to our newly introduced speculative decoding process that verifies
old-policy rollouts in parallel; assemble denotes combining verified prefixes with newly generated
continuations to form complete rollouts; the remaining parts (reward, old-log-probs, ref, values, adv,
update-critic, update-actor, others) follow the standard pipeline of the verl framework in execution
order.

End-to-end (h) Average step time (s)
Algorithm Total Total A vs. base verification rollout as y reward old-log-probs ref values adv update-critic update-actor others
Qwen-3-1.7B-Base
GRPO 12.63 505.1 - - 309.9 - 91.0 172 158 - 04 - 560 149
<+ SPEC-RL 8.65 346.0 1 159.1 22.1 135.2(2.29x) 1.5 81.0 17.1 163 - 05 - 56.2 16.2
PPO 1410 563.9 - - 308.1 - 1005 17.2 - 140 47 46.0 565 16.9
<+ SPEC-RL 10.78 4312 1 132.7 22.7 158.6(1.94x) 1.4 94.1 17.3 - 138 46 45.0 55.5 18.1
DAPO 11.10 4438 - - 301.3 - 93.1 8.6 - - 03 - 259 146
— + SPEC-RL 790 316.0 11279 21.0 139.0(2.17x) 1.4 97.9 18.1 - - 02 - 259 12.7
Qwen-3-8B-Base
GRPO 31.66 1266.4 - - 768.2 - 73.2 66.8 66.9 - 42 - 263.8 234
— + SPEC-RL 21.03 841.0 1 425.4 747 3058 (2.51x%) 1.3 61.4 63.8 62.4 - 49 - 248.8 18.0
PPO 34.85 1393.9 - - 676.7 - 70.5 65.4 - 574 42 224.1 2604 353
— + SPEC-RL 2697 1078.8 1 3151 71.5 3493 (1.94x) 1.4 64.9 59.6 - 521 49 205.9 2369 325
DAPO 2429 9718 - - 699.2 - 64.4 66.3 - - 0.1 - 121.1 20.7
— + SPEC-RL 1290 5159 1 455.9 51.0 243.0(2.88x) 1.1 54.0 512 - - 01 - 975 180
LLaMA-3.2-1B-Instruct
GRPO 1020 408.0 - - 229.7 - 105.8 126 115 - 04 - 34.7 132
— + SPEC-RL 728 2913 1 116.7 172 88.3(2.60x) 14 1104 130 119 - 05 - 344 144
PPO 10.94 4376 - - 2189 - 117.6 12,5 - 10.0 48 10.0 32.6 31.3
— + SPEC-RL 8.60 3440 1 93.6 17.5 108.9 (2.01x) 13 1109 124 - 101 46 10.1 343 338
DAPO 977 3284 - - 198.4 - 100.8 11.2 - - 01 - 9.6 8.5
<+ SPEC-RL 697 2384 190.0 134 80.0 (2.48%) 1.1 110.5 11.5 - - 01 - 9.9 120

A.4 END-TO-END TIME BREAKDOWN

Table[I3]reports the per-stage breakdown of training time. In the vanilla baseline, rollout generation
dominates the runtime, often accounting for more than 60% of the total. With SPEC-RL, this
cost is largely shifted into a lightweight verification stage, where cached rollouts are first verified in
parallel under the current policy and then evaluated by the speculative decoding rule to determine the
rejection position, and a minimal assembly stage, where verified prefixes and regenerated suffixes
are merged into complete responses. Both stages add only minor overhead (on Qwen-3-1.7B-Base,
verification ~20s and assembly ~1-2s), while the total step time is reduced by about 129-161s,
making the extra cost negligible compared to the savings from reduced rollout. For instance, on
Qwen-3-8B-Base/GRPO, the rollout time decreases from 768.2s to 305.8s, while all other stages,
such as reward computation and policy updates, remain nearly unchanged. Overall, although these
new stages slightly increase non-rollout costs, the dominant effect is the 2-3 times reduction in
rollout tokens, yielding substantially faster end-to-end training.

A.5 GENERALITY ACROSS DATASETS

To examine whether the gains of SPEC-RL depend on a specific training corpus, we conduct ex-
periments on two distinct datasets: DeepMath-6K and SimpleRL-8K. Results in Table [14] show that
SPEC-RL consistently improves rollout efficiency across both settings. For example, on Qwen-
3-1.7B-Base with GRPO, rollout tokens drop from 554.8M to 182.7M on DeepMath-6K and from
639.4M to 354.0M on SimpleRL-8K. Accuracy remains comparable or slightly improved, confirm-
ing that the efficiency benefits of SPEC-RL are robust to the choice of dataset. Intermediate perfor-

Table 14: Ablation study on different training datasets. Results show that our method maintains im-
provements in rollout efficiency and accuracy across both Deepmath-6K and SimpleRL-8K settings.

