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ABSTRACT

Recently deep generative models (DGMs) have been highly successful in novel
protein design and could enable an unprecedented level of control in therapeu-
tic and industrial applications. One DGM approach is variational autoencoders
(VAEs), which can infer higher-order amino acid dependencies for useful predic-
tion of fitness effects of mutation. Additionally, the model infers a latent space
distribution, which can learn biologically meaningful representations. Another
example of a DGM approach is autoregressive models, commonly implemented
in language or audio tasks that have been intensively explored in protein gener-
ation of unaligned sequences. Combining these two distinct DGM approaches
for protein design and fitness prediction has not been extensively studied because
VAE:s are prone to posterior collapse when implemented by an expressive decoder.
We explore and benchmark the use of VAEs with a WaveNet-based decoder. The
advantage of WaveNet-based generators is the inexpensive training time and com-
putation cost relative to recurrent neural networks (RNNs) and avoids vanishing
gradients because WaveNets leverage dilated causal convolutions. To avoid pos-
terior collapse, we implemented and adapted an Information Maximizing VAE
(InfoVAE) loss objective instead of a standard ELBO training objective to a semi-
supervised setting with an autoregressive reconstruction loss. We extend our
model from unsupervised to a semi-supervised learning paradigm for fitness pre-
diction tasks and benchmark our model’s performance on FLIP and TAPE datasets
for protein function prediction. To illustrate our model’s performance for protein
design, we have trained our models on unaligned homologous sequence libraries
of the SH3 domain and AroQ Chorismate mutase enzymes. Then we deployed it
to generate novel (variable-length) sequences that are computationally predicted
to fold into native structures and possess natural function. Our results demonstrate
that combining a semi-supervised InfoVAE model with a WaveNet-based gener-
ator provides a robust framework for functional prediction and generative protein
design without requiring multiple sequence alignments.

1 INTRODUCTION

Protein sequences from non-homologous families or within homologous families with high variabil-
ity and diverse lengths present challenges in the construction of multiple-sequence alignments Alley
et al.|(2019); Biswas et al.|(2021); [Shin et al.| (2021). Deep generative models (DGMs) are exciting
models for learning high-dimensional data distributions and generating novel data samples indis-
tinguishable from the true data. These approaches are promising for synthetic protein design. For
example, autoregressive models (i.e., language or audio generative models) have no dependency
on sequence alignments, allowing these models to learn and generate novel sequences with high
variability and diverse lengths. However, one major limitation of autoregressive models is the lack
of ability to infer meaningful representations or conditional information (e.g., latent vectors). In
contrast, another popular DGM is variational autoencoders (VAEs) which can infer a latent space
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and generate novel data indistinguishable from the true data distribution. These models have been
shown to effectively predict single-mutant effects [Shin et al.| (2021), infer a homologous family’s
phylogeny through the latent space, and diversify synthetic AAV capsids |Sinai et al.| (2021). While
these models can infer a biologically meaningful latent space, they struggle to implement powerful
and expressive decoders (i.e., generators) because VAEs are prone to posterior collapse Zhao et al.
(2019);Chen et al.| (2016); Van Den Oord et al.| (2017); Yang et al.[{(2017). Therefore, VAEs struggle
with incorporating autoregressive decoders for generating variable-length sequences and inferring
alignment-free homologous protein datasets.

