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Abstract

Generative Adversarial Networks (GANs) are powerful tools for image synthesis.
However, they require access to vast amounts of training data, which is often costly
and prohibitive. Limited data affects GANs, leading to discriminator overfitting
and training instability. In this paper, we present a novel approach called NoIse-
modulated Consistency rEgularization (NICE) to overcome these challenges. To
this end, we introduce an adaptive multiplicative noise into the discriminator to
modulate its latent features. We demonstrate the effectiveness of such a modulation
in preventing discriminator overfitting by adaptively reducing the Rademacher
complexity of the discriminator. However, this modulation leads to an unintended
consequence of increased gradient norm, which can undermine the stability of
GAN training. To mitigate this undesirable effect, we impose a constraint on
the discriminator, ensuring its consistency for the same inputs under different
noise modulations. The constraint effectively penalizes the first and second-order
gradients of latent features, enhancing GAN stability. Experimental evidence aligns
with our theoretical analysis, demonstrating the reduction of generalization error
and gradient penalization of NICE. This substantiates the efficacy of NICE in
reducing discriminator overfitting and improving stability of GAN training. NICE
achieves state-of-the-art results on CIFAR-10, CIFAR-100, ImageNet and FFHQ
datasets when trained with limited data, as well as in low-shot generation tasks.

1 Introduction
The remarkable advancements and breakthroughs in deep learning [31] can be largely attributed
to the extensive utilization of vast amounts of training data. This abundance of data has driven
the progress across various domains of deep learning. Among notable recent advancements are
Generative Adversarial Networks (GANs) [13], popular in industry and academia. GANs have proven
their high-quality image generation abilities and achieved high generation speeds [47], establishing
them as a versatile tool for a wide range of applications, such as text-to-image generation [20, 47, 55],
destylization [48, 49, 50], image-to-image translation [27, 44], and 3D generation [52, 53, 65].

Despite the impressive capabilities of state-of-the-art GANs in generating diverse and high-quality
images [7, 25], their effectiveness heavily relies on large volumes of training data. The acquisition of
such large datasets helps GANs attain the desired adversarial equilibrium. However, under limited
training data regime, GANs encounter challenges associated with discriminator overfitting and
unstable training [22, 68, 57, 11, 17].

To address the aforementioned challenges, recent studies have approached the problem from three
perspectives. The first perspective involves the utilization of extensive differentiable data augmenta-
tion techniques, aimed at expanding the distribution of the available data [22, 68, 17, 32, 63, 64, 69].
The second perspective leverages knowledge gained from large-scale models trained on large datasets
[9, 70, 29]. While these approaches are effective, they also carry inherent risks, such as the leakage
of augmentation clues [64, 22, 40] or pre-trained knowledge [30].
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The third perspective focuses on the regularization of the discriminator, aiming to weaken its learning
ability [11, 19] or increase the overlap between real and fake support sets [57]. In line with this
perspective, our paper introduces a novel approach to improve GAN generalization. We propose
to modulate the hidden features of discriminator via adaptive multiplicative noise, which strikes a
balance in maintaining a certain level of discrimination ability while also regularizing the Rademacher
complexity [6] of the discriminator. This reduction in Rademacher complexity, which quantifies
the capacity of model to fit random variables, narrows the generation gap between the training and
unseen data, resulting in enhanced GAN generalization [4, 56, 18].

Nevertheless, training the discriminator with adaptive noise unintentionally amplifies second-order
gradient derivative of latent features corresponding to real images. This elevated gradient leads to
abrupt gradient changes near the real sample points, potentially causing instability in the feedback
to the generator. This issue aligns with the findings in works [26, 36, 56, 11], which emphasize
the importance of penalizing gradients for both real and fake samples to promote convergence and
stability of GAN training. To address these challenges, we propose a constraint on the discriminator
that ensures consistency for the same inputs under different noise modulations. While our idea is
simple, our theoretical analysis reveals that this constraint effectively penalizes the first and second-
order gradients of the latent features. Consequently, the gradient provided to the generator becomes
more stable, resulting in improved training stability and generalization.

Our comprehensive experiments confirm the effectiveness of NICE in penalizing gradients and
reducing the generalization gap. Despite the simple design, NICE significantly improves the training
stability and generalization of GANs, outperforming alternative approaches in preventing discrimina-
tor overfitting. NICE achieves superior results on challenging limited data benchmarks, including
CIFAR-10/100, ImageNet, FFHQ, and low-shot image generation tasks.

Our contributions can be summarized as follows:
i. We limit discriminator overfitting by using the adaptive multiplicative noise to modulate the

latent features of the discriminator, resulting in enhanced generalization of GANs.
ii. We introduce NICE, a technique that enforces the discriminator to be consistent with the

same inputs under different noise modulations, implicitly penalizing the first and second-order
gradients of the latent features during GAN training, promoting the training stability.

iii. We show that NICE, both in theory and practice, effectively prevents discriminator overfitting
and achieves superior performance in image generation under limited data setting.

2 Related Work

Improving GANs. Generative Adversarial Networks [13] are powerful generative models that excel
in image generation [21, 24, 25], text-to-image generation [20, 47, 55], image-to-image translation
[27, 44], and 3D generation [52, 65, 53]. However, GANs commonly encounter challenges such as
training instability [26], mode collapse [45], and discriminator overfitting [22]. Researchers have
investigated different GAN loss functions [2, 42, 71], architectures [21, 24, 25, 23], and regularization
strategies [38, 33, 14]. The f -GAN [42] generalizes GANs to f -divergences. WGAN [2] adopts
the Earth-Mover distance. OmniGAN [71] extends conditional GANs to a multi-label softmax loss.
StyleGANV1-3 [24, 25, 23] enhances the architecture of generator. Approaches [14, 26, 36, 56, 11]
propose explicit penalty of gradient of discriminator. SNGAN [38] enforces a Lipschitz constraint on
the discriminator, and approach [33] regularizes the spectral norm of the discriminator. In this study,
we propose a novel regularization strategy applicable to diverse GAN loss functions and architectures,
specifically tailored for training GAN models with limited data.

Image generation with limited data. Collecting data is both laborious and expensive. Conse-
quently, generating images in limited data settings presents significant challenges, primarily due to
discriminator overfitting. Previous approaches have tackled this issue through data augmentation
techniques [22, 68, 17, 32, 63] and leveraging knowledge transfer from large-scale pre-trained models
[9, 29, 70]. Differentiable data augmentation methods [22, 68, 17] “extend” the data distribution,
while methods [63, 32] explore contrastive learning within GANs. Approaches [9, 29, 70] employ
pre-trained models to guide training of discriminator. However, both GAN types suffer issues,
including leakage of augmentation clues [64, 22] or pre-trained knowledge [30]. An alternative
approach involves regularizing the discriminator. LeCamGAN [57] suggests reducing the output gap
of discriminator between real and fake distributions. LCSAGAN [40] employs manifold techniques
to project discriminator features onto manifold and decrease the capacity of discriminator. APA [19]
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uses fake images as real images to increase overlap between the real and fake distributions. DigGAN
[11] minimizes the gradient norm gap between real and fake images. Inspired by such an approach,
we propose to use an adaptive noise to modulate the latent features of discriminator to reduce the
generalization error of discriminator as a means of regularization.

Consistency regularization. CTGAN [61] introduces the enforcement of a Lipschitz constraint by
ensuring the consistency of the response of discriminator to real images. CAGAN [41] and GenCo [8]
enforce consistency among multiple discriminators. R-Drop [62] applies consistency regularization to
transformers [58] equipped with dropout for natural language processing tasks. Augmentation-based
consistency regularization GANs [64, 69] enforce consistency by considering different augmented
views of the same image, although they may inadvertently leak augmentation clues to the generator
[22]. Despite the effectiveness of consistency regularization demonstrated by these previous works,
their success is primarily empirical, lacking theoretical analysis. In our study, we go beyond prior
works by providing a theoretical analysis of consistency regularization in GANs. By delving deeper
into the underlying principles, we develop a more comprehensive understanding of the mechanism
behind its effectiveness.

Generalization of GANs. Arora et al. [4, 56, 67, 18] have contributed to the understanding and
improvement of generalization of GANs by showing the importance of achieving adversarial equi-
librium, reducing discriminator discrepancy, penalizing gradients, and bounding the generalization
error. Our motivation aligns with these works in the pursuit of enhancing generalization capabilities.
However, our approach implicitly and adaptively reduces the generalization gap while penalizing
gradients of latent features of discriminator. Such a setting provides an efficient and effective means
of preventing discriminator overfitting and improving generalization.

3 Method

To boost the generalization of GAN, we start by analyzing their generalization error, bounding it with
the Rademacher complexity of discriminator, and linking it with the weight norm. By incorporating
multiplicative noise, we demonstrate its regularization benefits on the weight norm. However, such a
strategy induces large gradient norm destabilizing training of GAN. To this end, we introduce NICE
to penalize the gradients of discriminator. Finally, we provide NICE and showcase it use in GANs.

