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3 AP-HP, Innovation & Données – Département des Services Numériques, Paris, France
4 Members of the APPRIMAGE study group can be found at www.aramislab.fr/apprimage

Editors: Accepted for publication at MIDL 2024

Abstract

This experimental study assesses the ability of variational autoencoders (VAEs) to perform
anomaly detection in clinical routine, in particular the detection of age-related white matter
lesions in brain MRIs acquired at different hospitals and gathered in a clinical data ware-
house (CDW). We pre-trained a state-of-the-art β-VAE on a healthy cohort of over 10,000
FLAIR MR images from the UK Biobank to learn the distribution of healthy brains. The
model was then fine-tuned on a cohort of nearly 700 healthy FLAIR images coming from
a CDW. We first ensured the good performance of our pre-trained model compared with
the state-of-the-art using a widely used public dataset (MSSEG). We then validated it on
our target task, age-related WMH detection, on ADNI3 and on a curated clinical dataset
from a single-site neuroradiology department, for which we had manually delineated lesion
masks. Next, we applied the fine-tuned β-VAE for anomaly detection in a CDW charac-
terised by an exceptional heterogeneity in terms of hospitals, scanners and image quality.
We found a correlation between the Fazekas scores extracted from the radiology reports
and the volumes of the lesions detected by our model, providing a first insight into the
performance of VAEs in a clinical setting. We also observed that our model was robust to
image quality, which strongly varies in the CDW. However, despite these encouraging re-
sults, such approach is not ready for an application in clinical routine yet due to occasional
failures in detecting certain lesions, primarily attributed to the poor quality of the images
reconstructed by the VAE.
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1. Introduction

Age-related white matter hyperintensities (WMHs) are lesions in the white matter that
appear hyperintense on FLAIR MRI and are a very common finding in elderly patients
(Debette and Markus, 2010; Prins and Scheltens, 2015; Habes et al., 2016; Wardlaw et al.,
2015). Detection of these lesions is a clinically relevant task to assess their severity. In
clinical routine, such WMHs are visually evaluated using the Fazekas score, which is a 3-
grade scale where 0 corresponds to no lesion and 3 to large, extensive and confluent lesions
(Fazekas et al., 1987). One of the main problems with visual rating scales is that they suffer
from intra- and inter-subject variability, leading to inconsistencies between studies (Caligiuri
et al., 2015). This is why the development of an automatic tool capable of performing WMH
detection, robust to MRIs acquired with different machines, manufacturers or acquisition
parameters at different sites and of various image quality, is desirable in clinical routine.

In recent years, unsupervised machine learning algorithms for medical imaging have
emerged, with the advantage of not requiring costly and time-consuming manual annotation
(Chen and Konukoglu, 2022). These algorithms are capable of tackling complex tasks such
as anomaly detection (Fernando et al., 2021). Unsupervised anomaly detection (UAD)
can be based on generative models such as variational autoencoders (VAEs) (Baur et al.,
2021), generative adversarial networks (GANs) (Schlegl et al., 2019), or diffusion models
(Wolleb et al., 2022). Trained on healthy brain MRIs, the model learns the distribution of
healthy brain tissue, ensuring that when confronted with an image presenting anomalies,
the abnormal tissues are not well reconstructed. Comparing the reconstructed image with
the real one then allows the detection of anomalies.

Among the deep generative models that have been used for UAD, VAEs have demon-
strated their ability to detect lesions in datasets of brain MRIs with diverse pathology
including multiple sclerosis (Commowick et al., 2018), glioblastoma (Menze et al., 2014)
and cerebral small vessel disease (Kuijf et al., 2019). However, the effectiveness of VAEs
on routine clinical datasets that reflect the reality of current practice remains to be demon-
strated. Clinical data warehouses (CDWs), which gather medical images from thousands
to millions of patients, are representing an exceptional opportunity to perform this kind
of validation on images acquired on different machines, with non-standardised acquisition
parameters and variable image quality (Bottani et al., 2023; Loizillon et al., 2024).

