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Abstract

Causal discovery in the form of a directed acyclic graph (DAG) for dynamic time
series data has been widely studied in various applications. In this work, we
propose a dynamic DAG discovery algorithm, Meta-D?AG, based on online meta-
learning. Meta-D?AG is designed to learn dynamic DAG structures from potentially
nonlinear and non-stationary time series datasets, accounting for changes in both
parameters and graph structures. Unlike most of the existing work focusing on
observational, offline, and/or stationary settings, Meta-D?AG explicitly treats
data collected at different time points with distribution shifts as distinct domains,
which is assumed to occur as a result of external interventions. Moreover, Meta-
D2AG involves a new online meta-learning framework to take advantage of the
temporal transition among existing domains such that it can quickly adapt to new
domains with few measurements. A first-order optimization approach is utilized to
efficiently solve the meta-learning framework, and theoretical analysis establishes
the identifiability conditions and the convergence of the learning process. We
demonstrate the promising performance of the proposed meta learning framework
through better accuracy on benchmark datasets against state-of-the-art baselines.

1 Introduction

Probabilistic graphical models [50,132]] and causal graphical models [S1]] have been an active area of
research in machine learning. Dynamic probabilistic graphical models [3] are particularly suitable to
capture dynamics in temporal data like time series by explicitly modeling how variables change over
time. These probabilistic models have been successfully applied to real-world problems, such as for
neuroscience [55]], molecular biology [35] and computer vision [42] tasks.

Dynamic Bayesian networks (DBNs) [12}143] are among the most popular dynamic graphical models
in the literature, initially proposed for discrete-time models with discrete variables. Later, plenty
of subsequent work extended these models to consider continuous variables that are more suitable
for time series data since they often involve continuous-valued measurements. For example, DBNs
are used for structured vector auto-regressive (SVAR) models in the statistics and econometrics
literature [56} 157, [13) 164, 134, 130} 166, [65]]. Parameter learning and directed acyclic graph (DAG)
structure learning from observational time series data are the typical learning tasks for DBNs.
One can categorize standard structure learning methods into score-based [23} 18, 5], constraints-
based [62] 167, [10} 40, [17, [60], or more recently, neural-based methods [41]. A more tractable
continuous optimization framework has been proposed based on the algebraic characterization of the
DAG [[77] to address super-exponential computational complexity in exact structure learning. This
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continuous optimization formulation [46) (70, [74] has been successfully extended to nonlinear neural
models [[73}133}126, 78, [71,[72]] and dynamic DAG structure learning [49} 147, 25]].

Despite its success, typical DAG learning has one major limitation. Often, the data distribution may
change over time and the model parameters or even graph structures may fluctuate. For instance,
in applications such as monitoring sensor networks, different sensors may be active at different
times due to operating costs or weather conditions. Changes in city policies, urban development,
or even major events (such as festivals or construction projects) can lead to temporal shifts in the
data distribution. In retail, the sales of certain products may exhibit seasonal variations, such as
increased demand for winter clothing during colder months. Standard DAG learning algorithms
assume datasets involve samples that are independent and identically distributed (i.i.d.), ignoring
correlations across time steps. Moreover, structure learning in DBN's over time series data generally
ignores the distribution shift and assumes stationarity, which may affect the accuracy of the learned
graphs. Datasets collected over a long period of time could contain distribution changes, such as
monthly data or even yearly data. When these changes are significant, one may have to re-learn
the graph from scratch, which loses relevant historical information and reduces learning efficiency,
especially if some parameters or graph edges remain constant over time.

As a step toward addressing such non-stationary problems, we propose a meta learning based dynamic
DAG learning approach, Meta-D?AG, to model such distribution shifts over time. We consider the
data collected over different periods as different domains under the distribution shifts, and utilize
historical data to learn a set of shared parameters across the whole domain and private parameters
that adapt to domain-specific changes per domain. In Meta-D2AG, we view distribution shifts as
caused by external interventions, e.g., updating the public health policy would influence the health
record. Accordingly, we utilize the explicit intervention distribution when intervention targets are
known, or the observational distribution when those targets are unknown.

The proposed framework employs a two-level optimization process to separate the invariant and
domain-specific subspaces, and it can quickly adapt to a new data distribution and achieve higher graph
learning accuracy with a few samples. This procedure is particularly beneficial when the data collector
may not be able to capture a sufficient amount of time series data due to non-stationarity, making
a low sample requirement crucial. Moreover, the chosen meta-learning framework is especially
suitable for those non-stationary environments where some aspects of the environment evolve slowly
or change periodically. This characteristic can make learning stationary components easier, as data
across different interventions or domains are observed.

There have been a few works using a transfer-learning approach to handle invariant causal structures
across domains, but they are mainly for reinforcement learning or observational time series data
[L11145L137,129]. There is also a line of works for multi-task DAG learning, but they require additional
order information to be provided [6] and do not consider new domains in an online setting [2]. [25]
considers a potential heterogeneous distribution, but it assumes a fixed graph structure where only
parameters are assumed to change.

The major contributions of our work are as follows:

* We propose a novel meta-learning framework via bilevel optimization for time series DAG learn-
ing that explicitly models intervention as the source of distribution shift. It can handle both
observational and interventional data distributions with nonlinear relationships by formulating a
non-stationary collection of dynamic datasets as different domains.

* We propose an efficient first-order optimization approach to solve the proposed bilevel optimization
framework with constraints in the lower level.

* Our theoretical analysis establishes the identifiability conditions in the batch setting and provides
convergence rates in the online setting.

2 Background and Related Work

Consider a set of realizations of a potentially non-stationary time series, with each individual
realization of size 7T in the form of X; := [v;,]L, € R% Here t € {0,...,T} represents the
time index, X represents the observed values of all d number of variables in an observational or
interventional time series dataset, and z, ; denotes the ¢-th component of X;. For simplicity of
notation, we consider one sequence X; without loss of generality.



A causal Bayesian network [51] is defined by a distribution Px over a set of random variables
X € R?and a DAG G = (V, E) with nodes V and edges E. Eachnode V; € V = {Vy,..., Vy} is
associated with a random variable x; and each edge (¢, j) € F represents a direct causal relation
from variable x; to ;. With a slight abuse of notation, we will use X and V interchangeably. We

assume the distribution Px is Markov with respect to graph G, which enables the factorized joint

distribution as P(X) = H?Il pj(xj|z,c), where 7§ is the set of parents of node j in the graph G

and x g denotes the instantiations of a subset of X whose indices are B C V. We also assume causal
sufficiency, i.e., there are no hidden common causes between any pair of variables in X [52]. As
typically assumed in such models, there may exist instantaneous or contemporaneous influences as
well as a time-delayed impact among variables.

