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ABSTRACT

The quest for Continual Learning (CL) seeks to empower neural networks with
the ability to learn and adapt incrementally. Central to this pursuit is addressing
the stability-plasticity dilemma, which involves striking a balance between two
conflicting objectives: preserving previously learned knowledge and acquiring new
knowledge. Existing studies have proposed numerous CL methods to achieve this
trade-off. However, these methods often overlook the impact of basic architecture
on stability and plasticity, thus the trade-off is limited to the parameter level. In this
paper, we delve into the conflict between stability and plasticity at the architectural
level. We reveal that under an equal parameter constraint, deeper networks exhibit
better plasticity, while wider networks are characterized by superior stability. To
address this architectural-level dilemma, we introduce a novel framework denoted
Dual-Architecture (Dual-Arch), which serves as a plug-in component for CL. This
framework leverages the complementary strengths of two distinct and independent
networks: one dedicated to plasticity and the other to stability. Each network is
designed with a specialized and lightweight architecture, tailored to its respective
objective. Extensive experiments across datasets and CL methods demonstrate that
Dual-Arch can enhance the performance of existing CL methods while being up to
87% more compact in terms of parameters than the baselines.

1 INTRODUCTION

Continual Learning (CL) seeks to enable neural networks to continuously acquire and update knowl-
edge. The primary challenge in CL is catastrophic forgetting McCloskey & Cohen (1989); Goodfellow
et al. (2013), i.e., directly updating neural networks to learn new data causes rapid forgetting of previ-
ously acquired knowledge. To learn continually without forgetting, a neural network must balance
plasticity, to learn new concepts, and stability, to retain acquired knowledge. However, emphasizing
stability can limit the neural network’s ability to acquire new knowledge, while excessive plasticity
can lead to severe forgetting, a challenge known as the stability-plasticity dilemma Grossberg (2013).

To enhance CL, most of the research efforts Li & Hoiem (2017); Henning et al. (2021); Feng et al.
(2022) are centered on developing novel learning methods that achieve a better trade-off between
stability and plasticity. These methods involve adding loss terms that prevent the model from changing,
replaying past data, or explicitly using distinct parts of the network for different tasks, etc Wang et al.
(2023b). In particular, architecture-based methods have achieved great success across various CL
scenarios Rusu et al. (2016); Rosenfeld & Tsotsos (2018); Wang et al. (2023a). Characteristically, this
type of method introduces an extra part of the network that is solely trained on the current data, which
is then integrated with other parts that have been continuously trained on the previous data Yan et al.
(2021); Zhou et al. (2023b). Since a new independent parameter space is used to learn the current data,
these methods avoid rewriting the original parameters, thus preserving the old knowledge. In this
way, the conflict between stability and plasticity at the parameter level can be significantly mitigated.

While studies that focus on expanding and allocating architecture have achieved notable success,
research on the basic architectures for CL is still in its infancy. This gap is crucial because, despite the
ability of advanced learning methods to optimize parameters effectively, the overall CL performance
remains constrained by suboptimal architectures Lu et al. (2024). In this regard, certain pioneer
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Figure 1: Left. (a) The average forgetting and (b) the accuracy on the new task of ResNet-18 and its
wider and shallower variant. Details are presented in Sec. 3. Right. While existing research mainly
optimizes weights (represented by node colors) for the stability-plasticity trade-off at the parameter
level, this study proposes a novel insight for extending this trade-off to the architectural level.

works have concluded that wider and shallower networks exhibit superior overall CL performance,
mainly contributing to enhanced stability Mirzadeh et al. (2022a;b). However, theoretical analyses
and practices Simonyan & Zisserman (2014); He et al. (2016); Liang & Srikant (2016); Raghu
et al. (2017) have demonstrated that deeper networks possess enhanced representation learning
ability, indicating the important role of depth in facilitating plasticity. These findings raise a concern
regarding whether there is an inherent conflict between stability and plasticity at the architectural
level under a given parameter count constraint.

To investigate this, we conducted a comparison between ResNet-18 He et al. (2016) and its wider
yet shallower variant, evaluating their average forgetting and accuracy on the new task. As shown in
Fig. 1, ResNet-18 achieves higher accuracy on the new task, indicative of better plasticity, whereas the
wider yet shallower variant exhibits lower average forgetting, indicative of greater stability. However,
both networks underperform in the other aspect, which indicates there may exist a stability-plasticity
dilemma at the architectural level as well. Given that existing works Zhou et al. (2023b); Lu et al.
(2024) typically employ a uniform architecture for both stability and plasticity, this inherent dilemma
may limit CL performance, even when the architecture and parameters are finely optimized.

How to balance the stability and plasticity at the architectural level? An intuitive and straightfor-
ward solution is to combine two independent models with distinct architectures: one dedicated to
plasticity and the other to stability. Previous studies on CL have demonstrated that incorporating an
auxiliary model, specifically trained on the current data, can enhance the plasticity of the primary
model Kim et al. (2023); Bonato et al. (2024). Building on these insights, we extend from an
architectural perspective, proposing a novel framework that employs a plastic architecture to acquire
new knowledge, which is then transferred to the main model with a stable architecture. Specifically,
knowledge distillation Hinton et al. (2015); Romero et al. (2014) is utilized for this transfer due to
its proven efficacy in transferring knowledge between networks with different architectures Gou
et al. (2021). Consequently, our proposed framework, Dual-Architecture (Dual-Arch), leverages the
complementary strengths of two distinct architectures, effectively balancing stability and plasticity
at the architectural level. Extensive experiments show that Dual-Arch markedly enhances CL per-
formance with significantly fewer parameters when compared to the baselines. Code is available at
https://github.com/anonymous-dual-arch/d-arch.

