MIHC: Multi-View Interpretable Hypergraph Neural
Networks with Information Bottleneck for Chip
Congestion Prediction

Zeyue Zhang® Heng Ping®® Peiyu Zhang® Nikos Kanakaris®
Xiaoling Lu* Paul Bogdan®"  Xiongye Xiao‘
4Center for Applied Statistics, School of Statistics, Innovation Platform, Renmin University of China;
®Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California;
°Amazon Web Services, Seattle; and “Min H. Kao Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville

Abstract

With the advancement of artificial intelligence (AI) and increasing integrated circuit
(IC) design complexity, efficient chip design through electronic design automation
(EDA) has become critical. Fast and accurate congestion prediction in chip layout
and routing can significantly enhance automated design performance. Existing
congestion modeling methods are limited by (i) ineffective processing and fusion
of multi-view circuit data information, and (ii) insufficient reliability and inter-
pretability in the prediction process. To address these challenges, we propose the
Multi-view Interpretable Hypergraph for Chip (MIHC), a trustworthy multi-view
hypergraph neural network framework that (i) processes both graph and image infor-
mation in unified hypergraph representations, capturing topological and geometric
circuit data; (ii) implements a novel subgraph Information Bottleneck mechanism,
identifying critical congestion-correlated regions to guide predictions. This work
is the first attempt to incorporate such interpretability into congestion prediction
through informative graph reasoning. Experiments show that the MIHC method
reduces NMAE by 16.67% and 8.57% in cell-based and grid-based predictions on
ISPD2015, and 5.26% and 2.44% on CircuitNet-N28, respectively, compared to
state-of-the-art methods. Rigorous cross-design generalization experiments further
validate our method’s capability to handle entirely unseen circuit designs.

1 Introduction

Advances in artificial intelligence (Al) and cyber-physical systems (CPS) [23] require a continuous
and increasing demand for computational power supported by integrated circuits (ICs). This necessi-
tates rapid, accurate IC design through electronic design automation (EDA)[12]]. Efficient quality
assessment of generated circuits is crucial to the design process [9]], with circuit congestion prediction
being particularly vital as it directly impacts reliability, performance, and manufacturability.

Circuit congestion occurs when routing resources are exceeded by wires attempting to traverse
the same physical region [4]]. This issue arises when cells (i.e., electronic components) that are
logically connected by nets (i.e., connecting wires) are physically placed far apart or when many
nets must share limited routing space. These situations commonly result from the mismatch between
circuit connectivity requirements and physical layout constraints [10]. Therefore, accurate congestion
prediction requires comprehensive analysis of both the logical relationships between cells and nets
and their geometric distribution in the physical layout [4} 20} 27].
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Given this dual nature of congestion formation, circuit congestion prediction primarily involves
two types of data: netlist and layout. Netlist captures logical connections between cells and nets,
representing topological information naturally modeled as graphs. Layout data divides the placement
area into grids containing circuit features like cell and net density, encoding geometric information
in an image-like format. Effective congestion prediction requires processing and fusion of both
complementary information types, as congestion patterns are determined by both connection topology
and component geometric distribution.

Traditional congestion prediction approaches use rule-based systems [[18]] and statistical models [16]],
but struggle with modern circuit complexity [15]. Deep learning (DL) methods have emerged with
superior performance, divided into single-view and multi-view approaches. Single-view methods
include DE-HNN [[14], which transforms circuit connections into hypergraphs using HGNNs [7] to
capture topological information, and GAN-based approaches [26] that process grid-based features
as images. However, these single-view approaches inevitably miss valuable information from the
complementary perspective.

In an attempt to process both views simultaneously, CircuitGNN [24]] incorporates layout information
into netlist-based hypergraphs by adding position-aware edges, while Lay-Net[28]] introduces special-
ized HGNN modules into Swin-Transformer-based layout processing. However, these methods tend
to favor one view while incorporating the other as supplementary information, leading to insufficient
fusion of topological and geometric information. Moreover, existing deep learning approaches operate
as black boxes, lacking interpretability and trustworthiness crucial for circuit design validation[9} [12].

To address these limitations, we propose the Multi-view Interpretable Hypergraph for Chip (MIHC)
framework, a trustworthy multi-view hypergraph neural network-based model featuring symmetrical
architecture that fuses netlist and layout data through net-based bridging. Specifically, we construct
cell-based and grid-based hypergraphs from respective data sources, with hyperedges in both hy-
pergraphs built through nets, enabling balanced fusion of topological and geometric information.
Furthermore, we incorporate a novel subgraph information bottleneck (IB) [17] mechanism that
identifies critical congestion-correlated regions, guiding focused prediction while revealing areas
needing optimization. This mechanism enhances accuracy through targeted information processing
while providing interpretability by revealing the critical local structures causing congestions in circuit
design. Such insights are particularly important since congestion typically emerges from interac-
tions between neighboring components rather than isolated elements, offering designers actionable
guidance for targeted optimization.

Contributions. The main contributions of this paper are summarized as follows: (1) Multi-View
Representation Learning: We propose a novel balanced multi-view HGNN that effectively fuses
netlist and layout information through net-based bridging, enabling comprehensive learning of
both topological and geometric features for congestion prediction. (2) Interpretable Bottleneck
Subgraph: We develop a subgraph IB mechanism that identifies critical regions highly related to
congestion, providing interpretability for circuit optimization while improving prediction accuracy
through focused learning. (3) Superior Prediction Performance: Comprehensive experiments on the
ISPD2015 and CircuitNet-N28 datasets, including rigorous cross-design generalization evaluations,
demonstrate that our model reduces NMAE by 16.67% and 8.57% in cell-based and grid-based
predictions on ISPD2015, and 5.26% and 2.44% on CircuitNet-N28, respectively, compared to
state-of-the-art methods. The evaluation results verify the effectiveness of our multi-view learning
strategy and interpretable bottleneck mechanism.

2 Related Work

2.1 Deep Learning for Congestion Prediction

Circuit congestion prediction involves processing two types of data: netlist data that can be naturally
modeled as graphs, and layout data that can be represented in an image format. Based on how these
data types are processed, existing DL approaches can be categorized into single-view and multi-view
methods.

Single-View Methods. These approaches focus on processing either netlist or layout data exclusively.
For netlist-based methods, CongestionNet[9] and Cross-Graph[5] model the netlists as homogeneous
graphs and employ GNNs for congestion prediction, while DE-HNN[14] leverages HGNNSs to capture



high-order relationships in circuit netlists. For layout-based methods, RouteNet[22] treats grid-based
layout data as images and utilizes CNNs to generate congestion maps; CircuitFormer[29]] regards the
grids of a layout as a point cloud and uses Point Transformer to process each grid. However, these
single-view approaches inevitably miss valuable information from the other perspective.

Multi-View Methods. Recent efforts attempt to incorporate both the netlist and layout information.
Netlist-centric approaches like the CircuitGNN][24], LHNN[20], and HybridNet[27] construct hy-
pergraphs from netlists and incorporate layout information through position-aware edges or nodes.
Layout-centric methods such as Lay-Net[28], DFM-Net[6], and PGNN[1]] primarily process grid-
based layout data using vision models like U-Net while integrating the netlist information through
specialized GNN or HGNN modules. However, these methods tend to favor one data type, often
leading to suboptimal and insufficient fusion of topological and geometric information. In contrast,
our proposed MIHC model processes both data types by constructing cell-based and grid-based
hypergraphs, achieving balanced fusion through net-based bridging.

2.2 Interpretation Methods For Graph

In chip congestion prediction, interpretability has received little attention despite being crucial for
identifying key performance-enhancing components and transforming black-box approaches into
semi-transparent ones that users find more accessible. Since chip congestion prediction naturally
involves graph-structured data with complex interactions, we examine graph domain interpretability
methods. Existing approaches are primarily post-hoc, such as GNNExplainer [25] and PGEx-
plainer [[13]], which provide node/edge-level explanations through learned masks but rely on post-hoc
strategies for supervised tasks. Recent progress includes self-interpretable methods like SIGNET
[L1], which generates inherent interpretations during graph anomaly detection. Inspired by these
approaches, our MIHC integrates Information Bottleneck [17] to achieve interpretability in chip
congestion prediction—representing, to our knowledge, the first interpretability work in this domain.

3 Preliminaries

3.1 Problem Formulation

The circuit congestion prediction task aims to estimate the potential congestion levels in a complex
circuit design based on its layout and netlist information during early design stages. Congestion can
be quantified as the ratio of overflow demand to available routing tracks in IC backend design [3]],
where overflow represents excess routing requirements beyond provided resources.