Among many possible ways to model Px in a time series dataset, we follow the typical setting in [49]],
characterizing X through a standard structured vector autoregressive (SVAR) model [13} 64, 30]:

X, =X W'+ X, Wi+ .+ X, W)+ Z, )

where t € {p,..., T} with horizon T, p is the autoregressive order, and Z; € R? is a vector of
noise variables drawn from any continuous distribution. We assume that Z; is independent of Z/;
and of X for all ¥ < t. The d x d matrices W% and Wf, i € {1,...,p}, represent weighted
adjacency matrices for the intra-slice and inter-slice edges in G, respectively, and they model the
contemporaneous and time-lagged causal relations. Eq. [I] can be written in the matrix form as
X = XW*+ Y W} + ..+ Y,W) + Z, where X € R"*? is a matrix whose rows are X,
Z € R™*% is a matrix formed similarly by Z;, and Y}, j € {1,..., p}, are time lagged versions of
X. The number n is the effective sample size, which is equal to 7" — p + 1.

The goal of typical causal structure learning tasks is to recover the DAG G using samples from
Px and/or from the interventional distributions. We follow a continuous constrained optimization
re-formulation for DAG learning [[75]] that uses a continuous DAG constraint, /(W) = 0 on the
weighted adjacency matrix W to avoid the combinatorial search on the feasible solutions W:

min £o(X; W) + A0, W) st h(W) =0, )

where Ly is the loss function and 6 indicates parameters other than W, (6, W) is a regularization
term on model parameters and/or the edge complexity in W with a tunable regularization parameter
A. [75] proposed h(W) = Tr(eW) — d, where Tr represents the matrix trace, and showed that
the graph is acyclic if and only if the constraint h(W) = 0. Typically, the loss fy can be the least
square loss [73]] in linear structured equation models (SEM), or evidence lower bound [73]], among
other losses [26]]. The problem can be approximately solved using the classic augmented Lagrangian
method.

For time series datasets, DYNOTEARS [49] extends the continuous optimization framework to DBNs
by explicitly modeling the intra-slice and inter-slice adjacency matrices separately with a linear SEM
model:

min Lo(X; W W) +2AQ(0, W?) s.t. h(W?) =0, 3)

where W is the matrix for intra-slice edges and W is the matrix for inter-slice connections, and
Lo(X; W, W) = L[| X — XW* — YW?|2.. Here n is the total sample size, and || - || is the
Frobenius norm. To distinguish with the Frobenius norm, we use || - ||2 to denote the (vector) £3-norm.

Beyond observational time series data, learning a causal graph structure in Markov Decision Process
(MDP) requires additional machinery to model actions, and this can be seen as interventional dynamic
DAG learning. Let a binary indicator matrix R* = [r£,] € {0,1}"*“ encode the interventional

family Z such that Tfj = 1 when z; is an intervened target in I}, and O otherwise. For each
intervention family %, we denote the weighted intra-slice adjacency matrix by W?k,) € R4 and
the weighted p-order inter-slice adjacency matrix by W’(’k) € RPdxd et Wy = {W‘(lk), Wl(’k,) 1,
and W = {W(y,..., Wk } represent the collection of all matrices over K interventional families.
Then, IDYNO [[18] formulates the continuous optimization as

K d
o1 W I W) W
vls}?gl,e n kg 1 E . I:‘Cej (X, MLP(X; 05, (1)))1 ki ‘60]' (X, MLP(X; 0;, (k))) k]] s.t. A(W) =0
=1j=



where §; is the parameter of one MLP that predicts the value of each variable X ;.

The above learning procedure has several limitations: 1) it needs offline data, meaning that the data
needs to be saved prior to the learning process and they cannot adapt to new data when distributions
change, and 2) the interventional family is fixed and limited to a known fixed number K, while K
changes over time in practice. Ultimately, the method neglects the sequential and non-stationary
aspects of time series problems. This problem is also relevant in reinforcement learning, where the
policies are learned and updated online, and hence the distributions and underlying MDP may change
particularly around the action variables.

3 Meta-Learning for Dynamic DAG Learning

We focus on DAG learning for times series data, which can quickly adapt to non-stationary distribu-
tions and graphs. First, we propose a generic meta DAG learning framework via bilevel optimization
for time series data when all the data are given under the batch or offline setting. Then, we extend
the framework to the online setting, where new data from different domains are constantly arriving.
Recall that existing work on online learning of DAG structures [9} 31] have largely focused on
parameter learning settings or assumed i.i.d data. Finally, we present an efficient online Meta-D?AG
an algorithm based on the single-level penalty-based bilevel gradient descent.

3.1 Problem Formulation with Meta DAG Learning

Consider a non-stationary time series setting where data can be divided into () disjoint domains
{1,...,Q}. In each domain g, time series X, = [X, |7, is stationary; however, one or more
variables may form different distributions across the domains. The goal is to recover a set of

causal DAGs, represented with weighted adjacency matrices W, = {W;7 W;}qul, governing the
underlying data generation process. Given the potential for variation across domains, a desired
property of effective learning algorithms is the ability to use minimal samples at each domain. This
can be achieved by leveraging historical data from previous domains that share similarities with the

current domain. A meta-learning approach is well-suited to meet this requirement.

Meta Learning. A common view of meta-learning [24] is to learn a general purpose algorithm that
can generalize across a set of tasks M with shared parameters, and learn a new task more efficiently
given the previous tasks. The goal is to evaluate the expected loss of data over a distribution over
tasks M. In general, meta-learning algorithms require a set of meta-training and meta-testing tasks
drawn from the distribution p(7"). This way we can learn new task-specific parameters quickly with
few samples. Meta-learning has been applied to sequential data and in particular reinforcement tasks
[16} 144,168l 154, [79], and continuous learning [S9, [20]].