We propose an experimental study to assess the potential of VAEs, using the state-of-
the-art β-VAE (Higgins et al., 2016), for anomaly detection, and more specifically targeting
age-related WMHs, on clinical datasets. After pre-training our VAE on a non-lesional cohort
of FLAIR MRIs from the UK Biobank, we will fine-tune it on a unique FLAIR dataset
extracted from the Parisian CDW gathering images from up to 39 different hospitals. After
validating the effectiveness of our anomaly detection model on research datasets and on a
curated clinical dataset, which has been acquired at a single neuroradiology department,
we will evaluate the feasibility of its application on routine clinical MRIs from the Parisian
CDW known for its exceptional heterogeneity.
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2. Materials

2.1. Construction of the Non-Lesional Cohorts

Research Dataset The UK Biobank (UKB) is a prospective cohort study involving
500,000 participants aged between 40 and 69 years at time of recruitment (2006–2010).
(Sudlow et al., 2015). Neuroimages, all acquired on the same type of scanner (Siemens
Skyra 3 T) using the same acquisition parameters at different sites, are available for some
of the participants (Alfaro-Almagro et al., 2018). In our study, we were only interested in
3D FLAIR MRIs of healthy appearance. After linking the FLAIR images to all diagnostic
codes (ICD-10) associated with the patients at each visit, we excluded images in which
patients were diagnosed with dementia or lesions. In this way, we extracted a supposedly
healthy cohort of 11,990 FLAIR images.

Clinical Data Warehouse We built a healthy cohort with clinical routine data com-
ing from a large CDW containing all the FLAIR brain MRIs of adult patients scanned
in hospitals of the Greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]).
Within the CDW we had access to 13,703 FLAIR MRIs and developed the following ap-
proach to build a non-lesional cohort. We first associated each MRI with its radiological
report and any ICD-10 diagnostic codes associated with the patient. This allowed us to
perform an initial filter, eliminating all patients with an ICD-10 code related to demen-
tia or the presence of brain lesions. We then analysed the radiological reports using the
EDS-NLP tool (Wajsburt et al.), which allowed us to extract the “Conclusion” section of
the document. A filtering process was applied to these conclusions, looking for references
to the absence of abnormalities: “pas d’anomalie”, “normal”, “absence d’anomalie”, “pas
d’argument”, “sans anomalie”, “pas de signe”, “pas d’accident”, “sans particularité”, “Pas
de lésion cérébrale” et “Pas de lésion encéphalique” (Figure A1). The dataset was further
refined by a manual filtering process on the Conclusion associated with a visual inspection
of the images to ensure that the resulting MRIs correspond to 3D non-lesional FLAIRs (i.e.,
no straight reject, see below). Thus, we built a new healthy cohort of 674 FLAIR images
out of the 13,703 which were acquired on 12 different machines from three different man-
ufacturers. This dataset is characterised by its great heterogeneity with images acquired
over 17 different hospitals with no homogenisation in the acquisition parameters. Thus,
this cohort well represents 3D FLAIR brain MRIs that may be acquired in other hospitals
every day.

2.2. Datasets with Images Presenting Lesions

Research Datasets The MSSEG MICCAI challenge, which includes 53 patients affected
by multiple sclerosis across four different sites, aims to perform the segmentation of WMHs
(Commowick et al., 2018). Four different scanners were used: GE Discovery 3 T, Philips
Ingenia 3 T, Siemens Aera 1.5 T and Siemens Verio 3 T. Each patient underwent four
MRI sequences: 3D FLAIR, 3D T1w, 3D contrast-enhanced T1w and 2D T2w. In our
study, we only considered the 3D FLAIR. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is a multi-site study of elderly individuals with normal cognition, mild cognitive
impairment, or Alzheimer’s disease (Weiner et al., 2017). The ADNI-3 phase includes
3D FLAIR MRIs acquired exclusively on 3 T scanners from different manufacturers (GE,
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Siemens, and Philips). We used 20 of the FLAIR images that had previously been manually
segmented by a trained radiology resident as described in (Vanderbecq et al., 2020).

Curated single-site clinical dataset This routine clinical dataset consists of 60
patients diagnosed with cognitive impairment at the neuroradiology department of the
Pitié-Salpêtrière hospital. We reused the dataset from a previous study (Vanderbecq et al.,
2020), in which all patients had 3D T1-w and FLAIR sequences (except for two patients
who had a 2D FLAIR). All data were collected during a routine clinical workup and were
retrospectively extracted for the purpose of this study. Therefore, according to French
legislation, explicit consent was waived. The images were acquired on four different MRI
scanners and curated for image quality. Manual segmentation of WMHs was performed by
a trained radiology resident (Vanderbecq et al., 2020). This dataset will be referred to as
PITIE in the remainder of the article.