Formally, each circuit data is represented as multi-view data comprising grid-based and cell-based
information. The grid-based view models circuit layout as a structured grid P € RM*N*K where
M, N € NT are grid dimensions and K € N* is the number of features per grid cell. The cell-based
view represents the circuit at a finer granularity level based on the netlist information, where each cell
corresponds to an individual circuit component with specific features. The cell-based view represents
the circuit netlist as a hypergraph G = (V, E), where V is the set of nodes (cells) and E is the set
of hyperedges (nets connecting multiple cells). Given grid-based representation P and cell-based
hypergraph G, our goal is to simultaneously predict a grid congestion map C¢ € RM*N and a cell
congestion graph C¢ € RIVI, where C[i, j] € Rt and C°[k] € R* quantify congestion levels at
grid (4, j) and cell k, respectively. The notations used in the manuscript are presented in Appendix

The predictive model f, parameterized by 6, is defined as follows:
fo: (P.G) = (C%,C9) )
with the supervised objective to minimize the mean squared error:
V]
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3.2 Information Bottleneck

The Information Bottleneck (IB) formalism [17] addresses a fundamental challenge in representation
learning by extracting the minimal yet sufficient features from high-dimensional data. For example, it
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Figure 1: Overview of MIHC framework. (a) Process Module converts raw multi-view data (cell-
based netlist and grid-based layout) into hypergraphs H and H (details in Appendix . (b)
Interpretable Subgraph Module applies Multi-View Information Bottleneck to extract congestion-
correlated bottleneck subgraphs Hg and Hg (c) Multi-View Representation Learning Module
employs MV-HGNN to capture topological and geometric information, generating node embeddings
RS, hG and subgraph embeddings h<, hg. (d) Prediction Module uses MLPs to map embeddings to

v

congestion predictions, optimized through supervised, IB, and contrastive losses.

inspired new hierarchical perception methods for multimodal learning [21]. Given an input variable
X and target variable Y, IB seeks an intermediate representation 7' that optimally balances data
compression and target information preservation, formulated as:

Llp(tlr)] = [(T; X) = B*1(T;Y), 3

where I(T; X) and I(T';Y') denote mutual information, and 5* € R* controls the compression-
relevance trade-off. This formulation enables the identification of critical features driving model
predictions while minimizing redundancy, making IB particularly valuable for model interpretability
and subgraph analysis in networks [[11].

4 Method

In this section, we introduce the proposed MIHC framework (see Figure[T)) which consists of four
parts: (a) The Process Module converts raw multi-view data, including cell-based netlist graph and
grid-based layout image, into hypergraphs for further processing. (b) The Interpretable Subgraph
Module introduces a novel subgraph Information Bottleneck (IB) mechanism to identify critical
bottleneck subgraphs highly related to circuit congestion and guide the model to focus on these
regions during prediction. (c) The Multi-View Representation Learning Module integrates both graph
and image data into unified hypergraph representations, capturing topological and geometric features
of circuit data. (d) The Prediction Module computes the prediction in both cell and grid views.

4.1 Process Module

Given the dual nature of the data, the Process Module converts raw multi-view data, including both
cell-based netlist graph and grid-based layout image, into hypergraphs for subsequent processing.

Hypergraph Construction from Cell-based Netlist Graph. We construct a cell-based hypergraph
HY = (VY E©), where V¢ represents circuit cells and £ represents hyperedges based on net



connections. Each node v“ € V¢ is initialized with feature X derived from circuit netlist charac-
teristics. This hypergraph primarily captures topological relationships among circuit components.

Hypergraph Construction from Grid-based Layout Image. We construct a grid-based hypergraph
HY = (V& EY), where V¢ represents local layout image regions with feature representation X &
containing each region’s component density, and £ represents hyperedges connecting these regions.
The formation of grid-based hyperedges ¢ € E€ is guided by spatial proximity and net connections.
Hyperedges are established among nodes corresponding to spatially adjacent regions to preserve the
geometric information. More importantly, nodes within the same net are grouped into hyperedges to
capture high-order geometric information. Both cell-based hyperedges E€ and grid-based hyperedges
E%, though from different hypergraphs, are built on identical net connections—critical for fusing
topological and geometric information in subsequent multi-view representation learning.

4.2 Interpretable Subgraph Module

The interpretable subgraph module is designed to identify critical parts in the circuit hypergraph and
guide the model to assign more attention to these parts.

Multi-View Information Bottleneck. We develop a Multi-View Information Bottleneck (MVIB)
approach combining information from both cell-based netlist and grid-based layout data. After
extracting hypergraphs H¢ and H, IB learns bottleneck subgraphs for each view. Taking H¢ as an
example, the objective is to learn a bottleneck subgraph H g by optimizing the following objective:

max [(H% HY) — B°I(HC; HS | HY), )
HS

where 3¢ controls compression-relevance trade-off. A similar formulation applies for H g

Bottleneck Subgraph Extractor. Inspired by [L1], we adopt a single extractor design for both
hypergraph views. The extractor processes hypergraph H¢ using a Hypergraph Neural Network to
obtain node probabilities, modeled as pg(HS |HY) = [, cv.c po(v € VE|HY). The HNN outputs
probability vector p € [0, 1] ve |, enabling bottleneck subgraph extraction:

H§ = (M, X§) = (M, X ©p), )
where MC is the incidence matrix of HS, X¢ represents the node features, and ® denotes the

row-wise production. The bottleneck subgraph for the grid-based view H g can then be extracted
using the mapped probability vector in the same form as Eq. (3).

Node probabilities map between views through spatial relationships. For each node v& in H, its
probability is p*[v°] = max,c cpr(,e) P[vC], where V' (v7) denotes cell nodes associated with grid

node v©. This single-extractor design ensures bottleneck subgraph consistency across views while
reducing complexity. The extracted subgraphs H g and H g; preserve the most informative structures
for congestion prediction, guided by the information bottleneck objective in Eq. (7).

Bottleneck Subgraph Augmentation. After extracting the bottleneck subgraphs, we leverage
bottleneck subgraphs to enhance feature representations through dynamic reweighting:

HE = (M, X7 (1+o(WOXXE]))), HY =M% XY (1+o(WIXXE]))), (©6)
where W€, WE are learnable weights, o is the sigmoid function, and || represents concatenation.

This mechanism enhances features based on bottleneck structure relevance, while residual connections
ensure stable gradient flow and preserve structural information.

Multi-View Information Bottleneck Loss. The information bottleneck loss regularizes bottleneck
subgraph embeddings. The objective is reformulated as:

Lyvis = —I(HS;HS) + BDskr (po(HS | HO) || po(HS | HY)), @)

where py and p,, refer to bottleneck subgraph extractors, Dg 1, denotes symmetrized KL divergence,
and /3 controls the trade-off between terms. Derivations from Eq. (@) Eq.(7) are in Appendix [A]

4.3 Multi-View Representation Learning Module

Given the multi-view data available, we propose a Multi-View Heterogeneous Graph Neural Network
(MV-HGNN) that processes and integrates cell-based and grid-based hypergraph representations
through a two-step message passing mechanism.



Node-to-Hyperedge Message Passing. For both cell-based and grid-based hypergraphs, we first
aggregate node features within each hyperedge separately:

= > wong, wé= > W, ®)
veVC(e) veEVY (e)
where hC, h$ are intermediate hyperedge embeddings, VC(¢e), V9 (e) denote nodes in respective
hyperedges and WE, WS can transform features into a common semantic space.

The net-based hyperedge embedding is then obtained by first concatenating these intermediate
embeddings followed by a non-linear transformation:

he' = o (WX IhS)), ©)
where hYY represents the actual net-based hyperedge embedding that captures both topological and
geometric information.

Hyperedge-to-Node Message Passing. The second step updates node embeddings by aggregating
information from different sources. For cell-based nodes:

h = Y WG, b)Y = 3 wiNRY, (10)
ecEC (v) e€EN (v)
where S, hYY are intermediate embeddings from respective hyperedges, £ (v), £V (v) denote hyper-

edge sets containing node v. The final cell-based node embedding is obtained through concatenation
and non-linear transformation:

hS" = o (W RS |RY). (11)
For grid-based nodes, we similarly aggregate information from spatially adjacent nodes and use the
previously computed net-based hyperedge information: h$ = 3, () WhS , where N9 (v)
represents spatially adjacent grid nodes. The final grid-based embedding:

by = oW [07][R)]). (12)
After L message passing layers, final node embeddings serve two purposes: downstream congestion
prediction and generating subgraph embeddings for contrastive learning. The subgraph embeddings
are derived from previously identified bottleneck subgraphs:

hS = Aggregate({hS | v e VEY}), hS§ = Aggregate({hS | v € VEY). (13)

This symmetric design facilitates effective congestion prediction for both views while maintaining
the inherent characteristics of each representation.

Contrastive Loss. To enhance and align the interaction between cell-based and grid-based informa-
tion, we employ contrastive learning. The contrastive loss is defined as:

Zl exp(sim(h§ , h§)/7)
Leont = SN exp(sim(hg , hG ) /)’

where hci, hgi form positive pairs from the same input, h§ g, Tepresents negative samples, sim(a, b)
denotes cosine similarity, and 7 controls similarity distribution sharpness.