In a standard two-step meta-learning procedure, domains () are divided into source M and target U
datasets, |Q| = |M| + |U|, for meta-train and meta-test steps. The meta-training step uses a set of M
tasks with data Dyource = {(DEA1, DISHIM | Let @ and P, be the shared parameters over all
tasks and the private parameters specific to each particular task, respectively. The meta-training stage

aims to optimize loss function £ by

(I): = arg Héin log E(q)s |DsourC9)'

The meta-test stage finds the optimal parameters ®, for each specific task with data Dyt =
{(DF=n, Di=t) Hizy by

q); = arg I%in log L(®p, Diarget| P:, Psource)-
P

However, our proposed setting is slightly different. The goal of each task is to learn private parameters
®,, » and corresponding graph structure W,,, with few samples Dgqyrce and shared parameters & in
meta-training. One can indeed adapt to data from a new domain v and infer ®;, ,, in meta-testing,
but since DAG learning is an unsupervised learning task, the meta-test stage is optional. Note that
none of the existing meta-learning algorithms focuses on learning a causal graph that is applicable to
general interventional time series datasets.
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Figure 1: Overview of the proposed Meta-D2AG framework, with offline and online settings. Upper
Half: In the offline setting, Meta-D?AG uses different sets of data to iteratively learns the private
and shared parameters of each domain to infer the causal graph A, for each domain; Lower Half:
Meta-D?AG can also adapt to the online setting by using data of incoming domains to infer domain-
specific private graphs, given the shared parameters learned from history.

3.2 Meta-Learning for Dynamic DAG

We propose a novel meta-learning framework [39]] for dynamic causal DAG learning in the presence
of the non-stationarity of parameters and graphs by treating each segment of the time series as a
different domain. We define the private parameters &, = { wy, WIZ)’ ,©,}, and the shared parameters

o, = {W2, Wb O}, where ©,, or O include other model parameters such as linear or nonlinear
SEMs. Since DAG learning is an unsupervised task, we should modify the typical meta-learning
setting accordingly. The source dataset contains a set of training data and potentially a set of validation
data, i.e., Dgource = {(XFain, X val)IM_ = xtrain js ysed for training all M private task parameters,
and DY is to train shared parameters ®;. This batch or offline setting is illustrated by the upper half
of Figure [T} When desired, the target dataset contains a new dataset to learn a DAG in new domains
U, ie., Diarget = {(Xrain) U_,. X train s then used to learn private parameters ®,, ,, in new task
u, given shared parameters ®s.

As such, we formulate our meta gradient-based dynamic DAG learning framework (Meta-D?AG) as
a bilevel optimization problem. In meta-training, the objective with the upper level loss ¢ and the
lower level g can b](\elwritten as:

. 1 * . val
I%lsn i Zlém(@s, Qi Xon) (4a)
m=

s.t. @p o, (@s) = arg mln gm (P, @} ;s X@™) ¥, s.t. h(Ws,Wpn) =0 (4b)

where &, indicates the shared parameters over different training domains and @, ,,, indicates the
private parameter evolving at each domain. n is the sample size of each domain. We use a /;-
regularized least square loss for £, and g,, in each domain, i.e., 5 || X — (P, D55 0, Xom) ||
with either +n||®s||1 or +n||Pp m||1, where f,, is the model function for each domain m, such as
SEMs, and contains other trainable domain-specific parameters. X, is either the train or validation
data, and we will drop it to simplify notations as £,,, (®s, % ,,,) and g (s, D3 ).

In meta-testing, one can solve the inner loop to obtain a new @7 .. Recall that this bilevel formulation

is different from the standard meta-learning formulation in that the lower level (or the inner loop)
optimization inside the constraint contains another constraint h(Ws, Wy, ,,,) = 0. This poses a more
complex meta-learning formulation with additional difficulties to satisfy constraints. Note that this
formulation can also apply to DAG learning from i.i.d. data with multiple domains. Note also that we
only enforce the acyclicity constraint % at the lower level, as the upper-level constraints would be
redundant.

Remark 3.1. The meta formulation can reduce to the vanilla continuous optimization approach [49]]
with a single domain, when the outer-loop optimization is not needed. Hence, the formulation is more
general and covers existing continuous DAG learning frameworks.



3.3 Online Meta-Learning for Dynamic DAG

In dynamic datasets, domains in time series datasets may not be independent of each other, given the
innate dependency overtime, even if there exists non-stationarity. Hence, we assume that new domain
parameters are a function of the new time sequences D; and the parameters in the previous tasks, i.e.,
O, = f(®1,.. ¢—1). Namely, all previous datasets with index < ¢ should be used to train the shared
parameters for ¢ dataset for the maximal utilization of information. The source dataset contains
Dsource = {(DFain, DY LM with Dgf,lln is used for training private domain-specific parameters
for each domain m. Similarly, D"‘ll is used to train shared parameters. Since the online sequence
can be arbitrarily long, we can determlne the total number of the hletorlcal set M to train the shared
parameters. On the other hand, the target dataset Diarget = {( D“‘”“) _, contains Dt”‘“ to learn
private parameters in new domains given the shared parameters <Igg, and U can be a set of sequential
domains sampled directly after M domains. To further refine the model in an online fashion, we
could consider some DY?! for the additional meta-training procedure to update ®. This online setting
is illustrated by the buttom half of Figure I

As such, the modified online meta gradient-based dynamic DAG learning framework at the current
domain m can be written as

min 7Zz (D, D} (52)

s.t. @;71;((1)5) = arg glpm gi(®s, @5 ), Vi, st h(Ws, W) =0, (5b)

Relation between G and (W, W,,). To instantiate the bilevel optimization framework to learn
graph G, we can choose to use a Hadamard product as G; = W, o W, ; with linear SEMs. In
nonlinear SEMs with neural networks, we adopt an existing approach [78] by including W and W/,
as the first layer parameters. Putting everything together with a two-layer feedforward neural network
with domain-specific parameter 0, ; as an example and using the least square loss, the proposed
formulation has the following forms:

R GNPV
min — ) o 1Xi = Op.i(Ws)o (We;(Ws) o Ws) X,)ll5 + nl Wl (62)
1

.1 .
S.t. W];i(Ws), 9;71(W5) = arg %111 %HXL — ep,iO'((WpJ O Ws)Xl))H%,VZ, (6b)
P,i

S.t. h(WS o Wpyi) =0 (6¢)

Interventional loss can be used when such targets are known, following equation 2}

Remark 3.2. The choice of multiplying shared and private parameters is inspired by existing meta-
learning approaches and the masking approach in DAG learning [48]]. As a result, in order to recover
correct graphs in each domain, W has to include the edges of all W/, ;, hence it is unlikely to be a
DAG alone. An alternative formulation G; = W+ W, ;, which is also typical in many meta-learning
literature [15]], could be used , but it may be slightly more restrictive as it assumes all adjacency
matrices share similar weights.

