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ABSTRACT

In machine learning applications, predictive models are trained to serve future
queries across the entire data distribution. Real-world data often demands exces-
sively complex models to achieve competitive performance, however, sacrificing
interpretability. Hence, the growing deployment of machine learning models in
high-stakes applications, such as healthcare, motivates the search for methods for
accurate and explainable predictions. This work proposes a personalized prediction
scheme, where an easy-to-interpret predictor is learned per query. In particular, we
wish to produce a sparse linear classifier with competitive performance specifically
on some sub-population that includes the query point. The goal of this work is to
study the PAC-learnability of this prediction model for sub-populations represented
by halfspaces in a label-agnostic setting. We first give a distribution-specific PAC-
learning algorithm for learning reference classes for personalized prediction. By
leveraging both the reference-class learning algorithm and a list learner of sparse
linear representations, we prove the first upper bound, O(opt1/4), for personalized
prediction with sparse linear classifiers and homogeneous halfspace subsets. We
also evaluate our algorithms on a variety of standard benchmark data sets.

1 INTRODUCTION

In real-world machine learning applications, complex models, such as deep neural networks and
transformers, are often preferred than simpler models, such as linear classifiers, due to their ability to
achieve higher predictive accuracy. However, relying on models that perform well on average across
the entire populations introduces a dilemma: expressivity is often at odds with interpretability. For
instance, a doctor assessing the safety of a medication for a patient needs to understand the factors
influencing a model’s “safe” prediction before proceeding with treatment. Similarly, an investor
allocating substantial funds would require insight into the reasoning behind a model’s investment
recommendations. Overall, the opaqueness of the prediction process of complex machine learning
models can often hinder trust and adoption in high-stakes applications (Qi et al., 2018; Rudin, 2019).

Despite that interpreting the behaviors of complex models has been widely studied (Ribeiro et al.,
2016; Lundberg and Lee, 2017; Ribeiro et al., 2018; Wang and Wang, 2021), these methods either
interpret the local behaviors by simple models or (approximately) estimate certain statistics that
assist interpretation of relevant properties. Huang and Marques-Silva (2024) demonstrated that
these “post hoc” methods for explaining the prediction behaviors of complex models could be
misleading in high-stake applications, which motivates the usage of inherently interpretable models,
i.e., models themselves are explanations. Unfortunately, in the real world, easy-to-interpret rules, such
as conjunctions and linear representations, are often too simple to accurately capture the properties
we care about across the entire population.

In this work, a personalized prediction scheme is adopted to reconcile model interpretability with
performance by learning distinct models for different observations. Specifically, for every query
point, we seek a simple decision rule along with a sub-population which not only includes the query
point, but is captured accurately by the simple rule. The appeal of such an approach is clear in
applications where interpretability (of the classifier) is needed. Such settings include, e.g., medical
diagnosis and bioinformatics (Khan et al., 2001; Hanczar and Dougherty, 2008). In particular, we
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study the distribution-specific PAC-learnability of sparse linear classifiers on subsets defined by
homogeneous halfspaces in the personalized prediction scheme, in the presence of adversarial label
noise or agnostic setting (Kearns et al., 1994).

1.1 BACKGROUND

The need for personalization has emerged in a variety of machine learning application areas, e.g.,
cognitive science (Fan and Poole, 2006), recommendation systems (Zhang et al., 2020; McAuley,
2022), disease diagnosis (Finkelstein and Jeong, 2017) and treatment (Lipkovich et al., 2017), medical
device development (Lee et al., 2020), patient care (Golany and Radinsky, 2019), etc. Various
techniques have been developed to endow machine learning models with personalized behaviors.
Early methods for personalization (Linden et al., 2003) made significant achievements in a variety of
commercial applications, such as search engines (Pretschner and Gauch, 1999; Speretta and Gauch,
2005) and recommendation systems (Resnick and Varian, 1997; Shani and Gunawardana, 2011).
These approaches inherently limited the choice of representations usable as predictors, and fell short
in interpretability. In applications that could impact human health and welfare, personalization
is often achieved by incorporating techniques such as feature engineering (Finkelstein and Jeong,
2017; Schneider and Handali, 2019; Lee et al., 2020), group-attribute-based or heuristic-based data
clustering (Taylor et al., 2017; Lipkovich et al., 2017; Bertsimas et al., 2019; Schneider and Handali,
2019; Schneider and Vlachos, 2020), or data re-weighting (Schneider and Vlachos, 2020) into the
existing training processes of various machine learning models. These methods aim to increase
the number of training examples for each individual either by assuming multiple examples per
person or finding a “similar” subgroup based on some predetermined heuristic distance measure,
which potentially requires expert knowledge. More recently, due to the tremendous success of Large
Language Models, much effort has been invested into model alignment for personalization (Jang
et al., 2023; Chen et al., 2025), but without focus on interpretability.

