
Representing Positional Information in
Generative World Models for Object Manipulation

Stefano Ferraro1 Pietro Mazzaglia1 Tim Verbelen2 Bart Dhoedt1 Sai Rajeswar3

1 Ghent University, 2 VERSES, 3 ServiceNow
stefano.ferraro@ugent.be

Abstract

The ability to predict outcomes of interactions between embodied agents and
objects is paramount in the robotic setting. While model-based control methods
have started to be employed for tackling manipulation tasks, they have faced
challenges in accurately manipulating objects. As we analyze the causes of this
limitation, we identify the cause of underperformance in the way current world
models represent crucial positional information, especially about the target’s goal
specification for object positioning tasks. We propose two solutions for generative
world models: position-conditioned (PCP) and latent-conditioned (LCP) policy
learning. In particular, LCP employs object-centric latent representations that
explicitly capture object positional information for goal specification. This naturally
leads to the emergence of multimodal capabilities.

1 Introduction

Among RL algorithms, model-based approaches aim to provide greater data efficiency compared
to their model-free counterparts [4, 6]. With the advent of world models (WM) [5], model-based
agents have demonstrated impressive performance across various domains [8, 17, 10, 13], including

Figure 1: The world model compresses input obser-
vations into a single or per object latent state repre-
sentation. The compressed representation serves as
input to the policy for action selection. (top) Goal
information is provided through the input state vec-
tor. (bottom): Both single and object-centric rep-
resentations can be paired to a target-conditioned
policy.

real-world robotic applications [22, 20].

When considering robotic object manipulation
tasks, it seems natural to consider an object-
centric approach to world modeling. Object-
centric world models, like FOCUS [3] learn a
distinct dynamical latent representation per ob-
ject. This contrasts with the popular Dreamer
method [10], where a single flat representation,
referring to the whole scene is extracted.

Model-based generative agents, like Dreamer
and FOCUS, learn a latent model of the environ-
ment dynamics by reconstructing the agent’s ob-
servations and use it to generate latent sequences
for learning a behavior policy in imagination [8–
10]. However, these kinds of agents have shown
consistent issues in succeeding in object manip-
ulation tasks, both from proprioceptive/vector
inputs [11] and from images [19].

After analyzing the causes of failure of generative agents, we propose two solutions to improve
performance:

Accepted at the Intrinsically Motivated Open-ended Learning workshop at NeurIPS 2024.

• a simpler solution, where the target is expressed as a vector of spatial coordinates, that
presents no major changes to the model architecture and minimal changes to policy learning;

• a tailored solution employing an object-centric approach that integrates positional informa-
tion about the objects into the latent space of the world model. This approach enables the
possibility to specify goals through multimodal targets, e.g. vector inputs or visual goals.

2 Analysis of the Current Limitations

Figure 2: (left): examples of virtual targets. (top-
right): Dreamer’s success rate and reconstruction
performance over target and entity position (end-
effector position for reacher and cube position for
the cube environment). (bottom-right): Equiva-
lent for the FOCUS object-centric model.

To provide insights into the limitations of
current world model-based agents in object-
positioning tasks, we consider the performance
of Dreamer and FOCUS on a pose-reaching and
an object-positioning task. For pose-reaching,
we opted for the Reacher environment from the
DMC suite [21]. In this task, we consider the
end-effector of the manipulator as the entity to
be positioned at the target location. For the more
complex object positioning task, we opted for
a cube-manipulation task from Robosuite [24].
The given cube has to be placed at the specified
target location to succeed in the task.

In both environments, the target position is uni-
formly sampled within the workspace at every
new episode. We test the environments in two
different scenarios: first, with a virtual visual
target that is rendered in the environment, and
second, without a visual target, where the target location is provided only as a vector in the agent’s
inputs. Training details are provided in appendix G. Based on Fig. 2, we highlight the significant
gap in performance between the tasks with the virtual visual targets rendered in the environment and
the tasks using only spatial coordinates as a target. The agents struggle to solve the tasks without a
virtual target. It can also be noticed a negative correlation between the agents’ ability to reconstruct
positional information and the performance on the task. This is particularly evident for the target
position, but it also seems to apply to the entity position.