In this work, to successfully combine VAEs with autoregressive generators and overcome poste-
rior collapse Bowman et al.| (2015), we incorporated an Information Maximizing (InfoMax) loss
objective instead of the common ELBO training objective [Zhao et al.,| (2019). The InfoMax loss
is similar to ELBO; however, prefactor weights are introduced to motivate better inference and
regularization. A mutual information maximization term is introduced for explicitly encouraging
high mutual information between the input vectors and latent space embeddings. We implement a
WaveNet-based autoregressive generator |Oord et al.| (2016) for our decoder that avoids vanishing
or exploding gradients by leveraging dilated causal convolutions. Previously, models have been
developed that combine VAEs with dilated causal convolutions as the decoder component for text
generation |Yang et al.|(2017)); however, this approach has yet to be explored for protein design and
fitness prediction. In addition, our work expands our this modeling approach by incorporating an
InfoMax loss objective for improving amortized inference and avoiding posterior collapse. These
convolutions are much faster than recurrent networks during training time, offer superior inference
of long-range correlations, and are computationally lighter-weight than standard convolutional fil-
ters. We find that InfoVAE can infer biologically meaningful latent spaces while incorporating an
expressive autoregressive generator. We extend the InfoVAE training objective to a semi-supervised
learning paradigm for fitness landscape prediction. To assess the generative capacity of our model,
we trained the model on two homologous family datasets, inferred meaningful latent spaces, and
generated length-variable sequences. In addition, we benchmark our semi-supervised model variant
four fitness landscape prediction tasks within TAPE and FLIP protein function prediction bench-
marks. We find that our model predicts fitness or function better or competitively with current
state-of-the-art.

2 METHODS

2.1 OVERVIEW

Figure[I| presents an overview of our approach. The proteins sequences (either aligned or unaligned)
are embedded onto a lower-dimensional space (latent space) using a dilated convolutional neural
network encoder g, (z|z). The decoder (i.e., generator) py(z|z) is a WaveNet-based architecture,
which samples from the latent space and predicts amino acid residues while conditioning on pre-
vious amino acids pg(z|z) = p(xo|z) [[,_; p(zi|x<i, 2). Generally, when using a dilated causal
convolution and predicting the next amino acid residue, we use teacher forcing which leverages the
true labeled amino acids for previous conditional amino acids. Since the decoder is an autoregres-
sive generator, variable length sequences can be designed. In addition, this model can be extended
to a semi-supervised paradigm such that a discriminator neural network (a simple fully connected
regression model; p,, (y|z)) samples the latent space and predicts fitness or function measurements.
In the semi-supervised paradigm, the discriminative and generative losses are learned together.

2.2 INTEGRATING INFOVAE WITH A WAVENET-BASED GENERATOR

Traditional Variational autoencoders (VAEs) are prone to posterior collapse or poor amortized in-
ference when implementing expressive decoders (e.g. autoregressive generators)|Zhao et al.|(2019);
Yang et al.| (2017); (Chen et al.[ (2016); [Van Den Oord et al.| (2017). Here we implement an VAE
model [Zhao et al.| (2019)) to overcome posterior collapse and improve variational inference when
implementing a WaveNet-based autoregressive decoder. Our unsupervised loss function is the fol-
lowing:

Luys = EB.q, (210 [log po(z|2)] — (1 — )DL (qo(z]x)||p(2)) (1)
—(a+ A= 1)Drump (502 p(2))
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Figure 1: Schematic illustration of the model integrating an InfoMax VAE with convolutional en-
coder and WaveNet decoder. The architecture employs a dilated convolutional encoder g, (z|z),
a WaveNet decoder pg(z;|21, ..., z;_1, ), and semi-supervised regressor p,,(y|z) to predict func-
tional assay measurements from the learned VAE latent space.

where py(x|z) is the decoder model, D, is the Kullback-Leibler divergence between the varia-
tional posterior approximation ¢4 (2|) and normal prior distribution p(z). The third term Dsasp is
the max-mean discrepancy (MMD) that helps penalize the aggregated posterior distribution and
improves amortized inference. The derivation of the above loss objective can be found [Zhao
et al.| (2019). In our work, we introduce an autoregressive decoder (WaveNet-based architecture),
where pg(x|z) = po(xolz) [[,_1 Po(xi|x<s,2). The MMD divergence term becomes Dyrarp =
]Ez,z’Np(z)m(z’) [k(za Z/)] - 2Ez7z’~q(z),p(z’) [k(Z, Zl)} + Ez,z’~q(z),q(z’) [k(Z, Z/)} , Where k(a ) isa
positive definite kernel and Dyspsp = 0 if and only if p(z) = ¢(z). We choose the Gaussian kernel
k(z,2") = e(>=2)%/% a5 our characteristic kernel k(-,-), and o is a hyperparameter defining the
bandwidth of our Gaussian kernel. The prefactor loss weights &, o, and A scales the contribution of
the reconstruction loss, weighs the mutual information between = and z, and scales the penalization
of MMD divergence.