3.1 Generalization error of GANs and complexity of neural network

The primary goal of GAN is to minimize the integral probability metric [39], assuming access to
infinite real and fake data during optimization, i.e., the infinite real and generated distributions
(µ, ν) as discussed in [67]. In practice, we often have limited access to a finite dataset µ̂n of size n.
Consequently, our optimization is restricted to the empirical loss:

inf
ν∈G

{
dH(µ̂n, ν) := sup

h∈H
{Ex∼µ̂n [h(x)]− Ex̃∼ν [h(x̃)]}

}
. (1)

Function sets of discriminator and generator, H and G, are typically parameterized in GAN as neural
network classes Hnn = {h(x;θd) : θd ∈ Θd} and Gnn = {g(z;θg) : θg ∈ Θg} where z ∼ pz
serves as the random noise input to the generator. The associated term dHnn is referred to as the
neural network distance [4]. The discriminator network D := φ ◦ f consists of a real/fake prediction
head φ and a feature extractor f . As the loss function ϕ(·) varies across tasks, architectures or
choice of divergence type, we compose it with D [2, 67, 4] to simplify the analysis and notation, i.e.,
h(·) := ϕ(D(·)). Thus, the alternative optimization of discriminator and generator becomes:{

LD = min
θd

Ex̃∼νn
[h(x̃;θd)]− Ex∼µ̂n

[h(x;θd)],

LG = min
θg

−Ez∼pz [h(g(z;θg))],
(2)

where we assume νn minimizes dH(µ̂n, ν) up to precision ϵ ≥ 0, meaning that dH(µ̂n, νn) ≤
infν∈G dH(µ̂n, ν)+ ϵ. As we are interested in how close the generator distribution νn is to the
unknown infinite distribution µ, we refer to the lemma [67] on the generalization error of GAN:
Lemma 1 (Theorem 3.1 of [67]) Assume that the discriminator set H is even (h ∈ H implies
−h ∈ H) and all discriminators are bounded by ∥h∥∞ ≤ ∆. Let µ̂n be an empirical measure of
an i.i.d. sample of size n drawn from µ. Assume dH(µ̂n, νn) − infν∈G dH(µ̂n, ν) ≤ ϵ. Then with
probability at least 1− δ, we have:
dH(µ, νn)− inf

ν∈G
dH(µ, ν) ≤ 2 sup

h∈H

∣∣∣Eµ[h]−Eµ̂n
[h]

∣∣∣+ϵ ≤ 2R(µ)
n (H)+2∆

√
2 log(1/δ)

n
+ ϵ, (3)
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where the Rademacher complexity [6], R(µ)
n (H) := E

[
suph∈H

2
n

∑
i τ

(i)h(x(i))
]
, measures how

well the function h ∈ H fits the Rademacher random variable τ (i) with prob(τ (i) = 1) = prob(τ (i) =
−1) = 1

2 given samples x(i) ∼ µ̂n.
Lemma 1 provides a crucial insight that one can assess the generalization error of GAN by comparing
the output discrepancy of discriminator between training data and unseen data, and such an error
is influenced by the Rademacher complexity of the discriminator. To enhance the performance of
generator while reducing the generalization error, we have two possibilities: 1) increase the quantity
n of real data, which provides a stronger foundation for training a better generator; 2) reduce the
Rademacher complexity of the discriminator. However, this reduction must be carefully controlled,
as an overly simplified discriminator may struggle to effectively distinguish real and fake data.

To manage the Rademacher complexity of the discriminator, we leverage a theorem from approach
[5] to establish an upper bound on the Rademacher complexity of the neural network.
Lemma 2 (Eq. 1.2 in [5], Theorem 5.20 in [35]) Consider a fully-connected neural network
vθ(x) = W tσ(W t−1σ(...σ(W 1x)...)) where W i are linear weights at i-th layer and σ is a
1-Lipschitz activation function. Suppose that ∀i ∈ {1, ..., n}, ∥x(i)∥2 ≤ q. Let ∥W i∥lip be the
lipschitz constant of W i and ∥W T

i ∥2,1 be the sum of the l2 norm of columns in W i. Let V = {vθ :

∥W i∥lip ≤ ki, ∥W T
i ∥2,1 ≤ bi}, we have the Rademacher complexity:

R(µ)
n (V) ≤ q√

n
·
( t∏

i=1

ki

)
·
( t∑

i=1

b
2/3
i

k
2/3
i

)3/2

. (4)

Lemma 2 links the Rademacher complexity of a neural network to the Lipschitz constant and the
(2,1)-norm of its weights, providing essential insights for controlling the complexity of discriminator.

3.2 Improving generalization by feature modulation with multiplicative noise

Taking into account Lemmas 1 and 2, one can effectively manage the generalization error of GAN by
controlling the Rademacher complexity of the discriminator. Such a control requires managing the
Lipschitz constant and the norm of the weights of discriminator. Typically, controlling the Lipschitz
constant can be achieved by the spectral normalization [38] or the gradient penalty [14]. In contrast,
we propose a novel approach: regularizing the norm of the weights by modulating the latent features
of the discriminator with multiplicative noise.

We build on the analysis (Prop. 4 in Appendix of [3]) of Dropout regularization [54] by exploring the
regularization effect of the Gaussian multiplicative noise within the context of deep regression.
Theorem 1 (Regularization by the Gaussian multiplicative noise in deep regression) Consider a
regression task on a two-layer neural network. Let X ⊆Rd0 and Y⊆ [−1, 1]d2 be the input and output
spaces, and D=X×Y . Let n examples {(x(i),y(i))}ni=1∼Dn. Let fw :X →Y be parameterized
by {w :W 1∈Rd1×d0 ,W 2 ∈Rd2×d1} and fw(x, z) =W 2(z ⊙ σ(W 1x)) where σ is 1-Lipschitz
activation function, ⊙ denotes element-wise multiplication and z∼N (1, β2Id1). Let a=σ(W 1x),
â= Êi[a

(i)⊙a(i)], âk≥0 denotes the k-th element of â. Let ∥W 2∥2,1=
∑

k∥wk∥2 where wk is the
k-th column vector in W 2. The regression task with the l2 loss leads to the weight regularization as:

L̂noise(w) := ÊiEz

[
∥y(i) −W 2(z ⊙ a(i))∥22

]
= Êi

[
∥y(i) −W 2a

(i)∥22
]
+ β2

∑
k

âk∥wk∥22. (5)

The proof can be found in §C.1. Theorem 1 reveals that modulation with Gaussian multiplicative
noise in the regression task implicitly regularizes the internal weight norm, with the regularization
strength determined by the variance of the noise β2 and the magnitude of the features.

Despite analysis in a simplified two-layer system, the implicit weight regularization by the noise
modulation applies to multi-layer and convolutional neural networks, which can be expressed as
a combination of two-layer nets, and convolutional layers are a type of linear layer [37, 60, 3].
Assuming latent features in deep neural networks follow a Gaussian distribution [34], we can equate
the Bernoulli noise modulation (Dropout) with Z ∼ B(β), whose values are set to be 1/(1− β) with
probability 1− β and 0 otherwise, to the Gaussian multiplicative noise modulation in subsequent
layers, making the regularization effects from Theorem 1 applicable to the Bernoulli noise as well.

Theorem 1 illustrates that one can modulate the latent features in the discriminator by the multi-
plicative noise to adaptively regularize the norm of its weights, leading to the reduced Rademacher
complexity in Lemma 2 and improved GANs generalization in Lemma 1.
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3.3 Consistency regularization
Although the noise modulation can reduce the Rademacher complexity, incorporating the noise
increases the gradient norms of latent features and the inputs to the discriminator, making training of
GAN unstable [56] and difficult to converge [36]. To understand the gradient-related challenges in
the noise-modulated discriminator, we adopt the Taylor expansion with a focus on the pivotal first-
and second-order terms, following standard practice [1, 12, 66].
Proposition 1 Define f := ft ◦ . . . ◦ f2 as the feature extractor of the discriminator from the second
layer onward. Let ã = f1(x̃) and a = f1(x) be the latent features of the first layer for fake and real
images, respectively. The discriminator is defined as h(·) = ϕ(φ(f(·))), with φ as the prediction
head and ϕ as the loss function. Introduce a multiplicative noise z ∼ N (1, β2Id′

) modulating solely
the first layer. Let H(h)

kk (a) be the k-th diagonal entry of the Hessian matrix of h at a and ak be the
k-th element of a. Applying Taylor expansion to h(·), the GAN loss can be expressed as follows:

min
θd

LAN
D :=EãEz

[
h(z ⊙ ã)

]
− EaEz

[
h(z ⊙ a)

]
≈Eã

[
h(ã)

]
−Ea

[
h(a)

]
+ β2

2

(
Eã

[∑
k ã

2
kH

(h)
kk (ã)

]
− Ea

[∑
k a

2
kH

(h)
kk (a)

])
, (6)

min
θg

LAN
G :=− EzEã

[
h(z ⊙ ã)

]
≈ −Eã

[
h(ã)

]
− β2

2 Eã

[∑
k ã

2
kH

(h)
kk (ã)

]
. (7)

Prop. 1 (the proof is in §C.2) shows that introducing the noise modulation during the training of
the discriminator amplifies the value of diagonal entry of Hessian matrix at real images, causing
abrupt changes in their gradient and potentially an increase of the gradient norm of real images.
Eq. 7 further shows that as the generator is optimized to produce images resembling real images,
the gradient norm of the fake images also experiences amplification. Consequently, gradient
norms for both real and fake images increase. Empirically, we observe an increase in the gradient
norm of latent features before the prediction head, resulting in a larger gradient norm of samples.

To mitigate this problem, we propose a consistency regularization for f , promoting invariance of f to
the same input under varying noise modulations. For simplicity, we take f :Rd′→R, noting that this
analysis readily extends to the consistency loss for f with a multidimensional output.
Theorem 2 Using notations from Prop. 1 and with f :Rd′→R, let ∇2

kf(a) and
(
H

(f)
jk (a)

)2
denote

the squares of the k-th gradient element and (j, k)-th entry of Hessian matrix of f at a, respectively.
Given z1, z2∼N (1, β2Id′

), enforcing invariance of f under different noise modulations yields:

ℓNICE(a) :=Ez1,z2

[(
f(z1⊙a)−f(z2⊙a)

)2]≈ 2β2
∑

k a
2
k∇2

kf(a)+β4
∑

j,ka
2
ja

2
k(H

(f)
jk (a))2 . (8)

Theorem 2 (the proof is in §C.3) shows that the consistency loss essentially penalizes the first-
and second-order gradient of f at a, with the strength adaptively controlled by the noise variance
β2 and modulated by a. This results in reweighted gradient squared norms modulation, with
terms in expressions ∥∇f(a)∥22=

∑
k∇2

kf(a), and ∥H(f)(a)∥2F =
∑

j,k(H
(f)
jk (a))2 influenced

by a2k ≥ 0. In contrast to the noise-modulated discriminator in Eq. 6, NICE regularizes the first-
and second-order gradients of layers ahead of the classification head. Despite the gradient from
the classification head is large, NICE ensures the gradient reaching the input stays small, resulting
in a stable training and improved generalization and convergence [4, 26, 67].