There is a significant difference in the relative significance of the target information compared to
the entire observation, in terms of their dimensionality. The information pertaining to a positional
target comprises a maximum of three values (i.e., the xyz coordinates of the target). Conversely, when
considering a visual cue, there are three values (i.e., RGB values) for each pixel that represents the
target cue. Consequently, the relative significance of the target information is, at least, greater in
the case of a large visual target, i.e. larger than a single pixel. This difference in the dimensionality
affects the computation of the loss, and thus the weight of each component in the decoder’s loss.
For the entity, the agents have access to this information in the visual observation. Indeed, it’s not
surprising that both agents reconstruct the entity position accurately. To confirm our hypothesis that
the improved predictions are due to the greater significance of the visual targets in the overall loss,
we provide additional experiments in appendix C.

Discussion. A concurrent work [14] conducted an extensive study between the interplay of the reward
and the observation loss in a world model. Our analysis provides an additional insight, as we identify
within the observation loss, an unbalance between the different decoded components. In this work,
rather than focussing on how to balance the losses (Appendix D), we consider different approaches
to alleviate this issue. The central idea is to find alternative ways to provide positional information
about the target directly to the reward computation and policy learning modules, rather than relying
on the reconstruction of the targets obtained by the model.

3 Conditioned Policy

Position Conditioned Policy (PCP). The first declination of our proposed solutions is the condition-
ing of the policy directly on the positional coordinates of the desired target. By default, the world

2

model encodes the target’s positional information in the latent states, which are then fed to the policy
for behavior learning. Instead, as shown in the bottom of Fig. 1, we propose to concatenate the object
positional coordinates pobjg to the latent states st as an input to the policy network. We refer to this
strategy as Position-Conditioned Policy (PCP): πPCP (at|st, pobjg)

When employing PCP, the policy has direct access to the target’s positional information pobjg . This
can also be leveraged for reward computation. Rather than learning a reward head, we can use the
world model’s decoder to predict the object’s position at time t, obtaining p̂objt . Then, the reward
rPCP can be estimated as the distance between the target given to the policy and the reconstructed
position of the entity of interest: rPCP = dist(p̂objt − pobjg)

Figure 3: LCP leverages an object-centric represen-
tation. With the latent position encoder network,
the agent learns to predict the latent of each object
in the scene given the sole object position. The
policy is then conditioned on an object latent target
obtained from the target goal observation. Distance
functions are expressed as cosine similarities.

Latent Conditioned Policy (LCP). Condition-
ing the policy on explicit features has its lim-
itations, particularly when extending features
beyond positional ones, or when working with
different goal specifications, e.g. visual ones.
Therefore, expressing features implicitly could
represent a more robust approach. To address
this, we propose a latent conditioned method
for behavior learning. This approach is anal-
ogous to the one adopted in LEXA [15] for
goal-conditioned behavior learning. However,
we tailor our strategy for object manipulation
by designing an object-centric approach. We
refer to our novel implementation as Latent-
Conditioned Policy (LCP).

In LEXA, policy conditioning occurs on the
entire (flat) latent state, using either cosine or
temporal distance methods. However, in manip-
ulation tasks involving small objects, the cosine
approach is inadequate because it prioritizes matching the robot’s position over visually smaller
aspects of the scene, such as an object’s position, rather than on bigger visual components of the
scene, e.g. the robot pose. The temporal approach was introduced to mitigate this issue. However,
this approach generally requires a larger amount of data to converge, as the training signal is less in-
formative, being based only on the temporal distance from the goal [15]. We argue that object-centric
latent representations offer greater flexibility to condition the policy, thanks to the disentangled latent
information. With LCP, we can condition the policy solely on the object’s latent states, enabling
fine-grained target conditioning focused exclusively on the entity of interest.

Latent Positional Encoder. To obtain object latent features for a given target position, we introduce
the Latent Positional Encoder model, as shown in Fig. 3. This model enables inferring an object’s
latent state directly from the object’s positional information, namely p(ŝobjt |pobjt).

