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Abstract

Following step-by-step procedures is an essential component of various activities
carried out by individuals in their daily lives. These procedures serve as a guiding
framework that helps to achieve goals efficiently, whether it is assembling furniture
or preparing a recipe. However, the complexity and duration of procedural activities
inherently increase the likelihood of making errors. Understanding such procedural
activities from a sequence of frames is a challenging task that demands an accurate
interpretation of visual information and the ability to reason about the structure of
the activity. To this end, we collect a new egocentric 4D dataset CaptainCook4D
comprising 384 recordings (94.5 hours) of people performing recipes in real kitchen
environments. This dataset consists of two distinct types of activities: one in
which participants adhere to the provided recipe instructions and another in which
they deviate and induce errors. We provide 5.3K step annotations and 10K fine-
grained action annotations and benchmark the dataset for the following tasks: error
recognition, multi-step localization and procedure learning2.

1 Introduction

Have you ever excitedly prepared your favourite meal after a long day, only to be disappointed
upon realizing you missed a key ingredient? Such scenarios are common because performing long
step-by-step procedures increases the likelihood of making errors. While some errors are harmless
and can be corrected with little consequence, others can have detrimental consequences, particularly
those that occur during medical procedures or complex chemical experiments. Therefore, there is a
pressing need to build AI systems that can guide users in performing procedural activities [7].

A key problem we need to solve in order to build such AI systems is procedural activity understand-
ing, a challenging and multifaceted task that demands interpreting what is happening —specifically,
determining whether the person is following the procedure correctly or making an error, anticipating
what will happen, and planning the course of action to accomplish the goal. For effective inter-
pretation, the system must be capable of recognizing and categorizing actions while assessing the
current state of the environment. To anticipate what might happen next, it should be able to forecast
actions right from the start of the interaction or even before it begins. Additionally, planning a course
of action necessitates understanding the potential consequences of these actions. Numerous datasets
have been developed to improve our understanding of procedural activities. However, these datasets
only include videos of individuals performing step-by-step tasks correctly without making any errors.

∗ Corresponding Author , = UT Dallas, = University of Florida
2website: https://captaincook4d.github.io/captain-cook/
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Figure 1: Overview. Top: We constructed task graphs for the selected recipes. These graphs
facilitated sampling topological orders (cooking steps) that participants followed to perform. During
the execution of these steps, participants induced errors that were both intentional and unintentional
in nature. Bottom Left: We present the sensors employed for data collection. Bottom Right: We
describe the details of the modalities of the data collected while the participant performs the recipe.

But, for AI systems to effectively identify errors in procedural activities, it is essential to have datasets
that include both normal and error videos along with corresponding error annotations (descriptions).

Contributions. We introduce an egocentric3 4D dataset designed to enhance AI systems’ understand-
ing of procedural activities and improve their ability to recognize and anticipate errors.

– Our dataset features participants performing recipes in real kitchen environments (Fig. 1). It
includes two distinct types of activities: one where the participants follow the given recipe
guidelines and another where they deviate (intentionally or unintentionally), making errors.

– We provide annotations for (a) Start and end times for each step of the recipe, (b) Start
and end times for each fine-grained action/interaction for 20% of the collected data, and
(c) Detailed descriptions of the errors made by participants, which allowed us to compile a
comprehensive overview of different error categories along with their brief explanations.

– We provide baselines for the following procedure understanding tasks: (a) Error Recognition
(supervised and zero-shot), (b) Multi-Step Localization, and (c) Procedure Learning.

2 Related Work

Understanding procedural activities with errors has witnessed significant traction recently and spurred
the development of new datasets (see Table 1) that aid in developing novel approaches to recognize er-
rors. Our dataset sets itself apart from others4 by four distinctive features: (1) Domain: While others
address errors during assembly and disassembly, we focus on cooking activities5. (2) Environment:
Unlike lab environments, we collected our dataset in real kitchen environments. (3) Multimodal
capabilities, and (4) Error diversity. In this section, we briefly highlight the relevance of our dataset
to the various tasks of interest and provide a comprehensive review of related work in Appendix A.

