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Adaptive Pruning of Channel Spatial Dependability in
Convolutional Neural Networks

Anonymous Authors

ABSTRACT
Deep Convolutional Neural Networks (CNNs) have demonstrated
excellent performance in various multimedia application scenarios.
However, complex models often require significant computational
resources and energy costs. Therefore, CNN compression is crucial
for addressing deployment challenges of multimedia application on
resource constrained edge devices. However, existing CNN channel
pruning strategies primarily focus on the "weights" or "activations"
of the model, overlooking its "interpretability" information. In this
paper, we explore CNN pruning strategies from the perspective
of model interpretability. We model the correspondence between
channel feature maps and interpretable visual perception based
on class saliency maps, aiming to assess the contribution of each
channel to the desired output. Additionally, we utilize Discrete
Wavelet Transform (DWT) to capture the global features and struc-
ture of class saliency maps. Based on this, we propose a Channel
Spatial Dependability (CSD) metric, evaluating the importance and
contribution of channels in a bidirectional manner to guide model
quantization pruning. And we dynamically adjust the pruning rate
of each layer based on performance changes, in order to achieve
more accurate and efficient adaptive pruning. Experimental results
demonstrate that our method achieves significant results across a
range of different networks and datasets. For instance, we achieved
a 51.3% pruning on the ResNet-56 model while maintaining an
accuracy of 94.16%, outperforming feature-map or weight-based
pruning and other State-of-the-Art (SOTA).

CCS CONCEPTS
• Computing methodologies→ Computer vision; Neural net-
works.

KEYWORDS
Model Compression, Deep Neural Networks, Channel Pruning,
Class Saliency Maps

1 INTRODUCTION
Convolutional Neural Networks (CNNs) have been widely applied
in various computer vision tasks, including image classification [38,
47–49], semantic segmentation [4, 12, 20], object detection [3, 13,
15], and many more challenging tasks. However, for increasingly
complex tasks, while increasing the depth of CNNs to enhance

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

K

K

(a) (b) (c)

Figure 1: In the context of different pruning granularities,
where the input dimension is represented as 𝑁𝑙 , the output
dimension as𝑁𝑙+1, and the kernel size as𝐾2, (a)filter-wise and
(b) channel-wise both constitute structured pruning methods.
Conversely, (c) group-wise is non-structured pruning involves
grouping weights along the output dimension 𝑁𝑙+1.

their feature representation capability, the models become exces-
sively parameterized, making it challenging to deploy them on
resource-constrained embedded devices. Therefore, effectively re-
ducing the parameter count and floating-point operations of CNN
models while ensuring that their performance does not signif-
icantly degrade is crucial for the practical application of deep
learning technologies. To address this challenge, various model
compression strategies have emerged, including network prun-
ing [2, 10, 41], parameter quantization [29, 34, 35], low-rank approx-
imation [1, 27, 40], knowledge distillation [54, 58, 59] and others.

Network pruning is an effective approach for reducing the pa-
rameter count and decreasing the computational workload of CNNs,
with broad prospects for applications. Typically, based on whether
the structure of the network changes before and after pruning, net-
work pruning can be divided into two categories: structured prun-
ing [18, 23, 31, 56] and unstructured (weight) pruning [11, 28, 36],
as shown in Figure 1. Unstructured pruning usually refers to fine-
grained pruning methods with relatively high pruning accuracy.
Structured pruning typically takes channels or filters in convo-
lutional layers as the basic pruning units, preserving the model’s
structure. While the former can achieve higher pruning rates, it can-
not leverage general-purpose hardware for acceleration, whereas
the latter can be accelerated using commonly available hardware.

In this paper, we focus on structured pruning, where the core
challenge lies in reducing the number of intermediate features.
Classic methods involve evaluating the importance of channels and
pruning under certain constraints to make the model sparse. Tra-
ditional evaluation methods include norms-based [26], geometric
median-based [18], and Hessian-based [55] approaches. Although
these methods can compress the model, they may not fully capture

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the contribution of channels to the overall performance of themodel.
Norms-based methods may not provide a complete understanding
of feature and gradient information, potentially overlooking im-
portant channels or retaining some less important ones. Geometric
median-based methods may lack flexibility when dealing with com-
plex datasets or large-scale models, making it challenging to adapt
to various data distributions and model structures, resulting in
inaccurate evaluations. Hessian-based methods typically require
computing higher-order derivative information, which increases
computational costs. Additionally, Hessian methods may encounter
issues with local optima and computational stability in non-convex
optimization problems. In summary, while these evaluations pro-
vide some guidance for channel pruning.