3.4 Penalty-based Bilevel Proximal Gradient Descent

Solving the above bilevel optimization is not straightforward, as there is an additional constraint in
the inner loop. We propose a penalty-based bilevel gradient descent inspired by [61] to solve the
problem. The problem can be written in a general form of

min Z 0i(Ps, Dp i) (7a)

P {Pp,i N 4

s.t. @p’i € S;(Dy) := arg mln gl(q)s, @;’i),w, s.t. h(Dy, <I>;Mﬂ) =0, (7b)

where S;(®5) denotes the optimal solution set of the ith lower-level problem.



Towards this end, by moving both the objectives and constraints in the inner loop as different penalty
terms to the outer loop, we can write the penalized objective as:

((I)sv{(I)p z} ’Yz:Vz = ZE q)m(I)p z)""}/z(gz(q)s’q)p, ) g:((bs)) +Vih(q)57¢)p,i)a 8)

=1

where {v;,v;} and g; (®s) = ming, gi(Ps, Py ;) are penalty coefficients. The second term of
equation [§] penalizes the constraints dlrectly in the objective. One issue with equation[7a]is that m
can be large and computation would become expensive for long-history domains. As in typical online
algorithms, it is prudent to use a sliding window to capture the historical influence as follows.

m
min

1

— £i(Dg, P i (9a)
o {Ppi}t W, _ ( pi)

t. &,

m—w-+1
i € Si(Dg) := argrqr)ungz(és, <I>;7i),W, s.t. h(@S,Q;,i) =0, (9b)

P,

where w denotes the size of the sliding window.

Sliding Window Formulation. Due to the inherent nonlinearity of neural networks, the corre-
sponding objective functions exhibit non-convex properties. [22] has shown that it is possible to
measure the regret using a local regret metric, allowing us to establish a regret bound based on a
smooth nonconvex objective function. Then, the penalty-based sliding average is:

1 & .

— D (@ @) i (0:( R, @ i) — g7 (D)) +2ih( D5, Dp). (10)

1=m—w-+1

Si,w (¢Sa{q)p7i}) =

As such, the optimization becomes a single level and we can adopt a proximal gradient descent
method with a penalty function to optimize ® = (s, @, ;) together. For a more detailed discussion
of the algorithm and proofs on the following convergence property, we refer to Appendix

Algorithm 1 Online Meta-D?AG Algorithm

Reqmre Data X, m € {1,..., M}, w,n,~ 6: g; (®s) = mine,, ; gi(Ps, Pp,:) {Minimize
: Output: Learned shared welghted adjacency ma- inner loop}

trix Wy and private Wy, ., Vim 7 Compute S; ., with equation
: initialize Wy and W, o 8: ® « prox, (¢ — NV 8;.0(P))
: for each domain m do 9:  end while

Initialize @, 1= Pp,m—1 10: end for

while equation[IT]holds do

-

As there is a non-smooth term in the objective, we adopt the proximal residual, i.e., 73,]; (x,d) =
n~i(x — prox, ;(x — nd)),¥n > 0 [21] in the optimality gap to quantify the local regret, where
prox, ¢ (v) := min, nf(x) + 3|z — v||3 denotes the proximal operator, and d is any vector, f(x) =
[|lz][1 and prox, ;(v) is the soft-thresholding operator. To summarize, we show the online algorithm
in Algorithm , where Vg §i7w((I>) denotes an approximate evaluation of Vg.5; ,,(®) obtained by
optimizing minq,p,i 9i(Ps, <I>w-) using any optimization algorithm practically, rather than evaluating
it exactly at &, ; € S;(Ds).

4 Theoretical Results

Convergence Before presenting our theoretical convergence results, we first introduce a set of
mathematical assumptions regarding the problem.

Assumptions 1. We assume that g(, ), h(,), and ¢;(,) for all i are differentiable and Lipschitz
continuous. Moreover, for every ¢, g;(®s, -) is gradient Lipschitz continuous with constant L, and
satisfies the proximal Polyak- Lojasiewicz (PL) error bound.



Note that these assumptions are standard and quite moderate. For example, in the applications of
DAG learning, the loss functions are typically score functions, which are smooth. In addition, the
causal structure constraint i (, ) for DAG is also smooth. Since the non-smooth component involves
the ¢1-norm, it effectively penalizes variable magnitudes, which in turn ensures the boundedness of
the iterates. This observation consequently implies the Lipschitz continuity of the loss functions.

The assumption of the proximal PL error bound [27] is primarily employed here to make the
optimization process of the lower-level (or inner loop) more tractable, a condition that holds for a
broad spectrum of non-convex loss functions. Specifically, when the neural network size is large,
i.e., overparameterized, the associated loss function satisfies the PL condition. In this context, due to
the presence of the non-smooth term, we utilize the proximal PL error bound. Under this condition,
a few steps of gradient descent can approximately find the global optimal solution, meaning that
the last iterates of the gradient descent can be used to approximate g; (), allowing S; ,,(®) to be

easily evaluated, denoted as :S'\iyw (®), where @ is the concatenation of all the model parameters. This
approach is both practical and can be rigorously quantified theoretically.

The convergence criterion in Line 5 of Algorithm[T]is based on the sum of gradients in the sliding
window: R

1P (®is1, VSiw(@is1))l| > 6/w, (1)
where § is a constant, which means that if the proximal residual is not sufficiently small, we continue
optimizing the model parameters using the current domain data.

Theorem 4.1. Regret Bound. Under these assumptions, suppose that ® = {®s,®,; | i =
m—w+1,...,m} is generated by the algorithm. Then, the following holds:

m

Reg,,(m) = Y [P} (%, V(@) = 0 (15). (12)

; w?
=1

Remark 4.2. Since there are two levels in the optimization process, quantifying convergence requires
solving the lower-level problems, unlike classic single-level problems. Thus, our proof must account
for errors in solving both levels. Due to the nonconvexity of the loss function, we use the sliding
window concept to demonstrate the stationarity of the solutions obtained.