Temporal Action Localization (TAL) in videos aims to identify and classify temporal boundaries
of action instances in long video sequences. TAL methods can be categorized into two primary
approaches: two-stage and single-stage. Two-stage methods operate in a sequential manner by
initially generating action proposals and subsequently classifying them. In contrast, single-stage

3An egocentric view despite ego motions helps minimize occlusions more effectively than exo-centric videos.
4To the best of our knowledge, we are the first to categorize and provide brief descriptions for the error types.
5Cooking activities are inherently complex and encompass several types of diverse cascading and non-

cascading errors that can compound and often alter the state of the environment with no point of return.
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Table 1: Ours vs Current Procedural Datasets (with/without errors): Our dataset not only advances the study
of procedural tasks found in existing literature but also enables a systematic analysis of errors in procedures.

Procedural Errors Dataset Name Domain / Environment Ego Depth Recorded Error Labels Errors Nature Hours Year

× × Epic-Kitchens [3] Cooking / Real ✓ × ✓ - - 100 2018
Ego4D [41] Daily-Life / Real ✓ ✓ ✓ - - 3000 2023

✓ ×

50 Salads [36] Cooking / Real × ✓ ✓ - - 4.5 2013
Breakfast [25] Cooking / Real × × ✓ - - 77 2014
MPII Cooking 2 [33] Cooking / Real × × ✓ - - 27 2015
YouCook2[43] Cooking / Real × × × - - 176 2017
EGTEA Gaze+ [26] Cooking / Real ✓ × ✓ - - 29 2020
EgoProceL [1] Assembly / Real, Lab ✓ × ✓ - - 62 2022

✓ ✓ EgoTV [32] Cooking / Simulated ✓ × - ✓ Intentional 168 2023

✓ ✓

Assembly101 [10] Toy Assembly / Lab ✓ × ✓ Partial* Unintentional 53 2022
CSV [28] Chemistry / Lab × × ✓ × Intentional 11.1 2022
HoloAssist [40] Assembly*/ Lab ✓ ✓ ✓ ✓ Unintentional 166 2023
IndustReal [34] Toy Assembly / Lab ✓ ✓ ✓ ✓ Int. and Unint. 5.8 2024
ATA [17] Toy Assembly / Lab ✓ × ✓ ✓ Intentional 24.8 2024

✓ ✓ CaptainCook4D (Ours) Cooking / Real ✓ ✓ ✓ ✓ Int. and Unint. 94.5 2024

methods streamline the process by simultaneously performing action localization and classification,
thus integrating both tasks into a single step. Datasets such as ActivityNet [9], Ava [21], Thumos14
[24], Epic-Kitchens [4], and Ego4D [20], helped develop advanced methods for TAL. Supervised
Multi-Step Localization (MSL) task, while similar to TAL, specifically targets procedural datasets.

Remark. Our dataset, featuring both normal and erroneous actions, offers a unique perspective and
helps evaluate the robustness of the MSL(TAL) methods in handling actions with deviations (errors).

Error Recognition in videos aims to identify errors (deviations from procedure text) in procedural
activities. It was introduced as mistake detection by Assembly-101 [10] where a multi-class classi-
fication problem was formulated to classify the given clip corresponding to a procedure as correct,
mistake or correction. Anomaly detection, while closely related to error recognition, differentiates
itself by using static cameras and backgrounds to identify abnormal behaviour. Recently, [15] pro-
posed an online error recognition method. Using Vision-and-Language Models (VLMs), they predict
future actions and compare these predictions with actual observations to recognize errors online6.

Remark. Unlike assembly, cooking involves continuous changes in the shape and color of the
ingredients thus making our dataset valuable for developing error recognition methods transferable to
procedural activities in the medical sector or that involve performing complex chemical experiments.

Procedure Learning in videos aims to identify the key steps in long video sequences and determine
their logical order to complete a procedural activity. Datasets such as CrossTask [44], COIN [37],
EgoProceL [1], Egtea [11], Meccano [30], Epic-Tents [23], Cmu-Mmac [5], helped develop advanced
methods for supervised, weakly supervised and self-supervised procedure learning task variants.

Remark. Videos in our dataset are characterized by a longer average step length, which presents a
challenge for algorithms previously designed for the existing egocentric procedure learning datasets.

3 Data Collection

Sensors. We utilized a Hololens2 device and a GoPro Hero 11 camera mounted on the user’s head
(see Fig. 1) to capture the activity data. We built a custom tool using hl2ss [6] to capture data from
the depth sensor, front RGB camera, microphone and the depth sensor of the hololens2 device. We
additionally captured the processed head and hand tracking information provided by the HoloLens2.

