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Abstract
The past decade has seen incredible scaling of AI
systems by a few companies, leading to inequal-
ity in AI model performance. However, we de-
velop a model which illustrates that under a fixed-
distribution next-token objective, the marginal ca-
pability returns to raw compute shrink substan-
tially. Under the current scaling paradigm, we
argue that these diminishing returns are strong
enough that even companies that can scale their
models exponentially faster than other organiza-
tions will eventually have little advantage in capa-
bilities. As part of our argument, we give several
interpretations of what proxies like training loss
difference mean in terms of empirical benchmark
data and theoretical performance models. Finally,
we present some of the policy implications of this
result for the governance of AI systems.

1. Introduction
Artificial intelligence systems have grown considerably in
the last decade (Sevilla et al., 2022). This trend has dras-
tically changed the landscape of machine learning. Large
corporations now dominate the training of many state of the
art (SOTA) models, including systems such as GPT (Brown
et al., 2020), Llama (Touvron et al., 2023), and Gemini (Re-
search, 2023). Further, it is getting harder to run inference
on these models, which now involves the use of multiple
GPUs for the largest systems. What do these trends mean
for the effects of AI on society?

If model investment growth continues in this direction, only
centralized entities such as the government and corporations
can train and use these AI systems (Cottier et al., 2024). At
the same time, other sources warn about the diminishing re-
turns to AI scaling (Lohn, 2023; Lu, 2025; Thompson et al.,
2021). These have raised speculation that AI is ”hitting a
wall” (Caputo, 2025). In this paper, we want to outline mod-
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els of how performance inequality develops between deep
learning models. This model leads us to the counterintuitive
conclusion that relevant AI performance levels could con-
verge under the current AI scaling paradigm. Hence, models
trained or run with limited resources, “meek” models, will
have more comparable performance to state-of-the-art mod-
els. We argue that this could imply greater democratization
of AI systems and lead to a world where meek models shall
inherit the earth.

2. Modeling Training Inequality

Figure 1: Graph of loss Difference between a model with
3.6x yearly compute scaling and a meek model with a con-
stant compute budget ($1000 budget). Both models start
with an initial compute budget of $1000. Initially, the model
with an exponentially growing compute budget is able to sur-
pass a model creating with constant training budget. How-
ever, this gap eventually declines as the top model faces
decreasing returns to compute scaling.

The first model we construct focuses on the difference in
training loss between SOTA models and a ”meek” model
trained with a fixed capital training budget on the same
data (we assume $1000 dollars at ≈ 1017 GPU Flops per
dollar (Li, 2021) training budget). We assume that scaling
performance is governed by chinchilla-like scaling laws
(Hoffmann et al., 2022). Chinchilla laws give a relationship
between optimal compute usage C and the log-likelihood
loss L. We will refer to this as simply the loss for the rest of
the paper.

The compute-only form can be derived using Pearce & Song
(2024)’s approach. This formulation of the original anal-
ysis gives a compute-only formulation of Hoffmann et al.
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(2022)’s scaling laws given by the equations below.

Lopt(C) = 1070 C−0.154 + 1.7 (1)

Lopt(C) = A C−α + L0 (2)

Over time, the amount of effective Flops per dollar increases.
This change is due to two effects.

The first effect is an increase in hardware capability. This ef-
fect is based on trends like Moore’s law where the number of
transistors on integrated circuits increases by approximately
a factor of 2 every 2 years. Our models assume hardware
growth gh = 1.4 consistent with Moore’s law and trends
in GPU price performance for GPUs used in ML research
(Hobbhahn & Besiroglu, 2022; Rupp, 2015).

The second effect is due to algorithmic progress, the fact
that better algorithms make it possible to learn more effec-
tively with less computation. For example, the discovery
of transformers made it possible to train AI models much
more effectively in parallel. Ho et al. (2024) discovered
that algorithmic progress in language models is remarkably
rapid consistent over time. Due to algorithmic progress, ef-
fective computational resources double approximately every
8 months. We label the growth rate in the effective compu-
tation in one year due to algorithmic progress galg = 2.8.