The contributions of this study are outlined as follows:

• Through meticulous empirical studies, we demonstrate that existing architectural designs
typically exhibit good plasticity but poor stability, while their wider and shallower variants
exhibit the opposite traits. Based on these findings, we propose a novel insight for exploring
the stability-plasticity trade-off from an architectural perspective.

• We introduce a novel CL framework, Dual-Arch, which employs dual architectures dedicated
to stability and plasticity and thus combines both advantages. Furthermore, Dual-Arch can
be naturally incorporated with various CL methods as a plug-and-play component.

• Extensive experiments demonstrate that Dual-Arch is parameter-efficient, i.e., attaining bet-
ter performance with a remarkably reduced parameter count than using a single architecture.
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2 RELATED WORK

CL involves letting models sequentially learn a series of tasks without or with limited access to
previous tasks. Typically, these tasks are framed as visual classification problems Masana et al.
(2022). Based on whether the task identity is provided or must be inferred, CL can be categorized
into three typical scenarios: Task/Class/Domain Incremental Learning (IL) Van de Ven et al. (2022).
Moreover, there are some works that focus on more challenging scenarios where the task boundaries
are blurry Arani et al. (2022); Sarfraz et al. (2022). In the Task IL scenario, the task identity of test
samples is accessible at inference time, so the networks only need to learn and remember how to
classify within each task. More generally, the Class IL scenario requires networks to predict both
the task identity and the sub-class label. Moreover, the Domain IL scenario does not introduce new
classes during the learning process, instead, it characterizes task changes by introducing a shift in the
input distribution. This study mainly focuses on the Class IL scenario, which is regarded as the most
general and realistic among three typical scenarios Van de Ven et al. (2022); Wang et al. (2023b).

2.1 LEARNING METHODS FOR CL

To address catastrophic forgetting, the CL community has developed numerous CL methods aimed at
striking a balance between stability and plasticity. These methods encompass a range of techniques,
including memory replay, weight or function regularization, and dynamic architecture.

Replay-based methods keep a subset of the previous data information in a memory buffer and
thus exploit it to recover old data distributions. A straightforward implementation involves simply
replaying the stored data in conjunction with the current data (i.e., joint training), thereby simulating
the training process on a dataset that is independently and identically distributed Robins (1995);
Chaudhry et al. (2018). It should be noted that such a strategy is particularly widely used in Class
IL and often combined with other categories of techniques Wang et al. (2023b). However, these
methods require access to raw past data, which might be discouraged in some environments due to
privacy concerns. Instead, recently some works Lin et al. (2022); Sun et al. (2023); Lin et al. (2023)
elaborately construct a special parameter space of old tasks as the memory.

Regularization-based methods incorporate a regularization loss term to balance old and new tasks,
which can be divided into two sub-directions based on the regularization target Wang et al. (2023b).
The first is weight regularization, which selectively constrains the variation of the network parameters
based on the importance of each parameter in performing the old tasks, e.g., EWC Kirkpatrick
et al. (2017) and SI Zenke et al. (2017). The second is function regularization, which targets the
intermediate or final output of the prediction function. This strategy typically involves transferring
knowledge from previous CL models to the current model through knowledge distillation to mit-
igate forgetting Madaan et al. (2023). For instance, LwF Li & Hoiem (2017) proposes to let the
model concurrently learn the soft target generated by the previous model alongside the new data.
Furthermore, several methods integrate knowledge distillation with memory replay, proposing more
advanced solutions for Class IL, such as iCaRL Rebuffi et al. (2017) and WA Zhao et al. (2020).

Architecture-based methods mitigate inter-task interference and thus balance stability and plasticity
by allocating an expanding incremental parameter space of the network for each new task Yoon et al.
(2017). DER Yan et al. (2021) and MEMO Zhou et al. (2023b) are two typical representatives of this
type of method, both of which incorporate memory replay. While these methods have demonstrated
impressive CL performance, the rapid growth of parameters presents a challenge Li et al. (2019);
Zhou et al. (2023b). This may limit their application, especially in memory-restricted scenarios.

Discussion. In principle, the performance of neural networks is jointly influenced by their parameters
and architectures. While the learning methods mentioned above mainly enhance CL by optimizing
the parameters or extending parameter space, the suboptimal basic architectures might still limit CL
performance. Our study aims to address this by proposing a plug-and-play framework that leverages
the complementary strengths of two distinct architectures.

2.2 NEURAL ARCHITECTURES FOR CL

Besides learning methods, there is a body of research Mirzadeh et al. (2022a;b); Pham et al. (2022)
that concentrates on exploring optimal neural architectures for CL. In particular, ArchCraft Lu et al.
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(2024) delves into the influence of various network components and scaling on CL performance,
demonstrating that certain architectural designs are more CL-friendly than existing ones. Furthermore,
it is shown that a well-designed architecture can achieve superior CL performance with a smaller
parameter count, which is particularly beneficial for memory-constrained environments Lu et al.
(2024). These studies emphasize that the impact of architectural designs on CL performance is at least
as significant as that of the learning methods. However, it should be noted that existing studies focus
exclusively on the impact of architectures on the overall performance of CL. Our work extends this
line of inquiry by highlighting the inherent conflict between stability and plasticity at the architectural
level and subsequently proposing a novel solution to address it.