Rollout Efficiency Math Reasoning (6[0)))
Algorithm . . AVG
Tokens (M) Speedup AMC23 GSMSK MS‘?)T)H MI\‘,}‘::; a Og;‘l‘c’;fd Ixsa%gg IFEval
Deepmath-6K (Qwen-3-1.7B-Base)
GRPO 554.8 1.00x 42.5 82.6 64.4 26.5 25.5 60.7 244 46.7
— + SPEC-RL 182.7 2.29% 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0
SimpleRL-8K (Qwen-3-1.7B-Base)
GRPO 639.4 1.00x 45.0 83.8 68.2 27.2 30.5 49.4 24.0 469
— + SPEC-RL 354.0 1.53x 40.0 85.1 72.2 27.2 32.1 574 277 488

20

Under review as a conference paper at ICLR 2026

Table 15: Intermediate training results of Qwen-3-1.7B-Base on SimpleRL-8K with GRPO and
SPEC-RL. We report rollout efficiency and accuracy every 10 training steps, with GRPO and its
SPEC-RL variant interleaved.

Rollout Efficiency Math Reasoning [010))]
Algorithm Step . f AVG
Tokens (M) Speedup AMC23 GSMSK “aoo' “apoa Oympad MMIU tpEva
Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 179 304
GRPO 10 61.5 1.00x 35.0 76.7 57.6 19.1 22.7 44.4 21.1 395
— + SPEC-RL 10 50.5 1.16x 25.0 75.9 57.8 19.1 249 44.9 21.3 384
GRPO 20 123.1 1.00x 27.5 78.5 60.6 22.1 259 46.1 237 40.6
— + SPEC-RL 20 84.3 1.33% 25.0 79.3 62.2 20.6 28.0 46.4 209 403
GRPO 30 185.3 1.00x 45.0 80.2 63.8 243 27.0 46.1 237 443
— + SPEC-RL 30 1122 1.47x 45.0 81.5 61.4 26.8 28.7 49.0 25.1 454
GRPO 40 247.7 1.00x 325 80.1 63.0 224 28.1 46.9 21.1 420
— + SPEC-RL 40 136.8 1.57x 37.5 81.3 65.8 243 29.5 49.8 26.1 449
GRPO 50 312.5 1.00x 37.5 79.7 65.2 272 26.8 48.7 23.1 440
— + SPEC-RL 50 171.4 1.58x% 35.0 83.9 66.2 28.7 30.8 52.9 262 46.2
GRPO 60 377.7 1.00x 40.0 82.0 64.6 26.5 28.0 48.5 233 447
— + SPEC-RL 60 206.9 1.58% 475 83.1 67.8 26.8 32.0 53.5 255 48.0
GRPO 70 444.8 1.00x 37.5 81.7 66.0 26.5 26.5 48.6 209 44.0
— + SPEC-RL 70 246.5 1.56x 47.5 832 70.0 283 313 53.8 279 489
GRPO 80 512.9 1.00x 45.0 823 66.8 26.5 30.5 475 250 462
— + SPEC-RL 80 283.2 1.55x% 47.5 83.9 68.4 26.5 31.7 55.5 250 484
GRPO 90 582.6 1.00x 42.5 83.2 66.6 25.7 29.5 48.4 246 458
— + SPEC-RL 90 324.8 1.53x% 35.0 83.5 70.4 279 319 55.4 270 473
GRPO 100 639.4 1.00x 45.0 83.8 68.2 272 30.5 494 240 469
—+SPEC-RL 100 354.0 1.54% 40.0 85.1 72.2 27.2 32.1 57.4 27.7 488

mance on SimpleRL-8K is reported in Table [I5] while the detailed results for DeepMath-6K can be
found in Table[d] These results suggest that the efficiency improvements of SPEC-RL do not rely
on a particular training distribution.

A.6 IMPACT OF TRAINING SET SIZE ON ACCELERATION

Since SPEC-RL accelerates training by reusing cached rollouts from the previous epoch, accelera-
tion can only take effect starting from the second epoch. To study how dataset size influences this
effect, we vary the training set size to 2K, 3K, 4K, 5K, and 6K samples, and train Qwen-3-1.7B-Base
with GRPO. Figure [[T]reports the rollout time across training steps.

We observe that smaller datasets lead to earlier reuse opportunities, since epochs finish more quickly
and the second epoch arrives sooner. For example, with 2K samples, the rollout time drops sharply
after step 3, whereas with 6K samples, the reduction is delayed until later steps. Across all set-
tings, rollout time decreases steadily once reuse begins, with larger speedups achieved as training
progresses. The markers in the figure denote the first reuse points (the first step of epoch 2), where
SPEC-RL begins to take effect. This analysis confirms that the efficiency gains of SPEC-RL de-
pend not only on algorithm and model choice, but also on the dataset size, which determines how
soon reuse can be activated during training.

A.7 RANDOM REUSE RESULTS

For completeness, we also report the full training trajectories of the Random Reuse baseline on
Qwen-3-1.7B-Base, trained with GRPO on DeepMath-6K.