We label the compute budget in Flops at time t = 0 as C0.
Therefore, the effective computation resources over time
at a given budget C0 is (galggh)

tC0. To account for the
compute budget of large corporations and the progress of
SOTA models we must consider a third factor – the growth
rate in compute investment. Compute usage in language
models has also grown at a steady exponential rate for the
largest models. Between 2010 and 2022 the compute used
for training deep learning model grew by a factor of 5 yearly
(Sevilla et al., 2022). We then divide the compute growth
rate by the hardware growth rate to get the growth rate in
compute investment gi = 5/1.4 = 3.57.

Now, that we have an expression for compute over time we
can find the difference in loss between theoretical SOTA
models with exponential growth in investment and ”meek”
individuals with a constant ($1000 compute budget).

Training Loss Difference = Loss Meek − Loss SOTA

= A((galggh)
tC0)

−α −A((galgghgi)
tC0)

−α (3)

Figure 1 shows a graph of this relationship over time.

The Inflection Point in Training Loss Advantage An
important point to note about Figure 1 is the inflection point
in the training advantage curve. At a critical point in time,
the diminishing returns to compute scale in addition to the
exponential growth in the shared factors of algorithmic and
hardware progress, overwhelm the large model provider’s

exponentially growing compute budget. At this point in time
in our model, increasing investment is only able to create
a narrow loss advantage over models trained with a very
modest budget. Setting the derivative of the loss difference
equal to zero lets us solve for the inflection time as:

Training Inflection Time =
1

α ln gi

[
ln

(
ln(ghgalggi)

ln (ghgalg)

)]
It is important to note that this inflection time is the time
since scaling has begun in our model. GPT-2 was trained
in 2019 for around $25, 000− $50, 000 (UMATechnology,
2025), with this baseline, our model would predict a peak
advantage in the early 2020s. Using Pre-chinchilla compute
scaling where L − L0 ∝ C−0.057

T (Kaplan et al., 2020),
the inflection time is significantly longer at about 10 years.
Trends in AI resource scaling may change significantly. We
also believe there are other reasonable parameter choices.
Our model conclusions do not depend significantly on these
variations (see Appendix D).

2.1. Inference Time Scaling

We are in the middle of a transition from scaling train-
ing compute to scaling inference computation (You, 2025),
which poses a challenge to the pre-training centered analysis
used in our model. We might not care if we cannot run state
of the art models if we get the same result leveraging cheap
models with significant inference compute. Will this new
paradigm eventually yield the same diminishing returns as
pretraining compute? Under the popular model of inference
scaling where inference compute can substitute for and mul-
tiply training computeVillalobos & Atkinson (2023), our
results remain valid. This means doubling training compute
while halving inference compute leads to the same level
of performance. In this case, exponentially increasing in-
ference compute would lead to similar diminishing returns
in terms of loss and benchmark performance. You (2025)
already projects progress in reasoning models to slow sig-
nificantly. However, significant inference compute might
yield new types of pretraining and inference compute might
be qualitatively different (see Section 4).

3. Does Loss Difference Actually Capture
Something Important?

Language models loss is traditionally given as the average
negative log-likelihood loss per token on a given test set.
Another common metric is Perplexity, which is 2 (or e if
measured in nats) to the power of the negative log-likelihood
loss. These metrics measure how well a language model
is able to mimic textual data and have served as crucial
milestones in the development of language models. The
most straightforward interpretation of loss difference is as a
measure of how much better one model is able to predict text
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than another. More formally, given two models with loss L1

and L2, the difference L1 − L2 = ∆L gives the number of
extra nats/bits per token necessary for one model needs to
encode text over the other. However, this perspective does
not yield intuitive measures of model performance and does
not directly measure useful capabilities, such as the ability
to perform economically valuable tasks.