3.4 Implementation of NICE

The analysis above highlights practical ways to enhance the generalization and stability of GANs.
Firstly, we apply the adaptive multiplicative noise to the latent features of the discriminator, striking
balance between discrimination and generalization, as highlighted in [67]. The consistency regular-
ization is then applied to ensure invariance of the discriminator to the same inputs under varied noise
modulations, penalizing the gradient and stabilizing the training process.

GAN with the adaptive noise modulation (AN). Figure 1 shows the discriminator composed of
blocks B1, B2, . . . , BL, where each block Bl contains multiple convolution weights c∈{C1, C2, CS}.
To achieve a trade-off between generalization and discrimination, we modulate the latent features
X∈R1×d′×dH×dW

from convolutional layers of the discriminator using adaptive noise Z∈R1×d′
by:

AN(X) = X ⊚Z, (9)
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Figure 1: Our discriminator pipeline. NICE is applied to both real x and fake x̃ images.

where ⊚ represents the operation that expands Z into 1×d′×dH×dW shape and performs element-
wise multiplication with X . The noise Z is carefully controlled through an adaptive β. In the
case of BigGAN and OmniGAN, we control the variance of Z using β as Z ∼ N (1, β2Id′

). For
StyleGAN2, we control the noise through Z ∼ B(β), where with probability 1− β it takes the value
1

1−β , and with probability β it takes 0.
Below we introduce a mechanism to control the noise via the meta-parameter β by detecting potential
overfitting in the discriminator. Firstly, we compute the expectation over the discriminator output
r(x) = E[sign(D(x))] w.r.t. real samples x, and evaluate ε = sign(r(x)>η)∈{−1, 0, 1} where η
is a fixed threshold. A value greater than the threshold indicates potential overfitting [22]. We apply
βt+1 = βt +∆β · ε to update β with smaller ∆β to control Z. Denote the modified discriminator
with our adaptive noise as hAN, the objective of GAN with the adaptive noise modulation becomes:LAN

D = min
θd

Ex̃∼νn
[hAN(x̃;θd)]− Ex∼µ̂n

[hAN(x;θd)],

LAN
G = min

θg

−Ez∼pz
[hAN(g(z;θg))].

(10)

GAN with the noise-modulated consistency regularization (NICE). To deal with the increased
gradient norm due to the adaptive noise modulation, we introduce the consistency regularization
(NICE) to promote invariance of the discriminator to the same samples under different noise modula-
tions. Our regularization implicitly penalizes the gradient of the latent features in the discriminator
by comparing outputs f1(·) and f2(·) of two feature extractors (with shared parameters) that are
subjected to different noise modulations as in Figure 1. The objective for a GAN with NICE is:LNICE

D = min
θd

Ex̃∼νn
[hAN(x̃;θd) + γℓNICE(x̃)] + Ex∼µ̂n

[−hAN(x;θd) + γℓNICE(x)],

LNICE
G = min

θg

Ez∼pz
[−hAN(g(z;θg)) + γℓNICE(g(z;θg))],

(11)

where ℓNICE(·)=∥f1(·)−f2(·)∥22 and γ=∆γβ is a meta-parameter that controls the strength of the
consistency regularization and is adaptively determined by β.

Efficient NICE. In our experiments, we observed that applying the noise modulation in the later
blocks of the discriminator often outperformed applying noise in the earlier blocks. To avoid
unnecessary computations (the early blocks do not use modulation), we divide the discriminator into
a modulation-free part (B1, . . . , Bl−1) and a noise-modulated part (Bl, . . . , BL), where l indicates
the starting block of noise modulation. For efficient calculation of the consistency loss, we input two
copies of X l−1 (output from the first part) into the second part, bypassing the need for redundant
calculations to maintain a low computational overhead compared to standard approaches.

4 Experiments

We conduct experiments on CIFAR-10/100 [28] using BigGAN [7] and OmniGAN [71], as well as
on ImageNet [10] using BigGAN for conditional image generation. We also evaluate our method
on low-shot datasets [68], which include 100-shot Obama/Panda/Grumpy Cat and AnimalFace
Dog/Cat [51], and FFHQ [24] using StyleGAN2 [25]. We compare our method against several strong
baselines, including DA [68], ADA [22], DigGAN [11], MaskedGAN [17], KDDLGAN [9], LeCam
[57], GenCo [8], InsGen [63], FakeCLR [32] and TransferGAN [59]. For fair comparison, we denote
methods using massive augmentation as “MA”, which include DA and ADA.

Datasets. CIFAR-10 has 50K/10K training/testing images with resolution of 32× 32 from 10
categories, whereas CIFAR-100 has 100 classes. FFHQ contains 70K human face images at 256×256
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pixels. Low-shot datasets contain 100-shot Obama/Panda/Grumpy Cat images, AnimalFace (160 cats
and 389 dogs) images at 256×256 resolution. ImageNet has 1.2M/50K training/validation images
with 1K categories. Following [17, 9], we center-crop and downscale its images to 64×64 resolution.
The implementation details can be found in §D. The generated images can be found in §J.

Evaluation metrics. We generate 50K images per dataset to compute the commonly used Inception
Score [46] and Fréchet Inception Distance (FID) [15]. We report tFID, computed between 50K
generated images and all training images. For CIFAR-10/100, we also compute vFID between 10K
generated images and 10K real testing images. For low-shot datasets, we follow [68] and compute
FID between 5K generated images and the entire dataset. For FFHQ, we calculate FID between 50K
fake images and the entire training set. For ImageNet, we follow [17, 9] and generate 10K images
for computing the IS and FID, where the reference distribution is the entire training set. Following
[68, 11, 32], we run 5 trails for methods using NICE, and report the mean of the results. Given that
all standard deviations fall below the 1% relative, we omit them for clarity.

4.1 Results on CIFAR-10 and CIFAR-100 for BigGAN and OmniGAN

Tables 1 and 2 demonstrate that NICE consistently outperforms baselines such as BigGAN,
LeCam+DA, OmniGAN and OmniGAN+ADA on CIFAR-10 and CIFAR-100, firmly establishing its
superiority. NICE also outperforms LeCam+DA+KDDLGAN in the majority of scenarios without
any knowledge integration from large-scale models, underscoring its efficiency and effectiveness.

Table 1: Comparison w/ and w/o NICE on CIFAR-10 given different percentage of training data.

Method MA 100% data 20% data 10% data

IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID↓

BigGAN(d′=256) × 9.21 5.48 9.42 8.74 16.20 20.27 8.24 31.45 35.59

+LeCam × 9.45 4.27 8.29 8.95 11.34 15.25 8.44 28.36 33.65
+DigGAN × 9.28 5.33 9.35 8.81 13.28 17.25 8.32 18.54 22.45
+NICE × 9.50 4.19 8.24 8.96 8.51 12.54 8.73 13.65 17.75

+LeCam+DA ✓ 9.45 4.32 8.40 9.01 8.53 12.47 8.81 12.64 16.42
+LeCam+DA+KDDLGAN ✓ − − 8.19 − − 11.15 − − 13.86
+LeCam+DA+NICE ✓ 9.52 3.72 7.81 9.12 6.92 10.89 8.99 9.86 13.81

OmniGAN(d′=1024) × 10.01 6.92 10.75 8.64 36.75 41.17 6.69 53.02 57.68

+DA ✓ 10.13 4.15 8.06 9.49 13.45 17.27 8.99 19.45 23.48
+ADA ✓ 10.24 4.95 9.06 9.41 27.04 30.58 7.86 40.05 44.01
+NICE × 10.21 2.72 6.79 9.86 6.06 9.87 9.78 6.40 10.37
+NICE+ADA ✓ 10.38 2.25 6.32 10.18 4.39 8.42 10.08 5.49 9.42

Table 2: Comparison w/ and w/o NICE on CIFAR-100 given different percentage of training data.

Method MA 100% data 20% data 10% data

IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID↓

BigGAN(d′=256) × 11.02 7.86 12.70 9.94 25.83 30.79 7.58 50.79 55.04

+LeCam × 11.41 6.82 11.54 10.05 20.81 25.77 8.14 41.51 46.43
+DigGAN × 11.15 8.13 13.06 9.98 16.87 21.59 9.04 23.10 27.78
+NICE × 10.99 6.31 11.08 10.32 13.17 17.80 8.96 19.53 24.33

+LeCam+DA ✓ 11.25 6.45 11.26 10.12 15.96 20.42 9.17 22.75 27.14
+LeCam+DA+KDDLGAN ✓ − − 10.12 − − 18.70 − − 22.40
+LeCam+DA+NICE ✓ 11.28 5.72 10.40 10.54 10.02 14.93 9.35 14.95 19.60

OmniGAN(d′=1024) × 12.73 8.36 13.18 10.14 40.59 44.92 6.91 60.46 64.76

+DA ✓ 12.94 7.41 12.08 11.35 17.65 22.37 10.01 30.68 34.94
+ADA ✓ 13.07 6.12 10.79 12.07 13.54 18.20 8.95 44.65 49.08
+NICE × 13.77 3.83 8.61 12.57 8.68 13.53 11.97 14.53 19.22
+NICE+ADA ✓ 13.82 3.78 8.59 12.75 6.28 10.92 12.04 9.32 14.18
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4.2 Results on low-shot generation on StyleGAN2

Table 3 showcases the superior performance of NICE in comparison to leading methods, significantly
improving baselines and achieving state-of-the-art results. NICE also surpasses KDDLGAN, despite
KDDLGAN leverages the large-scale CLIP model [43]. Figure 2 shows realistic images generated by
NICE under scarce data training.