2.3 MULTI MODELS FOR CL

Various existing studies have proposed employing additional models to enhance CL Li & Hoiem
(2017); Kim et al. (2023); Bonato et al. (2024). In particular, certain works Pham et al. (2021); Arani
et al. (2022) based on complementary learning systems McClelland et al. (1995); Kumaran et al.
(2016) utilize two learners (known as slow and fast learners) with different functions to achieve CL.
Our proposed solution shares a similar conceptual framework, crafting two independent learners that
assume roles of plasticity and stability respectively during the CL process. However, unlike these
prior efforts that employ a uniform architecture for all models, our study emphasizes the importance
of specific architectural designs tailored to each learner. By doing so, our study provides novel
insights into more effectively leveraging multiple models for CL.

3 ARCHITECTURAL DIMENSIONS OF STABILITY AND PLASTICITY

This section presents an investigation of the impact of architectural designs on the stability and
plasticity of neural networks. The primary objective of this investigation is to reveal the conflict
between stability and plasticity at the architectural level, with a focus on network scaling.

3.1 EVALUATION SETTINGS

Architectural Variants. ResNet-18 He et al. (2016) is selected as the foundational architecture, given
its extensive utilization in existing CL research Yan et al. (2021); Goswami et al. (2024). Our primary
focus is on examining the impact of depth and width on CL. To this end, we vary the number of
layers and initial channel counts in ResNet-18 while maintaining a relatively constant total parameter
count. Additionally, we conduct an extended study to investigate the effect of pre-classification width.
This involves replacing the global average pooling (GAP) layer with a 4× 4 average pooling layer
with a stride of 3, thereby producing an output feature map of size 2× 2.

Implementation Setup. A subset of ImageNet Deng et al. (2009), known as ImageNet100 Rebuffi
et al. (2017), is utilized as the dataset, and it is partitioned into 10 incremental tasks, each comprising
10 classes. All models are trained using iCaRL Rebuffi et al. (2017), a classic learning method in the
CL field, with a fixed memory size of 2,000 exemplars.

Evaluation Metrics. To assess the plasticity, we measure the Average Accuracy on the New task
(AAN) across all incremental steps. A higher AAN value signifies greater plasticity. Furthermore, we
utilize the Average Forgetting (AF) metric to evaluate the stability, with lower AF values indicating
superior stability. Specifically, the AF after learning the k-th task is defined as:

AFk =
1

k − 1

k−1∑
b=1

(a∗b − ab), (1)

where ab denotes the current performance of task b, and a∗b represents its maximum performance in
the past. In particular, we use the AF after learning the Final task (FAF) as the overall stability metric.

3.2 EVALUATION RESULTS

The performance comparison between ResNet-18 and its variants, under comparable parameter
counts (within a ±3% margin), is summarized in Tab. 1. It can be observed that the wider yet
shallower variant demonstrates decreases in AAN by 2.97% (83.44% vs. 86.41%) and FAF by 2.60%
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Table 1: The AAN and FAF (%) of the original ResNet-18 (gray background) and its variants. We
report the mean and std of 5 runs with different task orders. Note that the ‘#P’ denotes the parameter
counts of a single architecture here.

Depth Width Penultimate Layer #P (M) AAN ↑ FAF ↓
18 64 GAP 11.23 86.41±0.60 35.76±1.62

10 96 GAP 11.10 83.44±0.84 (-2.97) 33.16±1.28 (-2.60)
18 64 4× 4 AvgPool 11.38 84.64±0.43 (-1.77) 34.17±2.03 (-1.59)

26 52 GAP 11.56 86.68±0.70 (+0.27) 36.02±1.79 (+0.26)
34 46 GAP 11.04 86.87±0.54 (+0.43) 35.98±1.97 (+0.22)
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Figure 2: The formulation of the traditional CL paradigm and CL with Dual-Arch (ours). Dual-Arch
(1) employs two independent learners that are designed by modifying the traditional single learner,
and (2) utilizes the stable learner to perform CL with the assistance of the plastic learner. Note that
Dual-Arch can be effortlessly combined with existing CL methods (denoted by the dotted lines).

(33.16% vs. 35.76%), indicating enhanced stability but diminished plasticity. Similarly, modifying the
penultimate layer to increase pre-classification width yields consistent results, with AAN decreasing
by 1.77% (84.64% vs. 86.41%) and FAF by 1.59% (34.17% vs. 35.76%). These observations suggest
that, within a fixed parameter budget, increasing network width may enhance stability at the expense
of plasticity. Conversely, the two deeper yet narrower variants exhibit slight increases in AAN, rising
by 0.27% and 0.43% (86.68% and 86.87% vs. 86.41%), as well as in FAF, with increases of 0.26%
and 0.22% (36.02% and 35.98% vs. 35.76%), reflecting a slight trade-off favoring plasticity over
stability. This suggests that depth has a greater influence than width in plasticity under a given
parameter constraint. Overall, the results reveal an inherent trade-off between stability and plasticity
at the architectural level, governed by architectural design choices within specific parameter limits.