Recent findings have demonstrated that layer-wise adaptive spar-
sity [9, 25, 50] is a superior pruning approach. However, these meth-
ods only consider existing evaluation criteria, as shown in Figure
2. Inspired by these studies, we propose layer-wise adaptive com-
pression method based on a novel filter metric standards. Our goal
is to develop an effective and efficient compression method that
identifies the most valuable channels in the network under perfor-
mance loss constraints. We integrate forward feature information
and gradient information from specific class backpropagation to ex-
tract high-level semantic information for a given task. Additionally,
we employ novel metrics, such as Channel Spatial Dependabil-
ity (CSD), constructed using other methods like Discrete Wavelet
Transform (DWT). Unlike previous approaches, we not only focus
on filter evaluation criteria but also integrate them with layer-wise
adaptive sparsity methods. We conduct tests on CIFAR-10 [24],
CIFAR-100 [24] and ImageNet [42] datasets across various archi-
tectures. Furthermore, we perform comprehensive tests through
ablation studies to examine the robustness of our method. Our ex-
perimental results demonstrate competitive performance against
current state-of-the-art (SOTA) benchmarks [23, 30, 31, 52]. We
summarize the main contributions of our paper as follows:

• In order to better understand the internal structure of CNNs,
we propose the CSD evaluation criterion. By assessing the
spatial dependability of each channel, we can determine
which channels carry crucial information for model deci-
sions, enabling effective pruning.

• We integrate the CSD with layer-wise adaptive sparsity algo-
rithms to more accurately determine the optimal number of
filters for each layer of the model. This makes the pruning
process more intelligent and efficient, preserving model per-
formance stability and accuracy while reducing the number
of model parameters.

• We validate our algorithm on datasets such as CIFAR-10,
CIFAR-100, and ImageNet, achieving state-of-the-art perfor-
mance. Through extensive experimentation, we demonstrate
the effectiveness and reliability of our proposed method
across different datasets.

2 RELATEDWORK
2.1 Structed Pruning
Structured pruning typically prunes channels or filters as the basic
units in convolutional layers, employing two main approaches: one
based on the filters themselves and the other based on feature maps.

Global Contribution

i-1 i i+1 …

Contribution of Channels

…

0

0.1

0.2

0.3

0.4

0.5

0.6

Pruning rate

i-1 i i+1 …

…

Figure 2: Adaptive layer pruning rate method. This mech-
anism automatically calculates the pruning rate for each
layer by considering the importance of the channel or filter
(according to a certain evaluation criterion, the evaluation
criterion in this article is CSD) and the overall pruning rate,
thereby reducing the need for manual intervention.

Determining their saliency is a critical step in model compression
techniques, and various approaches exist to address this challenge,
each with its own advantages and limitations. Noteworthy methods
using filter-centric approaches include [26], who suggest sorting
based on the L1 norm of convolutional kernels, considering smaller
norms as less important and eligible for pruning. Additionally, ap-
proaches such as those by [18] utilize the Geometric Median for
model pruning, replacing filters that are deemed too similar to oth-
ers. Molchanov et al. [39] estimate filter significance by prioritizing
the ranking of first-order Taylor coefficients. On the other hand,
methods relying on feature maps for judgment, such as the one
proposed by Lin et al. [31], determine filter importance based on
the rank of feature maps. Sui et al. [46] suggest using channel in-
dependence to measure the correlation between different feature
maps, thereby enabling effective filter pruning. Among structured
pruning techniques, channel pruning is particularly popular as
it operates at a finer level compared to filter pruning, making it
well-suited for deep learning frameworks, as shown in Figure 1.

2.2 Interpretation Methods
Due to the overparameterized nature of CNNs, involving millions of
parameters stacked over hundreds of layers, the prediction results
of deep models are often challenging to interpret [43]. Several
interpretability tools [22, 44] have been proposed to explain or
reveal the decision-making process of deep models. For a given
input sample, the model’s output is calculated relative to the input
feature maps using the backpropagation algorithm, computing the
gradients of the model output with respect to each pixel in the input
feature maps. These gradients indicate the influence of each pixel in
the input feature maps on the output. Transforming these gradients
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Figure 3: Overview of CSD(Channel Spatial Dependability). CSD is a method aimed at finding the optimal pruning strategy to
enhance interpretability for each convolutional layer. This approach transforms the problem into a global pruning optimization
problem, by calculating the contribution of each channel to predictions (by analyzing the class activation maps corresponding
to each channel), and utilizing discrete wavelet transformation to preserve low-frequency components as the criterion for
evaluating filter importance. Under local constraints, this method aims tomaximize the compression ratio of each convolutional
layer 𝑛𝑙 , while dynamically searching for the optimal pruning rate for that layer based on performance loss. This method
provides an adaptive filter pruning strategy based on model interpretability.

into importance or relevance maps of the input feature maps can
be achieved through post-processing or transformations such as
taking absolute values, squaring or other operations to represent
the impact of features on the output.

Visualizing these importance or relevance maps provides a basis
for interpreting the model’s decisions. These images can reveal
which input features play a crucial role in the model’s output, of-
fering some explanation for the model’s decision. By visualizing
feature map gradients or employing other methods, researchers
and practitioners can better understand how the model makes pre-
dictions or decisions based on input features. Such explanations
contribute to increasing the transparency of the model and aiding
users in gaining a deeper understanding of the model’s behavior.