Another reasonable perspective is to look at historical trends
in loss as a measure. The loss of GPT-3 (davinci) is 4.36
while the loss of GPT-2 (large) is 5.16 (Ho et al., 2024).
Since the beginning of deep learning, loss has decreased
steadily and tracked AI progress (Ho et al., 2024). However,
this loss might not correspond to general model capabilities
or intelligence. Yet, more tractable metrics like image classi-
fication accuracy for vision transformers have a remarkably
similar power-law form to this log-likelihood loss (see equa-
tion 4) (Zhai et al., 2022). Our analysis holds with this
power law formulation as well.

min
N,D

L = 0.09 +
0.26

(C + 0.01)0.35
(4)

We speculate that most model capabilities are monotonic
functions of loss. Some models’ capabilities are accurately
captured by such scaling laws while other capabilities are
better modeled as abrupt discontinuities. We extend our
analysis to these capabilities in Section 3.1. However in less
circumscribed or competitive setting loss difference might
not capture the relative performance difference between
models, see Section 4.

3.1. Loss to Benchmark Performance

How does loss measure actual capabilities? Here we provide
evidence that loss can be strictly monotonically translated
to benchmark performance. For instance, MMLU (Mas-
sive Multitask Language Understanding), benchmark per-
formance can be modeled as a sigmoid of training compute
(Owen, 2024). Since loss is a monotonically decreasing
function of compute, it can be used as a proxy. In Ap-
pendix B, we make a sigmoid fit of MMLU scores to loss.
Using this sigmoid-translates loss has similar dynamics to
those we have previously outlined between large and small
models. At first there is little difference in capabilities, then
a large difference emerges, followed by an eventual conver-
gence. We can also consider the case where an overall task
requires p-steps where each step requires correct benchmark
performance, which can be modeled as individual bench-
mark performance to the power of p (see Appendix B). In
this case we get an interesting relationship as seen in Fig-
ure 2. As the number of necessary tasks increases, so does
the length of time large model builders have an advantage.
The maximum loss difference decreases as well. This is

due to our fit and the nature of the MMLU benchmark. No
model in our dataset have MMLU performance above 80%.
Therefore, the maximum performance for a p-level task is
0.8p. With high accuracy tasks, this effect would be less
pronounced.

Figure 2: Difference in MMLU performance between SOTA
and meek model. 2 and 5 benchmark performance identify
difference in capability in tasks which involve multiple (2
to 5) correct MMLU answers. The difference in height is a
direct result of the 80% sigmoid fit ceiling, a higher ceiling
would yield a different height relationship.

3.2. Hypothesis Test View

Benchmark performance is a reasonable proxy for some
capabilities. However, many AI benchmarks are close to sat-
uration (Ott et al., 2022). Benchmarks have a performance
threshold that they cannot exceed. Convergence on these
tasks might not reflect general intelligence differentials but
rather the circumscribed nature of the task. Here we present
a more theoretical information theory-based perspective us-
ing the assumptions of Barnett & Besiroglu (2023), which
parallels our main conclusion. This approach considers two
models, A and B, which try to model some base text sam-
pled from a distribution p0, and we ask how many tokens
N it takes an ideal observer to distinguish which model is
better. In this case, p0 corresponds to the distribution of
human text, which we model using common assumptions
as stationary and ergodic (Jurafsky & Martin, 2025). The
expected number of tokens needed to differentiate the two
models is given by equation 5, where α is the probability
that we reject the true hypothesis (i.e, the test concludes that
model A predicts the distribution better than model B, while
the reverse is true and vice versa). We set this at 5%