4 DUAL-ARCHITECTURE FRAMEWORK FOR CONTINUAL LEARNING

In this section, we propose Dual-Arch, a framework that can be easily plugged in existing CL methods,
to address the stability-plasticity dilemma at the architectural level. Specifically, we will provide an
overview of the Dual-Arch framework and detail its learning algorithm.
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4.1 THE FORMULATION OF DUAL-ARCH

The overall framework of Dual-Arch is illustrated in Fig. 2. Unlike the existing CL paradigm which
relies on a single learner, the Dual-Arch framework distributes the roles of plasticity and stability
across two distinct models: the plastic learner and the stable learner. Inspired by existing research Kim
et al. (2023) that employs auxiliary models to enhance plasticity, our framework designates the stable
learner as the main model, with the plasticity learner serving as an auxiliary model. Throughout the
learning process, the plastic learner is dedicated to the extraction of new knowledge, allowing for the
potential forgetting of previous knowledge. Conversely, the stable learner is responsible for retaining
existing knowledge while integrating new knowledge with the assistance of the plastic learner.

Dual-Arch allows the combination of the strengths of both stable and plastic architectures by employ-
ing corresponding architectures for the two learners. Specifically, these architectures are designed
through targeted modifications to the original one, with the objective of enhancing plasticity or
stability. Additionally, to overcome the increased memory consumption associated with incorporating
an additional model, we concurrently reduce the parameter counts for both learners.

It is also worth highlighting that the Dual-Arch framework is designed to facilitate integration with a
variety of CL methods, serving as a plug-and-play component. This integration can be easily achieved
by applying these CL methods when training the stable learner, mirroring the training process of the
single learner within the traditional CL paradigm. Furthermore, for replay-based methods, the replay
buffer is concatenated with the training data for both the stable and plastic learners.

4.2 ARCHITECTURES FOR THE STABLE AND PLASTIC LEARNERS

This subsection presents the specific architectural designs tailored to the stable and plastic learners,
with the objective of achieving superior CL performance while minimizing parameter counts. Building
upon the insights from Sec. 3, we employ a wide and shallow architecture for the stable learner,
denoted as Sta-Net, and a deep and thin architecture for the plastic learner, denoted as Pla-Net.
Following standard practices Masana et al. (2022); Goswami et al. (2024), we have chosen ResNet-18
as the foundation for crafting both architectures. Specifically, Sta-Net retains the same width as
ResNet-18 but incorporates only half as many residual blocks. Furthermore, we modify the GAP
layer of Sta-Net to produce an output feature map of size 2× 2 instead of the original 1× 1, thereby
increasing the width of the classifier. To design Pla-Net, we maintain the depth of ResNet-18 while
reducing its width from 64 to 42 to align with the parameter count of Sta-Net.

4.3 LEARNING ALGORITHM OF DUAL-ARCH

Preliminaries. Before further description, some definitions related to the CL are presented. CL
aims to learn from a dynamic data stream. Following convention Zhou et al. (2023a), we consider a
sequence of K tasks (also known as steps) {D1,D2, . . . ,DK} without overlapping classes. Specifi-
cally, Dk ∼ {Xk,Yk} represents the data of the k-th step, containing Nk classes. Here, Xk denotes
the set of samples, and Yk denotes their respective labels. At the k-th step, the CL model is trained
on Dtrain

k and then tested on Dtest
0:k , which denotes the joint test dataset from task 0 to task k. For

replay-based methods, parts of data from previous tasks are preserved and incorporated into the
Dtrain

k . In the traditional CL paradigm using a single learner, the training loss at the k-th step can be
formulated as:

Lsingle = LCE + LCL, (2)
where the loss term LCE is the classification loss calculated using a cross-entropy loss function, and
LCL is specifically defined by the particular used CL methods. Specifically, we consider the CL
learner parameterized by weights θk and we use o(x) to indicate the output logits of the learner on
input x. the LCE is defined as:

LCE(x, y; θk) = − log
exp(oy)∑Nk

m=1 exp(om)
. (3)

The learning process of the Dual-Arch framework involves training the plastic and stable learners in
sequence. In the initial stage of the learning process, our framework trains the plastic learner as a new
task emerges. At this stage, the primary objective is to facilitate the acquisition of new knowledge,
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without consideration of the maintenance of previously acquired knowledge. Consequently, the
training objective of the plastic learner is simplified to minimize the classification loss on the current
training data, i.e., Lplastic = LCE . Subsequently, the stable learner is trained to integrate the
existing knowledge with that acquired by the plastic learner. This process entails the transfer of
recently acquired knowledge from the plastic learner to the stable learner via knowledge distillation.
Specifically, a distillation loss term is incorporated into the training objective of the stable learner, to
align the logit outputs between the stable and plastic learners. Following convention Hinton et al.
(2015), a hard label loss (i.e., cross-entropy loss) is also employed to minimize the discrepancy
between the predictions of the stable learner and the actual labels of the training data. Moreover,
established CL methods are implemented during this phase to facilitate the retention of previous
knowledge, which can also be expressed as a loss term. In light of the aforementioned considerations,
the total learning target of the stable learner can be formulated as:

Lstable = αLCE + (1− α)LKD + LCL, (4)

where LKD denotes the distillation loss and α is a hyper-parameter that balances the weight of LKD

and LCE . We set the default value of α to 0.5, following Hinton et al. (2015).