Table [I6]interleaves results of GRPO and Random Reuse every 10 training steps, providing a step-
wise view of rollout efficiency and accuracy. While Table [2] summarizes the overall comparison,
these detailed results illustrate how Random Reuse accelerates rollouts but produces unstable per-
formance over the course of training.

A.8 FULL LENIENCE ABLATION RESULTS

For completeness, we provide the step-level results corresponding to the lenience ablation in Sec-
tion 4.3] While Table [3] reports only the final-step outcomes for comparison across different le-
nience values, we include detailed intermediate results every 10 training steps here. These tables
document how rollout efficiency and accuracy evolve throughout training under various lenience

21

Under review as a conference paper at ICLR 2026

[
— N
300
= 250
o
E
&= 200
=]
2
= 150
&
100 1
50
1 2 3 4 5 6 7 8 9 10 11 12
Step
—_ 2k — 3k 4k sk 6k —e— vanilla

Figure 11: Rollout time under different training set sizes (2K—-6K) with GRPO on Qwen-3-1.7B-
Base. Markers highlight the first reuse points at the start of epoch 2, when SPEC-RL begins to
accelerate rollouts.

(a) Distinct-1 (b) Self-BLEU
0.09
0.350
0.08 1
5 3 0.325
B 0.07 1 £ 03001
g Z
2 0.06 5 02751
= =Y
= 0.05 m 0.250 1
2 .
B 0.04 - o 0.225
A R
0.200
0.03 1
T T T T T 0.175 L T T T T T
0 20 40 60 80 0 20 40 60 80
Step —e— Bascline —#— with SPEC-RL Step

Figure 12: Effects of SPEC-RL on rollout diversity. We compare GRPO and SPEC-RL using two
standard diversity metrics: Distinct-1, where higher values indicate greater unigram diversity, and
Self-BLEU, where lower values indicate greater sample diversity. Across identical training steps,
SPEC-RL attains diversity levels comparable to—or slightly higher than—the GRPO baseline.

settings (£ = 1,¢e%2,¢0%5, 08 1:0 2.0 and ¢ — 00), complementing the aggregated trends shown
in Table Bl

A.9 ANALYSIS OF ROLLOUT DIVERSITY

We further examine whether speculative reuse affects rollout diversity by comparing SPEC-RL with
the GRPO baseline at identical training steps. Diversity is measured using two standard metrics:
distinct-1 2016), which captures unigram variability, and Self-BLEU 2018),
which measures sample similarity within a batch. As shown in Figure ﬂ_TKa)—(b), SPEC-RL consis-
tently achieves equal or even higher diversity than the GRPO baseline throughout training. Although
SPEC-RL reuses prefixes generated by the previous policy, this reuse only makes the prefix region
more similar to the old policy’s outputs; it does not constrain the diversity of the current policy’s
rollouts produced at the same step, compared with standard GRPO. In practice, the variation across
trajectories at each step—the quantity that matters for exploration and effective learning—remains
fully preserved. Importantly, there is no empirical evidence that higher similarity between the cur-
rent policy and the old policy reduces trajectory-level diversity or negatively affects optimization.
The observed trends confirm that SPEC-RL maintains, and in some cases slightly improves, rollout
diversity without harming learning dynamics or final performance.

22

Under review as a conference paper at ICLR 2026

Table 16: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
Random Reuse. We report rollout efficiency and accuracy every 10 training steps, with GRPO and
its Random Reuse variant interleaved.

Rollout Efficiency Math Reasoning [00)))
Algorithm Step MATH Minerva O] i AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 225 59.1 45.0 12.5 16.7 39.3 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 203 388
< + Random Reuse 10 58.0 1.11x 375 74.1 57.8 21.0 21.0 429 220 395
GRPO 20 127.4 1.00x 27.5 78.2 57.8 25.4 24.7 45.5 203 399
— + Random Reuse 20 98.9 1.43x 25.0 71.6 59.4 24.6 24.1 46.0 259 404
GRPO 30 187.7 1.00x 37.5 80.1 60.4 22.4 25.0 479 209 420
< + Random Reuse 30 134.1 1.61x 35.0 78.9 63.2 26.8 24.9 50.6 29.2 441
GRPO 40 248.3 1.00x 325 79.9 65.0 23.5 24.7 50.7 213 425
— + Random Reuse 40 165.4 1.75% 40.0 80.9 64.0 26.1 284 56.8 277 463
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
< + Random Reuse 50 194.1 1.89% 35.0 81.0 63.2 279 27.0 57.7 257 454
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 240 450
— + Random Reuse 60 221.8 2.03x 22.5 80.2 64.2 24.6 25.9 59.2 26.1 432
GRPO 70 431.9 1.00x 42.5 823 61.8 26.5 28.1 55.5 262 46.1
— + Random Reuse 70 249.6 2.14% 325 80.7 63.2 27.2 26.1 60.9 255 452
GRPO 80 493.5 1.00x 25.0 82.0 64.4 24.3 26.4 59.4 250 438
— + Random Reuse 80 271.5 2.25x% 25.0 78.7 57.0 21.7 22.7 44.6 224 389
GRPO 90 554.8 1.00x 42.5 82.6 64.4 26.5 25.5 60.7 244 467
— + Random Reuse 90 304.5 2.35% 37.5 80.0 60.4 21.7 25.3 53.1 240 43.1