Recipes. We curated a selection of 24 cooking recipes sourced from WikiHow (refer to Appendix
C), specifically focusing on recipes with a preparation time of 30 minutes or less. These recipes
encompassed a wide range of culinary traditions, showcasing the diversity of cooking styles in various
cuisines. Our primary objective was to identify and capture potential errors that could arise from
using various authentic cooking instruments in preparing recipes sampled from different cuisines.

6At the time of writing, the code for [15] was not released.
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Figure 2: Snapshots of steps and recorded errors while preparing the recipe Cucumber Raita. Three
of the four errors were intentional, but the participant missed the Peeling step unintentionally.

Task Graphs. visually represents the sequential steps required to complete a recipe. Each node in
the task graph (for a recipe) corresponds to a step in a recipe, and a directed edge between a node
x and a node y in the graph indicates that x must be performed before y. Thus, a task graph is a
directed acyclic graph, with a topological order representing a valid recipe completion. To construct
task graphs for selected recipes, we identified all the critical steps involved and determined their
inter-dependencies, thus establishing a topological order of tasks (see website for final task graphs).

3.1 Protocol

Our dataset was compiled by eight participants7 in 10 different kitchens. Each participant was pro-
vided a tablet-based recording interface accessible through a web browser, a GoPro and a Hololens2.
Participants were instructed to adjust their GoPro cameras to capture footage in 4K resolution at 30
fps to ensure high-quality video. The HoloLens2 device was programmed to stream RGB frames
at 360p resolution and 30 fps. It also streamed depth frames in Articulated Hand Tracking mode,
referred to as depth_ahat mode. Besides visual data, the device also streamed three streams of IMU
(Inertial Measurement Unit) sensor data and spatial data, capturing both head and hand poses8.

Normal Recordings. A recording is classified as a normal recording when it is captured as the
participant accurately follows the procedure described in the recipe. Participants are presented with
one of the pre-constructed topological orders of the selected recipe9, as determined by the task graphs.
The participants then follow and perform each step from the topological order sequentially.

Error Recordings. A recording is classified as an error recording when it is captured while the
individual deviates from the recipe’s procedure, thereby inducing errors. Following the terminology
used in scientific disciplines such as neuroscience [2] and chemistry, we will refer to deviations
from procedures as errors10. Following [2, 14, 16], we classified common errors performed during
a cooking activity into the following categories: (1) Preparation Error, (2) Measurement Error, (3)
Technique Error, (4) Timing Error, (5) Temperature Error, (6) Missing Steps, and (7) Ordering Errors.

Error Induction. We developed three strategies11 for participants to choose from, each tailored
to perform the recipe in a specific environment. After choosing the strategy, participants were
given detailed instructions on how to perform the recipes. We list the strategies presented to the
participants (1) Impromptu: Participants were asked to induce errors while performing the recipe.
Following the completion of each recording, participants used a web-based interface to update the
errors they performed during each step. Due to the complex nature of cooking activities and the lack
of experience of the participants in cooking, many errors induced in this strategy were unintentional
(Figure 2 presents one such example). (2) Disordered Steps: Participants were given pre-prepared
error scripts with missing steps and ordering errors. (3) Induct Error: Participants used a web-based
interface to create an error script for each selected recipe recording. The modified recipe steps were
displayed on a tablet, enabling participants to perform according to their scripted errors. In Fig. 4, we
present both general statistics of the dataset and specific statistics of normal and error recordings.

7During filming, participants were instructed to be alone in the kitchen environment and remove any items
that could potentially identify them, such as personal portraits, mirrors, and smartwatches with portraits.

8The University of Florida IRB approved our protocol
9Utilizing the recording interface, each participant chose a recipe from the selected 24 WikiHow recipes.