Within Dual-Arch, the distillation loss LKD is employed to enhance the plasticity of the stable learner,
which involves enabling it to learn from the soft outputs of the plastic learner. Specifically, the LKD

is calculated by measuring the Kullback-Leibler divergence between the soft outputs of the teacher
model (i.e., the plastic learner) and those of the student model (the stable learner) on the current data.
Let T denote the teacher model, and S denote the student model, the LKD is defined as:

LKD = −
Nk∑
i=1

P i
T logP i

S , (5)

where PT and PS represent the soft outputs of the teacher and student models. These soft outputs are
derived by applying the SoftMax function to transform the output logits of these models, i.e., OT and
OS , into probability distributions. Specifically, PT = SoftMax(OT /t) and PS = SoftMax(OS/t),
where t is the temperature factor that controls the smoothness of the soft outputs.

The detailed training procedure of the proposed framework is summarized in Alg. 1. Throughout a
sequence of N tasks, the training alternates between the plastic and stable learners. For each task t,
the plastic learner is first trained using classification loss LCE (Lines 2-3). Once the optimal weights
are obtained, this model is preserved as a teacher model for the subsequent phase (Line 4). Following
this, the stable learner is trained using the loss function described in Eq. (4), as shown in Lines 5-6.

Algorithm 1: Training Procedure of Dual-Arch
Input: Weights of the stable learner θ0, Weights of the plastic learner ϕ0, Hyperparameters α
Output: Optimal weights of the stable learner θK

1 for task k = 1, 2, .., K do
// Train the plastic learner

2 for epoch e = 1, 2, .., E do
3 Train ϕk−1 with classification loss LCE on task k to obtain ϕk

4 Freeze and save ϕk

// Train the stable learner
5 for epoch e = 1, 2, .., E do
6 Train θk−1 with Lstable (Eq. (4)) on task k to obtain θk

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Benchmark. Following convention Rebuffi et al. (2017), We choose CIFAR100 Krizhevsky et al.
(2009) and ImageNet100 Deng et al. (2009) for evaluation. Both datasets are divided into 10 tasks
of 10 classes each and 20 tasks of 5 classes each to construct four benchmarks: CIFAR100/10,
CIFAR100/20, ImageNet100/10, and ImageNet100/20.
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Baselines. To assess the efficacy of our proposed method, we integrate it into five distinct CL
approaches spanning the three major categories: replay-based, regularization-based, and architecture-
based methods. These methods include iCaRL Rebuffi et al. (2017), WA Zhao et al. (2020), DER Yan
et al. (2021), Foster Wang et al. (2022), and MEMO Zhou et al. (2023b). Specifically, we compare the
performance of Dual-Arch with that of the original ResNet-18 to evaluate the enhancements provided
by our method. We also select ArchCraft Lu et al. (2024) as a baseline, which employs a single
CL-friendly architecture to improve CL performance, to show the benefits of dual architectures.

Implementation Setup. For all experiments, we train all models by 200 epochs in the first task
and 100 epochs in the subsequent tasks. The learning rate starts from 0.1 and gradually decays with
a cosine annealing scheduler. A fixed memory size of 2,000 exemplars is utilized for all replay-
based methods during the learning process. Given the significant impact of hyper-parameters on
CL Cha & Cho (2024); Mirzadeh et al. (2020), the hyperparameters for all methods adhere to the
settings in the open-source library PyCIL Zhou et al. (2023a) to ensure a fair comparison. Following
convention Mirzadeh et al. (2022b); Zhou et al. (2023a), the first convolution layer and following max
pooling layer of networks are replaced by a 3× 3 convolution layer with a stride of 1 for CIFAR100.

Evaluation Metrics. The overall performance of CL is measured by two metrics: the Last Accuracy
(LA) and the Average Incremental Accuracy (AIA). The LA is the total classification accuracy after
the last task, which reflects the overall accuracy among all classes. Further, the AIA denotes the
average classification accuracy over all tasks, which reflects the performance across all incremental
steps. The higher LA and AIA, the better overall CL performance. Let K be the number of tasks,
these two metrics are defined as LA = AK , AIA = 1

K

∑K
b=1 Ab, where Ab represents classification

accuracy measured on the test set that covers all tasks learned up to and including the b-th task.

5.2 OVERALL RESULTS

Tab. 2 presents the comparative performance of Dual-Arch using five state-of-the-art CL methods.
The results demonstrate that across various methods, datasets, and incremental steps, the integration
of Dual-Arch consistently outperforms the baseline that employs ResNet-18 as a single learner. In
particular, adopting Dual-Arch leads to maximum improvements of 10.29% in LA and 7.62% in
AIA, while simultaneously reducing the parameter counts by at least 33%. Moreover, Dual-Arch
significantly outperforms Arch-Craft in most cases, underscoring the advantages of dual architectures
over a single, CL-friendly architecture. In conclusion, Dual-Arch emerges as a valuable complement
to existing CL methods, enhancing both effectiveness and efficiency.

5.3 ABLATION STUDY

In this subsection, we present the results of our ablation study to show the significance of employing
dual networks in conjunction with dedicated architectures. To simplify, we select the CIFAR-100/10
as a representative dataset and utilize AIA as the primary performance metric for our analysis.

As displayed in Tab. 3, we examine the effects of removing two pivotal components from our method.
In particular, we present the outcomes of employing only a Sta-Net to underscore the necessity of the
dual-networks framework. Furthermore, we present the results obtained when employing Sta-Net
or Pla-Net for both learners to highlight the importance of specialized architectures. We observe
from Tab. 3 that the absence of a plastic learner leads to a decrease in AIA by an average of 2.63%.
Similarly, employing non-specialized architectures for two learners within Dual-Arch results in lower
performance, with the AIA declining by an average of 1.74%, 0.65%, and 1.68%. These results
clearly demonstrate the benefits of each component in our proposed solution.