2.3 Discussion
Based on extensive research, we have identified a significant ad-
vantage in measuring channel importance based on feature maps.
However, most of these methods primarily focus on feature map
information while neglecting interpretability. Therefore, we aim to

leverage the interpretability of the model to provide more compre-
hensive guidance for a more efficient pruning process. In addition,
traditional pruning methods often require extensive hyperparam-
eter tuning and complex training, leading to substantial human
resource costs. We propose an automatic method to calculate the
pruning rate for each layer, aiming to achieve more efficient accel-
eration and achieve stronger performance.

3 METHOD
3.1 Notations
Let’s assume a standard CNN model with L convolutional layers,
indexed by 𝑙 ∈ {0, . . . , 𝐿−1}. For the l-th convolutional layer, which
contains 𝑛𝑙 filters 𝐹 𝑙

𝑖
∈ R𝑛𝑙−1×𝑘𝑙×𝑘𝑙 , we can compute the number of

parameters for this layer as𝑊 𝑙 = {𝐹 𝑙1, 𝐹
𝑙
2, ..., 𝐹

𝑙
𝑛𝑙
} ∈ R𝑛𝑙×𝑛𝑙−1×𝑘𝑙×𝑘𝑙 ,

where 𝑛𝑙 , 𝑛𝑙−1, and 𝑘𝑙 represent the number of output channels,
number of input channels, and kernel size for the l-th layer. The
total number of parameters for all convolutional layers in the entire
network can be denoted as 𝑇 =

∑𝐿−1
𝑙=0 𝑊

𝑙 .
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We introduce a new symbol 𝑝𝑙 to represent the pruning rate for
the 𝑙-th layer, where 𝑝𝑙 ranges between 0 and 1. With this, we can
calculate the new number of filters for this layer as 𝑛𝑙new = ⌈𝑝𝑙 ×
𝑛𝑙 ⌉. Consequently, the parameter quantity for this layer is given
by𝑊 𝑙

new ∈ R𝑛𝑙new×𝑛𝑙−1new×𝑘𝑙×𝑘𝑙 . Similarly, after pruning, the total
parameters for the CNNs convolutional layers can be expressed as
𝑇new =

∑𝐿−1
0 𝑊 𝑙

new. Therefore, network pruning can be formulated
as the following optimization problem:

min{𝑊 𝑙
𝑖
}𝑖=1 L(𝑦, 𝑓 (𝑋,𝑊 𝑙 )), 𝑠 .𝑡 . 𝑇new ≤ 𝑇 × 𝑃𝑡 , (1)

where L(𝑦, 𝑓 (𝑋,𝑊 𝑙 )) represents the loss function, 𝑦 denotes the
ground truth labels, 𝑋 is the input data, 𝑓 (𝑋,𝑊 𝑙 ) is the CNN
model’s output function with parameters {𝑊 𝑙

𝑖
}𝑖=1, 𝑇 × 𝑃𝑡 denotes

the desired size of the pruned model’s parameters, and 𝑃𝑡 is the
targeted total pruning rate.

Over time, channel importance has been predominantly based
on feature maps. However, feature maps do not comprehensively
reflect the model’s understanding of the data and fail to capture the
dynamic changes during model training. Considering that gradients
indicate the update direction and importance of each parameter in
the model, they not only express the model’s sensitivity to each
parameter but also reflect the model’s attention to different features
during training. Therefore, we propose gradient-enhanced feature
maps 𝐶𝑙

𝑖
, which complement the limitations of feature map evalua-

tion by utilizing gradient information. This approach allows for a
comprehensive consideration of the model’s understanding of the
data and its attention to features during training. This combination
enables a more accurate assessment of each channel’s contribu-
tion to model performance, facilitating the selective retention of
channels crucial for model decision-making and further optimizing
model performance and efficiency, as shown in Figure 3.

Firstly, we conduct forward propagation through the CNNs to
obtain feature maps 𝐹 𝑙

𝑖
. Subsequently, we compute the score list

𝑠 for all classes. Assuming there are 𝐾 classes, we set the score
corresponding to the correct class index 𝑐 to 1 and the rest to 0,
yielding the score 𝑆𝑐 for the specific class 𝑐:

𝑆𝑐 = [𝑠1, 𝑠2, . . . , 𝑠𝐾 ] 𝑠 .𝑡 . 𝑠𝑘 = 𝛿𝑘𝑐 =

{
1 if 𝑘 = 𝑐

0 otherwise
, (2)

Subsequently, we utilize 𝑆𝑐 to backpropagate and obtain gradient
information, denoted as grad:

𝑔𝑟𝑎𝑑 = ∇inputs (pred ⊙ 𝑆𝑐 ), (3)

where ∇inputs represents the gradient of the model output with
respect to the inputs, and ⊙ denotes element-wise multiplication.
This allows us to track the class saliency information𝑤𝑐 of the 𝑖-th
filter in the 𝑙-th convolutional layer for a specific class 𝑐:

𝑤𝑐 =
1

𝐻×𝑊
∑𝐻
𝑖=1

∑𝑊
𝑗=1 grad(𝑖, 𝑗 ) , (4)

where 𝐻 and𝑊 represent the height and width of the feature map,
respectively, and grad(𝑖, 𝑗 ) denotes the gradient value at position
(𝑖, 𝑗) on the feature map, obtained during model backpropagation.