Clinical data Warehouse We constructed a cohort of patients presenting brain
lesions using routine clinical data from the AP-HP CDW. We developed the following
approach to construct a new cohort out of the 13,703 FLAIR MRIs available. We first
linked each FLAIR with its radiological report. From the radiological report, we extracted
the Fazekas scale (Fazekas et al., 1987) when it was mentioned in the “Conclusion” using
EDS-NLP. We found this information for 204 FLAIR images. In contrast to MRIs from the
PITIE dataset, these images come from nine different types of machines in 14 hospitals and
have a wide range of image quality, reflecting the diversity of MRIs seen in clinical routine.
We automatically assessed the image quality using our quality control model, which clas-
sifies images into good, medium, low quality and straight reject (e.g., truncated images)
(Loizillon et al., 2023). The quality distributions across Fazekas scores are displayed in the
appendix (Table A1).

Participant demographics for the various cohorts are summarised in Table 1.

Table 1: Age (average [range]) and sex (% females) of the participants from the non-lesional
(UKB & CDW) and lesional (MSSEG, ADNI3, PITIE and CDW) cohorts. Note
that for the CDW cohort with images presenting lesions, we had access to demo-
graphic data for only 171 out of the 204 images.

Dataset N images Age Sex (%F)

Non-lesional cohorts
UKB 11990 56.63 [44-83] 62.73
CDW 674 45.57 [18-87] 55.49

Cohort with images
presenting lesions

MSSEG 53 45.42 [24-66] 71.70
ADNI 20 71.07 [58-83] 50
PITIE 60 78.20 [52–101] 50
CDW 204 77.34 [43-96] 52.05

3. Proposed Approach

3.1. Image Pre-processing

FLAIR MRIs were pre-processed using the flair-linear pipeline from Clinica (Routier
et al., 2021). First, a bias field correction was applied using the N4ITK method (Tustison
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et al., 2010). An affine registration to the MNI space was then performed (Avants et al.,
2008). Registered images were normalised by clipping the intensity values to the [2,98]
percentiles and cropped to remove background resulting in images of size 169×208×179,
with 1 mm isotropic voxels.

3.2. Unsupervised Anomaly Detection with a β-VAE

Many VAE variants have been proposed to perform UAD (Chadebec et al., 2022) and
several have recently been compared in a benchmark focused on detecting dementia-related
lesions in 3D positron emission tomography images (Hassanaly et al., 2023, 2024). Based
on the results of this benchmark (Hassanaly et al., 2024), we decided to train a β-VAE
(Higgins et al., 2016), which encourages the disentanglement of features in the latent space
by adding a weight β in front of the Kullback-Leibler divergence regularisation term to
adjust the balance with the reconstruction loss.

We used a 3D β-VAE model with an encoder of five blocks and a symmetric decoder
(Hassanaly et al., 2024), see Figure 1. Each encoder block is composed of a convolutional
layer, a batch normalisation and a swish activation function. These blocks are followed by
a flatten and a fully connected layer. The latent space size was 256 and β equal to 10. The
model was trained over 30 epochs, with a learning rate of 10−5 and a batch size of 4 using
ClinicaDL (Thibeau-Sutre et al., 2022).

Figure 1: Variational autoencoder (VAE) architecture for brain anomaly detection
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3.3. Post-processing

After multiplying each residual image, i.e., the difference between the input and output of
the β-VAE, with an eroded brain mask to eliminate false positives near the brain contour,
a 3D median filter with a kernel size of 5 was used to obtain a smoother mask that was
thresholded to obtain a binary segmentation mask. As in (Baur et al., 2021), the threshold
was model specific and determined as the 98th percentile of the model reconstruction errors
on the training dataset. Finally, we performed a 3D connected component analysis by
excluding any segmented regions with an area of less than 10 voxels.
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3.4. Experimental Setup

For pre-training our β-VAE model on the UKB dataset, the 11,990 images were split into a
training and a validation set containing 8304 and 3686 MRIs. In the following fine-tuning
step on the CDW, 574 images were used for training and 100 were left for validation.
The separation between training and validation sets was done at the subject level to avoid
data leakage and stratified by sex and age. We evaluate the pre-trained model on three
independent test sets presenting brain anomalies: MSSEG, ADNI3 and PITIE, and apply
the fine-tuned model on the CDW.