5.4 PARAMETER EFFICIENCY ANALYSIS

In this subsection, we focus on evaluating the parameter efficiency of our proposed Dual-Arch by
selecting two representative CL methods: DER and Foster. To assess this more comprehensively, we
vary the parameter counts of Dual-Arch and ResNet-18 by reducing the network width by a quarter
and a half. As illustrated in Fig. 3, the Dual-Arch series significantly outperforms the baseline in
terms of parameter efficiency. Specifically, Dual-Arch can enhance AIA by 0.90% and 1.94% when
using DER and Foster as the CL method, respectively, while simultaneously reducing parameter
counts by 87% and 81%. Additionally, Dual-Arch surpasses ArchCraft, a state-of-the-art solution that
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Table 2: The LA, AIA and FAF (%) using five state-of-the-art CL methods. ‘#P’ represents the
parameter counts of all used networks (including auxiliary networks). ‘Improvement’ represents the
boost of Dual-Arch towards original methods. Note that the parameter counts of DER and MEMO
vary from incremental settings, resulting in two values for ‘/20’ and ‘/10’. Bolded indicates best.

Method #P (M)
CIFAR100/20 CIFAR100/10 ImageNet100/20 ImageNet100/10

LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓
iCaRL 22.4 49.78 65.63 33.33 54.87 68.30 27.76 46.22 63.89 41.05 51.74 68.47 35.91
w/ ArchCraft 17.4 52.60 68.71 - 55.52 69.62 - 45.12 63.98 - 52.46 68.42 -
w/ Ours 15.1 52.53 67.80 29.49 57.69 70.40 23.63 47.22 65.06 35.66 54.84 69.37 28.22
Improvement ↓ 33% +2.75 +2.17 -3.84 +2.82 +2.10 -4.13 +1.00 +1.17 -5.39 +3.10 +0.90 -7.69

WA 22.4 46.78 62.75 19.05 56.98 69.16 23.53 46.98 65.76 39.05 57.64 71.20 28.27
w/ ArchCraft 17.4 53.23 69.19 - 59.79 71.40 - 49.94 67.20 - 58.86 71.56 -
w/ Ours 15.1 55.02 68.84 24.91 59.78 71.57 17.91 52.84 68.79 31.73 60.84 72.57 24.53
Improvement ↓ 33% +8.24 +6.09 +5.86 +2.80 +2.41 -5.62 +5.86 +3.03 -7.32 +3.20 +1.37 -3.74

DER 224.4/112.2 58.39 70.19 25.63 61.83 72.48 22.13 64.32 74.91 20.51 67.40 75.93 15.22
w/ ArchCraft 173.5/86.8 61.65 73.59 - 63.94 74.84 - 63.98 74.50 - 68.34 77.26 -
w/ Ours 106.9/55.9 64.08 73.86 20.08 66.22 75.08 17.73 65.40 75.17 16.97 68.52 77.49 12.96
Improvement ↓ 52%/50% +5.69 +3.67 -5.55 +4.39 +2.60 -4.40 +1.08 +0.26 -3.54 +1.12 +1.56 -2.26

Foster 22.5 49.99 63.39 35.03 58.67 69.95 27.39 54.74 66.77 34.67 62.88 71.09 25.18
w/ ArchCraft 17.5 57.22 69.99 - 61.44 72.54 - 54.32 66.41 - 61.94 71.16 -
w/ Ours 15.4 57.69 71.01 23.75 61.23 73.22 18.23 55.20 67.63 32.42 63.24 72.42 25.04
Improvement ↓ 32% +7.70 +7.62 -11.28 +2.56 +3.27 -9.16 +0.46 +0.86 -2.25 +0.36 +1.33 -0.14

MEMO 171.7/87.2 52.10 67.60 35.71 58.46 70.71 27.99 56.10 69.13 29.64 61.64 73.31 21.87
w/ ArchCraft 126.6/64.6 57.28 72.07 - 61.93 73.30 - 57.46 70.54 - 62.46 74.01 -
w/ Ours 101.1/53.1 62.39 72.69 24.09 65.35 74.34 20.82 60.26 72.53 24.59 65.40 75.54 16.53
Improvement ↓ 41%/39% +10.29 +5.09 -11.62 +6.89 +3.63 -7.17 +4.16 +3.40 -5.05 +3.76 +2.23 -5.34

Table 3: The ablation study results using five CL methods. We report the mean±std of 3 runs with
different initializations. † denotes performing CL with a single learner. Bolded indicates the best.

Stable
Learner

Plastic
Learner

AIA (%) on CIFAR100/10

iCaRL WA DER Foster MEMO Average
Sta-Net Pla-Net 70.21±0.19 71.53±0.13 75.26±0.20 73.18±0.04 74.44±0.07 72.92
Sta-Net None† 66.69±0.10 69.33±0.17 72.47±0.07 70.84±0.24 72.11±0.27 70.29 (-2.63)
Pla-Net Pla-Net 69.57±0.10 69.98±0.08 74.64±0.28 71.92±0.28 69.80±0.15 71.18 (-1.74)
Sta-Net Sta-Net 69.27±0.26 71.38±0.25 74.30±0.08 72.65±0.11 73.77±0.05 72.27 (-0.65)
Pla-Net Sta-Net 69.85±0.13 70.31±0.26 74.25±0.35 71.86±0.06 69.92±0.12 71.24 (-1.68)

enhances parameter efficiency in CL by recrafting the network architecture. These empirical results
highlight the potential of Dual-Arch to significantly benefit CL in memory-restricted scenarios.
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Figure 3: Performance of CL vs. Number of Parameters using DER and Foster on CIFAR100/10.