2.3 EXTENDING GENERATIVE MODEL TO A SEMI-SUPERVISED PARADIGM

We extend the unsupervised WaveNet VAE to a semi-supervised learning paradigm for fitness land-
scape prediction. The main motivation of using a semi-supervised approach is based on the idea that
latent representations z can be more informative for predicting y when also used for reconstructing
z. In addition, semi-supervised learning is beneficial when labels are scarce, and unlabeled data is
abundant, which is generally the case for protein design over large unlabeled seqeunce databases
for which a small fraction of sequences are labeled with functional assays. The semi-supervised
training objective is the following:

Lss = £Z/{S+'7E(I,y)€DL [log Do (y\z)} (2)

where p,,(y|z) is a regression model (a simple fully connected neural network) parameterized with
training parameters w. In practice, we minimize the mean-squared error objective %|y — 7|%, where
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y and § is the ground truth and predicted regression value. The (x,y) € Dy, denotes that the samples
which are fed through the supervised branch are only sequences x with assay measurements .

2.4 TRAINING AND HYPERPARAMETER OPTIMIZATION

During training, we set &, «, A, 7, and o to 1, 0.95, 2, 1, and \/dim(z); then, we conducted
hyperparameter optimization over the latent space dimensions z € [1, 20} for each fitness land-
scape prediction task. The optimal latent space dimension was choosen based on minimizing the
negative-log likelihood and maximizing the Spearman p score on the validation set. In general, the
prefactor loss weights can be optimized as well. The optimization algorithm used in this study was
Adam [Kingma & Bal(2014) with a learning rate of 1E-4. For fitness prediction tasks, the number of
epochs was set to 2000, and early stopping was only implemented if p reaches a value of 0.99 on
the validation set. For simplicity, we set the minibatch size across all fitness prediction tasks to 256
samples, but this too can be optimized.

3 RESULTS: PROTEIN DESIGN

In our work, to illustrate the advantage of combining VAEs with an autoregressive WaveNet decoder,
we trained our model on unaligned homologous datasets. To show that our model can handle un-
aligned homologous sequences, we will compare the latent embeddings and learned representations
between unaligned and aligned sequence datasets.

3.1 DESCRIPTION OF THE HOMOLOG FAMILY DATASETS

We train our model and generate novel sequences from two homologous protein families: Src ho-
mologous 3 domains (SH3) and AroQ chorismate mutase (CM) enzymes. The SH3 family consists
of many paralogs, which are homologous sequences that diverge due to duplication events. Since
the gene is duplicated in the genome, new selective pressure can act on the duplicated gene, and sub-
sequently, paralogs can acquire new functions. The SH3 dataset size is 5611 sequences, consisting
primarily of proteins found in the fungal kingdom. Of the 5611 sequences in the basebase, 4664 are
labeled with functional assay measurements for osmosensing capabilities. The CM dataset differs
from the SH3 dataset because all of proteins are orthologs, which are homologous sequences that
diverge due to speciation events instead of duplication events. This means most of the natural ho-
mologous CM sequences have a similar catalytic function. In addition, the CM dataset has two sets
of proteins — one set corresponds to the natural homologs (1130 sequences), while the second set
corresponds to synthetic designs (1618 sequences) produced using a direct coupling analysis (DCA)
model that explicitly considers only pairwise epistasis [Russ et al.[(2020). All sequences have been
functionally assayed for CM catalytic function.

3.2 LATENT SPACE INTERPRETATION

We present in Figure 2] the latent space embeddings of the SH3 dataset produced by unsupervised
training (Eqn. 1) of our model operating on aligned (Figure[2JA) and unaligned (Figure 2B) training
data. The embedded points are colored according to an experimental select-seq assay Russ et al.
(2020) that reports a proxy measure for osmosensing function termed a normalized relative enrich-
ment (n.r.e.) score. A n.re. =1 corresponds to activity comparable to the wild type SH3; a n.re.
= 0 corresponds to activity commensurate with a null gene. In both the aligned and unaligned la-
tent space embeddings we observe strong clustering of the highly active osmosensing sequences
with n.r.e. scores of 1.0. This demonstrates that the fully unsupervised model has learned biolog-
ically meaningful representations of the sequence ensemble separating orthologs (sequences with
osmosensing function; red) from paralogs (sequences lacking osmosensing activity; blue). Addi-
tional 2D projections of the SH3 dataset is shown on Figure 7]