Figure 2: Images generated using NICE+ADA on StyleGAN2; see Figure 14 in §J for more examples
and comparisons for this low-shot generation setting.

Table 3: FID ↓ scores for unconditional image generation with StyleGAN2 on 100-shot
Obama/Grumpy cat/Panda and AnimalFace-Cat/Dog datasets. † indicates using a generator pre-
trained on the full FFHQ dataset. ‡ means using the CLIP [43] model pre-trained on large scale data.

Method MA Pre-trained 100-shot Animal Face

Obama Grumpy Cat Panda Cat Dog

StyleGAN2 [25] × × 80.20 48.90 34.27 71.71 131.90
StyleGAN2+SSGAN-LA [16] × × 79.88 38.42 28.6 78.78 109.91
StyleGAN2+NICE × × 24.56 18.78 8.92 25.25 46.56

ADA [22] ✓ × 45.69 26.62 12.90 40.77 56.83
DA [68] ✓ × 46.87 27.08 12.06 42.44 58.85
DigGAN [11] ✓ × 36.38 25.42 11.54 35.67 59.98
LeCam [57] ✓ × 33.16 24.93 10.16 34.18 54.88
GenCo [8] ✓ × 32.21 17.79 9.49 30.89 49.63
InsGen [63] ✓ × 32.42 22.01 9.85 33.01 44.93
MaskedGAN [17] ✓ × 33.78 20.06 8.93 − −
FakeCLR [32] ✓ × 26.95 19.56 8.42 26.34 42.02
TransferGAN † [59] ✓ ✓ 39.85 29.77 17.12 49.10 65.57
LeCam+KDDLGAN ‡ [9] ✓ ✓ 29.38 19.65 8.41 31.89 50.22
ADA+NICE ✓ × 20.09 15.63 8.18 22.70 28.65

4.3 Results on FFHQ for StyleGAN2 and ImageNet for BigGAN

Results for unconditional image generation on FFHQ are in Table 4, and for conditional image
generation on ImageNet 64×64 in Table 5. We limit FFHQ to 100, 1K, 2K, 5K real images and
follow [17, 9] for ImageNet setting. NICE showcases superior performance on FFHQ and ImageNet.

Table 4: FID ↓ scores on FFHQ using
StyleGAN2. ADA-Linear is introduced
in [63].

Method MA FFHQ

100 1K 2K 5K

StyleGAN2 × 179 100.16 54 49.68
ADA ✓ 85.8 21.29 15.39 10.96
ADA-Linear ✓ 82 19.86 13.01 9.39
InsGen ✓ 45.75 18.21 11.47 7.83
FakeCLR ✓ 42.56 15.92 9.90 7.25
ADA+NICE ✓ 38.42 14.57 8.85 6.48

Table 5: Comparison with and w/o NICE on ImageNet
given different percentage of training data.

Method MA 10% data 5% data 2.5% data

IS ↑ FID ↓ IS ↑ FID ↓ IS↑ FID ↓
BigGAN × 10.94 38.30 6.13 91.16 3.92 133.80
ADA ✓ 12.67 31.89 9.44 43.21 8.54 56.83
DA ✓ 12.76 32.82 9.63 56.75 8.17 63.49
MaskedGAN ✓ 13.34 26.51 12.85 35.70 12.68 38.62
KDDLGAN ✓ 14.14 20.32 14.06 22.35 14.65 28.79
NICE × 14.18 21.44 13.96 24.72 13.32 31.45
ADA+NICE ✓ 14.58 18.29 14.10 20.07 13.92 24.41

4.4 Analysis of NICE

Analysis of the stabilizing effect of NICE. In our 10% CIFAR-10 experiments with OmniGAN(d′=
256), Figure 3 provides compelling evidence supporting our theory. Figure 3a shows that Omni-
GAN+AN and OmniGAN+NICE achieve lower weight norms than OmniGAN, validating Theorem
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Figure 3: Weight and gradient norms of the discriminator on 10% CIFAR-10 with OmniGAN
(d′ = 256). (a) total discriminator weight norms, (b) gradient norm at the layer before classification
head, (c) gradient norm of f w.r.t. input, and (d) gradient norm of discriminator loss w.r.t. input.

0 50 100 150 195
iterations (×1000)

−18
−9
0
9
18

D(x)

0 50 100 150 195
iterations (×1000)

−6
−3
0
3
6

D(x)

0 50 100 150 195
iterations (×1000)

−6
−3
0
3
6

D(x)

0 100 200 300 390
iterations (×1000)

5
15
25
35
45

tFID

OmniGAN
OmniGAN+AN
OmniGAN+NICE

Real images Fake images Test images

(a) OmniGAN (b) OmniGAN+AN (c) OmniGAN+NICE (d) tFID curves

Figure 4: The discriminator output w.r.t. real, fake and test images of (a) OmniGAN, (b) Omni-
GAN+AN, (c) OmniGAN+NICE, along with (d) tFID curves on 10% CIFAR-10 using OmniGAN
(d′=256). The shaded region represents the standard deviation. Note we scale the y-axis in (b) and
(c) for visual clarity. In (d), training time is doubled to evaluate the endurance of our methods under
prolonged training conditions.

1 that the multiplicative noise modulation reduces the weight norm of discriminator, thus lowering
the Rademacher complexity and improving generalization.

Figure 3b shows a gradient surge at the latent layer before the classification head, especially for
real images in OmniGAN+AN and OmniGAN+NICE, surpassing gradients of OmniGAN. This
observation aligns with our prediction in Prop. 1 that introducing noise amplifies gradients due to the
maximization effect on real images when training discriminator and on fake images when training
generator, causing undesired gradient issues.

Figure 3c illustrates a smaller squared gradient norm ∥∂f/∂x∥22 for OmniGAN+NICE compared
to OmniGAN+AN and OmniGAN, showcasing the effectiveness of consistency regularization in
penalizing the gradient of discriminator, in line with the theoretical derivation in Theorem 2.

Figure 3d demonstrates that OmniGAN+NICE achieves a lower gradient norm of the discriminator
loss w.r.t. the input than both OmniGAN and OmniGAN+AN, affirming ability of NICE to counteract
the negative effects of large gradient norms caused by noise modulation. The resulted smaller
gradients at the input validates efficiency of NICE in stabilizing training.

Analysis of the ability of NICE to enhance generalization. Figure 4 visualizes the discriminator
outputs for real, fake, and test images along with tFID curves. In contrast to OmniGAN, Omni-
GAN+AN and OmniGAN+NICE balance discrimination and generalization [67], maintaining a
steady discrepancy between real and fake images. This equilibrium ensures a smaller discrepancy
between real seen images and unseen samples, effectively lowering the generation error as outlined
in Eq. 3 of Lemma 1. As a result, the generalization of GANs is enhanced, leading to superior
performance for image generation, as illustrated by the tFID curves in Figure 4d.

4.5 Ablation studies

Ablation of components in NICE. We examine the impact of various components of NICE: (i)
introducing adaptive noise (AN) to the discriminator, (ii) applying consistency regularization to
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Table 6: Ablation studies on components (AN, NICEDr
, NICEDf

, NICEGf
) in NICE.

Method 10% CIFAR-10 10% CIFAR-100 Obama

AN NICEDr NICEDf NICEGf IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID ↓ FID ↓

8.49 22.24 26.33 8.19 45.41 50.33 80.26
✓ 9.16 10.14 13.80 11.22 23.76 28.34 44.68
✓ ✓ 9.17 8.88 12.69 11.38 20.09 24.62 32.14
✓ ✓ ✓ 9.16 8.69 12.59 11.19 18.80 24.13 29.95
✓ ✓ ✓ 9.23 7.45 11.25 11.62 18.73 23.42 27.93
✓ ✓ ✓ ✓ 9.26 7.23 11.08 11.50 16.91 21.56 24.56

real images (NICEDr
), (iii) applying consistency regularization to fake images (NICEDf

) during
discriminator training, and (iv) enforcing consistency on fake images while training the generator
(NICEGf

). Table 6 shows our evaluations across 10% CIFAR-10/100 using OmniGAN (d′=256)
and the Obama on StyleGAN2. The optimal performance is achieved when NICE is applied to both
real and fake images in the training of both the discriminator and generator.

Impact of different factors in NICE. For an in-depth analysis on how different factors in NICE
contribute to its performance, readers are directed to §E.

Comparison with alternatives for enhanced generalization and stability. Table 7 shows that
NICE outperforms DA, ADA, AWD (adaptive weight decay), AN+AGP (adaptive noise with adaptive
gradient penalization) and NICEadd (with additive noise). Detailed implementation of these variants
can be found in §D.2. Figure 5 shows that NICE also enhances performance with increasing network
size, while ADA and DA exhibit a decline. As augmentation-based methods such as DA, ADA, and
AACR, may leak augmentation cues to the generator (Figure 9 of §I), NICE mitigates this drawback.

Method
10% CIFAR-10 10% CIFAR-100

IS↑ tFID↓ vFID↓ IS↑ tFID↓ vFID↓
OmniGAN 8.49 22.24 26.33 8.14 45.41 50.33

+AWD 8.56 18.28 22.12 9.64 37.68 42.01
+AN+AGP 8.98 11.55 15.25 10.72 27.73 32.15
+NICEadd 8.64 17.94 21.59 9.34 28.59 33.02

+DA 8.84 12.90 16.67 10.16 24.50 28.96
+ADA 9.67 13.86 17.70 11.23 23.11 27.58
+AACR 9.63 10.93 14.73 11.37 21.42 25.76

+NICE 9.26 7.23 11.08 11.50 16.91 21.56

Table 7: Various methods+OmniGAN (d′=256).
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Figure 5: tFID ↓ w.r.t. different network sizes d′.