5.5 ANALYSIS ON THE STABILITY-PLASTICITY TRADE-OFF

To further scrutinize the effectiveness of Dual-Arch in combining the strength of both architectures,
we compare it to a single learner with one of the architectures (i.e., Pla-Net or Sta-Net). To simplify,
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we choose the top-performing approach DER as the used CL method. We observe from Fig. 4 (a)
that Dual-Arch achieves the best overall performance in CL. Moreover, as illustrated in Fig. 4 (b)
and (c), the single learner either forgets severely on previous tasks (Pla-Net) or underperforms on
new ones (Sta-Net), whereas Dual-Arch demonstrates competitive performance in both aspects. This
result indicates that Dual-Arch combines the advantages of both types of architecture, leading to a
trade-off between stability and plasticity at the architectural level.
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Figure 4: The performance of Dual-Arch and two baselines using DER on CIFAR100/10.

5.6 ANALYSIS ON BIAS-CORRECTION

In Class IL, the task-recency bias is a major cause of catastrophic forgetting, where models tend
to misclassify instances from earlier tasks as belonging to more recently introduced classes during
inference Masana et al. (2022); Zhao et al. (2020). To discover the reasons why Dual-Arch benefits
CL, we further evaluate its effectiveness in mitigating the task-recency bias. Specifically, we present
the task confusion matrices for the Dual-Arch and the baseline which employs a single ResNet-18
in Fig. 5. From Fig. 5 (b) and (d), we observe that the integration of Dual-Arch facilitates a more
precise determination of the correct task ID, thereby reducing inter-task classification errors. Notably,
Dual-Arch significantly diminishes the misclassification of data from earlier tasks (e.g., task 1) as
belonging to recently learned tasks (e.g., task 10). These observations indicate that Dual-Arch can
effectively reduce the task-recency bias, thus mitigating catastrophic forgetting.
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Figure 5: Task confusion matrices after learning the final task of different CL methods w/ and w/o
Dual-Arch plugged in on CIFAR100/10. Results of other methods are reported in Appendix A.2.

6 CONCLUSION

In this paper, we point out the stability-plasticity dilemma at the architectural level and further
introduce Dual-Arch, a novel CL framework, to address it. Dual-Arch is built on a parallel level with
most of the existing CL methods (architecture vs. parameter), thereby serving as a plug-in component
for enhancing CL. Our extensive experiments demonstrate that Dual-Arch consistently outperforms
the baselines while significantly reducing the parameter counts. We hope this work inspires further
study on exploring a better trade-off between stability and plasticity from an architectural perspective.
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A APPENDIX

A.1 COMPARISON ON PARAMETER COUNTS AND FLOPS

We compute the sum of the parameter counts of all used models for each incremental step and report
their peak values throughout the CL process as the final result. For instance, for iCaRL, we sum the
parameter counts of the current and last models. For iCaRL with Dual-Arch, we sum the parameter
counts of the plastic learner, the current stable learner, and the last stable learner. All results are
detailed in Tab. 2 of the main paper. Moreover, it should be noted that the parameter counts vary
slightly between the CIFAR100 and ImageNet100, and we report all results based on CIFAR100.

Additionally, we note that despite Dual-Arch involving the training of two models, the total FLOPs
remain less than those of the baselines. Taking CIFAR100 as an example, the FLOPs for Sta-Net and
Pla-Net are 255M and 241M, respectively, resulting in a combined total of 496M. In contrast, the
FLOPs for ResNet-18 and ResAC are approximately 558M and 1383M, respectively.

A.2 ADDITIONAL RESULTS ON BIAS-CORRECTION

We report the task confusion matrices for the DER, Foster and MEMO with/without Dual-Arch here.
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Figure 6: Task confusion matrices after learning the final task of different CL methods w/ and w/o
Dual-Arch plugged in on CIFAR100/10.
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A.3 IMPLEMENTATION DETAILS

We employ the same data augmentation as in PyCIL Zhou et al. (2023a) for all experiments. For the
experiments in Section 3, we report results in different task orders using 5 seeds 1, 2, 3, 4, and 5. For
other experiments, we adhere to a fixed seed of 1993, consistent with established conventions Rebuffi
et al. (2017); Zhou et al. (2023a). We utilize a temperature factor for Dual-Arch of t = 4 for
CIFAR100 and t = 3 for ImageNet-100.

A.4 ARCHITECTURAL DIMENSIONS OF STABILITY AND PLASTICITY IN MLP

We further investigate the impact of network width (i.e., the number of neurons in the hidden layer)
and depth (i.e., the number of layers) on the stability and plasticity of the MultiLayer Perceptron
(MLP). Following HAT Serra et al. (2018), we employ a width of 800 and a depth of 4 as the default
design for the MLP. Additionally, we design a wider yet shallower variant and a deeper yet thinner
variant, both with a parameter count comparable to the default design. We evaluated all MLPs on
the split MNIST dataset, which consists of five tasks, using the LWF Li & Hoiem (2017). Note
that we train all models with 10 epochs, and report results using five different task orders. The
results are reported in Tab. 4. We observe that the wider yet shallower variant exhibits lower values
for both AAN and FAF. These results suggest that within a fixed parameter budget, the wider and
shallower variants offer superior stability at the expense of reduced plasticity, a trend consistent with
the findings observed in ResNet architectures.