(14)

4.4 Prediction Module

Unlike previous methods that can only produce predictions in either the cell view or the grid view at
once, our method’s prediction module can output predictions in both scenarios simultaneously.

Prediction. In the prediction, we obtain both hvc , the cell-based node embedding, and hUG , the
grid-based node embedding. Therefore, we use two MLPs, f¢ and £, to map the two embeddmgs
to the node congestion prediction results for both views: 9¢ = f¢(hS), §¢ = f¢(hS), where §¢
and ¢ represent the predicted node congestion values for the cell and gnd views, respectively.

Total Loss. The overall loss combines contrastive (refer to Eq.(14)), supervised (refer to Eq.(2)), and
information bottleneck losses (refer to Eq.(7)) to optimize the model.
»Ctolal = ‘Ccont + »CIB + Esup~ (15)

Time Complexity. The overall complexity is O((|Ve| x |Ec| + |Va| x |Eg|) x D x L), where
|V | and | V| represent the number of cell and grid nodes, |E¢| and | E¢| represent their respective
hyperedges, D is the hidden dimension, and L is the number of layers.



Table 1: Placement-level results on All Datasets for both Cell- and Grid-based View. The best in bold
and the second best underlined.

Vi Model ISPD2015-B ISPD2015-F CircuitNet-N28
1ew ode NMAE] NRMS] Pearson] _Spearmani _Kendall] | NMAE] NRMS] Pearson] _Spearman] _Kendall] | NMAE] NRMS]  PearsonT _Spearman] _ KendallT

GCN 0.038 0.044 0.547 0.498 0.421 0.051 0.058 0.3 0.336 0.309 0.045 0.05T 516 0.438 0319
GAT 0.039 0.045 0.531 0.517 0.463 0.050 0.057 0.351 0.342 0.298 0.046 0.051 0.513 0.447 0.321
Cell- HGNN 0.036  0.042 0.577 0.553 0.476 0.045 0.052 0.410 0.366 0.309 0.044  0.048 0.552 0.468 0.332
based CircuitGNN 0.034 0.040 0.598 0.611 0.487 0.046 0.053 0.402 0.378 0.316 0.040 0.043 0.609 0.500 0.368
LHNN 0.033 0.038 0.629 0.627 0.502 0.043  0.049 0.448 0.384 0.364 0.039  0.043 0.617 0.509 0.366
DE-HNN 0.032 0.037 0.645 0.632 0.520 0.042 0.048 0.467 0.395 0.381 0.038 0.042 0.638 0.511 0.374
MIHC (Ours) | 0.029  0.034 0.687 0.689 0.574 0.035  0.041 0.524 0.512 0.447 0.036  0.039 0.661 0.522 0.396
GCN 0.043 0.049 0.405 0.162 0.13 0.046 0.05 0.357 0.152 0.13T 0.052 0.053 041 0.399 0.312
GAT 0.044 0.050 0.398 0.144 0.141 0.048 0.055 0.331 0.137 0.116 0.052 0.054 0411 0.405 0.323
HGNN 0.040  0.046 0.451 0.184 0.142 0.043  0.050 0.352 0.147 0.121 0.051 0.052 0.442 0.424 0.331
Grid- RouteNet 0.038 0.045 0.522 0.198 0.157 0.042 0.050 0.362 0.161 0.137 0.047 0.049 0.541 0.501 0.373
based | CircuitGNN 0.037 0.043 0.561 0.201 0.164 0.042  0.049 0.364 0.162 0.134 0.047 0.048 0.547 0.508 0.371
CircuitFormer | 0.034 0.040 0.649 0.231 0.169 0.038 0.045 0.453 0.196 0.165 0.044 0.046 0.622 0.526 0.384
LHNN 0.033 0.040 0.651 0.252 0.217 0.037 0.044 0.464 0.221 0.182 0.043 0.044 0.646 0.533 0.389
Lay-Net 0.031 0.037 0.667 0.301 0.248 0.035 0.042 0.484 0.256 0.208 0.041 0.043 0.671 0.558 0.406
MIHC (Ours) | 0.030  0.036 0.675 0.297 0.252 0.032  0.039 0.503 0.271 0.227 0.040  0.041 0.682 0.572 0.402

Table 2: Design-level results on ISPD2015-B and ISPD2015-F for both Cell- and Grid-based View.

The best in bold and the second best underlined.

ISPD2015-B ISPD2015-F
NMAE] NRMS] PearsonT Spearmanf Kendallf|[NMAE] NRMS] PearsonT Spearmanf KendallT
CircuitGNN 0.058  0.064 0.376 0.335 0.248 0.071  0.077 0.343 0.304 0.218

Direction | View | Model

Cell- |LHNN 0.054  0.060  0.398 0.355 0.265 0.067  0.073 0.368 0.321 0.235

based | DE-HNN 0.051 0.057 0.415 0.372 0.282 0.063  0.069 0.385 0.342 0.252

A—B MIHC (Ours)| 0.048  0.053 0.448 0.405 0.302 0.059  0.065 0.414 0.375 0.277
CircuitGNN 0.061  0.067 0.366 0.158 0.132 0.074  0.080  0.331 0.148 0.122

Grid- | LHNN 0.057  0.063 0.389 0.172 0.145 0.070  0.076  0.349 0.162 0.135

based | Lay-Net 0.053  0.059 0.411 0.192 0.165 0.064  0.070  0.394 0.200 0.174

MIHC (Ours)| 0.051  0.057 0.436 0.218 0.188 0.064  0.069  0.405 0.201 0.167

CircuitGNN 0.063  0.068 0.351 0.325 0.232 0.075  0.081 0.337 0.293 0.205

Cell- |LHNN 0.058  0.065 0.379 0.347 0.246 0.070  0.076  0.354 0.315 0.222

based | DE-HNN 0.053  0.058 0.405 0.365 0.269 0.065  0.071 0.378 0.336 0.238

BUA MIHC (Ours)| 0.049  0.055 0.428 0.384 0.281 0.062  0.067 0.399 0.357 0.262
CircuitGNN 0.064 0.070  0.348 0.148 0.122 0.077  0.083 0.318 0.138 0.112

Grid- | LHNN 0.060  0.066 0.369 0.162 0.135 0.073  0.079 0.337 0.152 0.125

based | Lay-Net 0.055  0.061 0.392 0.197 0.179 0.068  0.073 0.367 0.191 0.152

MIHC (Ours)| 0.054  0.059 0.415 0.202 0.175 0.067 0.072  0.388 0.182 0.168

5 Experiments

In this section, we evaluate MIHC through comprehensive experiments designed to address four key
research questions:

RQ1: How does MIHC's circuit congestion prediction accuracy compare to state-of-the-art methods?
RQ2: What is the MIHC’s interpretability performance?
RQ3: What is the impact of MIHC’s core design components on its overall performance?

RQ4: How sensitive is MIHC’s performance to parameter variations?

5.1 Experimental Setup

Datasets. For chip congestion prediction, we evaluate our method on two public datasets: ISPD2015
[2] and CircuitNet-N28 [3]]. ISPD2015 is divided into two variants: ISPD2015-Balanced (ISPD2015-
B), which excludes extremely large superblue circuits, and ISPD2015-Full (ISPD2015-F), which in-
cludes them, allowing us to assess our model’s performance on data imbalance challenges. CircuitNet-
N28 contains over 10,000 samples (compared to ISPD2015’s approximately 500), providing a more
comprehensive test of our model’s generalizability across diverse circuit designs.

To rigorously evaluate generalization capability, we employ two data partitioning strategies: (1)
Placement-level split, where different placement solutions from the same design appear in both
training and test sets, and (2) Design-level split, where training and test sets contain completely
different circuit designs with no overlap. The placement-level split follows our standard 7:3 train-test
ratio, while the design-level split involves bidirectional evaluation (A—B and B—A) on carefully
partitioned design groups. Detailed partitioning strategies are presented in Appendix [C.5]

For explainable GAD task, we use MNISTO and MNIST1 datasets [[L1].

Baselines. There are two aspects of prediction tasks: cell-based prediction and grid-based prediction.
To comprehensively evaluate our model, we first employ several classical graph learning models as



baselines: GCN [8]], GAT [19], and HGNN [7]. Furthermore, we compare with specialized circuit-
oriented models: CircuitGNN [24]] and LHNN [20]], which are capable of handling both cell-based
and grid-based predictions; DE-HNN [14], which focuses exclusively on cell-based prediction; and
RouteNet [22]], CircuitFormer [29]] and Lay-Net [28]], which specifically target grid-based prediction.
To illustrate the usefulness of the model interpretability module, we chose GCN + GNNExplainer [25]],
GAT + GNNExplainer and SIGNET [[11] as baselines.

Evaluation Metrics. For chip congestion prediction, similar to [24], we employ both regression-based
metrics (NMAE and NRMS) to measure prediction accuracy and ranking-based metrics (Pearson,
Spearman, and Kendall correlations) to assess prediction quality; while in interpretability module
test, since the downstream task is a classification task, ACC, Precision, Recall, F1, and AUC are used
to measure the accuracy of the classification.