Table 17: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience £ = 1. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step MATH Minerva Ol . AVG
g ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 393 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 203 388
<+ SPEC-RL/=1 10 63.5 1.03x 30.0 74.8 55.2 20.2 212 44.5 189 378
GRPO 20 127.4 1.00x 27.5 78.2 57.8 254 24.7 45.5 203 399
<+ SPEC-RL/ =1 20 118.3 1.05x 35.0 78.2 61.6 254 224 45.1 229 415
GRPO 30 187.7 1.00x 375 80.1 60.4 224 25.0 479 209 420
<+ SPEC-RL/=1 30 168.0 1.07x 20.0 79.5 61.2 25.0 25.0 49.9 23.7 40.6
GRPO 40 248.3 1.00x 325 79.9 65.0 23.5 24.7 50.7 213 425
<+ SPEC-RL/=1 40 2135 1.11x 40.0 80.2 63.0 27.2 249 51.7 224 442
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
<+ SPEC-RL/ =1 50 257.0 1.14x 42.5 80.3 63.2 29.0 247 54.0 244 454
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 240 450
—+SPEC-RL/=1 60 298.5 1.17x 42.5 80.2 64.2 26.8 26.7 55.6 237 457
GRPO 70 431.9 1.00x 42.5 823 61.8 26.5 28.1 55.5 262 46.1
<+ SPEC-RL/=1 70 339.2 1.19% 35.0 81.0 62.6 28.7 28.0 58.0 26.8 457
GRPO 80 493.5 1.00x 25.0 82.0 64.4 243 26.4 59.4 25.0 4338
<+ SPEC-RL/=1 80 379.7 1.20x 37.5 814 67.4 22.8 28.0 60.2 237 459
GRPO 90 554.8 1.00x 425 82.6 64.4 26.5 25.5 60.7 244 46.7
<+ SPEC-RL/=1 90 419.1 1.22x 40.0 81.8 63.8 28.7 26.5 59.6 259 46.6

23

Under review as a conference paper at ICLR 2026

Table 18: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = €2, We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 225 59.1 45.0 12,5 16.7 393 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 203 388
— + SPEC-RL (= ¢%2 10 53.6 1.19x 325 73.2 55.6 19.1 22.1 424 20.0 378
GRPO 20 127.4 1.00x 27.5 78.2 57.8 25.4 24.7 455 203 399
— + SPEC-RL (= ¢%2 20 92.7 1.29x 40.0 78.8 60.6 254 25.5 46.2 200 425
GRPO 30 187.7 1.00x 37.5 80.1 60.4 224 25.0 47.9 209 420
< + SPEC-RL / = ¢%2 30 120.5 1.42x 325 79.6 60.8 26.8 27.0 49.5 229 427
GRPO 40 248.3 1.00x 325 79.9 65.0 235 24.7 50.7 21.3 425
< + SPEC-RL / = ¢%2 40 143.6 1.54x 325 80.3 61.8 28.3 26.4 51.8 222 433
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
— + SPEC-RL / = ¢%2 50 166.1 1.62x 375 80.4 65.2 27.6 259 54.4 255 452
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 24.0 450
< +SPEC-RL(=¢"2 60 186.1 1.70x 375 81.7 63.6 29.4 25.5 55.0 244 453
GRPO 70 431.9 1.00x 425 823 61.8 26.5 28.1 55.5 262 46.1
< + SPEC-RL (= ¢%2 70 206.5 1.77x 425 80.4 64.6 272 29.5 584 25.1 468
GRPO 80 493.5 1.00x 25.0 82.0 64.4 243 26.4 59.4 250 43.8
< + SPEC-RL (= ¢%2 80 226.3 1.82x 325 81.8 63.4 294 29.9 57.9 240 456
GRPO 90 554.8 1.00x 42.5 82.6 64.4 26.5 25.5 60.7 244 467
< + SPEC-RL / = ¢%2 90 246.7 1.86% 37.5 83.3 66.4 29.8 29.6 58.5 259 473