In Figure 3| we present the aligned and unaligned latent space embeddings for the CM dataset. When
training our model on the CM dataset, the training set contains only the natural homologs while the
validation set contained the synthetic designs. As was observed for the SH3 data, the unsupervised
model learns a meaningful latent space embedding of the training data in which we observe an
emergent clustering and gradient in catalytic activity again measured by a select-seq assay [Russ
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et al.|(2020) that provides a n.r.e. score. We observe that the model is able to generalize quite well
by embedding the synthetic designs onto the latent space and clustering high fitness embeddings
into a region of the space. Additional 2D elevations of the CM latent space are provided in Figure[§]

A B

Model trained on alignment 3 Model trained on unahgnment

norm r.e.

Figure 2: We plot the latent space embeddings of the natural SH3 homolog library, consisting of
various different paralog groups and including the Shol paralog group. The colorbar represents in
vivo fitness and indicates whether a SH3 homolog can rescue osmosensing functionality in S. cere-
visiae. The latent spaces learned over (A) aligned and (B) unaligned sequences both provide a good
separation of the high activity orthologs (red) and low activity paralogs (blue). Importantly, both
models were trained using an unsupervised learning approach that was not exposed to functional
assay measurements, indicating our generative model is able to learn meaning representation for
designing function solely from unlabeled sequences.

3.3 GENERATION OF NOVEL VARIABLE LENGTH SEQUENCES WITH STRUCTURE PREDICTION

To illustrate the practical advantage of using an autoregressive decoder, we compared our model
trained on aligned and unaligned sequence data for both the SH3 and CM datasets. We generated
novel sequences by randomly sampling points within the latent spaces and decoding these through
the WaveNet generator to produce novel protein sequences. For the SH3 system, we sampled and
generated 5611 novel sequences, while for the CM system, we generated 1130 novel sequences. To
check whether our generated sequences fold into a proper tertiary structure, we used AlphaFold2 to
predict structures of four sequences for both the SH3 and CM task: the shortest generated sequence,
the longest generated sequence, and two randomly selected sequences (Tables [2]and [3).

With the SH3 task, our structure predictions of the generated sequences along with the wild-type
SH3 domain (PDB: 2VKN) are shown in Figure All four sequences are predicted to have a
very similar tertiary structure as the wild-type even though the sequence similarity to the nearest
natural SH3 domain lies between only 41-43%. (We define sequence similarity to the nearest natural
homolog as 1- maz are the minimum hamming distance and longest protein
sequence w1th1n the natural homolog library). Interestingly,the longest SH3 domain among the
generated pool is predicted to acquire an alpha helix, which was originally a hairpin loop on the WT
structure ( Figure @D). It is important to note that this sequence is 11 amino acids longer than the
wild-type SH3 domain (Table [2), potentially allowing the generative model to extrapolate in terms
of design.

With the CM task, the two randomly sampled sequences from the generated pool (Figure [5A,B)
have a very similar tertiary structure to the wild-type AroQ CM monomer in Escherichia coli (PDB:
1ECM). The shortest generated CM sequence is missing a whole alpha helix and significant portion
of a second alpha helix compared to the wild-type but is still predicted to fold into a stable tertiary
structure even though it is 45 amino acids shorter than the WT sequence (Table [3). In Figure 5D,
the longest generated CM sequence seems to maintain all three alpha helices, but these helices are
predicted to be longer and straighter than the wild-type helices. The four CM generated sequences
have a sequence similarity to the nearest natural CM homolog of 0.18-0.21%.
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Figure 3: We plot the latent embeddings of both training (natural CM homologs) and validation
(synthetic CM homologs) set. In panel (A), we show the latent embeddings when the model was
trained on input sequences with a multiple-sequence alignment. While in panel (B), we show the
latent embeddings of natural and synthetic CM sequences when using a model trained on unaligned
input data. Since the CM training dataset consists of only orthologs, the latent space is more scat-
tered in terms of high fitness embeddings (n. r.e.). However, the overall latent space is retains the
Gaussian structure and learns to cluster some high fitness regions regardless whether the model was
trained on aligned or unaligned input data.