The above regret indicates that the changes in the sliding-window task-averaged functions converge
to a small value when the sliding window size is large, meaning that |, ||797J; (D, VS 0(®:))]? <
Reg,,(m)/m = O(w?). It is worth noting that this algorithm achieves the optimal regret bound, as
equation[I2] matches the optimal regret of the time-smoothed online proximal gradient method for
solving classic single-level nonconvex minimization problems [22, [21]].

Other Assumptions We also make a few standard assumptions for dynamic DAG learning [49]],
such as causal sufficiency (no latent variables), following an SEM model (linear or nonlinear), and
sampling frequency of the event sequence is at least as high as the fluctuations in the underlying
causal process. However, we relax the typical assumption that the graph structure is fixed over
time, and assume that it is only fixed within certain time steps (as fixed within a domain in the meta
formulation).

Identifiability In Appendix we demonstrate that, under a mild condition on the shared
parameters W estimated from previous domains, the earlier identifiability results from [4, 18] can
be extended to our method for learning the graph with adjacency matrix Wy o W, ,,, within a given
domain m.

Complexity Our general meta-learning framework has the same computation complexity, with
respect to the number of nodes, as existing continuous optimization approaches. The additional
computation in our formulation mainly comes from the lower-level optimization, where we need to
learn a DAG for each of M domains. The upper level can be solved faster without any constraints.

5 Empirical Evaluation

We evaluate our proposed meta dynamic DAG learning algorithm against some of the existing DAG
learning algorithms, designed for dynamic time series datasets and/or with multi-domain capabilities.
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We test the algorithms on synthetic datasets as well as a simulated reinforcement learning (RL)
environment, Sprites World, with intervention datasets. The experiments are run on a machine with a
3.2 GHz CPU and 64 GB of memory.

Baselines We compare our method with the following baselines with available code: continuous
DAG learning methods GOLEM [47]], dynamic DAG learning algorithm DYNOTEARS [49], NTS-
NOTEARS [63]], offline interventional dynamic DAG learning algorithms IDYNO [[18], and multi-
domain dynamic DAG algorithm J-PCMCI+ [19]. We repeat each experiment 5 times and compare
the structural Hamming distance (SHD) between the estimated graph and the ground truth graph (the
lower, the better). All baselines except J-PCMCI+ are designed to handle one domain, so we learn
each domain separately and report the average SHD with standard deviation. J-PCMCI+ only finds
one unique graph across all domains so we use it as the graph in each domain.

5.1 Synthetic Datasets

We first evaluate different approaches on synthetic time series datasets. We simulate the data according
to the SEM from equation |1} mostly following the setup and code from [49] for ease of comparison.
The generating process consists of the following three steps: 1) Generating weighted graphs in
the form W2 and WP. Directed graphs are generated first as a lower triangular matrix, and then
randomly permuted, 2) Generating data matrices X and corresponding Y per W@ and W, and 3)
Generating interventional data with random targets and different distributions. For a more detailed
generation and training process, we refer readers to Appendix [B.2}

We show results for the batch setting where all 10 domains are learned jointly per equationd}, and
for the online setting where we use a sliding window size of 3 previous time domains to meta-train
and the current domain as the meta-test dataset. For the batch setting, since all domains are used in
meta-training and there is no new meta-test data, we report the SHD of training accuracy of each
domain. For the online setting, we report SHD from the meta-test domain at each time step, given the
previous 3 domains as meta-training (padding in the beginning with the data from the first domain).
For baseline methods in the online setting, to distinguish from the batch setting where each domain
are learned separately, we feed all domain data up to the current time stamp to each method and
produce a graph.

As one can see from Figure [2a] in the batch setting, our method (colored in red) has the lowest SHD.
Since each domain has different graphs, it hurts the performance of J-PCMCI+. For the online setting
shown in Figure Meta-D?AGs again superior to baselines. In an appendix, we also conduct
an ablation study with two variants of our method, one only optimizing the shared parameters and
one with a linear loss function, showing the advantage of the proposed formulation. Moreover, in
Meta-D?AG the DAG constraint follows the matrix exponential form as used previously by [49].
Other and better DAG constraints can also be used, such as [[1}76].

Ablation Study In the appendix, we have included further results of many ablation studies of our
approach, including the necessity of the lower level optimization on private parameters and the impact



of sequence lengths and variable variance. Overall, the proposed Meta-D?AG shows promising
performance in these settings.

5.2 Sprites World RL Environment

Sprites world [69] is a Python-based RL environment in
which objects of various shapes interact with each other Taple 1: SHD performance of different
in 2-dimensional space. In the experiment, we created methods in Sprites World.

5 and 10 objects, each associated with a continuous
variable that assigns values following a linear structural

equation model or non-linear structural equation model thod O=r5 O0=10
similar to causal discovery benchmarks [28,153]. For ¢ho ‘
further details about the data generation and training GOLEM 60+13 | 14424

process, we refer readers to Appendix [B.3] IDYNO 58417 | 1230
As shown in Table[I} comparing with the baselines, our ~DYNOTEAR | 11 +2.3 39+1.3
method achieves the lowest SHD performance for 5  JPCMCI+ 12+1.7 | 31+0.6
and 10 objects, again demonstrating promising graph ~ Meta-D’AG | 5.2+0.6 | 9.1 +1.5
discovery performance in an RL environment.

6 Conclusion

We propose a new Meta-D?AG method for causal graph discovery in dynamic datasets. Leveraging
the meta-learning framework to capture temporal transitions between different time domains is
well-suited for causal graph discovery in dynamic datasets. We make three major contributions.
First, we formulate a meta-learning framework tailored for dynamic DAG learning, accommodating
slightly varied distributions in different domains over time. We further extend the framework to an
online setting, where a windowed formulation is proposed to improve learning efficiency in scenarios
with extensive historical data. Second, recognizing the challenges posed by acyclicity constraints in
inner-level optimization, we propose an efficient first-order method to solve the bilevel framework.
Finally, theoretical analysis and experimental evaluations are provided to show the convergence of
the learning process and the superiority in empirical performances. Future research could explore
methods for the automatic detection of potential distribution shifts without the need for such a priori
information. For example, distribution shift detection is an active area of research, and we can adopt
various strategies, such as measuring prediction error, using distribution distance, and/or hypothesis
testing to detect shifts [38]] and form a new domain. It would also be interesting to combine the
proposed approach with irregular [7]] or sub-sampled time series [36]].