Table 19: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = €°-°. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step MATH Minerva Olympiad MMLU AVG
Tokens (M) Speedup AMC23 GSMS8K L Math gen*c’h STEM IFEval
Base Model 0 - - 25 59.1 45.0 125 16.7 393 179 304
GRPO 10 658 1.00x 375 740 540 18.8 238 439 203 388
<>+ SPEC-RL £ =¢%5 10 436 141x 275 757 558 217 218 430 224 383
GRPO 20 1274 1.00x 275 782 578 254 247 455 203 399
<+ SPEC-RL £ =05 20 672 1.66x 30.0 80.0 630 25.0 246 469 22 417
GRPO 30 1877 1.00x 375 80.1 60.4 224 250 479 209 420
<+ SPEC-RL £ =¢"5 30 85.1 1.85x 30.0 81.0 640 254 27.6 S 262 436
GRPO 40 2483 1.00x 325 799 650 235 247 507 213 425
<>+ SPEC-RL £ = %5 40 1029 1.96x 375 80.7 638 265 26.1 522 235 443
GRPO 50 309.1 1.00x 35.0 812 642 257 246 537 250 442
<>+ SPEC-RL £ =¢%5 50 1194 2.06x 325 81.1 64.4 287 28.0 556 277 454
GRPO 60 3704 1.00x 35.0 81.3 63.6 283 26.7 560 240 450
<>+ SPEC-RL £ =¢%5 60 1351 2.14x 275 834 664 265 299 547 288 453
GRPO 70 4319 1.00x 425 82.3 61.8 265 28.1 555 262 46.1
<>+ SPEC-RL £ =¢%5 70 1532 2.18x 40.0 825 65.4 265 299 556 274 4638
GRPO 80 4935 1.00x 25.0 820 644 243 264 594 250 4338
<+ SPEC-RL £ =% 80 168.1 2.24x 45.0 837 670 29.8 29.6 57.1 283 486
GRPO 90 5548 1.00x 425 826 644 265 255 60.7 244 467
<5 +SPEC-RL £ =¢"5 90 1827 2.29x 315 844 680 294 293 583 288 480

Table 20: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = €%, We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step MATH Minerva Ol . AVG
- ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 225 59.1 45.0 12,5 16.7 393 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 20.3 388
< + SPEC-RL ¢ = ¢%8 10 41.9 1.46x 30.0 76.6 57.0 19.9 21.6 44.8 20.1 386
GRPO 20 127.4 1.00x 27.5 78.2 57.8 25.4 24.7 45.5 20.3 399
— + SPEC-RL (= ¢%8 20 57.5 1.86x 275 80.0 60.0 26.1 244 46.2 233 411
GRPO 30 187.7 1.00x 37.5 80.1 60.4 224 25.0 47.9 209 420
<+ SPEC-RL / = %% 30 70.1 2.12x 375 81.6 62.4 28.7 24.0 51.5 274 447
GRPO 40 248.3 1.00x 325 79.9 65.0 235 24.7 50.7 21.3 425
<+ SPEC-RL / = %% 40 81.8 2.29% 375 82.0 63.8 26.8 27.7 53.8 285 457
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
<+ SPEC-RL / = %% 50 97.5 2.35x 35.0 81.5 63.4 28.3 26.5 57.0 287 458
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 240 450
— + SPEC-RL / = %% 60 110.8 2.43x 475 822 61.8 26.8 25.8 57.7 255 468
GRPO 70 431.9 1.00x 425 82.3 61.8 26.5 28.1 55.5 262 46.1
<+ SPEC-RL (= ¢ 70 120.0 2.54x% 35.0 842 622 26.8 25.9 58.9 279 458
GRPO 80 4935 1.00x 25.0 82.0 64.4 243 26.4 59.4 250 438
> + SPEC-RL (= ¢%8 80 132.0 2.60x 325 84.1 63.6 27.6 26.5 584 283 459
GRPO 90 554.8 1.00x 425 82.6 64.4 26.5 25.5 60.7 244 467
< + SPEC-RL (= ¢%8 90 144.8 2.64% 375 83.5 63.6 272 25.0 61.7 262 464

24

Under review as a conference paper at ICLR 2026

Table 21: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = eY. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [010)))
Algorithm Step MATH Minerva Ol . AVG
¢ ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 203 388
<+ SPEC-RL / = ¢!? 10 41.5 1.46x 25.0 75.7 55.0 17.3 23.3 442 185 37.0
GRPO 20 1274 1.00x 275 78.2 57.8 254 24.7 45.5 20.3 399
<+ SPEC-RL / = !0 20 52.6 1.99x 25.0 79.0 60.0 25.0 22.4 46.7 23.1 402
GRPO 30 187.7 1.00x 37.5 80.1 60.4 22.4 25.0 479 209 420
 + SPEC-RL / = ¢ 30 64.8 2.23% 425 80.8 64.4 25.4 27.4 49.9 30.1 458
GRPO 40 248.3 1.00x 325 79.9 65.0 23.5 24.7 50.7 213 425
>+ SPEC-RL { = ¢!* 40 73.2 2.46% 325 81.3 65.0 24.6 27.7 52.1 272 443
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
> + SPEC-RL (= ¢!0 50 86.6 2.55x% 30.0 832 62.0 25.0 25.9 534 287 440
GRPO 60 370.4 1.00x 35.0 81.3 63.6 28.3 26.7 56.0 240 450
— + SPEC-RL (= ¢!0 60 97.8 2.64% 325 84.1 62.0 28.3 27.1 529 28.1 450
GRPO 70 431.9 1.00x 425 823 61.8 26.5 28.1 55.5 262 46.1
<+ SPEC-RL / = !0 70 107.7 2.72x 35.0 83.0 62.8 25.4 27.0 52.1 279 447
GRPO 80 493.5 1.00x 25.0 82.0 64.4 243 26.4 59.4 250 438
<+ SPEC-RL / = !0 80 116.6 2.81x 30.0 823 63.4 26.1 27.0 54.0 29.0 445
GRPO 90 554.8 1.00x 425 82.6 64.4 26.5 25.5 60.7 244 467
— + SPEC-RL / = ¢! 90 123.0 2.91x 37.5 83.9 62.4 25.7 249 54.8 283 454