Although much progress has been made in personalizing prediction, little attention been paid to
making these predictions interpretable, and there has been no theoretical analysis of the performance.
In this work, we propose a personalized prediction (cf. Definition 2.1) scheme to address these
problems, specifically for binary classification tasks.

Personalized Prediction: Instead of learning a universal classifier to predict all future queries, we
learn a dedicated classifier for each incoming query to predict exclusively on it. The key difference
between our learning scheme and the standard one is that we only model a subset of the whole data
population, which well represents the incoming query. That is, we jointly learn a classifier and a
subset such that not only the members in the subset resembles the query point in some reasonable
measure, but also the classifier performs better on the subset than on the whole population. In
this work, we only consider the class of subsets characterized by homogeneous halfspaces1 for
computational reasons that will be elaborated in Section 2.2.

Interpretability: We consider the class of classifiers to be s-sparse linear classifiers, which are linear
classifiers with at most s non-zero weights, for s = O(1). In practice, we typically take s ≈ 2 so that
a human can understand the decision process.

Again, the intuition behind personalized prediction is that the underlying property of a sub-population
is likely easier to capture by simple representation classes than that of the entire distribution. This
belief is supported by real-world evidence from several sources: Rosenfeld et al. (2015) showed that
within a certain sub-population, the risk of gastrointestinal cancer is strongly correlated with some
attributes that are not predictive in general. Izzo et al. (2023), Hainline et al. (2019), and Calderon
et al. (2020) demonstrated that linear regression on a portion of the data may perform as well as more
complex models learned on the full dataset in many standard real-world benchmarks.

1.2 OUR RESULTS

PAC-learnability: Our main contribution is the first PAC-learning algorithm for personalized
prediction (cf. Definition 2.1) with sparse linear classifiers as predictors and homogeneous halfspace
as subsets. We proved a O(opt1/4) upper bound (cf. Theorem 4.2) for our main algorithm (cf.
Algorithm 3) under distributions with well-behaved attribute marginals (see Appendix C for details).

1A halfspace can be defined as the set of all points on one side of a hyperplane. See Section 2.1 for details.
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Experiments: We empirically evaluated our algorithm on multiple standard UCI medical datasets.
For these benchmarks, both the need for interpretability and the relatively small data size strongly
motivate the use of sparse classifiers. We compared the accuracy of the personalized predictions to
the accuracy of a sparse ERM for each data set, and found that it is generally much higher, on par
with less-interpretable standard classification methods such as logistic regression and SVM.

Organization: In Section 2, we introduce the necessary mathematical notations, and discuss the
computational challenges of personalized prediction with subsets as halfspaces. In Section 3, we
present our algorithms for learning reference classes. In Section 4, we present our personalized
prediction algorithm, which uses the reference class learning algorithm as a subroutine, and show our
empirical evaluationon several UCI datasets. At last, we discuss our limitation and future directions.

1.3 TECHNICAL OVERVIEW

Overall, the core of our approach is a projected gradient descent (PGD) algorithm (cf. Algorithm
2) for learning reference classes (cf. Definition 2.2). Briefly, learning reference class is essentially
equivalent to the personalized prediction problem if the class of classifiers given in personalized
prediction only consists of a single classifier (see Section 2.2). If we can learn reference class, we are
able to solve the personalized prediction problem with any finite class of classifiers by enumerating the
class of classifiers. Following Huang and Juba (2025), we observe that an algorithm (cf. Algorithm
4) for robust list learning (cf. Definition 4.1) may be leveraged to perform personalized prediction
for large or infinite classifier classes, such as sparse linear classifiers, by reducing them to finite sets.