In Figure [6] we analyze the entire pool of generated sequences from the SH3 and CM tasks. We
computed the sequence length of each sequence for the SH3 task (Figure [6]A), finding that the
length variability is more diverse when trained on unaligned versus aligned input data. This was
not necessarily the case for the CM homologs (Figure [6B). However, for both the SH3 and CM
tasks, the model is able to generate sequences that are less sequence similar to the natural homologs
when trained on unaligned input data (Figure [6JA,B), illustrating a potential advantage of training
generative models on unaligned sequences in generating a broader diversity of sequences that better
recapitulate the natural diversity of sequence lengths while maintaining the native tertiary structure.

4 RESULTS: FITNESS PREDICTION

One important goal of deep learning models for biology is to learn meaningful representations that
can be leveraged on down-stream tasks. For instance, a major endeavor in protein design is fitness
landscape prediction and representation learning for semi- and self-supervised tasks. We extended
our deep generative model to a semi-supervised paradigm in the hopes of learning biologically mean-
ingful representations for fitness landscape prediction. Our main goal is to learn a latent space z that
is informative for the generative and discriminative tasks. The intuition behind this construction is
based on the ideal that the representations that can be used to reconstruct the training data and gener-
ate new data indistinguishable from the training data can also be more meaningful for discriminative
tasks (e.g. fitness landscape prediction). To benchmark our model’s learned representations, we
tested its ability to predict test datasets on four main protein systems from two popular community
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Figure 4: AlphaFold 2 predicted structures of four synthetically designed SH3 sequences. First
column corresponds to the WT Shol°#3 domain in S. cerevisiae (PDB: 2VKN) which has a length
of 70 amino acids. The next four columns (A-D) corresponds to design sequences with variable
lengths, where the A,B corresponds to randomly generated sequences and C,D corresponds to the
shortest, longest generated SH3 domains. The primary structure and sequence length for these
proteins are shown on Table 2]
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Figure 5: AlphaFold 2 predicted structures of four synthetically designed CM sequences. First
column corresponds to the WT AroQ Chorismate mutase (CM) enzyme in Escherichia coli (PDB:
1ECM), while the next two columns (A,B) corresponds to design sequences randomly sampled from
the generated pool of CM sequences. (C,D) corresponds to the remaining two generated sequences
that are shortest and longest sequence within the generated pool. The primary structure and sequence
length for these proteins are shown on Table[3]
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Figure 6: We generated 5611 and 1130 novel SH3 and CM sequences by randomly sampling across
the latent space. In panel (A), we compared the generated sequences in terms of sequence length
and similarity to the nearest natural SH3 homolog for models trained on aligned or unaligned input
data. Similarly in (B), we compare the generated sequences’ lengths and similarity to the nearest
natural CM homolog. For both SH3 and CM, we find that sequence diversity is improved when
trained on unaligned sequences, but the sequence length variability for generated CM homolog is
similar regardless of aligned or unaligned input data.

benchmarks tasks: TAPE Rao et al.| (2019) and FLIP |Dallago et al.| (2022). Thus, the four protein
systems are the following:

1. Mutational screening fitness landscape of VP-1 AAV proteins (FLIP) Bryant et al.|(2021);
/hang et al.|(2019)
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2. Highly epistatic mutational landscape GB1 (FLIP) Wu et al.| (2016); Franks et al.| (2006