Limitation and Impact Statement One limitation of our approach is its reliance on predefined
domains in time series datasets, which may be restrictive when distribution shifts occur irregularly.
Obtaining such partitions of temporal data when no domain labels are provided would be a useful
future direction. This paper presents work whose goal is to advance the field of causal discovery algo-
rithms. Although there are no substantial potential societal consequences of our work, misuse could
result in wrong conclusions about the causal relationships, which need to be carefully empirically
validated in a controlled environment.
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versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendix

A.1 Algorithm and Convergence

As the optimization algorithm is general, for ease of reading, we simplify the notation here. Instead
of using ®¢ and ®,, we use (z,y).

Let define
Cilw, i) = fi(X3, W, Wi, (W), 07 5 (W2)) + nl| Wil (13)
and )
gi(@,yi) = oI X = Opio (W i 0 W) X)) I3 + 1 Wo il (14)
Then, the problem can be concisely written as
1
min — 3 Li(z,y:) +n0f () (15a)
e i=1
s.t. y; € S(x) == argming;(z,y;) +nf(y:) st h(z,y) =0 (15b)
Yi
where in this case f() := || - |1, but it can generally represent any projection-friendly non-smooth

term.

To solve this problem, we can apply the penalized method. Towards this end, we first write the
penalized objective as follows

Li(z, {yi}ivivi) = % (Z Ei(‘rayi)> + 7 (gi(z, yi) — 97 (@) + vh(z, yi) + nf(x) +nf(ys:)
i=1

(16)
where {~, v} are penalizers, and ¢} (z) = min, g;(x,y).
Recall the definition of the proximal operator:
prox, ¢(z —nd)
1
=argminnf(z) + 5 |lz —nd - 2| (17)
. 1
=argminnf(z) +n(d, z - z) + 5 ||z = || (18)
Then, we can have the proximal residual defined as
1
P,{(x, d) = 5(x — prox, ¢(x — nd)), (19)
which will serve as the optimality gap for measuring the convergence of the algorithm.
For simplicity of the notations, define z = (z,{y;,j =i —w+1,...,4}). Then, we can construct
the window average as follows
1< \
Siw(z) = — S Gimyy) + (g5 yy) — 9] (@) + vhy(,y)). (20)
j=i—w+1

Due to the non-convexity and non-smoothness of the loss function, we follow the existing notation of
the local regret of a policy z; up to time m with window length w, which is defined

Reg,, (m) = > |P] (2, VSi.uw(2:)II. 1)

i=1

From the definition of S; ,,(2), we can have
1
Si,w(z) - Sifl,w(z) + E(zz(l’a yz) - gifw(axyifw))
7 * *
+ w (gi(xayi) — i (%) = (Gi—w (@, Yi—w) — gifw(x)))

= (il ) = b (@ yim)) (22)
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However, due to the bilevel structure of the problem, we can only achieve an estimate of g;k(x)

through the inner loop update y, which is denoted as g;(z) = g¢g(x,y). Then, we can use

|73}; (#it+1, VSiw(zit1))]| to determine whether we need to update the model.

Recall our algorithm: when HP,{ (zit1, %Si7w(zl‘+1)) || > §/w, we implement the proximal gradient
descent. Otherwise, we update our model, where

~ 1
Siw(z) = Si—1w(z) + E(éi(xayi) —limw(@, Yi-w))
g ~ ~
+ E (gi('r7 yi) - gz('r) - (gi—w(xayi—w) - gi—w(x)))
1%
T (hi(z,yi) = hi—w (@, Yi—w)) - (23)
Next, we will find an upper bound of ||P/ (241, V.S; w(zi41))]|. First, we can have
1P] (25, V Si(z:)) |
(a) ~
<P (20, VSi(zi)) | + P (25 VSi(21)) — P (26 V Si(20)l| (24)
<|IPJ (zi, VSi—1(20))]
Vi, v0) = 905 ) = (T i) = Vg5 (1)

v 1
+ ™ \Vhi(xi, yi) — VRi—w(zi, Yimw) || + EHV&(C&',%) — V(T3 Yimw) |

+ 21V (@) = VG @) | + L Vgi (@) = Viimu(e)] 25)
€0 L gt () - Vae)l + LIVer () — Vaiw(e)| + Vi (26)
=w w gi 7 9i 1 w gi_w ) Gi—w 2 T,W
() § y =N ¥ =
s T ELgdS(zi)(yi) + ELgdS(mi)(yi—w) + Viw (27)

where (a) is true due to the triangle inequality, (b) holds by following the condition of updating the
model and V; ,, is defined as

Viw = % Vi (@i, yi) = Vi (i) = (Vgimw(@i, Yiw) — Vg (2))]

v 1
+ " (Vhi(xi, yi) — VRi—w(Ti, Yimw)|| + EHV&(B«%%‘) — Vli—w(@iyi—w)||  (28)

and in (c¢) we apply the gradient Lipschitz continuity of g;(z, -), Vi and ds(y) = argminyes ||y’ —
yll-

When the lower level problem satisfies the proximal PL error bound, i.e.,

1
; |y — prox, ;(y = nVyg(z,y))|| > cds()(v) (29)

where c is a constant and y here is generic, representing any y;, then according to [27, Appendix G]
we have the function also satisfies the proximal PL. condition, which is

S5 ra) 2 (Fey) — F (1) (0)
where F(z.) = g(r,y) + nf(2), F*() = g*(2) + nf(z) and
Dyyi) = —2Lymin(Vg(e,u),f — v} + 2l — ol +0f6) ). @D

By the Lipschitz gradient of g(x,y), we have
9(2,Yi41) +1f (Yig)

! ! L
< gz, yp) +nf(ye) + (Vyg(@,vp), vie1 — y1) + fllyiﬂ —yil® +nf(yie) —nf (i) (32)
=g(z,y1) + f(yi) — 2Ly Dy (ys; x) (33)
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where y; denotes the iterates in the inner loop.

Substituting equation [30|to equation [33] gives

T
Fla. ) — F*() < (1 - LM) (Fla.9)) - F*(z)) < ( - Lﬂ) (Fle,4}) — F*(2) (34)

where T denotes the number of iterations in the inner loop.