Table 4: The AAN and FAF (%) of MLP with different depths and widths. Note that the ‘#P’ denotes
the parameter counts of a single architecture here.

Depth Width #P AAN ↑ FAF ↓
4 800 1.92 84.20±5.37 42.10±7.58
3 1050 1.94 79.23±5.13 (-4.97) 26.78±5.18 (-15.32)
5 680 1.93 87.35±3.77 (+3.15) 59.28±6.71 (+17.18)

A.5 VALIDATION ON CIFAR100/50

In this subsection, we report the results on settings with a greater number of tasks, specifically CI-
FAR100/50, which contains 50 tasks, in Tab. 5. These results demonstrate that Dual-Arch consistently
outperforms the baselines in this challenging setting, thereby underscoring its generality.

Table 5: The LA and AIA (%) using five state-of-the-art CL methods on CIFAR100/50. Bolded
indicates the best.

Method
iCaRL WA DER Foster MEMO

LA AIA LA AIA LA AIA LA AIA LA AIA

Original 45.30 63.99 42.12 58.26 55.73 69.53 43.45 59.81 42.44 62.57
w/ ArchCraft 48.70 67.24 39.83 61.02 57.89 71.53 53.02 68.14 54.47 69.96
w/ ours 48.95 65.93 47.13 64.41 61.88 73.09 53.16 67.83 58.09 71.17

A.6 VALIDATION ON CL WITH BLURRY TASKS BOUNDARIES

Beyond Class-IL, a series of works have focused on a more challenging and realistic CL scenario
where task boundaries are not explicitly available, known as Generalized Class IL Buzzega et al.
(2020); Arani et al. (2022). In this section, we validate the generality of Dual-Arch in this setting.
Following convention Arani et al. (2022); Sarfraz et al. (2022), we report the results on the typical
benchmark, GCIL-CIFAR-100, as shown in Tab. 6. Our findings indicate that Dual-Arch consistently
enhances CL performance in this scenario, underscoring its broad applicability.

A.7 VALIDATION ON VISION TRANSFORMERS

While our study primarily focuses on ResNet, the insights presented in our paper are potentially
applicable to other architectures, such as Vision Transformers (ViTs). In this subsection, we report
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Table 6: The LA (%) on GCIL-CIFAR-100 with different buffer sizes. Bolded indicates the best.
Note that the benchmark settings follow Arani et al. (2022).

Method Buffer Size 500 Buffer Size 1000

ER Rostami et al. (2019) 20.30 34.13
w/ Dual-Arch (ours) 27.57 (+7.27) 35.40 (+1.27)

DER++ Buzzega et al. (2020) 25.82 33.64
w/ Dual-Arch (ours) 30.34 (+4.52) 36.84 (+3.20)

the results of transferring our method to SepViT Li et al. (2022) on ImageNet100/10, with all models
trained from scratch. Note that the training settings are consistent with Sec. 5.1, but the learning
rate and optimizer are adjusted to match the official implementation of SepVit Li et al. (2022). The
results, presented in Tab. 7, demonstrate that Dual-Arch consistently enhances the CL performance
of SepViT, indicating its generality to ViTs.

Table 7: The LA and AIA (%) using SepVit on ImageNet100/10. ‘#P’ represents the parameter
counts of all used networks (including auxiliary networks). Bolded indicates the best.

Method #P (M) LA AIA

iCaRL 7.57 43.08 60.62
w/ ours 5.32 46.34 (+3.26) 63.09 (+2.47)

WA 7.57 38.40 57.67
w/ ours 5.32 44.28 (+5.88) 61.15 (+3.48)

A.8 ARCHITECTURAL DIMENSIONS OF STABILITY AND PLASTICITY IN VISION
TRANSFORMERS

We further investigate the impact of network width (i.e., the dimension of the attention heads)
and depth (i.e., the number of blocks) on the stability and plasticity of ViTs. Specifically, we use
SepViT-Lite Li et al. (2022) as the default design, which is configured with a width of 32 and a
depth of 11. Additionally, we design a wider yet shallower variant with a width of 49 and depth
of 5, which has a parameter count comparable to the default design. Both ViTs are evaluated on
ImageNet-100/10 using iCaRL as the learning method Rebuffi et al. (2017). Note that the training
settings are consistent with Sec. 5.1, but the learning rate and optimizer are adjusted to match the
official implementation of SepVit Li et al. (2022). The results are reported in Tab. 8. We observe that
the wider yet shallower variant exhibits lower values for both AAN and FAF. These results suggest
that within a fixed parameter budget, the wider and shallower variants offer superior stability at the
expense of reduced plasticity, a trend consistent with the findings observed in ResNet architectures.

Table 8: The AAN and FAF (%) of SepVit with different depths and widths. Note that the ‘#P’
denotes the parameter counts of a single architecture here.

Depth Width #P AAN ↑ FAF ↓
11 32 3.78 79.54 40.51
5 49 3.76 78.96 (-0.58) 39.47 (-1.04)
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