When attempting to interpret model decisions, it is crucial to
understand which channels play a critical role in the model’s final
predictions. We expect convolutional layers’ channels to strike the

optimal balance between feature analysis and sensitivity analysis.
Feature maps are commonly utilized for feature analysis and ex-
traction, aiding in understanding how networks gradually extract
abstract and useful features to accomplish specific tasks. Gradient
information flowing into CNNs assigns importance values to each
neuron for specific decisions. Combining these aspects allows us to
visualize the image regions on which the model’s predictions for
specific classes rely, facilitating the interpretation of the model’s
decision-making process. This enhances the model’s interpretabil-
ity and aids in verifying whether the model makes predictions based
on reasonable features.

Therefore, we propose utilizing gradient-enhanced feature maps
𝐶𝑙
𝑖
to better understand the CNNs internal structure:

𝐶𝑙
𝑖
= 𝑤𝑐 × 𝐹 𝑙𝑖 , (5)

where 𝐹 𝑙
𝑖
denotes the feature map of the 𝑖-th channel in the 𝑙-th

convolutional layer, and𝑤𝑐 represents the gradient information for
a specific class in the feature map. Multiply these gradients with
their corresponding feature maps element-wise to abtain gradient
enhanced feature maps.

3.2 CSD Criterion
If the feature information is directly fused with gradient informa-
tion, it may lead to excessive redundancy or blurring, making it
difficult to distinguish the truly beneficial parts for decision-making.
To address this issue, we propose a novel filter evaluation crite-
ria—CSD, inspired by the interpretability of the model and Discrete
Wavelet Transform (DWT), as shown in Figure 3. DWT can decom-
pose an image into frequency components at different scales, where
high-frequency components often contain noise, and extracting
the low-frequency components containing the overall trend and
basic structural information of the signal helps reduce redundant
information. Therefore, we use DWT to decompose the gradient-
enhanced feature map𝐶𝑙

𝑖
from Equations (2)-(5) into low-frequency

and high-frequency parts:

Dec
(
𝐶𝑙
𝑖

)
→

{
𝐶𝑙
𝑖
⊛ 𝐿

𝐶𝑙
𝑖
⊛ 𝐻

=

(
FLow

(
𝐶𝑙
𝑖

)
, FHigh

(
𝐶𝑙
𝑖

))
,

(6)

where Dec represents the decomposition process, 𝐿 and𝐻 represent
the low-pass and high-pass filters used for DWT, and FLow and
FHigh represent the low-frequency and high-frequency parts of the
gradient-enhanced feature map obtained through wavelet decom-
position. The high-frequency part typically contains image details,
while the low-frequency part contains the overall structure and
global information of the image. Retaining only the low-frequency
part of the gradient-enhanced feature map allows for aggregating
global information and better capturing its overall characteristics:

Rec
(
FLow

(
𝐶𝑙
𝑖

)
, 0
)
= 𝐶𝑙

𝑖

= FLow
(
𝐶𝑙
𝑖

)
⊛ �̃� + FHigh

(
𝐶𝑙
𝑖

)
⊛ 0,

(7)

where Rec represents the reconstruction process, �̃� represents the
conjugate filter of 𝐿. We choose the Coiflet wavelet for its good
compact support, helping to preserve more information of the orig-
inal signal in wavelet transform. Additionally, considering that the
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Figure 4: Schematic diagram of adaptive pruning rate for
each layer. Randomly input a certain number of samples
into the original model, calculate the CSD for each channel.
For each layer, prune the 𝑘𝑙 channel with the minimum CSD
(which needs to be initialized), and calculate the pruning rate
for each layer based on the performance loss threshold of
dynamic iteration and the global pruning rate.

high-frequency part may contain noise or redundant information,
retaining the low-frequency part helps reduce or eliminate unnec-
essary details, improving the robustness and generalization ability
of the features.

Subsequently, we quantify the CSD of the low-frequency part of
the gradient enhanced feature map by calculating its L2 norm:

CSD(𝐶𝑙
𝑖
) = ∥Rec(FLow (𝐶𝑙𝑖 ), 0)∥2, (8)

where ∥ · ∥2 denotes the L2 norm.
A higher value of CSD implies that the gradient enhanced feature

map may carry crucial information for model decision-making, and
the corresponding channel is worth retaining.

3.3 Adaptive the Pruning Rate for Each Layer
The adaptive pruning algorithm dynamically computes the pruning
rate for each convolutional layer and adjusts the pruning strategy
based on the model’s performance, thus achieving more precise
and efficient model compression, as shown in Figure 4.