Further details about datasets and our experiment settings are presented in Appendix

5.2 Chip Congestion Prediction Results (RQ1)

We present comprehensive evaluation results under both placement-level and design-level settings.
The placement-level results are shown in Table[T|and design-level results are presented in Table 2]
both with the best in bold and the second best underlined (More details in Appendix [D.T). Given that
our data encompasses both cell and grid views, we assess the validity and rationality of our model
across these dual views by comparing prediction accuracy against their respective state-of-the-art
(SOTA) counterparts.

5.2.1 Placement-level Results

As shown in Table for ISPD2015-B, MIHC outperforms the SOTA method DE-HNN with 9.37%
reduction in NMAE and 6.51% improvement in Pearson correlation at the cell level, and surpasses
Lay-Net with 3.23% reduction in NMAE and 1.20% improvement in Pearson correlation at the grid
level. On the more challenging ISPD2015-F with extremely large circuits, MIHC achieves even
more significant gains: 16.67% reduction in NMAE and 12.21% improvement in Pearson correlation
compared to DE-HNN at the cell level, and 8.57% reduction in NMAE and 3.93% improvement in
Pearson correlation over Lay-Net at the grid level. These results demonstrate MIHC’s robustness
when handling imbalanced data distributions. The CircuitNet-N28 results, based on over 10,000
diverse samples, further confirm MIHC’s generalizability with 5.26% NMAE reduction and 3.60%
Pearson improvement compared to DE-HNN at the cell level, and 2.44% NMAE reduction and
1.64% Pearson improvement over Lay-Net at the grid level. This consistent performance across a
substantially larger dataset validates our method’s universal applicability for congestion prediction in
real-world VLSI design environments.

5.2.2 Design-level Results

To rigorously evaluate generalization to entirely unseen circuit designs, we conduct additional
experiments following the design-level split setting (detailed setup in Appendix [C.5)), where training
and test sets contain completely different circuit designs with no overlap. As shown in Table [2| this
setting presents significantly more challenging conditions with substantial performance degradation
across all methods. Despite these challenges, MIHC maintains superior performance over baselines
in the vast majority of metrics. For ISPD2015-B, MIHC outperforms DE-HNN with 7.55% reduction
in cell-based NMAE and 5.68% improvement in Pearson correlation in the B—A experiments, while
achieving 5.87% Pearson improvement in grid-based prediction over Lay-Net. For ISPD2015-F,
MIHC achieves 6.35% cell-based NMAE reduction and 7.53% Pearson improvement in the A—B
direction. These results provide strong evidence that our method achieves genuine generalization
capability rather than simply memorizing design-specific characteristics, offering a realistic evaluation
for real-world deployment scenarios.

5.3 Explainability Results (RQ2)

To validate the effectiveness of our model’s explainability module, we examine its capability to
identify important structures in chip congestion prediction scenarios. As demonstrated in Figure 2}
our bottleneck subgraph successfully captures critical congestion regions, and MIHC achieves
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Figure 2: Visualization of heat maps on ISPD2015/mgc_superblue16_a design showing Lay-Net, our
bottleneck subgraph, MIHC (Ours), and ground truth congestion maps.

Table 3: Ablation Study of Model Modules on ISPD2015-B. The best in bold.

Model Variants Cell-based Results Grid-based Results

NMAE] NRMS] PearsonT SpearmanT KendallT NMAE] NRMS| Pearson SpearmanT Kendall
HGNN 0.036 0.042 0.577 0.553 0.476 0.040 0.046 0.451 0.184 0.142
w/o MV-HGNN | 0.036 (0.0%)  0.041 (+2.4%)  0.580 (+0.5%)  0.571 (+3.3%) 0477 (+0.2%) | 0.039 (+2.5%) 0.044 (+4.3%) 0482 (+6.9%) 0.187 (+1.6%)  0.144 (+1.4%)
w/o ISM 0.031 (+13.9%) 0.036 (+14.3%) 0.654 (+13.3%) 0.643 (+16.3%) 0.536 (+12.6%) | 0.033 (+17.5%) 0.039 (+15.2%) 0.652 (+44.6%) 0.263 (+42.9%) 0.231 (+62.7%)
Full Model 0.029 (+19.4%) 0.034 (+19.0%) 0.687 (+19.1%) 0.689 (+24.6%) 0.574 (+20.6%) | 0.030 (+25.0%) 0.036 (+21.7%) 0.675 (+49.7%) 0.297 (+61.4%) 0.252 (+77.5%)

Table 4: Ablation Study of Different Loss Functions on ISPD2015-B.

Loss C Cell-based Results Grid-based Results
Cell Grid IB_Cont| __NMAEL NRMS] Pearson] Spearman] Kendall] NMAE] NRMS] Pearson] Spearman] Kendall]
0.033 0.038 0.639 0622 0511 0.037 0042 0612 0222 0.205
0.035 (-6.06%)  0.040 (-5.26%)  0.59 (-6.73%)  0.605 (:2.73%) 0484 (-53.28%) | 0.034 (+8.11%) 0.040 (+4.76%) 0.650 (+6.21%) 0254 (+14.41%) 0241 (+17.56%)

0.031 (+6.06%)  0.036 (+5.26%) 0.659 (+3.13%)  0.658 (+5.79%)  0.550 (+7.63%) | 0.033 (+10.81%) 0.039 (+7.14%)  0.661 (+8.01%) 0.264 (+18. 0.243 (+18.54%)
0.030 (+9.09%)  0.036 (+5.26%) 0.662 (+3.60%)  0.660 (+6.11%)  0.554 (+8.41%) | 0.033 (+10.81%) 0.038 (+9.52%)  0.666 (+8.82%) 0.269 (+21.17%) 0.246 (+20.00%)
0.029 (+12.12%)  0.035 (+7.89%)  0.672 (+5.16%)  0.665 (+6.91%)  0.559 (+9.39%) | 0.031 (+16.22%) 0.038 (+9.52%)  0.671 (+9.64%) 0.284 (+27.93%) 0.249 (+21.46%)

0.029 (+12.12%) 0.034 (+10.53%) 0.687 (+7.51%) 0.689 (+10.77%) 0.574 (+12.33%) | 0.030 (+18.92%) 0.036 (+14.29%) 0.675 (+10.29%) 0.297 (+33.78%) 0.252 (+22.93%)
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predictions that closely match the ground truth patterns, underscoring its superior interpretability.
Additionally, the bottleneck subgraph heat map indicates that our IB bottleneck subgraph can be
extracted to reveal regions relevant to the final prediction results. While node-level predictions
identify congestion points, our Information Bottleneck identifies the critical local structures that cause
these anomalies, revealing the structural patterns that contribute to surrounding node congestion
rather than just detecting generic anomalies. This is particularly important in circuit design where
congestion typically emerges from interactions between neighboring components rather than isolated
elements. Due to the lack of publicly available datasets for interpretability in the EDA domain, we
also briefly evaluated our model on the MNIST 0/1 dataset, where it demonstrated strong consistency
across various metrics in Table[I6] In comparison, baseline methods showed significant limitations:
GAT+GNNExplainer suffered from low precision while SIGNET failed to capture comprehensive
node relationships. These results, combined with the visual evidence from chip congestion heatmaps,
confirm that MIHC not only delivers superior prediction accuracy but also provides meaningful
explainability for practical VLSI design applications.

5.4 Ablation Study(RQ3)

In ablation studies, we conducted two sets of experiments on ISPD2015-B to evaluate: the contribution
of different model modules (Table E]) and the impact of different loss functions (Table EL])

The ablation results of model modules in Table [3|reveal several important findings. First, removing
the Multi-View Representation Learning Module (w/o MV-HGNN) results in performance similar
to the basic HGNN but significantly worse than the Full Model, demonstrating the crucial role of
multi-view information fusion. Second, excluding the Interpretable Subgraph Module (w/o ISM)
yields better results than basic HGNN but still underperforms compared to the Full Model, with
substantial decreases in correlation metrics (13.3% lower Pearson for cell-based results). Finally, the
Full Model achieves optimal performance across all metrics by effectively combining ISM for critical
information filtering with MV-HGNN for multi-view integration, showing impressive improvements
over the baseline HGNN (19.1% Pearson improvement for cell-based results).

The comprehensive ablation results in Table[d]systematically demonstrate the effectiveness evaluation
of different loss functions. The experimental results show that using both Cell and Grid Supervised
loss consistently achieves better performance (NMAE=0.031 for cell-based, 0.033 for grid-based)
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Figure 3: Hyperparameter sensitivity analysis: Impact of hidden dimensions (a,b) and MV-HGNN
layer number (c,d) on cell-based and grid-based performance.

compared to single-view supervision (Cell-Sup only: 0.033, 0.037; Grid-Sup only: 0.035, 0.034),
thus validating the fundamental importance of multi-view information fusion by using multi-view
loss. Furthermore, through detailed comparative analysis, the removal of IB loss (w/o IB Loss)
leads to substantial performance degradation (Pearson correlation decreases by 4.21% for cell-based
results), confirming its crucial role in guiding the model to extract essential subgraph components.