10The term errors is synonymous with what the AI community typically calls mistakes (cf. [10]).
11The practice of using scripted videos for activity understanding [35] has inspired us to develop the strategies.
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PREPARATION
ERRORS

- Incomplete blending/ whisking/ mixing/ beating
- Usage of soiled/ dirty utensils/ ingredients/ hands
- Wrong utensil/ ingredients used
- Insufficient draining of fluids
- Cutting/ chopping without peeling

- Excess/ less pressure to roll/ pat/ squeeze/ hold
- Spilling while measuring/ adding/ transferring
- Incorect chopping/ cutting technique
- Incorrect peeling/ spiralizing/ flipping techniques
- Incorrect stirring/ whisking/ beating techniques

TECHNIQUE 
ERRORS

- Incorrect number/ count of ingredient used
- Incorrect measurement of ingredient used
- Incorrect size of ingredient/ utensils used
- Rolling/ Cutting/ slicing into incorrect size

MEASUREMENT
ERRORS

- Incorrect time for cooking/ microwaving
- Insufficient time to melt/ heat
- Incorrect waiting time
- Incorrect time for blending/ grinding

TIMING 
ERRORS

- Incorrect cooking temperature
- Incorrect powerlevel setting of microwave
- Using hot water/ oil instead of cold water/ oil

TEMPERATURE 
ERRORS

- Performing steps in incorrect orderORDER 
ERRORS

- Partial/  complete omission of the stepMISSING 
STEPS

ERROR TYPE COUNT

Preparation Er rors 410

Technique Er rors 502

Measurement Er rors 331

Temperature Er rors 66

Order  Er rors 795

Timing Er rors 177

Missing Steps 285

Recipe: Mug Cake; Step: Whisk Batter
Preparation Error: Incorrect usage of utensils such as spoon, tbs and hand to whisk

Recipe: Cucumber Raita; Step: Chop cucumber into pieces
Technique Error: Cucumber is sliced vertically, cut improperly and sliced horizontally

Recipe: Scrambled Eggs; Step: Peel 2 garlic cloves
Measurement Error: Different quantity of garlic cloves (1, 1 and 3 respectively peeled)

Recipe: Spicy Tuna Wrap; Step: Top Lettuce leaves with tuna mixture
Order Error: Followed incorrect order where avocado is added after topping the leaves 

Recipe: Tomato Chutney; Step: Allow to simmer on low heat till mixture becomes thick
Temperature Error: Incorrect usage of temperature and buringing the dish
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Figure 3: Error Categories. Left: We present a categorization of participant-induced errors derived
from the annotated error descriptions of the recordings. Right: We display frames captured from
various recordings, highlighting correct and erroneous executions. Bottom Right: We present statistics
on the error categories in the dataset derived from the compiled annotations of all recordings.
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Figure 4: Statistics. Top: We present video and step duration statistics to the left & right respectively.
Bottom: We present the total count and the durations of normal and error recordings for each recipe.

3.2 Data Annotation

We implemented a dual-layer review process to guarantee high-quality annotations. Each video was
first annotated by the person who recorded it and then reviewed for accuracy by a second reviewer.
Thus ensuring that all errors were correctly captured in the annotations corresponding to each step.
Our annotations are structured to provide detailed insights into the recorded actions, facilitating both
coarse-grained and fine-grained action analyses. Specifically, we offer the following annotations: (1)
Coarse-Grained Actions: We mark the start and end times of each step in a recording of the recipe.
(2) Fine-Grained Actions: For 20% of our data, we provide fine-grained action annotations to
support semi/weakly supervised learning techniques for action recognition. (3) Error Descriptions:
For each step, if an error occurs during its execution, we link its step annotation with the specific
category of the error and a description of the error, thus enabling a comprehensive understanding.

Coarse-Grained Action/Step Annotations. We designed an interface for annotating steps in Label
Studio12. Annotators are presented with this interface to mark each step’s start and end times. Our
coarse-grained actions/steps are significantly longer than a single fine-grained action and encompass

12https://labelstud.io/
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multiple such fine-grained actions to perform the described step successfully. For example, to
accomplish the step {Chop a tomato}, we include the following in the annotation (1) Pre-conditional
actions: {opening refrigerator, grabbing a polythene bag of tomatoes, taking a tomato, placing
the tomato on cutting board, close fridge} (2) Post-conditional actions: {placing down the knife,
grabbing the polythene bag of tomatoes, opening refrigerator and placing the bag in the refrigerator}.

Fine-Grained Action Annotations. Inspired by the pause-and-talk [3], we have developed a web-
based tool for fine-grained action annotations using Whisper [29] (for speech-to-text translation).