Table 7 & Fig. 5: Various methods on OmniGAN. Tab. 7: AWD is Adaptive weight decay. AN+AGP:
Adaptive noise + adaptive gradient penalty. NICEadd: NICE with additive noise. AACR: Adaptive
augmentation-based consistency reg. Fig. 5: tFID ↓ w.r.t. different d′ on 10% CIFAR-10/100.

Rationalizing Advantages of NICE. Refer to §F and §G for a comprehensive explanations of why
NICE outperforms other alternatives, enhancing generalization and stability. Given a mild increase in
the computational load (§H), substantial performance gains are achieved.

5 Conclusions

Our newly proposed approach for GAN training, NoIse-modulated Consistency rEgularization
(NICE), improves generalization of various GAN models and their performance under limited data
training. Through rigorous theoretical analysis, we have shown that NICE reduces the Rademacher
complexity and penalizes the gradient of the latent features within the discriminator. Our experimental
results match theoretical findings, illustrating that NICE not only improves generalization but also
enhances stability of GAN training. By harnessing these two key advantages, NICE works with
various network backbones and consistently outperforms existing methods. These exceptional results
firmly establish NICE as a powerful solution for preventing the pervasive issue of discriminator
overfitting in GANs. Limitations and border impact of our work are discussed in §A.
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A Broader impact and limitations

NICE is a solution to limiting the extensive image usage in GAN training. Conventional GANs
heavily rely on massive training data, which can jeopardize data privacy during large-scale data
collection. NICE is an innovative method for data-limited image generation. By successfully training
GANs with just 100 images, NICE not only minimizes the dependency on large-scale training datasets,
but also significantly reduces the training cost. NICE decreases the risk of privacy violations (using
smaller datasets equals to the lesser risk of data mismanagement). NICE also provides a cost-effective
alternative for training GANs. As the data required for training is lesser compared with large-scale
models, NICE is also energy-consumption friendly. Of course, with small-scale dataset comes a
limitation on diversity. The model cannot generate instances for which the data is completely lacking.
Thus, special care needs to be taken regarding gender, race and other biases in generated images.

NICE advances GANs with Theorems 1 and 2, along with Corollaries 1 and 2. It offers novel
insights into the weight regularization. These findings, driven by the multiplicative and additive noise
modulation, along with the gradient regularization due to the consistency regularization, pave the
way for further future research.

B Notations

Below, we explain the notations used in this work.

Scalars: Represented by lowercase letters (e.g., m, n, δ).

Vectors: Bold lowercase letters (e.g., v, u, m).

Matrices: Bold uppercase letters (e.g., W , X , H).

Vector/Matrix elements: vk and ak represent k-th element of v and a. Hjk denotes the element
located at the j-th row and k-th column of matrix H .

Functions: Letters followed by brackets (e.g., σ(·), h(·), ∇f(·), H(·)).
Function sets: Calligraphic uppercase letters are used, but note that N and B specifically denote
Gaussian and Bernoulli distributions, respectively (e.g., H, F).

Probability measures: Denoted by letters µ, ν and pz .

Dataset samples: Expressed as x(i), y(i), a(i), τ (i).

Multiplication/Composition: ⊙ represents element-wise multiplication and ◦ denotes function
composition.

Expectation/empirical expectation: E[·] represents the average or expected value of a random
variable while Ê[·] denotes the empirical expectation calculated over observed data samples.

*The corresponding author. Code: https://github.com/MaxwellYaoNi/NICE
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C Proofs

We define ∥v∥2 = vTv as the squared norm of vector v. Note the commutative property of the dot
product, vTu = uTv, and the distributive property over matrices, vTA + uTA = (v + u)TA.
With these definitions and properties established, we now prove Theorem 1, Proposition 1 and
Theorem 2. We begin with a simplified scalar-based derivation, ensuring a rapid derivation of the final
results, followed by comprehensive proofs encompassing vector and matrix calculus for a holistic
understanding.

C.1 Proof of Theorem 1

Theorem 1 (Regularization by the Gaussian multiplicative noise in deep regression) Consider a
regression task on a two-layer neural network. Let X ⊆Rd0 and Y⊆ [−1, 1]d2 be the input and output
spaces, and D=X×Y . Let n examples {(x(i),y(i))}ni=1∼Dn. Let fw :X →Y be parameterized
by {w :W 1∈Rd1×d0 ,W 2 ∈Rd2×d1} and fw(x, z) =W 2(z ⊙ σ(W 1x)) where σ is 1-Lipschitz
activation function, ⊙ denotes element-wise multiplication and z∼N (1, β2Id1). Let a=σ(W 1x),
â= Êi[a

(i)⊙a(i)], âk≥0 denotes the k-th element of â. Let ∥W 2∥2,1=
∑

k∥wk∥2 where wk is the
k-th column vector in W 2. The regression task with the l2 loss leads to the weight regularization as:

L̂noise(w) := ÊiEz

[
∥y(i)−W 2(z ⊙ a(i))∥22

]
= Êi

[
∥y(i) −W 2a

(i)∥22
]
+ β2

2

∑
k

âk∥wk∥22.

We commence with a simplified derivation using scalars, which can quickly lead to the final results:

ÊiEz∼N (1,β2)

[(
y(i) − w2(za

(i))
)2]

= ÊiEz

[(
y(i) − w2a

(i) − w2(z − 1)a(i)
)2]

=ÊiEz

[(
y(i) − w2a

(i)
)2 − 2(y(i) − w2a

(i))w2(z − 1)a(i) +
(
w2(z − 1)a(i)

)2]
=Êi

[(
y(i) − w2a

(i)
)2]

+ w2
2Êia

(i)2Ez[(z − 1)2]

=Êi

[(
y(i) − w2a

(i)
)2]

+ β2w2
2Êia

(i)2.

Proof:

L̂noise(w) := ÊiEz

[
∥y(i) −W 2(z ⊙ a(i))∥22

]
= ÊiEz

[
∥y(i) −W 2a

(i) −W 2

(
(z − 1)⊙ a(i)

)
∥22
]

=Êi

[
∥y(i)−W 2a

(i)∥22
]
−2Êi

[
(y(i)−W 2a

(i))TW 2

(
Ez[z−1]⊙a(i)

)]
+ÊiEz

[
∥W 2

(
(z−1)⊙a(i)

)
∥22
]

=Êi

[
∥y(i)−W 2a

(i)∥22
]
−2Êi

[
(y(i)−W 2a

(i))TW 2(0⊙ a(i))
]
+ ÊiEz

[
∥W 2

(
(z−1)⊙ a(i)

)
∥22
]

=Êi∥y(i) −W 2a
(i)∥22 + ÊiEz∥W 2

(
(z − 1)⊙ a(i)

)
∥22. (12)

Let m ∼ N (0, β2Id1), with mk and a
(i)
k representing the k-th elements of vectors m and a(i),

respectively. Using these definitions, we derive the second term of Eq. 12 as follows:

ÊiEz

[
∥W 2

(
(z − 1)⊙ a(i)

)
∥22
]
= ÊiEm

[
∥W 2

(
m⊙ a(i)

)
∥22
]

=ÊiEm

[
(m⊙ a(i))TW T

2 W 2(m⊙ a(i))
]

=ÊiEm

[ d1∑
j=1

d1∑
k=1

(mja
(i)
j )(W T

2 W 2)jk(mka
(i)
k )

]
. (13)

Given that the elements in m are independent, for j ̸= k we have:

Em

[
(mja

(i)
j )(W T

2 W 2)jk(mka
(i)
k )

]
= 0. (14)

Observe that (W T
2 W 2)kk = ∥wk∥22 represents the squared norm of k-th column vector in W 2. Let

â denote the element-wise mean square of a(i), i.e., â= Êi[a
(i) ⊙ a(i)]. We leverage the distribution

property E[z2] = σ2 + µ2 for z ∼ N (µ, σ2), simplifying to E[z2] = σ2 when µ = 0. This lets us
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reformulate Eq. 13 explicitly as:

ÊiEm

[ d1∑
j=1

d1∑
k=1

(mja
(i)
j )(W T

2 W 2)jk(mka
(i)
k )

]
=ÊiEm

[ d1∑
k=1

(mka
(i)
k )(W T

2 W 2)kk(mka
(i)
k )

]
=ÊiEm

d1∑
k=1

(m2
ka

(i)
k

2)∥wk∥22 = β2Êi

d1∑
k=1

a
(i)
k

2∥wk∥22

=β2
∑
k

âk∥wk∥22. (15)

Substituting the second term in Eq. 12 with Eq. 15, we arrive at:

L̂noise(w) := ÊiEz

[
∥y(i)−W 2(z ⊙ a(i))∥22

]
= Êi

[
∥y(i)−W 2a

(i)∥22
]
+β2

∑
k

âk∥wk∥22. (16)

Integrating the Gaussian multiplicative noise into the optimization of regression task leads to an
adaptive regularization β2

∑
k âk∥wk∥22 on W 2, effectively reweighting the squared norm ∥wk∥22

of each column in accordance with âk ≥ 0. This mechanism, driven by the variance β2 of noise
enhances the robustness of model and its generalization capability. It is worth highlighting that this
process relates closely to the (2,1)-norm of W 2, defined as ∥W 2∥2,1 =

∑
k∥wk∥2.