From [14] Corollary 3.6], we know that the proximal PL error bound implies the quadratic growth
property, meaning that there exists a constant zi such that

_ T
. i L .
@ <5 (1-22) (Floh) - F(0) 35)
where ¥; := y7. ;. As x is bounded, the term ds(,,)(¥;) shrinks to O at a linear rate.
Summing over ¢ = 1,...,m gives
Reg,, (m)
= I1P) (20, VSiw(z) 12 (36)
i=1
4m§ 4 &
= g7 Z ds(x ) (vi) + 4Lg’7 st(g: ) Yi—w) + w2 Z Viw- (37)

=1 =1 =1
When we choose T' > — log(l_Lg/“) A(F(z,y;) — F*(z))w?, we have >\ | d (m )(yT) ~m/w?.
The last term Zz'il Vi w 18 also referred to as the sliding window variation. When the gradients of the

loss function are bounded, we automatically have that this term is O(m). Therefore, we can conclude
that our algorithm still can achieve the optimal regret bound as O(m /w?).

A.2 Identifiability

In this section, we demonstrate that Theorem 3.2 from [[18]] (an extension of Theorem 1 from [4]])
can be applied in our online meta-learning setting. We denote the current domain with index m,
and recall that a model estimate Wy of the shared, cross-domain part of the graph adjacency matrix
can be formed from the data from the previous m — 1 domains. When encountering domain m, our
objective is to optimize the part of the adjacency matrix specific to the domain, W, ,, 1.—1 (Where
k = 1 indicates the observational graph, and £ > 1 indexes interventions on this graph, as in [[18]]).

We denote with G,,, the DAG whose edges are given by the nonzero elements of the adjacency matrix

W9 .= Wy o W, m, k=1. Our score function for G,,, can be written (following the notation of [4]])
K

Sz+(Gm) = Py, wig,, O Exopo log B (X W RE [0, 1) = nlGm| — (38)
k=1

where the regularization term |G,,,| = ||Ws o W}, 1, 1|0 is the LO norm (which counts the number

of edges in G,), 0 = {0} | with 0y, = {Qm,;w-} _, are neural network parameters, p( )
is the ground truth generating distribution of the data for domam m with intervention I, € 7, and
RT = {7”%] } & j , specifies the set of interventions, which influence the log-likelihood function as
follows,
d
log f™(X; W, R, O i) = Y ritslog f(X,NN(X, O i, Wi))+(1—17;)log F(X,NN(X, 0,15, Wi))
j=1

where we again denote the observational distributions with & = 1, and sum over the model likelihood
function f (for intervention k) for each node j in the graph. Here, “NN” denotes a neural network
function, and Wgm = Wy 0 W, 1, 1, is the full adjacency matrix for domain m and intervention
k (we assume W does not depend on the intervention k). Lastly, when taking the supremum in

equation [38] we use W|G,, to indicate any values of the continuous matrix W, subject to the
constraint that edges absent in G,,, correspond to zero entries in W.
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The only difference between this setting and the setting of [18] is that instead of learning an adjacency
matrix, we are learning a factor W, ,,, ;. of the full adjacency matrix Wy o W, 1, .. Thus, in the case
where Wy is set to the all-ones matrix, we recover the setting of [18] exactly. Theorem 3.2 from [18]
(as well as Theorem 1 from [4]) involve the set of DAGs maximizing a score function Sz« (G), where
T* is the ground truth set of interventions. Our score function, equation[38] is equivalent when W
is set to the all-ones matrix.

For any given adjacency matrix W* maximizing equation 38| (for a fixed graph G,,), as long as the
elements of Wy are nonzero wherever W* is nonzero (wherever the graph G,,, has an edge), then
there exists a matrix W), satisfying W* = W0 W, for which each element is determined uniquely
as (W})i; = (W*)i;/(Ws)i;. Thus, the set of W* maximizing equation in one-to-one
correspondence with the set of W maximizing the same quantity (given a fixed W;). Conditional
on a given graph G,,, and given any matrix W* picked out by the supremum over W|G,,,, there
exists a matrix W, for which our score function, equation is maximized with W* = W o Wp* .

This allows us to extend Theorem 3.2 from [18]], with an additional condition on Wj:

Theorem A.1. For a graph G € D, where D C DAG, lfg € argmaxgc p 2Sz(G) with St defined
in equation 38| and furthermore if (i) the density model has sufficient capacity to exactly represent
the ground truth distributions, (ii) a given set of interventions I satisfies L-faithfulness for the true
graph and distributions (G*, Px), (iii) the density models are strictly positive, (v) the ground truth
densities p'¥) (X) have finite differential entropy, and (vi) the elements of Wy are nonzero wherever
the elements of the adjacency matrix of the true graph G* are nonzero, then G is (Z,D)-Markov
equivalent to G*, for small enough 7.

In practice, condition (vi) can be supported or enforced by adding an additional regularization term
or hard constraint to prevent W from becoming too sparse.

Remark A.2. . Since learning W in the upper learning is conducted with any constraints (in particular
without an acyclicity constraint), the upper-level optimization is the same in any £;-regularized
regression problem. Hence it is easy for the assumption on the nonzero elements of Wj to be satisfied.
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B Data Appendix

B.1 Dynamic DAG Learning and Data Normalization

Recently [58] have found there may be biases existing in the data generating process, and data
normalization is suggested. Here we would like to point out that time series DAG learning differs
from the i.i.d. setting, and it is not obvious how the conclusion from [58]] is directly applicable to
time series data and what sort of standardization even makes sense to generate data in our setting. For
example, standardization in i.i.d. data is across samples, which is different from typical time series
standardization across time. Moreover, time series data like Brownian motion naturally increases
variance over time, so real-world datasets should indeed show higher variance for variables at later
epochs. Yet another complexity is that the data in our setting is non-stationary. It would be an
interesting research question to investigate how standardization of data might affect time series DAG
learning in general.

B.2 Implementation Details for Synthetic Datasets

We use the following steps and hyper-parameters to generate the data.