Error Category Annotations. Following each recording, participants were also asked to categorize
errors performed in each step based on a set of guidelines. Specifically, we ask participants to
broadly classify an error as a (1) Preparation Error when they use soiled/wrong ingredients or use
different tools, (2) Measurement Error when they use wrongly measured ingredients, (3) Timing
Error when they perform a step in shorter or longer duration than what is prescribed (e.g. Microwave
for Microwave instead of 30 seconds) (4) Temperature Error when they set higher/lower power levels
in the microwave or on a stove than what is prescribed (5) Missing Step when they omit to perform
a step (6) Technique Error when they perform the required action incorrectly, leading to a wrong
outcome than expected. (7) Order Error when they execute steps out of the required sequence. We
compile and present the categorization of errors, their descriptions and visual illustrations in Fig. 3.

4 Experiments

Our experiments are designed to address the following questions: (Q1) What is the efficacy of
transfer learning in recognizing errors? (Q2) How effective are current Vision Language Models
(VLMs) in zero-shot error recognition? (Q3) How do state-of-the-art Multi-Step Localization methods
perform on our dataset, particularly in terms of robustness to technique errors? (Q4) How do current
self-supervised procedure learning methods in literature perform when applied to our dataset13?

Features. To answer the above questions we trained14 our proposed baseline models on features
obtained using pre-trained models such as 3D-ResNet [22], SlowFast [13], X3D [12], VideoMAE
[38], Imagebind [18] and Omnivore [19] which were originally trained for video recognition tasks.
Specifically, we split each video into 1-second sub-segments and extracted features to train models.

4.1 Error Recognition

This section answers questions (Q1) and (Q2); specifically, we address Q1 by formulating the error
recognition task as a supervised binary classification problem. We proposed three architectural
variants (Fig. 5) as our baseline models and trained them using video/multimodal features. To
address Q2, we employed a prompt-and-predict paradigm to recognize errors in activity recordings.
Specifically, we formulated the problem as a Video Question Answering task (Fig. 6), crafted targeted
question prompts using task graphs and error annotations(Fig.3); supplied these engineered prompts
along with the videos as input to a VLM and evaluated its performance in zero-shot error recognition.

Supervised Error Recognition (SupervisedER). We utilized the features extracted using pre-trained
models to train variants of our baseline binary classification models and evaluated trained models
using the standard metrics such as accuracy, precision, recall, F1 and AUC (see Table 2). Specifically,
we trained our models to classify each step of a video into one of two classes {error(1), normal(0)}.
We constructed two data splits, step and recording splits, for training error recognition models. For
the step split, we first compiled a dataset of video segments corresponding to all steps of all recipes
in the dataset. Then divided it into train, validation, and test subsets. For the recordings split, we
compiled all the recordings of all recipes in the dataset and divided the dataset into train, validation,
and test subsets. Using error annotations (Figure 3), we first generated class labels for all video
segments corresponding to the recipe steps. Then, we assigned the class label corresponding to the
step to all 1-second sub-segments within the step and trained baseline models. During inference, we
assigned the majority class label of the sub-segments corresponding to a step as the label to that step.

We proposed three architectural variants as baselines:{V1, V2, V3} (see Fig. 5). In V1, we used the
extracted features and constructed labels as described above and trained a Multi-Layer Perceptron

13Characterized by longer step durations, refer App. C for a comparison across procedural activity datasets
14We present the details about hyperparameters used for training the proposed baseline models in Appendix B.
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Figure 5: SupervisedER architectures of 3 baselines.

Split Backbone V# Modality Acc P R F1 AUC

S

Omnivore V1 V 71.09 66.07 14.86 24.26 75.7
V2 V 69.96 51.56 59.84 55.39 75.7

Slowfast V1 V 33.54 31.88 90.6 47.16 63.06
V2 V 68.09 47.69 24.9 32.72 67.18

X3D V1 V 68.34 48 19.28 27.51 60.19
V2 V 67.83 42.86 9.64 15.74 61.5

3DResnet V1 V 63.45 42.9 52.21 47.1 66.16
V2 V 61.58 41.47 56.63 47.88 64.5

ImageBind V3

V 62.78 38.46 32.13 35.01 57.03
A 43.86 32.26 72.69 44.69 52.23
V, A 63.28 40.76 38.96 39.84 53.87
V, A, T 68.79 42.76 41.96 42.36 61.1
V, A, D, T 69.4 50.75 48.96 49.84 70.41