5.5 Parameters Sensitivity(RQ4)

We conduct a comprehensive hyperparameter analysis of MIHC on ISPD2015-B, specifically exam-
ining the impact of Multi-View HGNN layer number (ranging from 1 to 6) and hidden dimensions
(varying from 32 to 256) on model performance. As illustrated in Figure 3] MIHC demonstrates
robust stability across different hyperparameter configurations. However, notable performance degra-
dation occurs in two specific configurations: when the model is configured with a single Multi-View
HGNN layer or when the hidden dimension is set to 32. These significant performance drops can be
attributed to insufficient model capacity, as either a single layer or a small hidden dimension proves
inadequate for learning the complex hierarchical features and relationships inherent in the data.

6 Conclusion

This paper presents MIHC, a novel interpretable hypergraph neural network for circuit congestion
prediction. Through its balanced multi-view hypergraph architecture with net-based bridging, MIHC
achieves effective fusion of netlist and layout information, providing a comprehensive understanding
of circuit characteristics. The incorporation of a subgraph Information Bottleneck mechanism
further enhances the model by identifying critical subgraphs correlated with congestion patterns and
leveraging this selective information to improve prediction accuracy. Our comprehensive experiments
demonstrate MIHC’s superior performance compared to existing methods, achieving significant
improvements in both cell-based and grid-based prediction tasks. This synergistic combination of
balanced multi-view information fusion and interpretable bottleneck analysis represents a meaningful
advancement in trustworthy Electronic Design Automation, establishing a foundation for future
interpretable machine learning approaches in integrated circuit design.

Limitations. While MIHC achieves significant performance improvements, there remain areas for
enhancement. The Information Bottleneck mechanism, though effective for interpretability, introduces
computational complexity that could be optimized with more efficient algorithms. Additionally,
our comparative analysis between ISPD2015-B and ISPD2015-F indicates that performance on
imbalanced datasets, while still superior to baselines, presents opportunities for improvement—a
challenge shared across current congestion prediction approaches. Future work will address these
aspects while maintaining MIHC’s interpretability and prediction accuracy advantages.

Broader impacts. Our interpretable hypergraph model enhances EDA performance with limited
impact. There is a minimal possibility that without proper validation, over-reliance risks erroneous
decisions in chip design.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. See the Abstract and Introduction sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of the work is discussed in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For all theoretical results, the paper provides the corresponding proofs in the
appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in the paper. See the Experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide available sources in an anonymous GitHub repository to reproduce
the experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details necessary to understand the results.
See the Experiments section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have verified our experiment results under different settings, which can
be seen in our Experiment section and Appendix. According to the baselines, our work
follows the same experiment settings and we believe the experiment results in the paper can
accurately reflect the performance of our work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are conducted on one NVIDIA A100 80GB GPU and we
provide the time of execution needed to reproduce the experiments. See the Experiments
section and Appendix B.7.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts of the work are discussed in the Conclusion section.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code, models, and datasets mentioned in the text are appropriately cited
with their original papers.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper, such as code, are well documented.
The documentation is provided alongside the assets in the supplementary material and
anonymous GitHub repository.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Muti-View Information Bottleneck Loss Computation

As shown in Eq , we can wirte the objective of the cell-based hypergraphs HC to a loss function
as follows:

1
£ = —FI(HG; HS)+I(HY;HS | HY), (16)
where 3¢ is the trade-off parameter for £¢, and we aim to minimize Eq during the training.
Similarily, the objective of the grid-based hypergraphs H“ can be wirtten to a loss function as
follows:

1
EGZ—EI(HQH@*‘I(HG;H?|Hc)7 (17)
where 3¢ is the trade-off parameter for £
Then, we compute the average loss of L& and £, which helps us to optimize both g and Hg:

1 1 1 1

Lcombination = 5(_BTI(HG7H5) + I(HC;HSC | HG)) + 5(_EI(H05H§) + I(HG;Hg | HC))
1 1,1 1
= SU(H HS | HE) + I(H®; HE | HY)) - 5(671(HG;H§) + BT;I(HC;HSG))-

For term I(H®; HS | HY), we can derive his upper bound. The conditional mutual information
Ip(HC; HS | HE) is defined as:

Ig(HC;Hg \ HG) =E,c me) [DKL (pe(Hg | HC) HPO(Hg | HG))} ’ (18)
where the Kullback-Leibler (KL) divergence is given by:

p(w)] . (19)

D =E log ——=

Substituting the definition of KL divergence into the conditional mutual information:

po(HS | HY)
po(H§ | HG)]
po(HS =Hg | HC = HO)
po(HS =Hg | HC HG)]

Io(HE H | HY) = Ege 56 mpue 1) Eargp, (g 10) {log

= IEHC,HG~p(HC,HG)H‘Zstpe(HSCIHC) [log

Then, we derive the upper bound of Iy (HC; Hg \ HG):
po(HS =Hs | HY = H)
po(HS =Hs | HE =H)
po(H§ =Hs|H® =H) p,(H§ = Hg|H = HY)
py(H§ =Hs|HE =H®) py(HS =Hs|HE = H)

= Dxr (po(HS | HY) || py(HS | HY)) — Dc (po(HS | HY) || py (HS | H))

< Dkr, (Pe(Hg | HO) || py(HS | HG)) .
Similarly, we can get the upper bound for I(H%; HS | HY)):

I(HY:HS | HY)) < Dicr, (po(HS | HY) || po(HS | HY)).

Iy (HY; Hg | HY) = Eqe e p(0 116) Ertgnpy (1 1) llog

]

= ]EHC,HGNp(HC,HG)EHSNp@(Hg\Hc)[

Therefore, the upper bound for the first term is:
1
SUHS HS | HE) + I(HS; HS | H))
< 5(Dxz (po(HS | HY) | py(HS | HY)) + Dxcr (po(HS | HY) || py(HS | H)))

1
-2
= Dskr (po(HS | HY) || py(HS | HY)),
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where Dgx . (-) denotes the symmetrized Kullback-Leibler (SKL) divergence.

Then, look at the I(H%; H g) in the second term. According to the symmetry of mutual information,
ie, I(X;Y) = I(Y; X), and the chain rule of mutual information, i.e., I(X;Y,Z) = I(X;Y) +
I(X; Z|Y'), we can have:

I(HY HS) = 1(H§: HY) = I(HS; HS , HY)
I(HS3 HS) + I(Hg; HE|HS).

Since the conditional mutual information is always non-negative, we can infer:
I(HS; HE|HS) > 0. (20)
Therefore, we can get the lower bound of I(H%; HY) as:
I(HE HS) > I(HS; H). @1
Similarly, for I(HC; Hg) we can get,
I(HE; HG) > I(H; H). (22)

Therefore, the second term gets the upper bound:

L1 G. r7C 1 C. 7G
- 5([37](1{ s Hg ) + EI(H s Hg))
1,1 1
< —5(571(1{5;]{5@) + ﬂ*GI(Hg;Hg))
B+ 8% o e
= _WI(HSaHS ).
Therefore, the combination loss has an upper bound:
c | yC G| G BC+BY L e
Lcombination < DskL (p@(HS | H ) || p'y(HS | H )) - WI<HS7HS)
By scaling both terms with 8 = % and re-parameterizing the objective, we derive a tractable
loss function for the MVIB framework:
Lyvis = —I(HS;HS) + BDskr (po(HS | HE) | po(HS | HY)), (23)

where po(HS | HY) and p,(HS | HY) represent the bottleneck subgraph extractors for H¢ and

HY parameterized by @ and  respectively, and Dsx 1 (-) denotes the symmetrized Kullback—Leibler
(SKL) divergence. The hyperparameter 3 controls the trade-off between the two terms.

B Mathematical Notations

Tables [5|and [6| summarize the mathematical notations used throughout the MIHC framework. Table 3]
covers the fundamental problem formulation and basic Information Bottleneck concepts, while Table
[6] details the components specific to multi-view representation learning and bottleneck mechanisms.
Together, these notations describe the dual hypergraph structures that enable balanced fusion of
topological and geometric circuit information for interpretable congestion prediction.

C Experimental Details

C.1 Code Availability.