* For step 1), we use the Erdos-Renyi model to generate shared intra-slice graph W¢ with degree
of 3 for a total d nodes, from 5 to 20, with its weights sampled uniformly at random from
U([-2.0,—0.5]U[0.5,2.0]). We use the same Erdos-Renyi model to generate inter-slice graph W?
with degree of 3, with its weights sampled uniformly at random from ¢/ ([—0.5, —0.3] U [0.3, 0.5]).
Then for each domain m, we randomly remove or add 2 edges from the previous domain (randomly
generated in the first domain), to ensure temporal smoothness. Then we generate weights of Wy, ,,,
similarly as W, but with edge weight ranges of 5 times smaller, i.e., /([—0.4, —0.1] U [0.1, 0.4])
for Wli’ and U([-0.1, —0.06] U [0.1,0.06]) for W

» For step 2), we generate data with the first autoregressive order, where data only depends on the
previous time slice. The underlying function between a node and its parents becomes a two-layer
MLP with a sigmoid activation function. In the MLP setting, the weights of the MLPs are sampled
uniformly from ¢/ ([—2.0, —0.5] U [0.5, 2.0]), and then weights in the first layer are updated by the
parental weights from W and W structures. The number of hidden neuron sizes is set to be 10.
We generate 10 sequences with 100 time slices each with standard Gaussian noises. We estimate
one graph from each sequence and report the average SHD along with its standard deviation.

* For step 3), to generate interventional data, we flip a fair coin to decide whether to intervene
at any time slice, in which case we sample one node uniformly to be the intervened node. We
sample intervened nodes’ values from another distribution. We assume every node has a probability
of 0.1 to be intervened upon at each time slice, and if a node is chosen, the soft intervention
comes from a different 2-layer MLP, depending on the values of its parent nodes per its graph and
similarly generated as the first MLP. This soft intervention distribution can be very different from
the observation distribution.

Hence, overall we generate 10 sequences for 10 domains, each sequence with 100 time steps.
For the hyperparameter values, we use a separate validation dataset to choose the best per-
forming hyperparameters for each method per SH We search for the best value of each of
5 parameters sequentially, including two £, penalty coefficients for W® and W, the thresh-
old to obtain finalW*® and W?, and the hidden neuron size. For A, and )\, we search over
a value range of {107°,1074,1073,1072,107'}. Graph threshold search range is set to be
{0.001,0.01,0.05,0.1,0.2,0.3}, and neuron size range is searched over {8,16,32,64}. We use
a two-layer MLP architecture in the experiments: X; = W10 (W, ;(Wy) o Wy) X)), where W7 is
the MLP layer weight and o is the ReLU activation function. For other baseline methods, we use the
default parameter settings.

B.3 Implementation Details for Sprite World Datasets

To generate a meta-learning dataset, we first generated a random Erdos-Reny graph, replicated it to
the next step, and added a single edge for each variable at two consecutive time steps to introduce

2Alternatively, if datasets do not contain ground truth graphs, we can use the reconstruction loss on data as
an alternative to measuring the quality of the learned graph
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correlation across time steps. When we switch to a different domain, we randomly add or remove an
edge in the instantaneous graph and time-delayed graph. Since we are interested in structure learning,
we used a random policy agent that randomly selects at most two objects and intervene the value with
a truncated normal distribution at each time step. The details of hyper-parameters are given as follows.
For non-linear SEM, we utilized a two-layer MLP with the weight in the first layer ranges between
(0.5,2.0) or (—2.0, —0.5) and the second layer between (0.01,0.5) or (—0.5, —0.01) and the bias
follows the Gaussian distribution with scale 1. We again generate 10 domains with 10 different
sequences with 100 time steps, and report the SHD performances across sequences.

B.4 Ablation Study: Linearity and Private Parameters

We perform an ablation study with two new baselines, 1) a multi-task DAG learning where only
shared parameters are learned (named MT-DAG), and 2) a linear meta-learning formulation (named
Meta-D2AG-Linear), on synthetic datasets with scale-free (SF) graphs.

The data generation process is the same as ER graphs as discussed, except for the graph types. Our
Meta-D2AG shows the best performance against these two variants of the proposed approaches, as
well as the best performing IDYNO-Soft From Section 4.1, in both batch and online settings.

Var. Size IDYNO MT-DAG Meta-D2AG-Linear Meta-D2AG

d=5 11439  9.3+0.9 21+0.5 7.2+1.4
d=10 23+3.1 25+4.4 37£1.7 18+0.8
d=15 51£3.2 58«15 50+1.8 24+2.6
d=20 4245.3 46+9 67+4.1 35+1.9

Table 2: SHD Results for Scale-Free Graph (SF) in the Batch Setting

Var. Size IDYNO MT-DAG Meta-D2AG-Linear Meta-D2AG

d=5 8.8+0.3 24+1.6 21£1.3 8.7+0.8
d=10 29+1.9 37+1.6 46+2.7 18+0.7
d=15 54£2.9 55+4.9 5324 27+0.4
d=20 47+5.5 77+6.1 66+5.8 36+1.2

Table 3: SHD Results for Scale-Free Graph (SF) in the Online Setting

B.5 Ablation Study: Sequence Length

We conduct an experiment on the effect of sample sizes vs SHD. We use variable dimension d = 20
and 10 total sequences, and the rest setting are the samw as in Section 5.1. When the sequence lengths
are lower, all methods perform worse, but our method remain competitive.

Sequence Length 10 50 100

GOLEM 115+20 | 102+ 10 | 81 £10
DYNOTEAR 187+23 | 150+20 | 89+ 16
IDYNO 129+16 | 97+ 14 | 80+ 21
JPCMCI+ 132421 | 130£20 | 119+9
NTS-NOTEARS | 119+15| 95+5 | 63+13
Meta-D2AG 101+£10 | 8047 46 £ 6

Table 4: Performance across different sequence lengths in Online Setting, d = 20.

B.6 Ablation Study: Random Variance

To study the impact of variable variance, we repeat the synthetic dataset in Experiment 5.1 with
random noises between 0.1 and 2 for each variable noise term, with 4 different variable sizes. Below
are the results against baselines. The relative errors are higher than of fixed variance of 1, but the
Meta-D2AG method remains the best among methods tested.
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d 5 10 15 20
GOLEM 5.9+09 | 266+1.8 | 43.7£78 | 93579
DYNOTEAR 6.7£1.1 | 223£3.0 | 604£4.6 | 95.6+5.3
IDYNO 6.5+1.1 | 26511 | 57.56£5.7 | 90£9.2
JPCMCI+ 6601 | 23.6+1.1 | 8 £10.2 | 105 +£19.8
NTS-NOTEARS | 12.3£0.5 | 33.3+2.1 | 55.7+5.3 | 104 £10.2
Meta-D2AG 6.6+0.1 | 229+22 | 46.7+£4.6 | 82.7£8.9

Table 5: SHD with random variable variance across varying dimensions d in the online setting.
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