During training, the latent positional encoder is trained to minimize the negative cosine distance

between the predicted and the reference object latent state: Lpos = − ŝobjt ·sobjt

∥ŝobjt ∥∥sobjt ∥

Compared to the original loss function of FOCUS (defined in Appendix E), the world model loss
becomes: Locwm = LFOCUS + Lpos

Latent-Conditioned Policy Learning. The introduction of the latent positional encoder enables
the conditioning over the target object’s latent. By encoding a desired target position pobjg , the target
object’s latent state sobjg is inferred. The latter serves as the conditioning factor for the policy network:
πLCP (at|st, sobjg). To incentivize the policy to move the entity of interest to the target location, we
maximize the negative latent distance between ŝobjt and sobjg . The distance function used is cosine

similarity. rLCP becomes then: rLCP =
ŝobjt ·sobjg

∥ŝobjt ∥∥sobjg ∥

Visual targets. Additionally with respect to PCP, LCP enables conditioning the policy on visual
targets. In this case, the agent does not use the latent position encoder. Instead, given a visual
observation representing the goal target position for the object, the world model can infer the

3

corresponding world model state, using the encoder and the posterior. Then given such a state, the
object extractor allows extracting the target latent state sobjg , which is used in the reward computation.

Dreamer FOCUS Dreamer
+ PCP

FOCUS
+ PCP

FOCUS
+ LCP

Reacher 0.27 ± 0.11 0.29 ± 0.1 0.8 ± 0.08 0.87 ± 0.04 0.91 ± 0.02
Cube move 0.35 ± 0.05 0.35 ± 0.08 0.54 ± 0.04 0.74 ± 0.04 0.61 ± 0.05
Shelf place 0.4 ± 0.06 0.3 ± 0.1 0.58 ± 0.08 0.59 ± 0.1 0.65 ± 0.08
Pick&Place 0.26 ± 0.13 0.22 ± 0.12 0.48 ± 0.15 0.47 ± 0.17 0.45 ± 0.17
Overall 0.32 ± 0.08 0.29 ± 0.09 0.6 ± 0.09 0.67 ± 0.09 0.65 ± 0.08

Table 1: Average score for 100 goal points equally dis-
tributed over the workspace. Performance is averaged over
3 seeds, ± indicates the std. error.

4 Results

We now present the evaluation of the
trained models (training details in Ap-
pendix G) for a set of 4 environments
(Appendix F). The score function consid-
ered is presented in Appendix, Eq. 2 .

Spatial-coordinates goal specification. By providing the different agents with goals uniformly
distributed in the workspace we extract the overall performance of each method. Results are presented
in Table 1. Overall, the FOCUS agent equipped with PCP or LCP gives the best performance,
followed by Dreamer + PCP. In the "Cube move" setting where the cube object is close to the camera,
PCP has an edge, we think this is influenced by the accurate position prediction coming from the
world model, which is trained using more accurate position information (bigger segmentation mask
→ better granularity in position). Instead, in the "Shelf place" environment, the latent representation
of LCP represents best. Given that the camera is further away from the scene, we believe the agent is
better able to deal with the inaccuracies that come from the inaccurate position readings.

Figure 4: The mean score was achieved over 10
episodes with goal observations for latent condi-
tioning. The performance of our method with
spatial-coordinate goals (pos) is shown as a ref-
erence. Performance is averaged over 3 seeds.

Visual goal specification. An emergence prop-
erty of FOCUS + LCP is the possibility to define
goals via different modalities. The policy πLCP

can be conditioned on the goal object latent ŝobjg
coming from the encoding of the visual goal xg .

We compare our method with visual goal con-
ditioning against LEXA cosine and temporal.
The goal locations are provided to the simulator
which renders the corresponding goal observa-
tions by "teleporting" the object to the correct
location. The agent is then asked to matched the
visual goal, after resetting the environment. Re-
sults are shown in Fig. 4, where the positional
conditioning results are shown for reference.

As stated before, LEXA matches the flat latent vector to the goal one. This proves helpful in the
Reacher environment, where the only part that moves is the agent, and thus LEXA cosine achieves
the best performance. LEXA cosine fails in the other tasks, given the presence of multiple entities in
the observations and visual goals, i.e. the robotic arm and the object. where the model focuses on
matching the visually predominant features i.e. the robotic arm. FOCUS+LCP performs better than
both LEXA with cosine and temporal distance in all environments but the Reacher. When compared
to the performance of FOCUS+LCP with spatial-coordinates goal specification, there is a decrease of
only ∼10% in performance.