Ep0
[N ] =

(1− α) log
(
1−α
α

)
+ α log

(
α

1−α

)
∆L

(5)
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Equation 5 shows that as the loss difference decreases, the
number of tokens necessary for discrimination increases.
An exponential decrease leads to an exponential increase in
necessary discriminator tokens. Figure 4 shows the growth
in the number of discrimination tokens necessary, increasing
over time, which supports the conclusion using our other
approaches. 1

4. Limitations: New Training Paradigms and
Adversarial Settings

We explain this convergence as models growing increasingly
close to the fixed distribution of human text. There are only
so many abilities necessary to predict human text, and as
models grow larger they master narrower less common abil-
ities (see (Michaud et al., 2024)). This is likely true under
naive inference scaling as well. However, powerful AIs can
do more than just human imitation. They can far exceed
humans and learn new kinds of skills. RL and synthetic data
techniques promise to change drastically the distributions
learned by AIs. It is no longer a question of how well AIs
are learning but what they are learning. We are uncertain
about our model in these new cases where AIs are trained on
adaptively chosen data or their own synthetic data. Further,
there are instances where exponentially small differences
in overall loss may correspond to large capability differen-
tials. For instance, in order to model the small set of tokens
dealing with elementary math the model has to internalize
the rules of arithmetic (Michaud et al., 2024). This is par-
ticularly the case in adversarial settings where agents are
incentivized to win by finding situations where the competi-
tor is unfamiliar. In competitive games, adversaries with
exponentially increasing compute continuously diverge with
their competitor (Jones, 2021). Yet, diminishing returns may
return at high levels of compute as agents approach perfect
play (Neumann & Gros, 2022).

5. AI Governance Discussion
Our model points to several conclusions for AI governance.
First, there might exist a crucial “governance window”
where large entities have a large advantage over ubiquitous
AI models. During this period, regulations can be more
targeted. This period is particularly advantageous as trusted
organizations can gain experience with powerful models
and design safety procedures for these models before they
become ubiquitous. However, it is a double-edged sword,
as it allows small groups to accumulate power and influence
during this period.

1We must note that this is the expected number of discrimi-
nation tokens using a random natural language sample. Fewer
discrimination tokens would be needed if we narrow the focus to
specialized knowledge.

Can increased AI investment help AI safety? If the ben-
efits of centralization and using the ”governance window”
are strong enough, accelerating AI might have a positive ef-
fect on safety. Appendix D Fig 7 depicts the loss advantage
with different SOTA investment rates. If a safe organization
makes a very large investment in AI it will have access to
highly capable systems much earlier than consumers. In
this case the large AI loss advantage gives an organization
much more time to do safety research before these system
becomes ubiquitous.

Is money a long-term moat? Companies and countries
may care about having a competitive advantage by main-
taining private/proprietary foundation models. We’ve seen
that even drastic differences in compute investment in these
models create only a modest difference in important capabil-
ity measures. It is possible that in the long run, no entity can
hope to keep a large advantage under the current paradigm
simply by having more capital.

AI for all If these trends continue then it seems access
to high performance deep learning models will become as
ubiquitous as computer ownership. Given that computers
are also becoming less expensive and more widely used, it
seems reasonably likely that a large fraction of the world’s
population could have access to powerful deep learning
models. This suggests many people will be able to share in
the benefits and productivity increases that might come with
improved AI and suggests a likely dispersion of power to in-
dividuals. However, this poses a risk to safety if individuals
can access dangerous capabilities like bioweapons design.

5.1. We Need to Rethink AI Regulation

Much of current AI governance is focused on monitoring
and limiting access to large frontier systems. These include
US export controls on GPU hardware. The US and EU
focus on models trained with above 1026 and 1025 Flops,
respectively (Caputo, 2025). Our work shows that simply
restricting total compute may not suffice to keep frontier AI
capability from becoming ubiquitous. Future AI governance
would either need to drastically increase capacity for mon-
itoring and safeguarding systems or find new targets to be
able to effectively limit access to powerful models. These
could include regulating data, new research breakthroughs,
and algorithms (Caputo, 2025).