Initially, we decompose the global threshold for performance
degradation into progressive descent constraints, represented by
the formula: ∏𝐿

𝑙=1 (1 + 𝑑1𝜆
𝑙−1) = 𝛼, (9)

where 𝑑1 represents the initial loss threshold for the first layer (in-
dicating the maximum acceptable performance loss for pruning the
first layer), 𝛼 is the threshold for global performance degradation,
and 𝜆 represents a constant scaling factor for each step based on

Algorithm 1 CSD Pruning Framework

Input: Pre-trained weight tensor𝑊 𝑙 , and desired total pruning
rate 𝑃𝑡 .
Output: Pruned weight tensor𝑊 𝑙

prune.
1: Initialize 𝑇new = 𝑇 , 𝑘𝑙 = 0, 𝑃𝑡 = 0.4.
2: for each input sample do
3: Calculate class scores 𝑆𝑐 by Equation (2).
4: while 𝑇new < 𝑇 × 𝑃𝑡 do
5: for 𝑖 = 1 to 𝑐𝑙 do
6: while 𝛿𝐿 < 𝑑𝑖 and 𝑘𝑙 < 𝑛𝑙 − 1 do
7: Calculate Gradient Enhanced Maps by Eqs. (3)-(5).
8: Calculate CSD by Eqs. (6)-(8).
9: Select 𝑘𝑙 filters with lowest CSD to prune.
10: Evaluate the model loss 𝐿 and 𝛿𝐿 , and increment 𝑘𝑙 .
11: end while
12: Calculate pruning rate 𝑝𝑙 .
13: Update 𝑑𝑖+1 by Eq. (10).
14: end for
15: Calculate 𝑇new.
16: end while
17: end for
18: Fine-tuning: Obtain final𝑊 𝑙

prune via fine-tuning𝑊 𝑙 with
removing the pruned filter channels.

19: return Pruned weight tensor𝑊 𝑙
prune.

the previous threshold. With this, we can compute the dropout
threshold 𝑑𝑙 for the 𝑙-th convolutional layer:

𝑑𝑙 = 𝜆 × 𝑑 (𝑙−1) , (10)

Then, for the 𝑙-th layer, the desired number of filters 𝑘𝑙 to be pruned
can be calculated as follows:

max
𝑝𝑙

{
𝑛𝑙∑︁
𝑖=1

𝐺𝐶 (𝐶𝑙𝑖 ) −min
{ 𝑘𝑙∑︁
𝑖=1

𝐺𝐶 (𝐶𝑙𝑖 )
}}
,

s.t. Δ𝐿 ≤ 𝑑𝑙 , 𝑘𝑙 ≤ 𝑛𝑙 − 1,

(11)

where 𝑛𝑙 represents the number of filters in the 𝑙-th layer, and 𝑘𝑙
denotes the number of filters with the minimum global contribu-
tion 𝐺𝐶 (𝐶𝑙

𝑖
) in the 𝑙-th layer. By sorting the global contribution

𝐺𝐶 (𝐶𝑙
𝑖
) in the 𝑙-th layer and selecting a set of filters with the mini-

mum global contribution𝐺𝐶 (𝐶𝑙
𝑖
), we find the maximum value of 𝑘𝑙

under the constraint of performance loss Δ𝐿 ≤ 𝑑𝑙 . This approach
allows us to retain filters that contribute more to performance while
controlling the extent of pruning by limiting performance loss.

In each layer, we compute the global contribution of each filter,
select and prune the filters with the lowest scores, and then evalu-
ate the model’s performance after pruning. Based on the degree of
performance degradation, we dynamically adjust the pruning strat-
egy until the specified pruning rate and performance degradation
threshold are reached.

4 EXPERIMENTS
4.1 Implementation Details
Datasets. We selected three classification datasets to evaluate the
performance of our method: 1) CIFAR-10 [24]; 2) CIFAR-100 [24];
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Table 1: Experimental results on CIFAR-10 dataset.

Model Algorithm Baseline(%) Top-1 Acc.(%) ΔTop-1 Acc.(%) FLOPs(↓) Params(↓)

ResNet-32

LCCL [6] 92.33 90.74 -1.59 ↓ 31.2% N/A
SFP [17] 92.63 92.08 -0.55 ↓ 41.5% N/A
TAS [7] 93.89 93.16 -0.73 ↓ 49.4% N/A
FPGM [26] 92.63 92.31 +0.32 ↓ 41.5% N/A
DCPH [5] 93.34 92.85 -0.49 ↑ 30% N/A
Ours 92.40 93.18 +0.78 ↑ 53.1% 44.3%

ResNet-56

FTWT [8] 93.66 92.63 -1.03 ↓ 60% N/A
SFP [17] 93.59 93.35 -0.24 ↓ 50% N/A
CFDP [23] 93.26 93.97 +0.71 ↑ 28% 22.3%
LRMF [57] 93.59 93.29 -0.3 ↓ 52.6% N/A
FPGM [26] 93.59 92.93 -0.66 ↓ 52.6% N/A
HRank [31] 93.26 93.85 +0.59 ↑ 28% 22.3%
DCP [16] 93.80 93.49 -0.31 ↓ 50% 49%
Ours 93.26 94.16 +0.90 ↑ 51.3% 44.3%