3.5. Evaluation Metrics

To evaluate the anomaly detection results, the two best suited metrics according to (Maier-
Hein et al., 2022) were the Dice Similarity Coefficient (DSC) and the Normalised Surface
Dice (NSD). We also computed three other relevant metrics: absolute volume error rate
(AVR), voxel-level false positive ratio (FPR), voxel-level false negative ratio (FNR).

AV R =
|VR − VA|

VR
, FPR =

FP

FP + TN
, FNR =

FN

FN + TP
,

where VR is the reference volume, VA is the automatic volume, FP is a false positive voxel,
TN is a true negative voxel, FN is a false negative voxel and TP is a true positive voxel.
For each metric, we report the mean and the 95% confidence interval computed using
bootstrapping on the corresponding independent test set (9999 resamples).

4. Results

4.1. Validation of the β-VAE for Anomaly Detection in Research Datasets

We first tested our pre-trained model using the MSSEG dataset, which has been used
extensively in the literature to detect multiple sclerosis lesions. Although these lesions
differ from age-related WMHs, our target, this step ensures that our VAE produces results
consistent with those reported in the literature on a publicly available dataset. We then
validated our model on our target task – the anomaly detection of age-related WMHs – on
ADNI3 and the curated clinical dataset PITIE. Results are presented in Table 2.

Table 2: Validation on research datasets (MSSEG and ADNI3) and a curated clinical
dataset (PITIE). Each metric is presented as average [95% confidence interval].

Dataset FLAIR DSC (%) NSD (%) AVR FPR FNR

MSSEG 53
30.81

⌈25.66,36.07⌉
32.05

⌈26.63,37.34⌉
0.80

⌈0.64,0.98⌉
0.63

⌈0.55,0.71⌉
0.62

⌈0.58,0.66⌉

ADNI3 20
27.06

⌈19.73,34.52⌉
30.68

⌈22.98,38.4⌉
0.71

⌈0.61,0.8⌉
0.77

⌈0.68,0.85⌉
0.48

⌈0.4,0.56⌉

PITIE 60
35.02

⌈29.89,40.2⌉
36.63

⌈31.29,41.81⌉
0.64

⌈0.56,0.71⌉
0.71

⌈0.65,0.77⌉
0.4

⌈0.35,0.44⌉
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The DSC of 30.81% observed on MSSEG is in agreement with existing works using VAEs
for WMH detection on this dataset, such as that of (Baur et al., 2021), which obtained a
DSC of 25.70%. We obtained similar results on ADNI3 and PITIE, showing that we were
able to detect age-related WMHs. FPR was higher on the ADNI3 and PITIE datasets,
which may be attributed to the difficulty of the model to reconstruct areas with atrophy.
In contrast, we observe a higher FNR on the MSSEG dataset, suggesting that our model
fails to detect many lesions of multiple sclerosis patients, which present different shapes and
contrasts distributions compared to age-related WMHs. A sample from the PITIE dataset
is presented in Figure 2. Further examples are given in the appendix (Figure A2).

Figure 2: Left to right: input MRI, reconstructed MRI, residual map, post-processed lesion
map, ground truth. This example corresponds to a favourable outcome in terms
of DSC in regard to the overall results.

4.2. Application of the β-VAE on Clinical Routine Images

As observed in (Bottani et al., 2023; Loizillon et al., 2024), there is an important drop
of performance when applying a model trained on research data to heterogeneous clinical
data. This is why we fine-tuned our pre-trained model on 674 healthy FLAIRs from the
CDW before applying it on 204 patients of the CDW for which we knew the Fazekas score.
Figure 3 depicts the lesion maps obtained for Fazekas scores 1, 2, and 3. More examples
are shown in the appendix (Figure A5).

Figure 3: Automatic lesion maps for patients with Fazekas score 1 (A), 2 (B), and 3 (C). A
is of medium image quality, B of good image quality and C of low image quality.

We examined the relationship between the Fazekas score and the volume of lesions au-
tomatically obtained by our β-VAE (Figure 4). Specifically, differences in volumes between
the three patient groups with different Fazekas scores (Fazekas 1, Fazekas 2, Fazekas 3)
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were assessed using one-way ANOVA. The results were statistically significant (F=32.38,
p< 10−10). Tukey post hoc tests were performed to assess differences between pairs of
groups. All pair-wise differences were significant (Fazekas 1 vs 3: p = 0.0036, Fazekas 1 vs
2: p < 0.001, Fazekas 2 vs 3: p < 0.001).