3. Epistatic Green Fluorescent Protein (GFP) Landscape Predictions (TAPE) Sarkisyan et al.
2016)

4. Stability Landscape Prediction (TAPE) Rocklin et al.|(2017)

4.1 BENCHMARK MODEL ON LANDSCAPE PREDICTION TASKS

For the FLIP AAV capsid task, there were 7 different data split tasks that are each relevant to protein
engineering scenarios. We find that semi-supervised model is able to outperform or competitively
perform to current baseline scores in 5 out of 6 dataset splits (Table dand [5). However, we find that
the semi-supervised generative model underperforms when the training set contains only low-fitness
sequences and the test set contains only high-fitness sequences. For the FLIP GBI task, we find
that our model outperforms or competitively performs against the current baseline scores (Table [I)).
However, similar to the AAV capsid tasks, our model underperforms on the protein task where
the training and testing splits contain only low- and high-fitness sequences. For the TAPE tasks,
our model competitively performs against the state-of-the-art models on the GFP task (Table [6).
However, the model underperforms on the stability prediction task found in Table[7} Overall, these
results suggest that our generative model is not only capable of unsupervised learning and protein
design but also capable of generalizing such that the model can infer fitness landscapes and predict
function from sequence alone and is competitive with state-of-the-art.

Table 1: GB1 performance comparison to current baseline scores (metric: Spearman correlation).

low-vs-high | 1-vs-rest | 2-vs-rest | 3-vs-rest

Architecture p p p p
ESM-1bDallago et al.[(2022) 0.59 0.28 0.55 0.79
ESM-1b Dallago et al.|(2022) 0.13 0.32 0.36 0.54
ESM-1v |Dallago et al.| (2022) 0.10 0.32 0.32 0.77
Ridge |Dallago et al.|(2022]) 0.34 0.28 0.59 0.76
CNN |Dallago et al.|(2022) 0.51 0.17 0.32 0.83
Levenshtein Dallago et al.](2022) 0.1 -0.17 0.16 0.01
BLOSUMBS62 Dallago et al.[(2022) -0.13 0.15 0.14 0.01
Our model \ 0.42 | 028 [ o061 | 087

5 CONCLUSIONS

We combined a variational autoencoder (VAE) and autoregressive generator (WaveNet) for protein
design, avoiding the need of multiple-sequence aligned input data. To avoid posterior collapse when
combining VAEs and WaveNet models, we implemented a Infomation Maximizing VAE (InfoVAE),
adding a mutual information term to the common ELBO training objective, improving amortized
inference, and forcing the decoder to use the latent conditional information. We find that generative
model is able to learn meaningful latent space representations from homologous protein families,
which can be leveraged to design novel functional sequences with length variability. We find that
generated structures can be realized by sequence designs that are predicted by AlphaFold 2 to adopt
tertiary structures in good agreement with the native fold. Additionally, we find that when the model
is trained on unaligned versus aligned input sequences, the diversity of the generated sequences can
improve, illustrating a potential advantage of using an autoregressive decoder. We extended our
model to a semi-supervised learning paradigm and benchmarked the model on 4 different fitness
landscape prediction tasks from FLIP and TAPE. We find that our model can outperform many
baseline scores for the AAV and GB1 tasks. In addition, the model can compete against state-
of-the-art performance for the GFP task, but underperforms in predicting the stability landscape
tasks. These results and analysis suggest our deep generative model is capable of successful protein
design of variable length sequences, inferring meaningful biological representations, and effectively
predicting fitness from sequence alone.
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A APPENDIX

Table 2: Primary structure of the generated SH3 proteins in Figure 4]

Label | Primary structure | AA Iength
WT DDNFIYKAKALYPYDADDDDAYEISFEQNEILQVSDIEGRWWKARRANGETGIIPSNY VQLIDGPEEMHR 70
A ASTLFYARALYDYTAQGDDELSVAEGDLLY VLERDDDGWWKAEKDGGAGGEPAEPIELLNP 6 1
B APAVETATALYDYEAQADGDLSFSFGDRITIVERTNSDDWW Y GRNNRGEFGFFPANY VE 5 9
C APGGVYAVVLYDFDANGDDEVDVKEGEELVILDRSNPEWFVAKNPATGEPV 5 1
D APPKKVARALYDFTAEGDDELDVKEGDVVLVLEKDDGYWLVVKDDGTGGGPVVWLQSCYAVTDSSGLVPVSY VEIVPASTT 8 1

Table 3: Primary structure of the generated CM proteins in Figure 3]