R

Omnivore V1 V 59.76 45.31 58.09 50.91 63.03
V2 V 62.3 46.55 33.61 39.04 62.27

Slowfast V1 V 60.06 40.82 24.9 30.93 56.89
V2 V 57.82 41.67 43.57 42.6 59.83

X3D V1 V 54.69 39.6 49.79 44.12 54.66
V2 V 54.25 40.78 60.58 48.75 56.58

3DResnet V1 V 41.88 37.65 94.19 53.79 62.42
V2 V 57.82 43.56 58.92 50.09 59.22

ImageBind V3

V 37.56 36.14 96.27 52.55 54.1
A 39.05 35.67 89.72 50.54 54.8
V, A 54.25 40.98 62.24 49.42 55.25
V, A, T 64.08 44.15 58.01 50.13 58.35
V, A, D, T 63.87 49.57 64.4 56.02 65.25

Table 2: SupervisedER evaluation results of base-
lines. Variant type (V#), Modality of features (M),
Video (V), Audio (A), Depth (D), and Text (T).

(MLP) head. This approach assesses the efficacy of visual cues identified by pre-trained video
recognition models in recognizing errors in sub-segments. In V2, we shifted our focus from sub-
segment prediction and trained a transformer that processed all video sub-segments corresponding
to each step. This method is designed to capitalize on the long-term temporal cues present within
the video segments of recipe steps to enhance the prediction performance of the trained models. In
variant V3, we harnessed the multimodal data of recordings and trained a unified transformer model.
This approach employed an attention mechanism to integrate information from all modalities of data.

Insights. Our V2 models consistently outperformed V1 models. Incorporating additional data modal-
ities like audio, text, and depth into our V3 models significantly improved their performance. Our
omnivore-based V2 models performed similarly to our V3 models trained using Imagebind15 features.
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Figure 6: ZeroShotER evaluation pipeline of VLMs

VLM Variant Acc P R F1

Video-LLaVa [27] V1 64.3 34.2 3.9 6.7
V2 52.85 36.3 49.3 41.8

TimeChat [31] V1 65.0 51.11 1.15 2.26
V2 43.5 34.38 69.7 46.1

Table 3: ZeroShotER evaluation results.

Zero-Shot Error Recognition (ZeroShotER). We proposed two baseline variants, V1 and V2, for
ZeroShotER16 using prompt-and-predict architectures, as illustrated in Fig. 6. Both variants involve
constructing query prompts for each recipe step and querying VLMs using these prompts along with
video inputs. We utilized state-of-the-art17 open-source VLMs, Video-LLaVa [27] and TimeChat
[31], to recognize errors and reported the evaluation results using standard metrics, such as accuracy,
precision, recall, and F1 scores. Specifically, for V1, we leveraged the associated task graphs of each
recipe and generated a prefix question prompt for each step. These prompts were then used to query
VLMs to recognize errors in videos. We employed a prompt-ensembling approach in V2 to recognize
errors in a shift from the single-prompt strategy. Specifically, we designed prompt templates tailored

15We chose Imagebind to represent visual, textual, and auditory data in a unified embedding space.
16We also adapted anomaly detection methods for zero-shot error recognition (refer to Appendix B.)
17State-of-the-art at the time of writing this paper
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to each error category (refer to Appendix B for examples). Using Llama3 [39], we generated a set
of query prompts tailored to specific recipe steps and error categories. We combined the VLMs’
predictions for error category-specific queries using an OR operation to determine the prediction
for each step. This strategy of using error category-specific queries focused the VLMs’ attention on
specific segments of the video and enhanced the overall performance as illustrated in Table. 3.

Insights. While VLMs are adept at interpreting short video segments and answering straightforward
questions (Eg. Is there cucumber in the video?, Is the person peeling the cucumber?), they struggle
with tasks that require assimilation of information from various time intervals in long videos. This
limitation becomes evident in tasks like error recognition in ego-centric videos, where questions such
as "Did the person chop or grate a completely peeled cucumber?" require a deeper understanding.

Remark. The low scores indicate the complexity of the above tasks and call for developing sophisti-
cated methods that semantically understand the context, meaning, and cause of various errors.