Corollary 1 Utilizing the additive noise injection where z ∼ N (0, β2Id1), the regression task with
the l2 loss yields weight regularization as:

L̂add_noise(w) := ÊiEz

[
∥y(i)−W 2(z + a(i))∥22

]
= Êi

[
∥y(i)−W 2a

(i)∥22
]
+β2

∑
k

∥wk∥22. (17)

C.2 Proof of Proposition 1

Proposition 1 Define f := ft ◦ . . . ◦ f2 as the feature extractor of the discriminator from the second
layer onward. Let ã = f1(x̃) and a = f1(x) be the latent features of the first layer for fake and real
images, respectively. The discriminator is defined as h(·) = ϕ(φ(f(·))), with φ as the prediction
head and ϕ as the loss function. Introduce a multiplicative noise z ∼ N (1, β2Id′

) modulating solely
the first layer. Let H(h)

kk (a) be the k-th diagonal entry of the Hessian matrix of h at a and ak be the
k-th element of a. Applying Taylor expansion to h(·), the GAN loss can be expressed as follows:

min
θd

LAN
D :=EãEz

[
h(z ⊙ ã)

]
− EaEz

[
h(z ⊙ a)

]
≈Eã

[
h(ã)

]
−Ea

[
h(a)

]
+ β2

2

(
Eã

[∑
k ã

2
kH

(h)
kk (ã)

]
− Ea

[∑
k a

2
kH

(h)
kk (a)

])
.

min
θg

LAN
G :=− EzEã

[
h(z ⊙ ã)

]
≈ −Eã

[
h(ã)

]
− β2

2 Eã

[∑
k ã

2
kH

(h)
kk (ã)

]
.

We provide a succinct proof for the discriminator using scalar values to quickly arrive at the final
result, where h′(·) and h′′(·) are the first- and second-order derivatives, respectively.

Ezh(zã)− Ezh(za) = Ezh
(
ã+ (z − 1)ã

)
− Ezh

(
a+ (z − 1)a

)
=Ez

[
h(ã)+(z−1)ãh′(ã) +

(z−1)2

2
ã2h′′(ã)

]
− Ez

[
h(a)+(z−1)ah′(a)+

(z−1)2

2
a2h′′(a)

]
=h(ã)− h(a) + Ez

[ (z − 1)2

2

](
ã2h′′(ã)− a2h′′(a)

)
=h(ã)− h(a) +

β2

2

(
ã2h′′(ã)− a2h′′(a)

)
.

Proof: Consider a multivariate normal distribution m ∼ N (0, β2Id′
). Let ∇h(a) and H

(h)
jk (a)

represent the first-order derivative and the (j, k)-th entry of the Hessian matrix of h at a, respectively,
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implying that H(h)
jk = H

(h)
kj due to the symmetry of the Hessian matrix. With these notations

established, we proceed as follows:

LAN
D := EãEz

[
h(ã⊙ z)

]
− EaEz

[
h(a⊙ z)

]
= EãEz

[
h
(
ã+ (z − 1)⊙ ã

)]
− EaEz

[
h
(
a+ (z − 1)⊙ a

)]
= EãEm

[
h(ã+m⊙ ã)

]
− EaEm

[
h(a+ (m⊙ a)

]
≈ EãEm

[
h(ã) + (m⊙ ã)T∇h(ã) +

1

2
(m⊙ ã)TH(h)(ã)(m⊙ ã)

]
− EaEm

[
h(a) + (m⊙ a)T∇h(a) +

1

2
(m⊙ a)TH(h)(a)(m⊙ a)

]
= Eãh(ã)− Eah(a)

+ EãEm

[
(m⊙ ã)T∇h(ã)

]
− EaEm

[
(m⊙ a)T∇h(a)

]
(18)

+ EãEm

[1
2
(m⊙ã)TH(h)(ã)(m⊙ã)

]
−EaEm

1

2
(m⊙a)TH(h)(a)(m⊙a). (19)

Addressing the first-order gradient term presented in Eq. 18, we notice the following:

EãEm

[
(m⊙ ã)T∇h(ã)

]
− EaEm

[
(m⊙ a)T∇h(a)

]
=Eã

[
(0⊙ ã)T∇h(ã)

]
− Ea

[
(0⊙ a)T∇h(a)

]
= 0. (20)

Examining the second-order gradient in Eq. 19, and leveraging the independence of elements in
m, we apply the result from Eq. 14. With ãk and ak representing the k-th elements in ã and a,
respectively, we derive:

EãEm

[1
2
(m⊙ ã)TH(h)(ã)(m⊙ ã)

]
− EaEm

[1
2
(m⊙ a)TH(h)(a)(m⊙ a)

]
=EãEm

[1
2

d′∑
k=1

mkãkH
(h)
kk (ã)mkãk

]
− EaEm

[1
2

d′∑
k=1

mkakH
(h)
kk (a)mkak

]
=
β2

2

(
Eã

[∑
k

ã2kH
(h)
kk (ã)

]
− Ea

[∑
k

a2kH
(h)
kk (a)

])
. (21)

By substituting Eq. 18 with the results from Eq. 20, and Eq. 19 with Eq. 21, we arrive at the
following expression:

LAN
D ≈ Eã

[
h(ã)

]
− Ea

[
h(a)

]
+

β2

2

(
Eã

[∑
k

ã2kH
(h)
kk (ã)

]
− Ea

[∑
k

a2kH
(h)
kk (a)

])
. (22)

Utilizing the same derivation process as before for LAN
G , we arrive at the following result:

LAN
G ≈ −Eã

[
h(ã)

]
− β2

2
Eã

[∑
k

ã2kH
(h)
kk (ã)

]
. (23)

Introducing the multiplicative Gaussian noise during training of GAN produces the gradient max-
imization effect on the real samples in the discriminator training, specially through the term
β2

2

∑
k a

2
kH

(h)
kk (a). This term intertwines the second-order partial derivative (diagonal entry H

(h)
kk (a)

of the Hessian matrix) with the non-negative factor β2

2 a2k ≥ 0, and is related to the trace of the
Hessian matrix given by trace

(
H(h)(ar)

)
=

∑
k H

(h)
kk (a). Employing similar reasoning for the

fake samples when training the generator reveals that the noise-modulated discriminator training of
GAN tends to amplify the the diagonal entry of the second-order partial derivative in the Hessian
matrix at both the real and fake points, influencing the optimization stability.

C.3 Proof of Theorem 2

Theorem 2 Using notations from Prop. 1 and with f :Rd′→R, let ∇2
kf(a) and

(
H

(f)
jk (a)

)2
denote

the squares of the k-th gradient element and (j, k)-th entry of Hessian matrix of f at a, respectively.
Given z1, z2∼N (1, β2Id′

), enforcing invariance of f under different noise modulations yields:

ℓNICE(a) :=Ez1,z2

[(
f(z1 ⊙ a)−f(z2 ⊙ a)

)2]≈ 2β2
∑

k a
2
k∇2

kf(a)+β4
∑

j,ka
2
ja

2
k(H

(f)
jk (a))2 .

17



A concise derivation employs scalar values for the Taylor expansion, swiftly leading to results using
f ′(·) and f ′′(·) for first and second-order derivatives, respectively.

Ez1,z2

(
f(az1)− f(az2)

)2
= Ez1,z2

(
f(a+ (z1 − 1)a)− f(a+ (z2 − 1)a)

)2
=Ez1,z2

(
f(a)+(z1−1)af ′(a)+

(z1−1)2

2
a2f ′′(a)−f(a)−(z2−1)af ′(a)− (z2−1)2

2
a2f ′′(a)

)2

=Ez1,z2

(
(z1 − z2)af

′(a) +
(z1 − 1)2 − (z2 − 1)2

2
a2f ′′(a)

)2

=Em1,m2∼N (0,β2)

(
(m1 −m2)af

′(a) +
m2

1 −m2
2

2
a2f ′′(a)

)2

=Em1,m2

[
(m1 −m2)

2a2f ′2(a) + (m1 −m2)(m
2
1 −m2

2)a
3f ′(a)f ′′(a) +

(m2
1 −m2

2)
2

4
a4f ′′2(a)

]
=2β2a2f ′2(a) + β4a4f ′′2(a).

Proof: Let m1,m2 ∼ N (0, β2Id′
). Note z1 and z2 are independent of each other, as well as

independent of a and f(a). The same independence holds for z2. By taking expectations over z1

and z2, and applying Taylor expansion, we analyze the consistency loss of f(a):

ℓNICE(a) :=Ez1,z2

[(
f(a⊙ z1)− f(a⊙ z2)

)2]
=Em1,m2

[(
f(a+m1 ⊙ a)− f(a+m2 ⊙ a)

)2]
≈Em1,m2

[(
f(a) + (m1 ⊙ a)T∇f(a) +

1

2
(m1 ⊙ a)TH(f)(a)(m1 ⊙ a)

− f(a)− (m2 ⊙ a)T∇f(a)− 1

2
(m2 ⊙ a)TH(f)(a)(m2 ⊙ a)

)2]
=Em1,m2

[(
(m1 ⊙ a)T∇f(a) +

1

2
(m1 ⊙ a)TH(f)(a)(m1 ⊙ a)

− (m2 ⊙ a)T∇f(a)− 1

2
(m2 ⊙ a)TH(f)(a)(m2 ⊙ a)

)2]
. (24)

Defining v := m1 ⊙ a and u := m2 ⊙ a with m1 and m2 are independently sampled from
N (0, β2Id′

), we get v,u ∼ N (0, β2diag(a⊙ a)). Here diag(a⊙ a) is a diagonal matrix with a2k
on the diagonal. Letting δ := ∇f(a) and H = H(f)(a), we can rewrite Eq. 24 as follows:

Ev,u

[(
vT δ +

1

2
vTHv − uT δ − 1

2
uTHu

)2]
=Ev,u

[(
(v − u)T δ +

1

2
vTHv − 1

2
uTHu

)2]
=Ev,u

[(
(v − u)T δ

)2]
(25)

+ Ev,u

[(
(v − u)T δ

)(
vTHv − uTHu

)]
(26)

+
1

4
Ev

[
(vTHv)2

]
+

1

4
Eu

[
(uTHu)2

]
(27)

− 1

2
Ev,u

[
(vTHv)(uTHu)]. (28)

Next, we succinctly derive the four terms: the first (Eq. 25), second (Eq. 26), third (Eq. 27), and
fourth (Eq. 28) term, respectively.