6. Conclusion
AI training is stretching the limits of data, computation, and
energy and continued scaling may slowdown in the near
future (Sevilla et al., 2024). However, even if continued
scaling is possible there are deeper limits to its progress.
We’ve developed a strategic model based on training loss
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and have developed several interpretations of its importance.
We hope that this discussion develops a conversation about
the nature of current capability benchmarks. Our model
points to multiple stages of AI development and eventu-
ally a world where powerful AI is more ubiquitous than
it is now. However, we emphasize that the future of AI is
uncertain and new technical methods are already in devel-
opment which could address these issues. Yet, bottlenecks
in AI training are not only hard technical problem but pose
unique challenges for AI governance. We need to develop
AI governance methods that are effective in a world where
AI development is less centralized. In this vein, we hope our
investigation raises awareness for research into the strategy
and governance of AI to prepare for a world where meek
models inherit the earth.
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A. Full Hypothesis Testing Framework
Here we outline the hypothesis testing framework intro-
duced in Section 3.2, which is based on a model developed
by Barnett & Besiroglu (2023). This approach asks how
many tokens it takes to declare one model better than an-
other using the Sequential Probability Ratio Test (SPRT)
(Nowak, 2011).

A.1. Sequential Probability Ratio Test (SPRT)

Our discrimination model is based on the SPRT test (Nowak,
2011) and the framework developed in Barnett & Besiroglu
(2023). We use the same assumptions they make here to
show how our results can incorporate their model; however,
assessing when all of these conditions fully hold is out of
scope for our analysis and deserves future research. Con-
sider two models, A and B, with predictive probabilities
pA and pB . We continue measuring the model’s probabil-
ity on given tokens until a likelihood threshold is reached,
in which case we declare that one model predicts the text
better than the other. Here, we derive the test threshold
assuming text samples are generated iid from a true distri-
bution p0 and then extend our proof to the stationary and
ergodic case, which is a common modeling assumption for
language (Jurafsky & Martin, 2025). This is a good approxi-
mation; however, natural language can depend on arbitrarily
far words, which breaks these assumptions.

X1, X2, . . . , Xn∼p0

Here, we use an information-theoretic interpretation of the
loss as the cross entropy between the model’s probability
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distribution and the true distribution p0.

H(p0, pA) = H(p0) +DKL(p0 ∥ pA) (6)

(Barnett & Besiroglu, 2023) identifies DKL(p0 ∥ pA) =
C−α with the non-irreducible part of the loss function.

HA is the hypothesis that A is the better model. Likewise,
HB represents the hypothesis that B is the better model.
Let Zi represent the log-likelihood ratio per token given
by: Zi = log pA(xi)

pB(xi)
. The cumulative log likelihood ratio is

given by:

ZN =

N∑
i=1

Zi = log

(
N∏
i=1

pA(Xi)

pB(Xi)

)
, i = 1, 2, . . . (7)

Next, we choose two threshold values, Ath and Bth. We
choose to accept HA if ZN ≥ log(Ath) and we accept
HB if ZN ≤ log(Bth). These thresholds can be chosen
such that the probability of falsely rejecting HA is α while
the probability of falsely rejecting HB is β. The threshold
values that have such properties are (Nowak, 2011):

Ath =
1− β

α
,Bth =

β

1− α
(8)

Now, we can use Wald’s stopping theorem to find N , the
expected number of tokens necessary to differentiate the bet-
ter model. Wald’s stopping theorem holds under stationary
and ergodic distributions (Franken & Lisek, 1982). See also
(Barnett & Besiroglu, 2023).

Ep0 [ZN ] = Ep0 [N ]Ep0 [Zi] (9)

Ep0
[Zi] = Ep0

[log
pA(xi)

pB(xi)
] =

DKL(p0 ∥ pB)−DKL(p0 ∥ pA) = ∆L (10)

The proof above also works for stationary and ergodic pro-
cesses as well, due to ergodicity:

1

n
Zn

a.s.−−−−→
n→∞

Ep0 [Zi] (11)

We can evaluate the expected value of ZN .