5 Conclusion

We analyzed the challenges in solving visual robotic positional tasks using generative world model-
based agents. We found these systems suffer from information bottleneck issues when considering
positional information for task resolution (i.e. goal position).

The approaches we presented overcome this issue by providing the policy network with more direct
access to the target information. Positional Conditioning Policy (PCP), allows direct conditioning
on the target spatial coordinates. We showed PCP improves performance for any class of world
models, including Dreamer-like "flat" world models and FOCUS-like object-centric world models.
Latent Conditioning Policy (LCP), is an object-centric approach that we implement on top of FOCUS.
This allows the conditioning of the policy on object-centric latent targets, enabling multimodal goal
definition. Results show the promise of this approach as a multimodal goal-specification method.

4

References
[1] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark

reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.

[2] J. Fan. A review for deep reinforcement learning in atari:benchmarks, challenges, and solutions,
2023. URL https://arxiv.org/abs/2112.04145.

[3] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt. Focus: Object-centric world models for
robotics manipulation, 2023.

[4] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods, 2018.

[5] D. Ha and J. Schmidhuber. World models. 2018. doi: 10.5281/ZENODO.1207631. URL
https://zenodo.org/record/1207631.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018.

[7] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In ICML, pages 2555–2565, 2019.

[8] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. 2020. URL https://arxiv.org/pdf/1912.01603.pdf.

[9] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In ICLR, 2021.

[10] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[11] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control, 2024.

[12] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.

[13] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models
for real-world robot manipulation, 2024.

[14] H. Ma, J. Wu, N. Feng, C. Xiao, D. Li, J. Hao, J. Wang, and M. Long. Harmonydream: Task
harmonization inside world models, 2024. URL https://arxiv.org/abs/2310.00344.

[15] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models, 2021.

[16] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. A. Tezak, J. Tworek, P. Welinder, L. Weng,
Q. Yuan, W. Zaremba, and L. M. Zhang. Solving rubik’s cube with a robot hand. ArXiv,
abs/1910.07113, 2019.

[17] S. Rajeswar, P. Mazzaglia, T. Verbelen, A. Piché, B. Dhoedt, A. Courville, and A. Lacoste.
Mastering the unsupervised reinforcement learning benchmark from pixels. 2023.

[18] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. In ICML, 2020.

[19] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for
visual control, 2022.

[20] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for
visual robotic manipulation, 2023.

5

https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/2112.04145
https://zenodo.org/record/1207631
https://arxiv.org/pdf/1912.01603.pdf
https://arxiv.org/abs/2310.00344

[21] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software
Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.org/10.1016/j.simpa.2020.100022.
URL https://www.sciencedirect.com/science/article/pii/S2665963820300099.

[22] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. Daydreamer: World models for
physical robot learning, 2022.

[23] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

[24] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu. robo-
suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

6

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/1910.10897

Appendix

A Preliminaries

The agent is a robotic manipulator that, at each discrete timestep t receives an input xt from the
environment. The goal of the agent is to move an object in the environment from its current position
pobjt to a target goal position pobjg .

In this work, we focus on observations composed of both visual and vector entities. Thus, xt = (ot, vt)
is composed of the visual component ot and of the vector vt. The latter is a concatenation of
proprioceptive information of the robotic manipulator qt, the object’s position pobjt , and the target
position pobjg . The target position can also be expressed through a visual observation xg , from which
the agent should infer the corresponding pobjg to succeed in the positioning task.

A.1 Generative World Models

Generative world models learn a latent representation of the agent inputs using a variational auto-
encoding framework [12]. Dreamer-like agents [9, 10] implement the world model as a Recurrent
State-Space Model (RSSM) [7]. The encoder f(·) is instantiated as the concatenation of the outputs of
a CNN for high-dimensional observations and an MLP for low-dimensional proprioception. Through
the encoder network, the input xt is mapped to an embedding et, which then is integrated with
dynamical information with respect to the previous RSSM state and the action taken at, resulting in
st features.