Label | Primary structure | AAlength
WT PLLALREKISALDEKLLALLAERRELAVEVGKAKLLSHRPVRDIDRERDLLERLITLGKAHHLDAHYITRLFQLIIEDSVLTQQALLQQHLNKIN 95

A SDLEELREEIDQIDRQIIDLLAERMKRVREVGQYKISKGGPVFDPPREAEVIERLRRLAAAPLGDPERVAALLRRLIEESVLDQLDEELVK 9 1

B SDLEELREEIDQIDRQIDELLAERLKLVAEVGEYKASIGLPVYDPKREAQVLDRLRELAKNAGLDPEFAELFLDFVIAEIIRHHEAIQNK 90

C SDLEELREEIDQIDRQIIDLLNERMKIVREVGEYKISKGLPVYDPEREKQ 5 0

D SDAELLELRRRQIDIDDARLELLAERRRRVAEVAALKKLANGLPRRFRREEAVLLKRLSRAAEPPGPADVAALLRRLIRAAARAQAAEAFAERRRL 96
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Figure 7: All of the possible 2D projections of the CM latent space.. In (A), the latent embeddings
of the natural homologs when the model is trained on aligned input data. While in (B), the latent
embeddings of natural homologs are shown when the model is trained on unaligned input data.
Regardless whether the model is trained on aligned or unaligned input data, the encoder learns
an embedding that discriminates between high activity orthologs (red) from low activity paralogs
(blue). Importantly, no functional assay data was provided to the model during training and the
unsupervised model learned this partitioning based on sequence data alone.

Table 4: AAV performance comparison to current baseline scores (metric: Spearman correlation).

Mut-des | des-mut | low-vs-high

Architecture p p p
ESM-1b Dallago et al.[(2022) 0.76 N/A 0.39
ESM-1v Dallago et al.| (2022)) 0.79 N/A 0.34
Ridge |Dallago et al.|(2022) 0.64 0.53 0.12
CNN Dallago et al. (2022) 0.71 0.75 0.34
Levenshtein |Dallago et al.[(2022) 0.60 -0.07 0.25
BLOSUMBG62 Dallago et al.[(2022) N/A N/A N/A
Our model | 082 | 0.78 0.17
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Figure 8: All of the possible 2D projections of the CM latent space.. In (A-B), the latent embeddings
of the natural and synthetic design homologs when the model is trained on aligned input data. While
in (C-D), the latent embeddings of natural and synthetic design homologs are shown when the model
is trained on unaligned input data. Regardless whether the model is trained on aligned or unaligned
input data, the encoder is able to learn a latent space that retains the Gaussian structure and learns
representations, clusters of high fitness regions. Importantly, the synthetic design sequneces are data
from the hold-out set, demonstrating the model’s ability to generalize.
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Table 5: AAV performance comparison to current baseline scores on mutagenesis-based dataset
splits (metric: Spearman correlation).

1-vs-rest | 2-vs-rest | 7-vs-rest

Architecture P p p
ESM-1b Dallago et al.[(2022) 0.03 0.65 0.65
ESM-1v |Dallago et al.| (2022) 0.10 0.70 0.70
Ridge Dallago et al.|(2022) 0.22 0.03 0.65
CNN |Dallago et al.[(2022) 0.48 0.74 0.74
Levenshtein Dallago et al.[(2022) -0.11 0.57 0.53
BLOSUMBG62 Dallago et al.[(2022) N/A N/A N/A
Our model | 061 [ 074 | 071

Table 6: GFP state-of-the-art scores (metrics: mean squared error MSE and spearman correlation
p). Here, the metrics are evaluated on both the bright and dark modes. In Table[8]and [J] the metrics
are evaluated on the bright and dark mode of the test set.