Ep0
[ZN | HA] = (1− β) logAth + β logBth (12)

Under HB it is:

Ep0 [ZN | HB ] = (1− α) logBth + α logAth (13)

This means the expected number of tokens necessary to
distinguish the two models under each hypothesis is given
by:

Ep0
[N | HA] =

(1− β) logAth + β logBth

∆L
(14)

Ep0
[N | HB ] =

(1− α) logBth + α logAth

|∆L|
. (15)

Finally, we set α = β because we want symmetrical consid-
erations. Let us consider the case where HA corresponds to
the larger model (ie, it predicts the text better) and ∆L > 0
as the default. We can then write the expected number of
discrimination tokens as:

Ep0
[N ] =

(1− α) log
(
1−α
α

)
+ α log

(
α

1−α

)
∆L

(16)

A.2. Bayes Slowdown Factor

Similar to (Barnett & Besiroglu, 2023) we experiment with a
Bayesian slowdown factor to more closely measure practical
distinguishability rather than ideal distinguishability.

Figure 3: Expected number of tokens needed to differentiate
text based on loss using SPRT. Bayesian Slowdown= 1
corresponds to an ideal discriminator.

Figure 4: Expected number of tokens needed to differen-
tiate SOTA-model vs meek model using SPRT. Bayesian
Slowdown= 1 represents the number of tokens needed by a
perfect discriminator.
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log(Posterior odds) = log(Prior odds)+
log(Bayes factor)

Slowdown
.

(17)
Accounting for such a factor scales the number or expected
tokens proportionally by the size of the slowdown (see Fig 3
and Fig 4).

A.3. Speculative Sampling Implications

We also think such a model is of independent interest in
modeling the gains from speculative sampling. (Chen et al.,
2023). Speculative sampling uses a small, cheap draft model
to generate most tokens, while a more expensive target
model is used for tokens the draft model generates incor-
rectly. The rise in similarity between models of different
sizes motivates the use of techniques like speculative sam-
pling. Our model explains why the target model and draft
model are indistinguishable on most tokens. We therefore
predict increase usage of techniques like speculative sam-
pling in the future.

B. Benchmark Fit
In order to determine the relationship between loss, we used
a framework similar to (Owen, 2024). We fit a sigmoid func-
tion to the loss L. We determined the loss for each model
using Chinchilla scaling laws from data on parameters, and
data for each model from Owen (2024).

Benchmark-Performance =
A

1 + e−k(L−x0)
+ b (18)

For tasks that are composed of multiple steps, each of which
depends on benchmark performance, we exponentiate the
benchmark performance (which represents the one-shot suc-
cess rate).

p-Benchmark-Performance =

(
A

1 + e−k(L−x0)
+ b

)p

(19)

Figure 5: Sigmoid fit of MMLU benchmark performance vs
inferred loss.

C. Modeling Zero-Shot Inference Inequality
In many cases, individuals do not want to train their own
models but simply want to run inference on a state of the
art model. Therefore, we want to model the difference be-
tween the performance of models run with a fixed inference
budget vs the performance of state of the art model. Here,
we present a rough model to do this. We compare against
the same SOTA models as before (we do not assume in-
ference compute budget scales exponentially). We use the
useful heuristic that the compute used to perform inference
is approximately the square root of the training compute
(Villalobos & Atkinson, 2023). Therefore, we can take the
square of the inference compute available at a given cost to
arrive at a rough estimate of the training compute. This is a
very rough approximation, but will help us illustrate some
of the different dynamics for inference than in the training
compute case. Next, we scale the training compute by the
growth due to algorithmic progress to get the effective train-
ing compute. We label the computer price of inference Cinf .
The price of a single inference is many orders of magnitude
lower than the cost of training an ML model.