The first term (Eq. 25):

Leveraging the property Ez1,z2 [(z1 − z2)
2] = 2σ2 for z1, z2 ∼ N (0, σ2), we can simplify (Eq. 25)

as follows:

Ev,u

[(
(v − u)T δ

)2]
= Ev,u

[ d′∑
k=1

(v − u)2kδ
2
k

]
=

d′∑
k=1

Ev,u

[
(v − u)2k

]
δ2k = 2β2

∑
k

a2kδ
2
k. (29)

18



The second term (Eq. 26):

Utilizing E[z3] = µ3+3µσ2 for z ∼ N (µ, σ2), and noting that E[z3] = 0 when µ = 0 and elements
in v are independent, Eq. 26 is derived as:

Ev,u

[(
(v − u)T δ

)(
vTHv − uTHu

)]
=Ev

[
(vTδ)(vTHv)]+Eu

[
(uTδ)(uTHu)]−Ev,u

[
(vTδ)(uTHu)]−Ev,u

[
(uTδ)(vTHv)]

=2Ev

[
(vTδ)(vTHv)] = 2Ev

[∑
k

vkδkvkHkkvk

]
= 2Ev

[∑
j

v3kδkHkk

]
= 0. (30)

The third term (Eq. 27):
1

4
Ev

[
(vTHv)2

]
+

1

4
Eu

[
(uTHu)2

]
=
1

2
Ev

[
(vTHv)2

]
=

1

2
Ev

[∑
j

∑
k

∑
p

∑
q

vjHjkvkvpHpqvq

]
. (31)

Given the independence of elements in v, only terms with an element repeated two or four times
contribute non-zero results, leading to four distinct, non-overlapping cases. Using E[z2] = σ2 + µ2

and E[z4] = µ4 + 6µ2σ2 + 3σ4 for z ∼ N (µ, σ2), and simplifying to E[z2] = σ2 and E[z4] = 3σ4

when µ = 0, we have:

Case 1: j = k ̸= p = q, the independence of vj and vp simplifies our calculation, leading to:

Ev

[∑
j

∑
p ̸=j

v2jHjjv
2
pHpp

]
=

∑
j,p ̸=j

HjjHppE[v2j ]E[v2p] = β4
∑
j,k ̸=j

HjjHkka
2
ja

2
k. (32)

Case 2: For j = p ̸= k = q, given the independence of vj and vk, we have:

Ev

[∑
j

∑
k ̸=j

vjHjkvkvjHjkvk

]
=

∑
j,k ̸=j

H2
jkE[v2j ]E[v2k] = β4

∑
j,k ̸=j

H2
jka

2
ja

2
k. (33)

Case 3: For j = q ̸= k = p, leveraging the independence of vj and vk as well as the symmetry
Hjk = Hkj , we obtain:

Ev

[∑
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Case 4: For j = q = k = p, using E[z4] = 3σ4 where z ∼ N (0, σ2), we deduce:
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Combining Cases 1-4 together, we arive at for Eq. 27:

β4

2

(∑
j

3H2
jja

4
j +

∑
j,k ̸=j

(HjjHkk + 2H2
jk)a

2
ja

2
k

)
. (36)

The forth term (Eq. 28):
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Substitute Eq. 29, 30, 36, 37 back into Eq. 25, 26, 27, 28, we have the final results:
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Enforcing the consistency regularization implicitly penalizes the first- and second-order gradients of
f w.r.t. a, with an adaptive penalty controlled β and modulated by a. This modulation recalibrates the
squared norms of gradient: the squared norm of the first-order gradient, ∥∇f(a)∥22 =

∑
k ∇2

kf(a),
and the Frobenius norm of the Hessian, ∥H(f)(a)∥2F =

∑
j

∑
k(H

(f)
jk (a))2. Specifically, each term

is reweighted by a2k ≥ 0, ensuring that the penalty applied to each gradient component is scaled
proportionally to its associated magnitude of feature.

Corollary 2 Enforcing invariance of f under different additive noise injections, where z1, z2 ∼
N (0, β2Id′

) leads to the gradient regularization as:

Ez1,z2

[(
f(z1 + a)− f(z2 + a)

)2]
= 2β2

∑
k

∇2
kf(a) + β4

∑
j

∑
k

(H
(f)
jk (a))2. (39)

D Implementation details for Experiments

Following previous benchmarks [68, 22], we augmented all datasets with the simple x-flips augmen-
tation.

D.1 Network architecture and hyperparameters

CIFAR-10/100. We experiment with OmniGAN (d′ = 256, 1024) and BigGAN (d′ = 256) with
the batch size of 32. We follow [68] and train the OmniGAN and BigGAN for 1K epochs on the
full data and 5K epochs on 10%/20% data setting. We equip the discriminator with the adaptive
noise modulation after convolution weights c ∈ {C1, C2, CS} at all blocks l ∈ {1, 2, 3, 4}. We set
∆β = 0.001, η = 0.5,∆γ = 10. Features before loss function are used for NICE on BigGAN.

ImageNet. We experiment with BigGAN with the batch size of 512. We use a learning rate of 1e-4
for generator and 4e-4 for discriminator. The noise modulation is placed after convolution layers
c ∈ {C1, C2, CS} at blocks l ∈ {3, 4, 5}, ∆β = 0.001, η = 0.5,∆γ = 5. Features before loss
function are used for NICE.

Low-shot images. We build our NICE upon StyleGAN2 with batch size of 64 and train the networks
until the discriminator had seen 25M images. We apply noise modulation with Bernoulli noise after
convolutions c ∈ {C1, C2} at blocks l ∈ {3, 4, 5, 6}, ∆β = 0.0001, η = 0.9,∆γ = 0.05

FFHQ. We experiments on StyleGAN2 with batch size of 64 and train the networks until the dis-
criminator had seen 25M images. We apply noise modulation with Bernoulli noise after convolutions
c ∈ {C1, C2} at blocks l ∈ {3, 4, 5, 6}, ∆β = 0.0001, η = 0.6,∆γ = 0.05

D.2 Implementation details for AWD, AN+AGP, and AACR

In Figure 5, we compare NICE with three different approaches: adaptive weight decay (AWD),
adaptive noise + adaptive gradient penaulty (AN+AGP) and adaptive augmentation-based consistency
regularization (AACR). For AWD, we dynamically control the weight decay using βλWD. We search
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the λWD ∈ {2e-4, 1e-4, 5e-5, 2e-5, 1e-5, 5e-6} and obtain the best result at 5e-5. For AN+AGP, we
employ the adaptive noise modulation and also adaptively penalize the gradient of

∥∥∂LAN
D

∂x

∥∥2
2

or
∥∥ ∂f
∂x

∥∥2
2

with adaptive strength βλGP. We test different values of λGP ∈ {0.2, 0.5, 1, 2, 5, 10} and obtain the
best results with λGP=2. For AACR, we incorporate the adaptive differentiable augmentation (ADA)
to provide two different views for the same images, and enforce the discriminator to be consistent to
the two views of the same images. We adaptively control the strength of AACR with βλAACR. We
search the λAACR ∈ {0.2, 0.5, 1, 2, 5, 10} and obtain the best result with λAACR = 2.

E Impact of various factors

Below, we analyze the importance of different factors in NICE by conducting ablation experiments.
The results are presented in Figure 6. In Figure 6a, we observe that placing the noise modulation
module after C1 and C2 improves performance, and the best results are obtained when the noise
is placed after all convolution layers. Figure 6b indicates that placing the noise at deeper layers
leads to better tFID scores, and the best performance is achieved when the noise is applied at all
blocks. Figure 6c shows that ∆γ = 10 is a good choice for NICE. Figure 6d illustrates η = 0.5
produce overall good performance. Figure 6e plots the results for consistency regularization among
M feature extractors f modulated with noise. We use M = 2 (i.e., f1 and f2) in the main paper.
Figure 6e indicates there is no need to use more feature extractors, as f1(·) and f2(·) for consistency
regularization produce the best results. Figure 6f presents the results for consistency regularization at
every N discriminator steps, indicating that regularizing the discriminator during each iteration is
preferable, as larger intervals result in worse performance.

C1 C2 CS C1CS C2CS C1C2 C1C2CS
6
9
12
15
18

tFID

(a) c ∈ {C1, C2, CS}
1 2 3 4 12 34 123 234 12346

9
12
15
18

tFID

(b) l ∈ {1...L}
1 2 5 10 15 20 25∆γ

7.0
7.6
8.2
8.8
tFID

(c) ∆γ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9η7.0
7.6
8.2
8.8
tFID

(d) η

2 3 4 5 6 8 107.0
7.6
8.2
8.8
tFID

(e) M -time

1 2 4 6 8 12 167.0
7.6
8.2
8.8
tFID

(f) N -step

Figure 6: tFID ↓ under different factors. Ablation studies on 10% CIFAR-10 with OmniGAN
(d′=256) w.r.t. different places, different blocks, ∆γ , η, M -time and N -step for NICE.

F Rationale for choosing multiplicative noise over direct weight
regularization

For the multiplicative modulation with the noise, we have:

L̂mul_noise : = ÊiEz∼N (1,β2I)∥y(i) −W 2(z ⊙ a(i))∥22
= Êi∥y(i) −W 2a

(i)∥22 + β2
∑
k

âk∥wk∥22,

where z ⊙ a(i) is element-wise multiplication of z with a(i) and â = Êi[a
(i) ⊙ a(i)]. This implies

that while the direct penalty of network weights,
∑

k∥wk∥22, is possible, our approach enjoys a
dynamic modulation β2â2k where variance β2 is adapted based on the discriminator decisions and
âk ≥ 0 depends on the magnitude of feature vectors.

The importance of such a multiplicative modulation is that semantic contents is not added by noise
z to the modulated feature vector z · a(i), i.e., only “active” channels a(i) ̸= 0 are modulated:
they can be suppressed or magnified according to variance β2.
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In contrast, the additive noise modulation results in the standard penalty β2
∑

k∥wk∥22:

L̂add_noise : = ÊiEz∼N (0,β2I)∥y(i) −W 2(z + a(i))∥22
= Êi∥y(i) −W 2a

(i)∥22 + β2
∑
k

∥wk∥22.