Table 22: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = ¢2°. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step MATH Minerva Ol . AVG
ympiad MMLU
Tokens (M) Speedup AMC23 GSMSK 500 Math Bench STEM IFEval
Base Model 0 - - 225 59.1 45.0 12.5 16.7 39.3 179 304
GRPO 10 65.8 1.00x 37.5 74.0 54.0 18.8 22.8 439 203 388
< +SPEC-RL(=¢* 10 404 1.50% 375 75.3 55.4 21.7 21.8 44.0 196 393
GRPO 20 127.4 1.00x 27.5 78.2 57.8 25.4 24.7 455 203 399
> + SPEC-RL (= ¢ 20 439 2.24x% 25.0 78.9 60.4 28.3 237 443 250 40.8
GRPO 30 187.7 1.00x 37.5 80.1 60.4 22.4 25.0 479 209 420
— + SPEC-RL (= ¢ 30 51.2 2.59% 30.0 81.1 61.0 26.1 25.6 49.8 292 433
GRPO 40 248.3 1.00x 325 79.9 65.0 235 24.7 50.7 213 425
<+ SPEC-RL / = ¢2° 40 54.5 2.93x 25.0 80.7 64.0 28.7 26.4 52.5 314 441
GRPO 50 309.1 1.00x 35.0 81.2 64.2 25.7 24.6 53.7 25.1 442
<+ SPEC-RL / = ¢2° 50 60.1 3.14x 37.5 82.1 61.6 25.7 24.1 524 292 447
GRPO 60 370.4 1.00x 35.0 81.3 63.6 283 26.7 56.0 240 450
— + SPEC-RL / = 20 60 67.2 3.24x 325 83.5 57.8 25.0 243 54.6 314 442
GRPO 70 431.9 1.00x 425 823 61.8 26.5 28.1 55.5 262 46.1
< + SPEC-RL (= ¢ 70 76.8 3.28x 225 824 57.4 21.7 23.7 52.5 28.7 413
GRPO 80 493.5 1.00x 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
< + SPEC-RL (= ¢ 80 90.5 3.24x% 215 81.3 57.4 19.5 234 54.8 303 420
GRPO 90 554.8 1.00x 425 82.6 64.4 26.5 25.5 60.7 244 46.7
< + SPEC-RL (= ¢ 90 1144 3.05% 30.0 80.4 55.0 21.0 21.9 53.5 290 415

Table 23: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and
SPEC-RL at lenience ¢ = oco. We report rollout efficiency and accuracy every 10 training steps,
illustrating the progression of model performance during training.

Rollout Efficiency Math Reasoning [0]0))]
Algorithm Step " . AVG
Tokens (M) Speedup AMC23 GSMSK MS‘?)T)H Minerva Olgg]'c’;f“' Nap TFEval
Base Model 0 } - 25 591 450 125 167 393 179 304
GRPO 10 658 1.00x 375 740 540 183 23 439 203 388
5 +SPEC-RL{=o00 10 400 1.75x 175 717 538 169 216 425 200 349
GRPO 20 1274 1.00x 275 782 578 254 247 455 203 399
5 +SPEC-RL{=o00 20 400 3.39x 350 780 564 210 27 444 214 398
GRPO 30 1877 1.00x 375 801 604 224 250 479 209 420
<y +SPEC-RL{=o00 30 400 5.03x 350 769 532 217 213 430 214 389
GRPO 40 2483 1.00x 325 799 650 235 247 507 213 425
<y +SPEC-RL{=o00 40 400 6.65% 325 767 570 17.3 24 HB3 226 388
GRPO 50 3000 1.00x 350 812 642 257 26 537 251 442
<y +SPEC-RL{=o00 50 400 829x 375 774 570 232 25 433 227 405
GRPO 60 3704 1.00x 350 813 636 283 27 560 240 450
5 +SPEC-RL{=00 60 400 9.93x 350 771 588 235 28 426 237 405
GRPO 70 $19 1.00x 25 823 618 2.5 281 555 262 461
5 +SPEC-RL{=00 70 400 11.56x 350 779 586 232 24 440 209 403
GRPO 80 4935 1.00x 250 820 644 243 24 594 250 438
<y +SPEC-RL{=o00 80 400 1321x 325 790 602 239 243 4238 233 409
GRPO 90 5548 1.00x 25 826 644 2.5 255 607 244 467
<y +SPEC-RL{=o00 90 400 14.86x 325 781 604 19.9 27 441 220 401