Our code is available in this link: https://github.com/hping666/MIHC,
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Table 5: Mathematical Notations I: Problem Formulation and Information Bottleneck Framework

Notation Description
L Number of message passing layers
P Grid-based layout representation, € RM*NxK
M, N Grid dimensions

Number of features per grid cell
Cell-based hypergraph representation, (V, E)
Set of nodes (cells)
Set of hyperedges (nets)
Grid congestion map, € RM*N
Cell congestion graph, € RV

K
G
Vv
E
CG
CC
C¢ Predicted grid congestion map
cc Predicted cell congestion graph
fo Predictive model parameterized by 6
Lup Supervised loss function
X Input variable in Information Bottleneck framework
Y Target variable in Information Bottleneck framework
T Intermediate representation in Information Bottleneck framework
I(T;X) Mutual information between T and X
T,y Mutual information between 7" and Y
B* Trade-off parameter in Information Bottleneck framework
H¢ Cell-based hypergraph
H¢ Grid-based hypergraph
Ve Node set in cell-based hypergraph
E°¢ Hyperedge set in cell-based hypergraph
x¢ Feature of node v in cell-based hypergraph
Ve Node set in grid-based hypergraph
E¢ Hyperedge set in grid-based hypergraph
X¢ Feature of node v in grid-based hypergraph

C.2 Hypergraph Construction Details

As shown in Figure([T|a) of our paper, we construct hypergraphs from circuit data through a specific
process. In the layout example of Figure[T[a), we have 10 circuit components (cells), each represented
as a node in the cell-based hypergraph. The layout is simultaneously divided into 9 grid cells, with
each grid cell becoming a node in the grid-based hypergraph. The circuit nets connecting multiple
circuit components are modeled as hyperedges in both representations. For the cell-based hypergraph,
cells connected by the same net form a hyperedge. As illustrated in Figure[T|c) in the top-left diagram,
blue cells 2, 5, 6, and 7 are connected by the same net, thus forming one hyperedge in the cell-based
hypergraph.

For the grid-based hypergraph, grid cells traversed by the same net are connected via a hyperedge.
Additionally, spatially adjacent grid cells are also connected through hyperedges to preserve geometric
proximity information. As shown in Figure[I[c) in the bottom-left diagram, green grid cells 1, 4,
5, and 6 are traversed by the same net, thus forming one hyperedge in the grid-based hypergraph.
Simultaneously, adjacent grid cells like 1-2, 2-3, 4-5, etc., would form their own hyperedges based on
spatial adjacency.

C.3 1ISPD-2015 Benchmark Dataset

The ISPD-2015 benchmark consists of 20 industrial designs from various applications, with circuit
sizes ranging from 29K to 1.3M cells, as shown in Table[/| These designs include both standard cells
and macro blocks, presenting realistic challenges in placement and routing congestion prediction.
Each design in the dataset includes:

* Circuit netlist information with both standard cells and macro blocks

* Placement solutions generated using Cadence Innovus v17.1 with varying parameters
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Table 6: Mathematical Notations II: Multi-View Representation Learning and Bottleneck Components

Notation Description
H sg Bottleneck subgraph of ce.ll—based hypergraph
Hg Bottleneck subgraph of grid-based hypergraph
B¢ Trade-off parameter for cell-based Information Bottleneck
Doy D~y Probability model for bottleneck subgraph extraction
M¢ Incidence matrix of cell-based hypergraph
X Node features of cell-based hypergraph
P Probability vector for node selection
Xg Node features of cell-based bottleneck subgraph
N (%) Cell nodes associated with grid node v
WC W&  Learnable weights for feature reweighting
Lyvie  Multi-View Information Bottleneck loss

Symmetrized KL divergence

h¢ Hyperedge embedding in cell-based hypergraph
h¢ Hyperedge embedding in grid-based hypergraph

VEC (e) Nodes in cell-based hyperedge e
V9 (e) Nodes in grid-based hyperedge e
hY Net-based hyperedge embedding
flg Intermediate cell-based node embedding
lAzf,V Intermediate net-based node embedding
E°(v) Cell-based hyperedges containing node v
EN(v) Net-based hyperedges containing node v
h¢ / Updated cell-based node embedding

h& Intermediate grid-based node embedding
Spatially adjacent grid nodes to node v
Updated grid-based node embedding

hg Cell-based subgraph embedding

hg Grid-based subgraph embedding

Lcont Contrastive loss
T Temperature parameter in contrastive loss
7¢ Predicted cell-based node congestion
95 Predicted grid-based node congestion
Liotal Total loss function

* Ground truth congestion maps derived from global routing solutions
The dataset provides several key features for congestion prediction:

* RUDY (Rectangular Uniform wire DensitY): Models the routing demand within bounding

boxes of nets

* PinRUDY: Represents pin density distribution in grid cells

* MacroRegion: Binary indicators for regions covered by macro cells

* Horizontal/Vertical MacroMargin: Measures distances between margins of adjacent macros
For experimentation purposes, 533 different placement solutions were generated for each design using
Innovus with varying parameters, resulting in a comprehensive dataset for training and evaluating
congestion prediction models. The dataset divides the circuit layout into an M x N grid, with each

grid cell represented as a pixel containing multiple feature channels. The routing overflow ground
truth is provided in both horizontal and vertical directions.

C.4 CircuitNet-N28 Benchmark Dataset

The CircuitNet-N28 is a comprehensive open-source dataset specifically designed for machine
learning applications in VLSI CAD, particularly for cross-stage prediction tasks. It contains 10242
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Table 7: Detailed Information of ISPD-2015 Benchmark Designs

Design #Cells #Nets | Category
des_perf_1 113K 113K | Medium
des_perf_a 109K 110K | Medium
des_perf_b 113K 113K | Medium
edit_dist_a 130K 131K | Medium
fft_1 35K 33K | Small
fft_2 35K 33K | Small
fft_a 34K 32K | Small
fft_ b 34K 32K | Small

matrix_mult_1 160K 159K | Large
matrix_mult_2 160K 159K | Large
matrix_mult_a 154K 154K | Large
matrix_mult_b 151K 152K | Large
matrix_mult_c 151K 152K | Large
pci_bridge32_a 30K 30K | Small
pci_bridge32_b 29K 29K | Small
superbluell_a 954K 936K | Very Large

superbluel2 1.3M  1.3M | Very Large
superbluel4 634K 620K | Very Large
superbluel6_a 698K 697K | Very Large
superbluel9 522K 512K | Very Large

layout samples extracted from versatile runs of commercial design tools based on six open-source
RISC-V designs in a 28nm technology node, as shown in Table §]

* Circuit data is generated from six RISC-V designs (RISCY, RISCY-FPU, zero-riscy, and
their variants)

* Layouts are generated using commercial tools (Cadence Innovus v20.10) with diverse
parameter settings

* Ground truth labels include congestion, DRC violations, and IR drop information
The dataset provides several key features for prediction tasks:

* Macro Region: Regions covered by macros which are fixed during placement

 Cell Density: Cell distribution in each tile

* RUDY & Pin RUDY: Routing demand estimation for nets and pin density

* Pin Configuration: High-resolution representation of pin and routing blockage patterns

* Congestion: Overflow of routing demand in each tile

CircuitNet-N28 introduces significant diversity through various design parameters, including five core
utilization settings (70%-90%), three macro placement strategies, eight power mesh combinations,
and different filler insertion approaches. This results in 240 combinations of settings for each netlist,
creating a dataset with substantial variation that better reflects real-world design scenarios. The tile
size for all feature maps is 1.5 pm x 1.5 pum, aligning with the global routing cell size in commercial
tools.

Table 8: Detailed Information of CircuitNet-N28 Benchmark Designs

Design #Cells  #Nets Cell Area (um?)
RISCY-a 45,717 47,759 65,739
RISCY-FPU-a | 65,793 68,351 75,985
Zero-riscy-a 34,299 43,970 58,631
RISCY-b 31,311 33,970 69,979
RISCY-FPU-b | 51,126 54,327 80,030
Zero-riscy-b 20,946 22,692 62,648
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C.5 Data Split Strategies

We employ two distinct data partitioning strategies to comprehensively evaluate our model’s perfor-
mance and generalization capability: placement-level split and design-level split.

C.5.1 Placement-level Split

The placement-level split follows a standard design-level partitioning strategy where all designs
appear in both training and testing sets, but with different placement solutions. As shown in Table[7}
the ISPD2015 dataset contains 20 circuit designs, each with multiple placement solutions generated
using different synthesis and placement parameters. For each design, we divide its corresponding
placements into training and testing sets with a 7:3 ratio. This results in:

* ISPD2015-F: 374 training samples and 159 testing samples (all 20 designs including
superblue series, 533 total placements)

» ISPD2015-B: 269 training samples and 114 testing samples (15 designs excluding superblue
series, 383 total placements)

For CircuitNet-N28 (Table [8), we follow a similar approach across its 10,242 samples from six
RISC-V designs, resulting in 7,170 training samples and 3,072 testing samples, maintaining the
7:3 ratio. This approach ensures all designs appear in both training and testing sets, allowing for
comprehensive evaluation of model performance on known design types.

C.5.2 Design-level Split for Generalization Evaluation

To rigorously evaluate our model’s generalization capability to entirely unseen circuit designs, we
conduct additional experiments following the design-level split setting. Unlike the placement-level
split, this setting ensures training and test sets contain completely different circuit designs with no
overlap between design families, providing a more stringent evaluation that better reflects real-world
scenarios where models must generalize to new designs during deployment.