While obvious, β2
∑

k∥wk∥22 does not enjoy the dynamic penalty term related to feature norms.
This also means (based on the derivation) that the additive noise may change feature semantics,
i.e., z + a(i) may “activate” channels which are non-active in a(i) (features a(i) = 0). Therefore,
our multiplicative modulator not only controls the Rademacher Complexity (RC), but controls it
in a meaningful manner for discriminator. Only feature semantics that are present in a feature
vector (that describe an object) are modulated while helping control RC. In contrast, the additive
noise introduces semantics that are not present for a given image or object.

While directly regularizing the network using β2
∑

k∥wk∥22 does not introduce the additive noise,
the explicit regularization effect is similar to introducing the additive noise. Thus, if we connect
the direct weight regularization to the additive noise, it will also have the effect of changing the
semantics, which will negatively impact the classification accuracy.

We provide experimental comparisons in Table 8. In addition, Figure 7 shows that AN achives higher
classification accuracy than AAN and AWR, demonstrating that multiplicative noise preserves the
feature semantics better than the additive noise and the weight regularization.

Table 8: Results for different methods on 10% CIFAR-10/100 using OmniGAN (d′=256). AAN
(adaptive additive noise), AWR (adaptive weight regularization), AN (our adaptive multiplicative
noise). Please note the consistency loss and dual branch from Figure 1 are not used here as that would
result in additional penalties on gradient norms.

Method Equation
10% CIFAR-10 10% CIFAR-100

IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓
OmniGAN 8.49 22.24 26.33 8.19 45.41 50.33
+AAN a(i) :=a(i)+z; z∼N (0, β2I) 8.52 20.12 24.65 9.64 37.68 42.01
+AWR β2

∑
k∥wk∥22 8.44 18.42 22.56 9.80 32.05 36.53

+AN a(i) :=a(i)⊙z; z∼N (1, β2I) 9.16 10.14 13.80 11.22 23.76 28.34

0 50 100 150 195
iterations (×1000)

0.4

0.5

0.6

0.7

Acc

50 100 150 195
iterations (×1000)

OmniGAN
+AN
+AWR
+AAN
+NICE
+ALGP
+AWR+ALGP
+NICEadd

Figure 7: Classification accuracy of different methods. We input test images into the classifier of
discriminator and assess its accuracy in correctly categorizing the images into their true classes (out
of 10 categories in CIFAR-10). All other methods have lower accuracy than the baseline OmniGAN,
but NICE preserves the classifier accuracy.
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G Rationale behind choosing NICE over the direct gradient regularization

Consider the regularization term in Theorem 2 and its Taylor expansion. Indeed, this expression
penalizes the squared norms of first- and second-order gradients of f(a). However, notice that our
expression has specific reweighting effect for penalizing the first- and second-order gradients. The
specific gradient penalties

2β2
∑
k

a2k∇2
kf(a) + β4

∑
j,k

a2ja
2
k(H

(f)
jk (a))2 (40)

emerge only in case of using the multiplicative noise drawn from N (1, β2I) for Theorem 2. Impor-
tantly, the multiplicative noise z ∼ N (1, β2I) does not introduce new semantics into feature vector
a by operation z ⊙ a, i.e., only feature semantics that are present in feature vector (features of a that
are non-zero) that describe object are modulated. Yet, this multiplicative noise does help control the
Rademacher Complexity (RC) due to Lemma 2 and Theorem 1. However, imposing a generic penalty
of form β(

∑
k ∇2

kf(a) +
∑

j,k(H
(f)
jk (a))2 that arises when the additive noise z ∼ N (0, β2I) is

applied to a(i), i.e., z + a.

Let z ∼ N (0, β2I). The consistency loss regularization with the additive noise injection is:

Ez1,z2

[(
f(z1 + a)− f(z2 + a)

)2]
= 2β2

∑
k

∇2
kf(a) + β4

∑
j

∑
k

(H
(f)
jk (a))2.

Such a variant means that semantics that are not present in a may be “activated” by the noise,
drastically altering the meaning of a and damaging the information it carries about image/object.

While directly applying gradient penalization does not introduce noise, its connection to the additive
noise suggests it will have a negative effect on semantics. Table 8 evaluates the multiplicative vs.
additive noise modulators, and the direct penalties. Table 9 provides experimental results for different
gradient regularization variants. Furthermore, Figure 7 shows that NICE obtains best accuracy than
other variants, showing that the multiplicative noise modulation preserves the semantics better than
other variants, justifying the rationale behind NICE.

Table 9: Results for ALGP (adaptive latent gradient penalization), NICEadd (consistency regular-
ization with additive noise), AWR (adaptive weight regularization) on 10% CIFAR-10/100 using
OmniGAN (d′ = 256).

Method
10% CIFAR-10 10% CIFAR-100

IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓
OmniGAN 8.49 22.24 26.33 8.19 45.41 50.33
+ALGP 8.52 19.15 22.72 9.18 32.98 37.51
+AWR+ALGP 8.72 16.82 20.45 10.14 26.44 30.23
+NICEadd 8.64 17.94 21.59 9.34 28.59 33.02
+NICE 9.26 7.23 11.08 11.50 16.91 21.56

H Training overhead with and without NICE

We provide number of parameters/multiply–accumulate (MACs) (for both generator and discrimi-
nator), number of GPUs and cost of time (seconds per 1000 images, secs/kimg) in Table 10. With
the efficient implementation (Figure 1), our NICE only introduces small fraction of cost of time
on high-resolution datasets. 15.08% on ImageNet and 18.02% on FFHQ/low-shot datasets. Figure
8 illustrates the FID gain vs. speed, which shows that a slightly increase in training time yields
substantial improvements, particularly when compared to recent state-of-the-art approaches like
FakeCLR [32] and InsGen [63]. We believe the increased computational overhead is outweighed by
the considerable benefits and the improvements justify the extra fraction of time.
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Table 10: Number of parameters, MACs and secs/kimg for models with vs. without the NICE.
Experiments were performed on NVIDA A100 GPUs.

Dataset Archtecture GPUs Baseline +NICE

#Par. MACs sec/kimg #Par. MACs sec/kimg

CIFAR-10 OmniGAN 1 8.51M 2.79G 0.80 8.51M 3.87G 1.15
(d′=256)

CIFAR-100 OmniGAN 1 8.81M 2.79G 0.81 8.81M 3.87G 1.17
(d′=256)

ImageNet BigGAN 2 115.69M 18.84G 1.79 115.69M 20.43G 2.06

Low-shot StyleGAN2 2 48.77M 44.15G 5.66 48.77M 52.00G 6.68& FFHQ

5 6 7 8 9 10 11 12
sec/kimg

15
25

40

55

70
FID

StyleGANV2

ADA

NICE
ADA+NICE

InsGen
FakeCLR

Figure 8: FID vs. sec/kimg of different methods on 5 low-shot datasets. FID are averaged over the 5
low-shot datasets.

I Qualitative comparison among DA, ADA, AACR and NICE+ADA

Figure 9 provides qualitative comparison between augmentation based method DA, ADA, AACR
and NICE+ADA. We find DA, ADA and AACR leak augmentation clues to the generated images
while NICE+ADA prevents the leakage. Figure 10 further demonstrates augmentation-based method,
although can prevent discriminator overfitting problem by expanding data space through diverse
augmentations, has the potential to cause increased gradient norm due to Prop. 1 and the fact ADA
involves random additive/multiplicative noise. However, when combining NICE with ADA, the
gradient issues caused by ADA were alleviated.

J Generated images

Figures 11, 12, 13, 14 and 15 provide the generated images on CIFAR-10, ImageNet, CIFAR-100,
low-shot datasets and FFHQ with or without NICE. We can see NICE improve the image generation
quality.
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(a) DA (b) ADA (c) AACR (d) NICE+ADA

Figure 9: Generated images using (a) DA (differentiable augmentation [68]), (b) ADA (adaptive dif-
ferentiable augmentation [22]), (c) AACR (adaptive augmentation-based consistency regularization)
and (d) NICE+ADA on 10% CIFAR-10 using OmniGAN (d′=256) [71] We use red boxes to bound
the images that leak the augmentation. DA leaks the cutout augmentation. ADA and AACR leaks the
rotation augmentation. Combining NICE with ADA prevents the leakage of augmentation.

0 50 100 150 195
iterations (×1000)

0e-3

4e-3

8e-3

12e-3
||∂LD

∂x
||22 Real images

Fake images

OmniGAN

+ADA

+ADA+NICE

Figure 10: The gradient norm ∥∂LD

∂x ∥22 of ADA and ADA+NICE.

(a) DA (b) ADA (c) ADA+NICE

Figure 11: Generated images using (a) DA, (b) ADA and (c) NICE+ADA on 10% CIFAR-10
using OmniGAN (d′=1024). Note that DA leaks cutout augmentation and ADA leaks the rotation
augmentation.
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(a) ADA (b) ADA+NICE

Figure 12: Generated images using (a) ADA and (c) ADA+NICE on 2.5% ImageNet using BigGAN.
ADA struggles to capture the semantics of images, whereas NICE provides better image quality.
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(a) DA (b) ADA (c) ADA+NICE

Figure 13: Generated images using (a) DA, (b) ADA and (c) NICE+ADA on 10% CIFAR-100 using
OmniGAN (d′=1024). We present the last 40 classes out of the 100 classes 40. Note that DA leaks
cutout augmentation clues (row 7 and row 21) and ADA generates images lacking diversity, while
NICE+ADA provides better visual quality.
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(a) StyleGAN2+ADA (b) StyleGAN2+ADA+NICE

Figure 14: Qualitative comparison between ADA [22] and ADA+NICE on 100-shot and AnimalFace
datasets. Adding NICE clearly improves the image quality.
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Figure 15: Qualitative comparison between ADA [22] and ADA+NICE on FFHQ dataset. Images
are generated without trunction [25]. Adding NICE can provide better visual quality.
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