25

Under review as a conference paper at ICLR 2026

B CASE STUDY

To provide a more intuitive understanding of how SPEC-RL operates during training, we present
several case studies comparing cached rollouts from previous epochs with newly generated rollouts
under the current policy. These examples highlight how speculative prefixes are verified and reused,
and how continuation is triggered once a rejection occurs. They also illustrate typical scenarios
where SPEC-RL improves efficiency by avoiding redundant generation, while still correcting erro-
neous reasoning steps when necessary. Representative cases are shown in Figures T3] [T4] [T3] and

/~ Prompt N
system

You are a helpful assistant.

user

Kim's birthday was 200 days ago. Today is Wednesday. On what day of the week did his birthday fall?

Please reason step by step, and put your final answer within \boxed{}.

assistant

Old Rollout from Epoch, _, N\ ()

To determine the day of the week Kim's birthday fell on, we can
follow these steps:

-

To determine the day of the week Kim's birthday fell on, we can
follow these steps:
1. Identify the current day and the number of days since Kim's . X -
birthday. 1. Identify the current day and the number of days since Kim's
- Today is Wednesday. birthday. X
- Kim's birthday was 200 days ago. = T(?day 1S Wednesday.
- Kim's birthday was 200 days ago.
2. Determine the day of the week 200 days ago from Wednesday.
- We need to find the remainder when 200 is divided by 7,
because there are 7 days in a week. This will tell us how many
days forward or backward from Wednesday we need to count.

- Calculate 200 + 7: v
200 = 7 = 28 remainder 4 - Calculate the remainder:

200 + 7 = 28 remainder 4
- This means that 200 days ago was 4 days before Wednesday.

2. Determine the day of the week 200 days ago from Wednesday.
- We need to find the remainder when 200 is divided by 7,

because there are 7 days in a week. This will tell us how many

days forward or backward from Wednesday we need to count.

This means that 200 days is equivalent to 28 weeks and 4
days. So, 200 days ago from Wednesday is the same as 4 days
before Wednesday.

3. Count backwards from Wednesday by 4 days.
- Wednesday - 1 day = Tuesday
- Tuesday - 1 day = Monday
- Monday - 1 day = Sunday
- Sunday - 1 day = Saturday

3. Count backward 4 days from Wednesday.

- Monday is 1 day before Wednesday.

- Sunday is 2 days before Wednesday.

- Saturday is 3 days before Wednesday.

- Friday is 4 days before Wednesday. R .
Therefore, Kim's birthday fell on a \boxed{\text{Saturday}.
Therefore, 200 days ago from Wednesday was a Friday. x V
The final answer is \boxed{Friday}.

/O J

Figure 13: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

26

Under review as a conference paper at ICLR 2026

¢/~ Prompt

~
system
You are a helpful assistant.
user
The arithmetic mean of these five expressions is 24. What is the value of x?
x+8 15 2x 13 2x +4
Please reason step by step, and put your final answer within \boxed{}.
assistant
. J
0O1d Rollout from Epoch, _, N\ ™\
To find the value of x, we start by understanding the To find the value of x, we start by understanding the
arithmetic mean of the given expressions and setting it equal arithmetic mean of the given expressions and setting it equal
to 24. The expressions are: to 24. The expressions are:
l.x+8 l.x+8
2.15 2.15
3.2x 3.2x
4.13 4.13
5.2x+4 5.2x+4
The arithmetic mean of these expressions is given by: The arithmetic mean of these expressions is given by:
(x+8)+ 15+ 2x + 13+ (2x + 4) (x+8)+ 15+2x+ 13+ (2x + 4)
=24 =24
5 5
First, we simplify and sum the expressions in the numerator: First, we simplify the numerator:
(x+8)+15+2x+ 13+ (2x +4) (x+8)+15+2x+ 13+ (2x +4)
5 =x+8+15+2x+13+2x+4
_X+8+15+2X+13+2X+4 =5x + 40
_ 5
= M So the equation becomes:
5 5x + 40
T = 24
Setting this equal to 24, we get:
= ext, we eliminate the denominator by multiplying both sides
5x +30 N liminate the denominator by multiplying both sid
5 of the equation by 5:
o . S . 5x +40 =120
Next, we eliminate the fraction by multiplying both sides of
the equation by 5: N Then, we solve for x by isolating it on one side of the
5x +30 =120 equation. First, subtract 40 from both sides:
5x =80
Then, we isolate x by subtracting 30 from both sides:
5x =90 Finally, divide both sides by 5:
x =16
Finally, we solve for x by dividing both sides by 5:
x=—=18 : : Thus, the value of x is \boxed{16}. V
So, the value of x is \boxed{18}.
/ _ J

Figure 14: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified prefix. The red box marks
incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

27

Under review as a conference paper at ICLR 2026

/~ Prompt N\
system

You are a helpful assistant.

user

Find the units digit of 9%’

Please reason step by step, and put your final answer within \boxed{}.
assistant

Old Rollout from Epoch, _, A4 ! Rollout from h N\

To find the units digit of 987, we need to observe the pattern in

To find the units digit of 937, we need to observe the pattern in
the units digit of powers of 9.

the units digit of powers of 9.