ResNet-110

HRank [31] 93.50 94.23 +0.73 ↑ 41.2% 39.4%
GAL [33] 93.50 92.55 -0.95 ↓ 48.5% 44.8%
EPruner [30] 93.50 94.23 +0.73 ↑ 41.2% 39.4%
APIB [14] 93.26 93.92 +0.66 ↑ 54% 50%
FalCon [52] 93.68 93.79 +0.11 ↑ 60.3% N/A
FTWT [8] 93.26 92.63 -0.63 ↓ 66% N/A
Ours 93.26 94.43 +1.17 ↑ 51.9% 46.1%

VGG-16

HRank [31] 93.96 93.43 -0.53 ↓ 53.5% 82.9%
GAL [33] 93.96 93.42 -0.54 ↓ 45.2% 82.2%
FPGM [18] 93.58 93.23 -0.35 ↓ 35.9% N/A
FalCon [52] 93.32 91.92 -1.40 ↓ 67.3% N/A
SSS [21] 93.96 93.02 -0.94 ↓ 41.6% 73.8%
Ours 93.96 93.69 -0.27 ↓ 45.4% 47.6%

3) ImageNet [42]. CIFAR-10 comprises 10 categories such as air-
planes, birds, and cats. It consists of 50,000 training images (32×32
pixels) and 10,000 testing images (32×32 pixels). CIFAR-100 is an
extension of the CIFAR-10 dataset, featuring 100 classes instead
of 10. ImageNet, on the other hand, encompasses over 14 million
images, spanning diverse categories from animals and plants to
everyday objects, with a total of 20,000 classes. The training images
in ImageNet have a resolution of 224×224 pixels.

Evaluation Metrics. To assess the model’s performance accu-
rately, we adopted three commonly usedmetrics based on the SOTA:
Top-1%, FLOPs and Params. Top-1% reflects the model’s recognition
ability for the most probable class on a specific dataset. Params
and FLOPs evaluate the model’s size and computational require-
ments, respectively. For the ImageNet dataset, due to its difficulty,
we included the commonly used Top-5% accuracy as an evalua-
tion metric to comprehensively measure the model’s classification
performance.

Configuration. Our method is implemented with Pytorch. Dur-
ing the training process, a uniform preprocessing of the datasets
was applied. For the CIFAR dataset, standard data augmentation
techniques such as random scaling, cropping, and rotation were
employed. This ensured that the size of the images used for training
was uniformly set to 32×32×3. Specifically, the ResNet-32, -56, and
-110 are trained for 300 epochs of fine-tuning with a batch size of
218. The momentum is 0.9, the weight decay is 0.005, and the initial

learning rate is 0.01. To determine the importance of each filter, 5
batches (640 input images) were randomly sampled to calculate the
CSD of each gradient-enhanced feature map in all experiments. For
ImageNet and ResNet-50 is trained for 100 epochs with batch size of
256, weight decay of 1e-4, and momentum of 0.9. After pruning, the
pruned model was fine-tuned using Stochastic Gradient Descent
(SGD) as the optimizer on 8 NVIDIA A100-SXM GPUs.

4.2 CIFAR-10 Results
In Table 1, we evaluated our method on the CIFAR-10 dataset in
both single branch networks (VGGNet) and multi branch networks
(ResNet), and compared it with existing pruning methods.

For the ResNet-32 model, our method showed significant ad-
vantages compared to other pruning algorithms[5–7, 17, 26]. Our
method achieved a 0.78% improvement in Top-1 accuracy, and re-
duced FLOPs and parameter count by 53.1% and 44.3%, respectively.

For the ResNet-56 model, our CSD prunig approach achieves an
accuracy improvement of 0.90% compared to the baseline model.
Simultaneously, the number of parameters and FLOPs is reduced
by 44.3% and 51.3%, respectively, highlighting the excellent com-
pression performance of this method. Additionally, we compare
the experimental results with other methods such as HRank [31],
LRMF [57], FTWT [8], and CFDP [23], our approach not only main-
tains model performance but also further improves predictive accu-
racy, as shown in Table 1.
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Table 2: Experimental results on CIFAR-100 dataset.