Our performance analysis of PGD is inspired by Huang and Juba (2025), who was solving the
conditional classification problem. The problem is similar to personalized prediction in the sense that
it also seeks for a classifier with small classification loss on some jointly learned subset, but differs in
a key way that the subset is not required to contain any point. They employed a different projected
gradient descent method, whose convergence implicitly implies optimality due to the observation that
the projected gradient always approximately points to the optimal solution. However, their reasoning
does not necessarily hold if we modify their algorithm to ensure we end up with a subset containing
the query point. Like them, we are able to utilize the same property, but we use it rather differently:
inspired by Diakonikolas et al. (2022), we find that PGD decreases the distance between its hypothesis
and the optimal solution by this property, and this closeness in distance can be translated to closeness
in loss. Within this distance-based analysis, the membership of the query point can be secured without
increasing the distance (or loss) by a contractive projection. We stress that we proved the property (cf.
Lemma 3.2) mentioned above under the more general well-behaved family as oppose to Gaussian
distributions assumed in Huang and Juba (2025), however, with slightly worse guarantee.

1.4 RELATED WORKS

A related line of work, conditional learning (Juba, 2017; Calderon et al., 2020; Hainline et al., 2019;
Liang and Juba, 2022; Huang and Juba, 2025), typically incorporates two sub-problems, obtaining a
finite list of predictors, learning a predictor-subset pair out this finite list and some class of subsets.
Many algorithms for “list-decodable” learning (Definition 4.1) to obtain a list of predictors have been
proposed (Charikar et al., 2017; Kothari et al., 2018; Calderon et al., 2020; Bakshi and Kothari, 2021;
Liang and Juba, 2022). The latter problem was reduced to the problem of learning abduction Juba
(2016a): formally, this is the problem of learning a subset of the data distribution where e.g., no
errors occur. In their work, they showed that subsets defined by k-DNFs can be efficiently learned in
realizable cases without any distributional assumptions. Subsequent improvements were obtained
for the agnostic setting (Zhang et al., 2017; Juba et al., 2018). Juba (2016a; 2017) and Durgin and
Juba (2019) observed one-sided learning of conjunctions leads to a computational barrier in the
distribution-free setting, hence the focus on k-DNF subsets in those works.

Learning mixtures of sparse models is a topic seemingly related to our problem. Various problems
were studies under this topic, some were trying to learn multiple sparse linear models when given
model responses (Gandikota et al., 2020; Polyanskii, 2021), others were focusing on mean recovery
with sample access to unknown mixture of sparsely parameterized distributions (Pal and Mazumdar,
2022; Mazumdar and Pal, 2024). However, these works were usually conducted in noise-free settings.
Recall that the representation class we are considering is a combination of sparse linear predictors
and halfspaces, whose classification error is only measured on one side of the halfspaces. If, off the
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support of the reference class, the distribution is not modeled well by a mixture of classifiers, then
there is no guarantee on the quality of the "personalized" prediction we would obtain. Thus, our
objective is not captured by learning mixtures of sparse classifiers.

2 PRELIMINARIES

2.1 MATHEMATICAL NOTATIONS

In general, we use lowercase italic font characters to represent scalars, e.g. x ∈ R, lowercase bold
italic font characters to represent vectors, e.g. x ∈ Rd . In particular, subscripts will be used to index
the coordinates of any vector, e.g., xi represents the ith coordinate of the vector x. For random
variables, we use lowercase normal font characters to represent random scalars, e.g. x ∈ R, and
lowercase bold normal font characters to represent random vectors, e.g. x ∈ Rd . For x ∈ Rd, let
∥x∥p = (

∑d
i=1 |xi|

p
)1/p denote the lp-norm of x, and x̄ = x/∥x∥2 denote the normalized vector of

x. We will use ⟨x,u⟩ to represent the inner product of x,u ∈ Rd, x⊗k to represent the outer product
of x ∈ Rd to the kth degree, and θ(u,w) to denote the angle between two vectors u,w ∈ Rd.

For any subspace V ⊆ Rd, let xV denote the projection of x onto V . Further, we will write w⊥ =
{u ∈ Rd | ⟨u,w⟩ = 0} as the orthogonal space of w ∈ Rd, and, therefore, xw⊥ = (I − w̄⊗2)x as
the projection of x ∈ Rd onto w⊥. For subsets of Rd, let S1 ∩ S2 be the intersection of S1, S2 and
S1 ∪ S2 be the union of S1, S2. Meanwhile, we denote S1\S2 = {x ∈ Rd | x ∈ S1,x /∈ S2} and
Sc = {x ∈ Rd | x /∈ S} for the set complement operation.