Figure 4: Boxplot depicting the distribution of lesion volumes per Fazekas score (left) and
per Fazekas score categorised by image quality (right). Every box is bounded
by the lower and upper quartiles, with the centre line representing the median.
Whiskers extend from the box to the furthest data point within 1.5× the in-
terquartile range of the box. ∗∗: statistically significant for Tukey post-hoc test.

As images from the CDW present a wide range of image quality, we assessed whether our
anomaly detection model was robust to quality. In Figure 4, we plot for every quality level
the distribution of WMH volumes by Fazekas score. We did not perform statistical testing
due to the very small sample size in some subclasses. Nevertheless, the graph qualitatively
shows the robustness of our model to image quality since the order in volumes across Fazekas
classes is preserved for all quality levels.

5. Conclusion

In this feasibility study, we assessed the ability of VAEs to detect age-related WHMs on
clinical routine MRIs acquired at different hospitals and gathered in a CDW. Despite, the
promising results found – correlation between the Fazekas scores and the volumes of the
lesions detected by our model; robustness to image quality – such models are not ready for
a clinical routine application yet. This may be due to a systematic failure to reconstruct
details of the cortical and subcortical brain structures, resulting in difficulties in identifying
some WMHs and leading to failure cases where no WMH is detected at all in Fazekas 2
images (Figure 4). A limitation of our study is the use of a β-VAE whose architecture and
hyperparameters were optimised on a different imaging modality (Hassanaly et al., 2024).
It may therefore be of interest to optimise the architecture and hyperparameters for our
specific use case. In addition, it would be interesting to evaluate the ability of this model to
detect other types of WMHs, such as multiple sclerosis lesions. This is left for future work.
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Appendix A. Construction of Non-Lesional Cohorts

Figure A1: Translation of the terms used to construct the non-lesional cohort in the CDW.

French English

Pas d’anomalie No anomaly
Normal Normal
Absence d’anomalie Absence of anomaly
Pas d’argument No argument
Sans anomalie No anomaly
Pas de signe No sign
Pas d’accident No accidents
Sans particularité No particularities
Pas de lésion cérébrale No cerebral lesion
Pas de lésion encéphalique No encephalic lesion

Appendix B. Results of the pre-trained β-VAE

Figure A2: Automatic WMH maps for two patients of MSSEG (left), PITIE (middle) and
ADNI3 (right). Green voxels correspond to true positives, red to false positives
and blue to false negatives.

It is important to note that because of the exclusion criteria applied by ADNI, we found
a lower vascular burden in this dataset compared to others (cf. Figure A2).
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Figure A3: Automatic lesion maps for cognitively normal patients of ADNI dataset.

We evaluated our β-VAE on 25 ADNI subjects labelled as cognitively normal (CN). For
each MRI, we computed the amount of lesional volume and obtained a mean of 9.30 cm3

lesional tissues for an average age of 66.87 years. Even if these images are labelled as CN
as they are normal related to the age of the patients, they are still presenting some lesions
(cf. Figure A3). The validation of our model on a young healthy cohort such as the UKB
is left for future work.

In Figure A4, we plotted the lesion burden volume as a function of age for each Fazekas
group in order to observe the robustness of our model to age. We visually notice that for
the Fazekas 1 group, the volume of lesion remains almost always below 10 cm3 even for
patients over 80 years. Same trends were obtained for Fazekas 2 and 3. Thus, we believe
our model to be robust to age.

Figure A4: Plot illustrating the variation of lesion volume with age across different Fazekas
groups.
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Appendix C. Quality Levels Across Fazekas Scores

Table A1: Number of images across quality levels and Fazekas scores. Straight reject im-
ages are not proper 3D FLAIRs (e.g., images of segmented tissues or truncated
images).

Good quality Medium quality Low quality Straight reject

Fazekas 1 18 15 1 0

Fazekas 2 29 36 6 0

Fazekas 3 12 37 14 8

Table A2: Age (average ± standard deviation) and sex (% females) across Fazekas scores
Age Sex (% F)

Fazekas 1 71.17 ± 11.06 57.14

Fazekas 2 75.99 ± 11.81 39.44

Fazekas 3 82.2 ± 7.78 60.87

Figure A5: Automatic WMH maps for two patients with Fazekas score 1 (left), 2 (middle),
and 3 (right). A, C and D are good quality MRIs, B and E medium quality
images and F a low quality image.
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