Model Algorithm Top-1(%) Δ(%) FLOPs(↓)

ResNet-32

SFP [17] 68.37 -0.24 50%
TAS [7] 72.41 -0.18 38.5%
LCCL [6] 67.39 -0.24 50%
FPGM [26] 68.52 -0.66 52.6%
DCPH [5] 69.51 -0.31 50%
Ours 71.28 +0.13 50%

ResNet-56

SFP [17] 68.79 +2.61 52.6%
FPGM [26] 69.66 +1.75 52.6%
DCPH [5] 71.31 -0.41 30%
Ours 71.72 +2.03 51.5%

ResNet-110

SFP [17] 71.28 +2.86 52.3%
FPGM [26] 72.55 +1.59 52.3%
DCPH [5] 72.79 -0.26 30%
Ours 72.97 +1.71 51.9%

For the ResNet-110 model, our algorithm demonstrates superior
performance in accuracy compared to other methods, achieving a
remarkable 94.43%, significantly outperforming algorithms such
as HRank [31], GAL [33], EPruner [30], and APIB [14], as shown
in Table 1. This implies that our method excels in preserving pre-
dictive performance on the pruned model. Relative to the baseline
model, our algorithm reduces the parameter count by 46.1% and
FLOPs by 51.9%. This highlights the outstanding effectiveness of
our method in model compression, resulting in a more lightweight
pruned model suitable for resource-constrained environments.

Finally, we validated the performance of our proposed method
using VGG-16, as shown in Table 1. Not surprisingly, our method
demonstrated superior performance in deep compression. Com-
pared toHRank [31], GAL [33], FPMG [18], FalCon [52], and SSS [21],
our method exhibited significant advantages in terms of Top-1 ac-
curacy. Specifically, our approach achieved up to a 45.4% reduction
in FLOPs (from 93.96% to 93.69%) with only a 0.27% accuracy loss.
Additionally, despite achieving a similar reduction in FLOPs, our
method incurred less Top-1 accuracy loss compared to FPGM (-
0.27% vs. -0.35%). These results underscore the effectiveness of our
proposed method.

Overall, our method has better generalization ability and model
compression performance on the CIFAR-10 dataset.

4.3 CIFAR-100 Results
For the ResNet-32 model, our method achieved significant perfor-
mance improvement. After pruning, our model achieved a Top-1
accuracy of 71.28%, an increase of 0.13% compared to the base-
line, as shown in Table 2. This result outperforms other pruning
methods (such as SFP and FPGM) and maintains a high pruning
rate (50%). This indicates that our method effectively reduces the
computational burden of the model while maintaining performance.

For the ResNet-56 model, our method also yielded satisfactory re-
sults. After pruning, our model achieved a top-1 accuracy of 71.72%,
an improvement of 2.03% compared to the baseline. Compared to
other methods, our method demonstrates a more significant im-
provement in accuracy while still achieving a high pruning rate

(51.5%). This suggests that our method has a performance advan-
tage, even on larger models.

In the case of the ResNet-110 model, our method also delivered
notably significant results. Our model achieved a top-1 accuracy of
72.97%, an increase of 1.71% compared to the baseline. Compared
to other pruning methods, our approach shows competitiveness
in accuracy improvement while maintaining a high pruning rate
(51.9%). This further demonstrates the effectiveness of our method
across models of various sizes.

Overall, our method consistently demonstrates superior per-
formance in improving model accuracy while maintaining high
pruning rates across ResNet models of different depths. These re-
sults underscore the effectiveness and versatility of our proposed
pruning approach.

4.4 ImageNet Results
We tested ResNet-50 on ImageNet. Our algorithm achieves a mini-
mal decrease of 0.04% in Top-1 accuracy, indicating performance
close to the original model. The slight reduction in Top-5 accuracy,
by only 0.08%, signifies a notable success in preserving the primary
predictive performance, as shown in Table 3. In comparison to
other algorithms such as ABCPruner [32], CPS [53], FalCon [52],
APIB [14], and AutoPruner [37], our method demonstrates a well-
balanced performance in maintaining accuracy and compressing
the model. This highlights superior overall effectiveness.

4.5 Ablation
In this section, we delve into the motivations behind the CSD prun-
ing design choices. Specifically, we examine how each component of
our framework influences the overall performance of our approach.
For consistency, we conduct all ablation studies on the CIFAR-10
dataset using ResNet-56.

4.5.1 Gradient Enhanced Feature Map. We investigate the impact
of the Gradient Enhanced Feature Map (G-E Feature Map) on the
CSD pruning method. The G-E Feature Map is crucial for under-
standing channel importance. We compared the different perfor-
mances of channel importance guided pruning using G-E feature
map ensemble and feature map set calculation, as shown in Ta-
ble 4. In the presence of DWT, enabling G-E feature map further
enhances the model performance, resulting in a Top-1 accuracy
of 94.18%. Compared to using DWT alone without enabling G-E
feature map, the accuracy improves by 0.76% (93.72% -> 94.18%). En-
abling G-E feature map also brings additional reductions in FLOPs
and parameters, by 40% and 45%, respectively, as shown in Table
4. This indicates that G-E feature map play a positive role in fur-
ther compressing the model’s computational burden and parameter
count.

4.5.2 Enhancement of Low-Level Features. We assess the signifi-
cance of the DWT step in the CSD pruning method. We compare
the pruning performance with and without the DWT step. When
DWT is applied, the CSD pruning method shows a significant im-
provement in Top-1 accuracy, reaching 94.18%, an increase of 0.16%
(94.02% -> 94.18%) points compared to the scenario without DWT.
Simultaneously, under the usage of DWT, there is a 40% reduction
in FLOPs and a 45% reduction in parameters, as shown in Table 4.
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Table 3: Experimental results of ResNet-50 on ImageNet dataset.