ISPD2015-B Design Partitioning For ISPD2015-B containing 15 designs, we partition them into
two groups ensuring designs with the same prefix remain together:

* Group A (8 designs): des_perf_1, des_perf_a, des_perf_b, fft_1, fft 2, fft_a, fft b,
edit_dist_a

* Group B (7 designs): matrix_mult_1, matrix_mult_2, matrix_mult_a, matrix_mult_b,
matrix_mult_c, pci_bridge32_a, pci_bridge32_b

ISPD2015-F Design Partitioning For ISPD2015-F containing 20 designs, we use a 10 vs 10 split:
* Group A (10 designs): des_perf series (3 designs: des_perf_1, des_perf_a, des_perf_b), fft
series (4 designs: fft_1, fft_2, fft_a, fft_b), edit_dist_a, superbluel2, superbluel6_a

e Group B (10 designs): matrix_mult series (5 designs: matrix_mult_1, ma-
trix_mult_2, matrix_mult_a, matrix_mult_b, matrix_mult_c), pci_bridge32 series (2 designs:
pci_bridge32_a, pci_bridge32_b), superbluel1_a, superbluel4, superbluel19

This partitioning strategy ensures that:

1. Designs with the same prefix (indicating functional similarity) remain in the same group,
preventing information leakage between functionally related circuits

2. Both groups contain a mix of different design families and sizes

3. The evaluation captures the model’s true capability to handle entirely unseen circuit archi-
tectures

Bidirectional Evaluation We conduct bidirectional evaluation to provide comprehensive assess-
ment:

1. A—B: Train on all placement solutions from Group A designs, test on all placement solutions
from Group B designs
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2. B—A: Train on all placement solutions from Group B designs, test on all placement solutions
from Group A designs

This bidirectional approach ensures our evaluation is not biased by the specific choice of train-
ing/testing groups and provides robust evidence of generalization performance across different design
families.

C.6 Evaluation Metrics Details

This study employs a variety of evaluation metrics to assess the performance of the proposed
model, including NMAE, NRMS, Pearson correlation, Spearman correlation, Kendall’s tau for chip
congestion prediction and Accuracy (ACC) for graph anomaly detection. Below are the definitions
and mathematical formulations of each metric:

Normalized Mean Absolute Error (NMAE): NMAE measures the average absolute difference
between predicted and true values, normalized by the range of the true values. It is defined as:

1 lyi — il

NMAE = — )

n ; max(y) — min(y)
where y; is the true value, §; is the predicted value, and max(y) and min(y) represent the maximum
and minimum values of the true data, respectively. A lower NMAE indicates better predictive
accuracy.

n

Normalized Root Mean Square Error (NRMS): NRMS quantifies the deviation between the
predicted and actual values, normalized by the range of the true values. It is computed as:
1

NRMS =
max(y) — min(y)

This metric penalizes larger errors more heavily, making it useful for evaluating prediction accuracy.

Pearson Correlation Coefficient (Pearson): The Pearson correlation coefficient measures the linear
relationship between the predicted and true values, with values ranging from -1 (perfect negative
correlation) to 1 (perfect positive correlation). It is given by:

S (i~ )@~ )
Vo i~ 02 T (6 - 92

where 7 and 7 represent the mean of the true and predicted values, respectively.

Pearson =

b

Spearman Rank Correlation (Spearman): Spearman’s rank correlation coefficient assesses the
monotonic relationship between the true and predicted values by considering their ranks. It is
calculated as:

630 df

n(n?—1)’
where d; is the difference in ranks for each pair of corresponding values, and n is the number of data
points.

Spearman = 1 —

Kendall’s Tau (Kendall): Kendall’s tau is another measure of rank correlation, specifically focusing
on the concordance and discordance between pairs of predictions. It is defined as:

C-D
Kendall = m,
2

where C' is the number of concordant pairs, D is the number of discordant pairs, and n is the number
of data points.

C.7 Parameter Setting

In this section, we present the key implementation details of our model. The detailed parameter
settings are listed in Table[9]

The key parameters include:
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Table 9: Model Parameter Settings

Parameter Value | Parameter Value
Hidden Dimension 128 | Learning Rate le-4
# MV-HGNN Layers 4 Batch Size 4

# MLP Layers 2 Temperature 7 | 0.07
IB Weight 3 0.1 Dropout Rate 0.1
# Attention Heads 4 Optimizer Adam

* Hidden Dimension: The dimension of node embeddings in both cell-based and grid-based
Views.

# MV-HGNN Layers: Number of Multi-View Heterogeneous Graph Neural Network
layers.

* # MLP Layers: Number of layers in the prediction module MLPs.

IB Weight 5: The trade-off parameter in Information Bottleneck loss.
* Temperature 7: Temperature parameter in contrastive learning.

* # Attention Heads: Number of attention heads in message passing.

The model is trained using the Adam optimizer with a learning rate of le-4. We apply dropout with
rate 0.1 to prevent overfitting. The batch size is set to 32 for training efficiency.

C.8 Time Consumption and Memory Usage

C.8.1 Time Consumption

Our experiments on one NVIDIA A100 80GB GPU show practical performance across circuit
scales. Small circuits ( 30K cells/nets) require only 0.3 seconds for inference and 0.9 seconds per
training iteration, while very large circuits (1.3M cells/nets) take 1.6 seconds for inference and 5.0
seconds per training iteration. These measurements confirm that despite the model’s sophistication,
its computational demands remain manageable for real-world industrial applications, with reasonable
inference times even for the largest circuits.

C.8.2 Memory Usage

Our model’s memory footprint scales efficiently with circuit size. Small circuits ( 30K cells/nets)
consume approximately 3GB of GPU memory, while even the largest circuits (1.3M cells/nets)
require 22GB during training, well within the 80GB capacity of modern A100 GPUs, ensuring our
approach remains practical for industrial-scale designs.

D Result Supplement

D.1 Chip Congestion Prediction Results

Table 10: Cell based Results on ISPD2015-B. The best in bold and the second underlined.

Model ISPD2015-B
NMAE/] NRMS| Pearson? Spearman? Kendallt

GCN 0.038 0.044 0.547 0.498 0.421

GAT 0.039 (-2.63%)  0.045 (-2.27%)  0.531 (-2.94%) 0.517 (+3.81%) 0.463 (+9.95%)
HGNN 0.036 (+5.26%)  0.042 (+4.55%)  0.577 (+5.50%) 0.553 (+11.05%) 0.476 (+13.07%)
CircuitGNN | 0.034 (+10.53%) 0.040 (+9.09%) 0.598 (+9.33%) 0.611 (+22.68%) 0.487 (+15.68%)
LHNN 0.033 (+13.16%) 0.038 (+13.64%) 0.629 (+14.99%) 0.627 (+25.90%) 0.502 (+19.24%)
DE-HNN 0.032 (+15.79%) 0.037 (+15.91%) 0.645 (+18.00%) 0.632 (+26.91%) 0.520 (+23.56%)
MIHC(Ours) | 0.029 (+23.68%) 0.034 (+22.73%) 0.687 (+25.66%) 0.689 (+38.43%) 0.574 (+36.38%)
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Table 11: Grid based Results on ISPD2015-B and ISPD2015-F. The best in bold and the second

underlined.
Model ISPD2015-B
NMAE| NRMS| Pearson? Spearmant Kendallt

GCN 0.043 0.049 0.405 0.162 0.137

GAT 0.044 (-2.33%)  0.050 (-2.04%)  0.398 (-1.73%)  0.144 (-11.12%)  0.141 (+2.92%)
HGNN 0.040 (+6.98%)  0.046 (+6.12%) 0.451 (+11.36%) 0.184 (+13.58%) 0.142 (+3.65%)
RouteNet 0.038 (+11.63%) 0.045 (+8.16%) 0.522 (+28.89%) 0.198 (+22.22%) 0.157 (+14.60%)
CircuitGNN 0.037 (+13.95%) 0.043 (+12.24%) 0.561 (+38.39%) 0.201 (+24.07%) 0.164 (+19.71%)
CircuitFormer | 0.034 (+20.93%) 0.040 (+18.37%) 0.649 (+60.74%) 0.231 (+42.59%) 0.169 (+23.36%)
LHNN 0.033 (+23.26%) 0.040 (+18.37%) 0.651 (+60.74%) 0.252 (+55.56%) 0.217 (+58.39%)
Lay-Net 0.031 (+27.91%) 0.037 (+24.49%) 0.667 (+64.57%) 0.301 (+85.19%) 0.248 (+81.76%)
MIHC (Ours) | 0.030 (+30.23%) 0.036 (+26.53%) 0.675 (+66.67%) 0.297 (+83.95%) 0.252 (+83.94%)

Table 12: Cell based Results on ISPD2015-F. The best in bold and the second underlined.