Let's start by computing the first few powers of 9 and noting
their units digits:
91 = 9 (units digit is 9)

Let's start by computing the first few powers of 9 and noting
their units digits:
9! = 9 (units digit is 9)

932 = 81 (units digit is 1) 92 = 81 (units digit is 1)
9% = 729 (units digit is 9) 93 = 729 (units digit is 9)
9* = 6561 (units digit is 1) 9* = 6561 (units digit is 1)

From the above calculations, we see that the units digits

From the above, we can see that the units digits repeat every 2
repeat every 2 powers: 9, 1,9, 1, ...

powers: 9, 1,9, 1, ...

So, the units digit of 9™ is 9 if n is odd, and 1 if n is even. So, the units digit of 9™ is 9 if n is odd, and 1 if n is even.

Now, we need to determine if 87 is odd or even. Next, we need to determine if 87 is odd or even. Since 8 is

even, any power of 8 will also be even. Therefore, 87 is an
even number.

Since 87 is an odd power of 8, it will be odd as well (because
any positive power of an even number is even).

; Since 87 is even, the units digit of 98 will be 1.
Therefore, the units digit of 98" will be the same as the units

digit of 91, which is 9. x Thus, the units digit of 98" is \boxed{1}. V

2N J

Thus, the units digit of 9% js \boxed{9}.

Figure 15: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

28

Under review as a conference paper at ICLR 2026

/~ Prompt N
system
You are a helpful assistant.
user
If =3 < x+ 5 < 8 and x is an integer, what is the sum of all the possible solutions?
Please reason step by step, and put your final answer within \boxed{}.

assistant
. J
Old Rollout from Epoch, _, N\ N\
To solve the given inequality —3 < x + 5 < 8, we need to To solve the given inequality —3 < x + 5 < 8, we need to
isolate x on one side of the inequality. We can do this by isolate x on one side of the inequality. We can do this by
subtracting 5 from all parts of the inequality: subtracting 5 from all parts of the inequality:
—-3-5<x+5-5<8-5 —-3-5<x+5-5<8-5
Simplifying each part: Simplifying each part:
-8<x<3 -8<x<3
Since x is an integer, the possible values for x are: Since x is an integer, the possible values for x are:
{-8-7,-6,-5—-4,-3,-2,-1,0,1,2,3} {-8,-7,-6,-5,—-4,-3,-2,—-1,0,1,2,3}
Next, we sum these possible values: Next, we need to find the sum of all these possible values of x.
=8+ (=7) + (=6) + (=5) + (=4) + (=3) + (=2) + (-1) We can sum them directly:
+0+1+2+3 “8+(=N+ (-6 + (-5 + (D +(-3)+ (-2 +(-D
+0+1+2+3
We can group the positive and negative terms:
(-8+3)+(-7+2)+(-6+1)+(-5+4) —10 We can simplify this by grouping the terms to make the
=-5-5-5-10 = =25 addition easier:
(-8 +3)+ (-7+2)+ (-6+ 1)+ (-5+0)
Thus, the sum of all the possible solutions is: + (=4 + (-2)) + (=3 + (-1))
\boxed{-25}. x = =54+ (=5) + (=5) + (=5) + (=6) + (—4) = =30
Thus, the sum of all the possible solutions is: V
\boxed{-30}.
. J J

Figure 16: Case study comparing rollouts from previous and current training steps. The prompt
denotes the model input. The old rollout and new rollout are generated by the respective model from
corresponding epochs. Tokens highlighted in yellow indicate the verified speculative prefix. The red
box marks incorrect reasoning steps, whereas the green box highlights correct reasoning steps.

29

	Introduction
	Preliminaries
	On-Policy Reinforcement Learning
	Speculative Decoding

	Method
	Speculative Decoding over Cached Rollouts with Lenience
	Implementing SPEC-RL in RLVR Training
	Discussion

	Experiments
	Experiment Setup
	Main Performance
	Ablation Study

	Related Work
	Conclusion
	More Details of SPEC-RL
	Hyperparameters
	Detailed Evaluation Setups
	Performance over Training Steps
	End-to-End Time Breakdown
	Generality Across Datasets
	Impact of Training Set Size on Acceleration
	Random Reuse Results
	Full Lenience Ablation Results
	Analysis of Rollout Diversity

	Case Study