Algorithm Top-1 Acc.(%) ΔTop-1 Acc.(%) Top-5 Acc.(%) ΔTop-5 Acc.(%) FLOPs(↓) Params(↓)
HRank [31] 76.15→74.98 -1.17 ↓ 92.87→92.33 -0.54 ↓ 43.7% 36.6%
GAL [33] 76.15→71.95 -4.20 ↓ 92.96→90.79 -2.17 ↓ 43.7% 36.6%
ABCPruner [32] 76.01→73.86 -2.15 ↓ 92.96→91.69 -1.27 ↓ 54.3% N/A
DCP [60] 76.01→74.95 -1.06 ↓ 92.93.15→92.32 -0.61 ↓ 55.76% N/A
CPS [53] 76.15→75.59 -0.56 ↓ N/A N/A 44.3% N/A
MFP 30% [19] 76.15→75.67 -0.48 ↓ 92.87→92.81 -0.06 ↓ 42.2% N/A
FalCon [52] 75.83→74.59 -1.24 ↓ 92.78→92.51 -0.27 ↓ 53.5% N/A
APIB [14] 76.15→76.07 -1.24 ↓ N/A N/A 56% 50%
SASL [45] 76.15→75.15 -1.00 ↓ 92.87→92.58 -0.40 ↓ 56.1% 50%
TRP [51] 75.90→72.69 -3.21 ↓ 92.70→91.41 -1.29 ↓ 56.52% N/A
AutoPruner [37] 76.15→74.76 -1.39 ↓ 92.87→92.15 -0.72 ↓ 51.2% N/A
Ours 76.15→76.11 -0.04 ↓ 92.87→92.79 -0.08 ↓ 53.7% 40.8%

Table 4: Ablation results on CSD pruning.

DWT Maps Top-1(%) FLOPs(↓) Params(↓)
✓ G-E Feature Map 94.18 40% 45%
- G-E Feature Mas 94.02 40% 45%
✓ Feature Map 93.72 40% 45%
- Feature Map 93.64 40% 45%

Table 5: Impact of adaptive pruning rate designs.

Adptive Pruning rate Top-1(%) FLOPs(↓) Paramrs(↓)
✓ 35(%) 94.21 35% 34%
- 35(%) 93.24 35% 34%
✓ 40(%) 94.17 41% 40%
- 40(%) 93.38 40% 39%
✓ 50(%) 94.16 51% 48%
- 50(%) 93.33 50% 47%

This indicates that DWT, while enhancing model accuracy, effec-
tively reduces the computational burden and parameter count of
the model.

4.5.3 Adaptive Pruning Rate. We explore different designs for adap-
tive pruning rates in the CSD pruning method. The choice of prun-
ing rate calculation method significantly influences the overall
pruning performance, comparing performance with and without
adaptive pruning rate designs. When adaptive pruning rate designs
were enabled, we observed variations in model performance un-
der different pruning rates 𝑝𝑡 . Taking a 35% pruning rate as an
example, the Top-1 accuracy reached 94.21%. Compared to the sce-
nario without adaptive pruning rate designs, FLOPs were reduced
by 35%, and parameters decreased by 34%. We further validated
performance at 40% and 50% pruning rates, as shown in Table 5.
In both cases, the model achieved higher accuracy while achieving
more significant reductions in FLOPs and parameters. This indi-
cates that adaptive pruning rate designs contribute to optimizing
model performance under different pruning rates, leading to more
effective model compression.

In addition, we observed that when different batches of images
are used as input, but similar or identical total pruning rates are set,

Figure 5: Effect of adaptive pruning rate designs on CSD. We
compare the adaptive trend of pruning rates for each layer
when different and relatively close total pruning rates (0.35,
0.38, 0.4) are set.

the adaptive mechanism calculates approximately equal pruning
rates for each layer, as shown in Figure 5. This indicates that the
model maintains a consistent pruning trend for each layer under
various input conditions. This aligns with our initial hypothesis,
where shallow layers exhibit high spatial dependencies, resulting
in smaller pruning rates, while deep layers with lower spatial de-
pendencies have larger pruning rates.

These ablation studies provide insights into the importance of
each component in the CSD pruning framework, guiding future
applications and improvements.

CONCLUSION
In this paper, we introduced CSD pruning, a novel pruning strategy
that adaptively calculates pruning rates for each layer, making the
pruning process more intelligent. Our algorithm achieves high ac-
curacy on CIFAR-10, CIFAR-100 and ImageNet while significantly
reducing the model’s size and computational complexity, showcas-
ing the exceptional performance of our approach. Furthermore, we
conducted several ablation studies demonstrating the robustness of
each proposed component to the initialization of the model. Overall,
we have demonstrated the true advantages of our framework and
evaluation criteria against benchmark standards. In future work, we
aim to delve deeper into theoretical analyses on how interpretability
can be combined with channel prunability.
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