4.2 Multi Step Localization (MSL)

In supervised MSL, we aim to simultaneously identify the start and end boundaries of steps within
an untrimmed long video and classify these identified video segments. This section addresses the
question (Q3) by splitting it into two parts. For the first part—How do state-of-the-art supervised MSL
methods fare on our dataset?; We utilized the features extracted from pre-trained video recognition
models and trained our baseline models which employed ActionFormer [42] head on three proposed
splits (indicated using the symbols {E ,P,R} and detailed in App.A) of the original dataset. For the
second part - How robust are MSL methods to technique errors?; We trained baseline models on three
proposed splits ({E ,P,R}) of a modified dataset where the training subset exclusively contained
normal recordings without errors. We then evaluated these models on two distinct test sets that
exclusively comprised either normal recordings or error recordings (indicated using the symbols Tn
and Te respectively). We reported results using the standard MSL/TAL metrics such as Recall@K
(R@K) and Mean Average Precision (mAP) across different temporal Intersections over Unions (It).
We presented our evaluation for both the tasks, namely, Multi-Step Localization (MSL) and Robust
Multi-Step Localization (RobustMSL), in Tables 4 and 5 respectively. We also showcased qualitative
examples of step localization for sampled normal and error recordings from 4 recipes in Figure 7.

Table 4: MSL evaluation results.

B D It = 0.1 It = 0.3 It = 0.5

mAP R@1 R@5 mAP R@1 R@5 mAP R@1 R@5

3D Resnet
E 25.98 54.82 77.59 23.75 48.38 72.19 19.59 38.44 61.87
P 29.29 63.07 88.96 27.71 56.60 84.75 23.21 46.79 76.86
R 29.39 61.14 85.41 27.89 55.82 82.17 23.97 46.54 73.29

Slowfast
E 27.68 55.73 77.45 25.51 48.98 70.90 21.09 37.82 60.58
P 32.77 63.22 90.43 31.21 58.82 86.82 27.25 50.70 79.49
R 32.90 63.97 89.29 31.47 59.26 85.32 27.89 51.62 77.27

VideoMAE
E 28.12 51.76 73.00 26.38 46.16 67.87 21.35 37.12 57.81
P 38.86 64.86 84.05 37.41 60.32 80.63 32.24 51.46 71.88
R 37.44 63.08 80.90 35.11 57.30 77.38 30.76 49.19 69.43

Omnivore
E 40.40 67.51 87.69 38.32 62.31 82.82 33.41 53.01 72.85
P 48.16 75.96 93.41 45.82 70.34 90.51 41.16 62.00 84.73
R 44.81 73.71 93.34 42.76 68.14 89.82 37.19 56.93 81.86

Table 5: RobustMSL evaluation results.

B D T It = 0.1 It = 0.3 It = 0.5

mAP R@1 R@5 mAP R@1 R@5 mAP R@1 R@5

VideoMAE

E Tn 24.44 38.22 52.48 22.97 34.77 49.51 18.67 28.57 42.68
Te 7.53 13.54 20.52 6.93 11.4 18.36 5.63 8.55 15.13

P Tn 26.78 37.43 46.28 25.68 34.79 44.6 22.02 29.43 39.81
Te 16.98 27.43 37.76 16.46 25.53 36.03 14.64 22.03 32.07

R Tn 26.27 37.15 46.93 24.71 34.06 45.03 21.51 29.36 40.44
Te 15.43 25.94 33.97 14.44 23.23 32.35 12.96 19.83 28.99

Omnivore

E Tn 34.65 47.91 60.63 33.06 44.77 58.36 28.59 38.38 51.9
Te 12.51 19.6 27.06 11.66 17.54 24.45 9.94 14.63 20.96

P Tn 32.5 44.45 52.47 31.13 41.53 50.91 28.39 37.03 47.97
Te 21.28 31.51 40.93 20.12 28.81 39.6 18.08 24.96 36.77

R Tn 30.22 42.43 52.11 28.94 39.47 50.49 25.15 32.65 46.51
Te 19.54 31.28 41.24 18.4 28.66 39.33 16.27 24.28 35.35

SPICED HOT CHOCOLATE DRESSED UP MEATBALLS MICROWAVE EGG SANDWICH RAMEN

NORMAL
RECORDING

ERROR
RECORDING

GROUND TRUTH

PREDICTED

GROUND TRUTH

PREDICTED

Figure 7: MSL qualitative results of the Omnivore-based model trained using the split R.