Full  Full

Architecture Pretraining MSE p
TAPE Transformer Rao et al.| (2019) no pretraining 259  0.22
TAPE LSTM [Rao et al.[(2019) no pretraining 235  0.21
TAPE ResNet |Rao et al.[(2019) no pretraining 2.79  -0.28
ESM |Dallago et al.| (2022) masked language N/A  0.68
TAPE Transformer Rao et al.| (2019) masked language 022  0.68
TAPE LSTM Rao et al.|(2019) bidirectional language | 0.19  0.67
TAPE ResNet |Rao et al.| (2019) masked language 3.04 021
UniRep Alley et al.|(2019) language + structure | 0.20  0.67
LSTM Bepler & Berger|(2019) supervised 2.17 033
CPCProt|Lu et al.| (2020) contrastive N/A  0.68
CPCProt-LSTM [Lu et al.| (2020) contrastive N/A  0.68
Linear regression Shanehsazzadeh et al.| (2020) none 0.35 0.68
CNN |Shanehsazzadeh et al. (2020) none 023  0.68
Mutation count |Dallago et al.| (2022)) none N/A 045
BLOSUMG62 score [Dallago et al.|(2022) none N/A  0.50
Our model no pretraining [ 021  0.67

Table 7: Overall stability prediction results on the test set (metrics: Spearman’s correlation p and
accuracy)

Architecture ‘ Spearman’s p ‘ Accuracy
Transformer (No pretraining) -0.06 0.5
LSTM (No pretraining) 0.28 0.6
ResNet (No pretraining) 0.61 0.68
Transformer (Pretrained) 0.73 0.70
LSTM (Pretrained) 0.69 0.69
ResNet (Pretrained) 0.73 0.66
Supervised 0.64 0.67
UniRep 0.73 0.69
Baseline 0.19 0.58
Our model \ 0.51 | N/A
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Table 8: GFP benchmark scores on the bright mode only (metrics: mean-squared error and Spear-
man’s p).

Bright Bright
Architecture Pretraining MSE P
TAPE Transformer|Rao et al.[(2019) no pretraining 0.08 0.08
TAPE LSTM Rao et al.|(2019) no pretraining 0.11 0.05
TAPE ResNet Rao et al.| (2019) no pretraining 0.07 -0.07
ESM Dallago et al.| (2022) masked language N/A N/A
TAPE Transformer [Rao et al.|(2019) masked language 0.09 0.60
TAPE LSTM [Rao et al.[(2019) bidirectional language | 0.12 0.62
TAPE ResNet |Rao et al.[(2019) masked language 0.12 0.05
UniRep Alley et al|[(2019) language + structure 0.13 0.63
LSTM Bepler & Berger|(2019) supervised 0.08 0.06
CPCProt|Lu et al. (2020) contrastive N/A N/A
CPCProt-LSTM [Lu et al.| (2020) contrastive N/A N/A
Linear regression [Shanehsazzadeh et al.| (2020) none 0.09 0.68
CNN |Shanehsazzadeh et al.| (2020) none 0.12 0.66
Mutation count|Dallago et al.[(2022]) none N/A N/A
BLOSUMBG62 score |Dallago et al.| (2022) none N/A N/A
Our model no pretraining | 0.I18  0.54

Table 9: GFP benchmark scores on the dark mode only (metrics: mean-squared error and Spear-
man’s p).

Dark Dark

Architecture Pretraining MSE p

TAPE Transformer Rao et al. (2019) no pretraining 3.79 0
TAPE LSTM Rao et al.|(2019) no pretraining 343 -0.01
TAPE ResNet |Rao et al.[(2019) no pretraining 41 -0.01
ESM |Dallago et al.| (2022) masked language N/A  N/A
TAPE Transformer Rao et al.|(2019) masked language 0.29  0.05
TAPE LSTM Rao et al.| (2019) bidirectional language | 0.22  0.04
TAPE ResNet |Rao et al.| (2019) masked language 445 0.02
UniRep Alley et al.|(2019) language + structure | 0.24  0.04
LSTM Bepler & Berger|(2019) supervised 3.17  0.02
CPCProt|Lu et al. (2020) contrastive N/A N/A
CPCProt-LSTM [Lu et al.| (2020) contrastive N/A N/A
Linear regression Shanehsazzadeh et al.| (2020) none 033  0.05
CNN [Shanehsazzadeh et al.| (2020) none 0.28 0.05
Mutation count Dallago et al.|(2022) none N/A N/A
BLOSUMG62 score [Dallago et al.|(2022) none N/A N/A
Our model no pretraining [ 027  0.06
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