Encoder: et = f(xt)

Posterior: pϕ(st+1|st, at, et+1),

Prior: pϕ(st+1|st, at),
Decoder: pθ(x̂t|st).

Generally, the system either learns to predict the expected reward given the latent features [8], using a
reward predictor pθ(r̂t|st). Alternatively, some world-model based methods adopt specialized ways
to compute rewards in imagination, as the goal-conditioned objectives in LEXA [15].

Rewards are computed on rollouts of latent states generated by the model and are used to learn the
policy π and value network v in imagination [8–10].

In our experiments, we consider a world model with a discrete latent space [9]. We also implement
advancements of the world model representation introduced in DreamerV3 [10], such as the applica-
tion of the symlog transform to the inputs, KL balancing, and free bits to improve the predictions of
the vector inputs and the robustness of the model.

A.2 Object-centric World Models

Compared to Dreamer-like flat world models, the world model of FOCUS [3] introduces the following
object-centric components:

Object latent extractor: pθ(s
obj
t |st, cobj),

Object decoder: pθ(x̂
obj
t , m̂obj

t |sobjt).

Here, xobj
t = (oobjt , pobjt) represents the object-centric inputs and it is composed of segmented RGB

images oobjt and object positions pobjt . The variable cobj indicates which object is being considered.

Thanks to the object latent extractor unit, object-specific information is separated into distinct
latent representations sobjt . Two decoding units are present. The introduced object-centric decoder
pθ(x̂

obj
t , m̂obj

t |sobjt) reconstructs each object’s related inputs xobj
t and segmentation mask mobj

t . The
original Dreamer-like decoder takes care of the reconstruction of the remaining vector inputs, i.e.
proprioception qt and given goal targets pobjg .

We provide additional descriptions of the world model and policy learning losses, hyperparameters,
and training details in the Appendix.

7

A.3 Object Positioning Tasks

In general terms, we consider positioning tasks the ones where an entity of interest has to be moved
to a specific location. Two positioning scenarios are considered in this analysis: pose reaching and
object positioning. Pose-reaching tasks can be seen as simplified positioning tasks where the entity
of interest is part of the robotic manipulator itself. Pose-reaching tasks are interesting because these
only require the agent to have knowledge of the proprioceptive information to infer their position in
space and reach a given target. When interacting with objects instead, there is the additional necessity
of knowing the position of the object entity in the environment. Then, the agent needs to be able to
manipulate and move the entity to the provided target location.

For object positioning tasks, especially when considering a real-world setup, there is a significant
advantage in relying mainly on visual inputs. It is convenient because it avoids the cost and difficulty
associated with tracking additional state features, such as the geometrical shape of objects in the
scene or the presence of obstacles. Some synthetic benchmarks additionally make use of "virtual"
visual targets for positioning tasks [21, 23], which strongly facilitates the learning of these tasks,
leveraging rendering in simulation. However, applying such "virtual" targets in real-world settings is
not often feasible. Non-visual target locations can be provided as spatial coordinates. Alternatively,
an image showing the target location could be used to specify the target’s position.

Rewards and evaluation criteria. When applying RL algorithms to a problem, a heavily engineered
reward function is generally necessary to guide the agent’s learning toward the solution of the task
[16]. The object positioning setup allows us to consider a natural and intuitive reward definition
that scales across different agents and environments. We define the reward as the negative distance
between the position of the entity of interest and the goal target position:

rt = −distance(object, target) = −∥pobjt − pobjg ∥2. (1)

In the spirit of maintaining a setup that is as close as possible to a real-world one, to retrieve positional
information pt of the objects we rely on image segmentation information, rather than using the
readings provided from the simulator. For each entity of interest, the related position is extracted by
computing the centroid of the segmentation mask and subsequently transformed according to the
camera extrinsic and intrinsic matrices to obtain the absolute position with respect to the workspace.

For evaluation purposes, we use the goal-normalized score function:

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(2)

As detailed in the Appendix, the above function allows us to rescale performance between 0 and 1,
where 1 = expert performance, a common evaluation strategy in RL [1, 2].