Insights. We observed that our models based on Omnivore features consistently outperformed others.
We also noticed that models trained using features extracted from longer video sub-segments (>1sec)
outperformed those trained using features extracted from 1-sec video sub-segments (App.B). However,
all our trained models using the modified dataset exhibited poor performance on Te compared to Tn.
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Remark. We conjecture that exploiting semantic information from task graphs and employing
probabilistic filtering methods such as particle filters to refine predictions could enhance performance.

4.3 Procedure Learning

Given long, untrimmed videos of procedural activities where the sequences of steps can be performed
in multiple orders, self-supervised procedure learning methods aim to identify relevant frames across
videos of an activity and estimate the sequential steps required to complete the activity. In this section,
we address the question Q4 by simultaneously answering (a) Can we infer the underlying procedure
(recipe text) from the videos of a particular recipe and (b) How does the self-supervised procedure
learning methods in literature perform on the proposed dataset?. Specifically, we answered both parts
by comparing the performance of our models trained on the proposed dataset using self-supervised
procedure learning methods [1, 8] against the random setting defined by EgoProceL [1](see Tab. 6).
We followed the setup described in EgoProceL and trained two embedder networks, one using the
Cycleback Regression loss (C) [M1] [8] and the other using a blend of two loss functions: Cycleback
Regression loss (C) and Contrastive - Inverse Difference Moment loss (C ) [M2][1]. The combined
loss function is C + λ × C , where λ is a hyperparameter. While we exclusively used these loss
functions to train the embedder networks, we continued using the Pro-Cut Module to categorize
frames into key steps. We presented evaluation results for 5 recipes Tab. 6 and all recipes in App. B.

Table 6: Procedure Learning. Here, P represents precision, R represents recall, and I represents IOU.

Recipe Random M1 [8] M2[1]

P R I P R I P R I
BlenderBananaPancakes 7.40 3.83 2.26 12.65 9.50 5.16 15.54 9.96 5.72
Coffee 6.54 3.87 2.17 13.68 9.91 5.49 15.76 10.25 5.63
MugCake 5.45 4.00 2.12 16.12 12.95 6.87 10.32 8.85 4.40
PanFriedTofu 5.35 3.97 1.54 8.86 10.39 3.75 9.34 12.44 3.87
Pinwheels 6.54 4.28 2.13 13.58 11.96 5.92 16.08 13.06 7.05

Average of 24 recipes 7.61 3.92 2.22 15.62 10.85 5.78 15.78 10.68 5.82

Insights. Our models significantly outperformed the predefined random setting, demonstrating the
feasibility of inferring procedural steps from our dataset. However, these models scored lower on
our dataset compared to existing procedure learning datasets. We believe this drop in performance is
mainly due to our dataset’s unique challenge, which includes videos with longer key step durations.

Additional Results. We provide several analyses in Appendix B, including (a) Error Category
Recognition, (b) Early Error Recognition, (c) Anomaly Detection and (d) Ablation studies for MSL.

5 Discussion, Limitations and Future Work

Discussion. We introduced a novel egocentric dataset for understanding errors in procedural activities.
Our dataset consists of synchronized egocentric views, audio, and depth information specifically
designed for tasks such as 3D activity analysis, Procedure Learning, Error Recognition, and more.
While current methods have yielded promising outcomes, they continue to struggle to tackle these
challenges adequately with satisfactory results, as demonstrated by our experimental assessment. This
indicates the need for further exploration in this domain. Limitations. We aimed to capture deviations
during procedural activities from an egocentric perspective. Since such data cannot be sourced from
crowd-sourced platforms we captured participant data while performing procedural activities. By
the nature of the problem, errors that occur when performing procedural activities are combinatorial
and can have a compounding effect. Thus, our work has the following limitations: (1) For each
activity, the errors captured and presented in the dataset form a subset of the whole combinatorial
space; (2) Capturing 4D data in real kitchen environments posed logistical and equipment training
challenges. As a result, we were compelled to limit the data collection to a specific geographic area.
Future Work. Our work opens up several avenues for future work. First, an exciting direction is
the extension of the dataset to include activities from other domains. By incorporating tasks such
as executing hardware-related activities (e.g., working with cars or computer parts), the dataset can
encompass a wider range of activities. Second, the dataset can be used to compare and develop
methods for solving various tasks such as Few-Shot Error Recognition using visual/textual prompts,
Semantic Role Labelling, Long Video Understanding, Procedure Planning, Reducing Errors, etc.
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