Model ISPD2015-F

NMAE/] NRMS| Pearsont Spearman? Kendallt
GCN 0.051 0.058 0.344 0.336 0.309
GAT 0.050 (+1.96%)  0.057 (+1.72%)  0.351 (+2.03%) 0.342 (+1.79%)  0.298 (-3.55%)
HGNN 0.045 (+11.76%) 0.052 (+10.34%) 0.410 (+19.21%) 0.366 (+8.93%) 0.309 (0.00%)
CircuitGNN 0.046 (+9.80%)  0.053 (+8.62%) 0.402 (+16.85%) 0.378 (+12.50%) 0.316 (+2.27%)
LHNN 0.043 (+15.69%) 0.049 (+15.52%) 0.448 (+30.23%) 0.384 (+14.29%) 0.364 (+17.80%)
DE-HNN 0.042 (+17.65%) 0.048 (+17.24%) 0.467 (+35.80%) 0.395 (+17.57%) 0.381 (+23.32%)
MIHC(Ours) | 0.035 (+31.37%) 0.041 (+29.31%) 0.524 (+52.33%) 0.512 (+52.38%) 0.447 (+44.64%)

Table 13: Grid based Results on ISPD2015-F. The best in bold and the second underlined.

Model ISPD2015-F

NMAE] NRMS] Pearson? Spearmant KendallT
GCN 0.046 0.053 0.357 0.152 0.131
GAT 0.048 (+4.35%)  0.055 (+3.77%)  0.331 (-7.28%)  0.137 (-9.87%) 0.116 (-11.47%)
HGNN 0.043 (+6.52%)  0.050 (+5.66%)  0.352 (-1.40%)  0.147 (-3.29%)  0.121 (-7.63%)
RouteNet 0.042 (+8.70%)  0.050 (+5.66%)  0.362 (+1.40%) 0.161 (+5.92%)  0.137 (+4.58%)
CircuitGNN 0.042 (+8.70%)  0.049 (+7.55%) 0.364 (+2.00%) 0.162 (+6.58%)  0.134 (+2.29%)
CircuitFormer | 0.038 (+17.39%) 0.045 (+15.09%) 0.453 (+26.91%) 0.196 (+28.95%) 0.165 (+26.02%)
LHNN 0.037 (+19.57%) 0.044 (+16.98%) 0.464 (+29.97%) 0.221 (+45.39%) 0.182 (+38.93%)
Lay-Net 0.035 (+23.91%) 0.042 (+20.75%) 0.484 (+35.53%) 0.256 (+68.42%) 0.208 (+58.02%)
MIHC (Ours) | 0.032 (+30.43%) 0.039 (+26.42%) 0.503 (+41.00%) 0.271 (+78.95%) 0.227 (+73.25%)

Table 14: Cell based Results on CircuitNet-N28. The best in bold and the second underlined.

Model CircuitNet-N28

NMAE] NRMS] Pearsont Spearman? KendallT
GCN 0.045 0.051 0.516 0.438 0.319
GAT 0.046 (-2.22%)  0.051 (+0.00%)  0.513 (-0.58%)  0.447 (+2.05%)  0.321 (+0.63%)
HGNN 0.044 (+2.22%)  0.048 (+5.88%) 0.552 (+6.98%) 0.468 (+6.85%)  0.332 (+4.08%)
CircuitGNN | 0.040 (+11.11%) 0.043 (+15.69%) 0.609 (+18.02%) 0.500 (+14.16%) 0.368 (+15.36%)
LHNN 0.039 (+13.33%) 0.043 (+15.69%) 0.617 (+19.57%) 0.509 (+16.21%) 0.366 (+14.73%)
DE-HNN 0.038 (+15.56%) 0.042 (+17.65%) 0.638 (+23.64%) 0.511 (+16.67%) 0.374 (+17.24%)
MIHC(Ours) | 0.036 (+20.00%) 0.039 (+23.53%) 0.661 (+28.10%) 0.522 (+19.18%) 0.396 (+24.14%)

D.2 Expalination Results

Due to the lack of publicly available, interpretable datasets in the EDA domain, we use the commonly
adopted MNIST 0/1 dataset to demonstrate the explainability of our proposed MIHC. To validate
the effectiveness of the explainability module in our model, we conduct explainability testing
experiments on these datasets to test our model’s capability in identifying important nodes in the graph
through node-level explainability testing. The results of these tests are presented in Table Our
proposed method demonstrates strong consistency across both datasets, exhibiting high performance
across various evaluation metrics. This suggests that our approach provides reliable and coherent
explanations across different types of data, indicating that the model’s interpretability is robust and
can generalize well. The consistent high scores in all the key metrics underscore the model’s ability to
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Table 15: Grid based Results on CircuitNet-N28. The best in bold and the second underlined.

Model CircuitNet-N28
NMAE| NRMS| Pearson? Spearmant Kendallf

GCN 0.052 0.053 0.417 0.399 0.312

GAT 0.052 (+0.00%)  0.054 (-1.89%)  0.411 (-1.44%)  0.405 (+1.50%) 0.323 (+3.53%)
HGNN 0.051 (+1.92%) 0.052 (+1.89%) 0.442 (+6.00%) 0.424 (+6.27%) 0.331 (+6.09%)
RouteNet 0.047 (49.62%)  0.049 (+7.55%) 0.541 (+29.74%) 0.501 (+25.56%) 0.373 (+19.55%)
CircuitGNN 0.047 (49.62%)  0.048 (+9.43%) 0.547 (+31.18%) 0.508 (+27.32%) 0.371 (+18.91%)
CircuitFormer | 0.044 (+15.38%) 0.046 (+13.21%) 0.622 (+49.16%) 0.526 (+31.83%) 0.384 (+23.08%)
LHNN 0.043 (+17.31%) 0.044 (+16.98%) 0.646 (+54.92%) 0.533 (+33.58%) 0.389 (+24.68%)
Lay-Net 0.041 (+21.15%) 0.043 (+18.87%) 0.671 (+60.91%) 0.558 (+39.85%) 0.406 (+30.13%)
MIHC (Ours) | 0.040 (+23.08%) 0.041 (+22.64%) 0.682 (+63.55%) 0.572 (+43.36%) 0.402 (+28.85%)

Table 16: Node explanation test on MNISTO and MNIST1. The best in bold and the second

underlined.

Dataset Method ACC Precision Recall Fl AUC
= ours 0.742  0.669 0.725 0.696 0.697
5‘; GCN+GNNE | 0.527  0.343 0.500 0.407 0.554
Z GAT+GNNE | 0419  0.349 0.917 0.506 0.689
= SIGNET 0.650  0.995 0.041 0.078 0.615
— ours 0.721  0.642 0.698 0.669 0.685
5 GCN+GNNE | 0.527  0.359 0.583 0.444 0.573
Z GAT+GNNE | 0419  0.321 0.708 0.442 0.594
p SIGNET 0.650  1.000 0.041 0.079 0.522

offer actionable and meaningful insights for decision-making in practical applications. In comparison,
baseline methods show significant limitations. GAT+GNNE suffers from low precision despite high
recall, while SIGNET achieves high precision but fails to capture comprehensive node relationships,
leading to low recall scores. The core principle of explainability—identifying the most important
part of the graph—remains the same across both MNIST and chip congestion scenarios.

Furthermore, to demonstrate MIHC’s explainability under realistic congestion scenarios, we present a
chip congestion heatmap in Figure[2] This visualization highlights the model’s capability to accurately
localize critical regions on the chip. As clearly shown, MIHC achieves the closest match to the
ground truth, underscoring its superior interpretability.

D.3 Hyper-parameter Sensitivity

Detailed results of hyper-parameter sensitivity are shown in Table [I'7]and Table[I8]

Table 17: Hidden Dimension Sensitivity Analysis on ISPD2015-B
Cell-based Results Grid-based Results

Hidden Dim -orra e NRMS] PearsonT Spearman KendallT | NMAE] NRMS] PearsonT Spearman] KendallT
E%) 0036 0040 0579 0592 0484 | 0041 0045 0477 _ 0.099  0.151
64 0030 0036 0663 0668 0551 | 0032 0037 0662 0281 0246
128 0029 0034 0687 0689 0574 | 0030 0036 0675 0297 0252
256 0029 0034 0682 0688 0577 | 0030 0036 0676 0294 0250
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Table 18: Multi-view HGNN Layer Number Sensitivity Analysis on ISPD2015-B

Cell-based Results Grid-based Results
#Layers

NMAE] NRMS] PearsonT SpearmanT Kendallf | NMAE] NRMS] PearsonT SpearmanT KendallT

0.033 0.039 0.612 0.619 0.492 0.039 0.044 0.510 0.192 0.148
0.030 0.035 0.679 0.672 0.566 0.031 0.036 0.672 0.290 0.251
0.029 0.034 0.690 0.681 0.571 0.030 0.036 0.672 0.294 0.252
0.029 0.034 0.687 0.689 0.574 0.030 0.036 0.675 0.297 0.252
0.030 0.034 0.688 0.684 0.571 0.030 0.037 0.671 0.288 0.247
0.030 0.035 0.671 0.666 0.554 0.031 0.037 0.669 0.288 0.248
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