B Normalized score

Scaling performance using expert performance is a common evaluation strategy in RL [1, 2]. In our
problem, we define the reward as the negative distance:

rt = −r(pobjt) = −∥pobjt − pobjg ∥2. (3)

For a given goal pobjg , rt ∈] − inf, 0]. In order to compare different tasks, where distances may
have different magnitudes, we divide the rewards rt by the typical reward range. This is given by
rmax − rmin, where rmin = r(pobj0), with p0 being the initial position of the object (this is normally
around the origin, and rmax = r(pobjg) = 0.

Thus, we obtain:

st = rt/(rmax − rmin) (4)

= r(pobjt)/(0− r(pobj0)) = (5)

= −∥pobjt − pobjg ∥2/(0 + ∥0− pobjg ∥2) (6)

= −∥pobjt − pobjg ∥2/∥pobjg ∥2 (7)

8

Figure 5: Dreamer virtual visual goal modulation experiments on the Reacher environment. Value
prediction from the value network is shown to highlight the policy’s awareness of the lack of
information with respect to the target goal.

Finally, we apply the exp operator, to make values positive and bring them in the [0, 1] range, where
1 is the expert score:

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(8)

C Target size ablation

In Figure 5, we present a study where the Dreamer model is trained on the Reacher environment with
varying visual target sizes.

We observe that the reduction in pixel information regarding the target adversely affects the target
representation within the model, resulting in a deficiency of this information being conveyed to the
policy network. The policy struggles to learn to position the entity at the correct location, and we
observe that this is correctly reflected in the value function’s predictions. This means the policy
is aware that is not being able to reach the goal. With small targets (< 5 pixels diameters), the
representation tends to put more attention on other visually predominant aspects of the environment,
struggling to predict the position of the target. In the case of a single pixel target, the amount of target
information equals the one of a positional vector and, as expected, the task performance is equally
low.

D Loss rescaling ablation

To overcome the identified information bottleneck, different strategies can be considered. The
simplest one is the re-scaling of the loss components in the decoder to incentivize the model’s
encoding of the target information. This approach requires finding the optimal scaling factor between
the different decoding components, given the complexity of the environment at hand (i.e. 2D or 3D)
and the amount of relevant pixels. In Figure 6, we present supporting experiments based on Dreamer,
where we vary the importance of the target in the loss of the world model, using different coefficients.
We observe that very high coefficients improve the target’s reconstruction and thus allow the agent to
learn the task. However, the optimal loss coefficient may vary, depending on the complexity of the

Figure 6: Dreamer trained with goal scaling modulation on the Reacher and Cube move environments.

9

environment and the presence of information-rich observations. As this naive solution may require
extensive hyperparameter tuning for each new scenario, we aim to find more robust strategies for
overcoming this issue.

E FOCUS objective

Training of the FOCUS architecture is guided by the following loss function:

LFOCUS = Ldyn + Lstate + Lobj. (9)

Ldyn refers to the dynamic component of the RSSM, and equals too:

Ldyn = DKL[pϕ(st+1|st, at, et+1)||pϕ(st+1|st, at)]. (10)

the backpropagation is balanced and clipped below 1 nat as in DreamerV3 [10].

The object loss component is instantiated as the composition of NLL over the mask and RGB mask
reconstructions:

Lobj = − log p(m̂t)︸ ︷︷ ︸
mask

− log

N∑
obj=0

mobj
t pθ(x̂t

obj|sobj
t)︸ ︷︷ ︸

masked reconstruction

(11)

Finally, the decoder learns to reconstruct the rest of vector state information vt by minimization of
the negative log-likelihood (NLL) loss:

Lstate = − log pθ(q̂t, p
obj
g |st) (12)

F Baselines and Environments

For the evaluation of the proposed method we consider several manipulation environments (Figure 7):

• Reacher (DMControl): which, as described previously, represents a pose-reaching position-
ing task.

• Cube move (Robosuite): where considered target locations are on the 2D plane of the table,
no height placement is considered.

• Shelf place and Pick&Place (Metaworld): The robotic manipulator has to place the cube
at the given target location. Considered target locations are on the 2D space in front of the
robotic arm.

In all environments, the reward signal is defined as the distance between the entity of interest (in the
Reacher environment, this is the end-effector) and the target location. All considered environments
lack any visual target; the target is provided as an input vector containing spatial coordinates.