The loss for a given level of inference compute is L0 +
A(gtalg(g

t
hCinf )

2)−α. However, this loss does not account
for algorithmic progress in inference computation, which
is separate from algorithmic progress in training. Inference
performance benefits from some algorithmic advances in
training (i.e., better model architectures), while there are
algorithmic advances in training that don’t help in inference
(i.e., better data processing) and vice versa. We label algo-
rithmic growth in inference ginf . Since we have no known
estimates of this value we assume that it is the same as the
algorithmic growth in training compute for our analysis.
Therefore, our best estimate of inference loss over time for
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a fixed inference budget is:

Meek Inference Loss = L0 +A((gthg
t
infCinf )

2gtalg)
−α

(20)

If we make the assumption that galg = ginf , then inference
computation has a larger growth rate than investment in the
SOTA model. Therefore, we use the modified loss difference
formula equation 21. We choose an initial inference budget
of 10−8$ so that we have some initial SOTA-model builder
advantage. Fig 6 illustrates the much faster convergence of
loss-difference. Therefore, it may be much harder to monitor
inference runs of SOTA models vs monitoring training of
SOTA models. However, this only captures the difference
in generating individual tokens. This does not account for
larger players investing more in inference scaling, which
allows them to increase performance with majority voting
or longer reasoning (Wu et al., 2024).

max(Meek Inference Loss-SOTA Loss, 0) =

max(A(
(
(gthg

t
infCinf )

2 gtalg
)−α−((galg gh gi)

tC0)
−α), 0)

(21)

Figure 6: Graph of loss difference in inference vs training
performance. The inference difference is between a SOTA
model and a model that can be run with an example fixed
inference budget. For comparison, we have the training loss
difference between the SOTA model and the meek model
with a fixed training budget.

D. Robustness and Variation Section
D.1. Variations in Model Investment Trends

The graphs we have presented are based on several key as-
sumptions. These assumptions are that growth in compute
investment, algorithms, and hardware will consistently con-
tinue. In this section, we want to highlight what will happen
to measures of AI inequality if growth in Hardware, Algo-
rithms, or Investment decreases, stalls, or increases. Fig 7

illustrates the greater and longer loss-advantage/capability-
differential possible with larger growth in compute invest-
ment. This has both positive and negative effects on AI
safety. Further, this centralization effect/advantage-duration
has diminishing returns as the growth rate increases.

Figure 7: Loss difference between SOTA and meek models
with different levels of SOTA compute investment growth
gi.

Fig 8 illustrates variation in our SOTA model builder’s initial
compute capital. Variation in initial capital has little the
effect in the long-run in our model.

Figure 8: Initial compute capital advantage makes little
difference in loss over time. Meek model training budget is
kept constant at 1000$.

We might be interested in how our model changes in re-
sponse to AI training growth slowing or coming to a halt
after five years. This could be due to energy-limits or lack
of remaining training data (Sevilla et al., 2024). Fig 9 il-
lustrates that such stagnation has little effect on the loss
difference in our framework, as AI builders are already in a
regime with steep diminishing returns to loss.

Finally, there is the possibility that scaling laws could have
significant variations. For instance, the difference between
the scaling exponent estimated by Besiroglu et al. (2024)
and the exponent estimated in the original chinchilla pa-
per (Hoffmann et al., 2022) as described in Pearce & Song
(2024). The difference between these two situations is rep-
resented in Fig 10.
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(a) Investment Trends on a semilog graph.

(b) Loss trends based on investment schedules in Fig 9a

Figure 9: Model investment growth trajectories vs loss-
difference. Surprisingly, large exponential variation in in-
vestment trajectory leads to little change in loss.

Figure 10: Differences in effect between original chinchilla
exponent α = 0.154 and the reanalyzed exponent proposed
by Besiroglu et al. (2024).
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