We benchmark our methods against various baselines:

• Dreamer: based on a PyTorch DreamerV2 implementation, but integrated with input vector
symlog transformation and KL balancing of the latent dynamic representation, from the
DreamerV3 paper.

Figure 7: Simulation environments with relative workspace, delimited by an orange dotted line, and
the reference frames indicated with arrows.

10

• FOCUS: An object-centric world model implementation based on DreamerV2, also inte-
grated with input vector symlog transformation and KL balancing of the latent dynamic
representation.

• LEXA: Based on DreamerV2, this is a latent goal-conditioned method. The conditioning is
based on the full latent target. Both proposed distance methods (cosine and temporal) are
considered. We adopted our own PyTorch implementation for LEXA.

G Training details and Hyperparameters

All methods are trained following an offline RL training scheme. The offline datasets contain 1M
steps in the environment, which are collected using the object-centric exploration strategy proposed
in [3]. The datasets are loaded in the replay buffer of the offline agents, and the training is conducted
for 250K steps. Both world model and agent are updated at every training step. V100-16GB GPUs
have been used for all experiments. Our proposed methods (i.e. Dreamer/FOCUS + PCP, FOCUS +
LCP) took roughly 18 hours to complete each training run.

The hyperparameters used for the main implementation of the world models and agent are the same
used in DreamerV2 [9] official implementation. Symlog function is applied at every input. KL
balancing as in DreamerV3 [10] is implemented.

With reference to FOCUS model, we have the following additional parameters:

• Object-extractor: MLP composed of 2 layers, 512 units, ReLU activation;

With reference to FOCUS + LCP model, we have the following additional parameters:

• Object-encoder: MLP composed of 4 layers, 400 units, ReLU activation;

• Distance method object-encoder objective: Cosine similarity (also tested MSE)

• Distance method actor policy objective: Cosine similarity (also tested MSE)

Figure 8: Heatmaps of the mean achieved score for uniformly spread targets in the workspace.
References frames refers to the one presented in the figures of Table 1. The score notation is
expressed as the notation presented in Eq. 2. Results are averaged over 3 seeds.

11

H Heatmaps positioning tasks

To highlight the performance distribution over the different goals in the environment, in Fig. 8 we
present heatmaps with the score function for each target location in the workspace. Results are
presented for all the different tasks. As expected, both Dreamer and FOCUS have poor performances,
resulting in only a few positions being reached with a high score. All the proposed methods have a
similar distribution, reaching goals spread all over the environment.

I Offline Training Curves

Offline training curves are presented in Figure 9. In general FOCUS + PCP/LCP have faster
convergence when compared to all other methods. Only for the Reacher environment, LEXA cosine
converge faster.

Figure 9: Offline training curves. Standard deviation is omitted for graphical reasons. Mean score
refers to eq. 2 and is computed over 5 evaluation episodes, performed during the offline training. For
each episode, a random goal is selected out of a pool of 10 manually engineered ones.

J Explorations strategies

In the presented work each model is trained offline from a pre-recorded dataset. The dataset of
choice is obtained from pure exploration behavior. In Fig. 10 we compare the general performance
of LCP when trained on datasets acquired using different exploration strategies. We consider the
object-centric entropy maximization method proposed by Ferraro et al. [3] and Plan2Explore [18].

Figure 10: Mean score achieved over 10 episodes for models trained with both datasets obtained
from FOCUS exploration method (Object-Centric entropy maximization) and Plan2Explore. The
score is expressed according to equation 2.

Overall exploring by maximizing the entropy over the object’s latent, gives better performance in
the downstream task. We hypothesize this is related to the focus the exploration strategy puts on the
object of interest while disregarding background aspects in the scene.

12

	Introduction
	Analysis of the Current Limitations
	Conditioned Policy
	Results
	Conclusion
	Preliminaries
	Generative World Models
	Object-centric World Models
	Object Positioning Tasks

	Normalized score
	Target size ablation
	Loss rescaling ablation
	FOCUS objective
	Baselines and Environments
	Training details and Hyperparameters
	Heatmaps positioning tasks
	Offline Training Curves
	Explorations strategies