For probabilistic notation, we use Dx to denote the 1-dimensional marginal distribution of D on
the direction x ∈ Rd, Prx∼D{x ∈ S} to denote the probability of an event x ∈ S, Ex∼D[f(x)]

to denote the expectation of some statistic f(x), and therefore, ∥̂f(x)∥̂p =
(
Ex∼D[∥f(x)∥pp]

)1/p
.

In particular, for an i.i.d. sample D̂ ∼ D, we define the empirical probability and expectation as
Prx∼D̂{x ∈ S} = 1

|D̂|

∑
x∈D̂ 1{x ∈ S}, Ex∼D̂[f(x)] =

1
|D̂|

∑
x∈D̂ f(x). For simplicity of

notation, we may drop D from the subscript when it is clear from the context, i.e., we may simply
write Pr{x ∈ S},E[f ] for Prx∼D{x ∈ S},Ex∼D[f ].

We define halfspaces as subsets of Rd as follows. For any t ∈ R and w ∈ Rd, a d-dimensional
halfspace with threshold t and normal vector w is defined as ht(w) = {x ∈ Rd | ⟨x,w⟩ ≥ t} (resp.
hct(w) = {x ∈ Rd | ⟨x,w⟩ ≤ t}). For homogeneous halfspaces (t = 0), we write h(w) for h0(w).

2.2 PERSONALIZED PREDICTION AND COMPUTATIONAL CHALLENGES

Motivated by the observation (at the end of Section 1.1) that different populations may have different
population-specific risk factors, we consider the following definition of a personalized prediction
problem. In this problem, our algorithm is given the attributes of a specific individual that we would
like to make a prediction about. The algorithm searches for the population that individual belongs to
that yields the most accurate sparse classifier, to use to make our prediction for the individual.

Definition 2.1 (Personalized Prediction). Let D be any probability distribution over Rd × {0, 1},
C ⊆

{
c : Rd → {0, 1}

}
be a class of classifiers, and H be a collection of subsets of Rd. For

parameters α > 0 and ϵ, δ ∈ (0, 1), the α-approximate Personalized Prediction problem is, given m
labeled examples drawn from D and a query point x′ ∈ Rd, to return a pair (c, S) ∈ C × H with
x′ ∈ S such that with probability 1− δ, for any (c∗, S∗) ∈ C ×H with x′ ∈ S∗,

Pr(x,y)∼D{c(x) ̸= y | x ∈ S} ≤ αPr(x,y)∼D{c∗(x) ̸= y | x ∈ S∗}+ ϵ.

If α = 1, we simply refer to the problem as Personalized Prediction.

As discussed, we choose C to be sparse linear classifiers for interpretability. Thus, the choice ofH
is crucial for PAC-learnability. Typically, H is supposed to satisfy some population lower bound,
i.e., Pr{x ∈ S} ≥ µ for every S ∈ H and some constant µ ∈ (0, 1), because otherwise one can
easily construct trivial solutions, such as a singleton S∗, to make the selected subsets statistically
meaningless. As the first attempt to obtain a distribution-specific PAC-learning guarantee for agnostic
personalized prediction, we choose to work with halfspace (subsets), since its distribution-specific
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Table 1: upper and lower bounds for halfspaces in poly(d, 1/opt) time for different tasks.

Task Halfspace Type Distribution Upper Bound Lower Bound

Classification General Gaussian O(opt) opt + Ω(1/
√
log d)

Classification Homogeneous Well-behaved O(opt) N/A
Conditional Classification General Gaussian N/A opt + Ω(1/

√
log d)

Conditional Classification Homogeneous Gaussian Õ(
√
opt) N/A

PAC-learnability is well studied (Diakonikolas et al., 2020b;c; 2021; 2022; 2024). Even so, it is still
difficult to learn (under Definition 2.1) this relatively simple class without further restrictions.

Without distributional assumptions, it is computationally challenging to achieve even a much weaker
version of personalized prediction withH to be halfspaces. Suppose, in Definition 2.1, the classifier
class consists of a single classifier that makes no error on some subset in the subset class, then
personalized prediction is equivalent to learning a reference class (Juba, 2016b; Hainline et al., 2019).
Definition 2.2 (Reference Class). Let D be any probability distribution over Rd ×{0, 1} andH be a
collection of subsets of Rd. For parameters ϵ, δ ∈ (0, 1), the Reference Class learning problem is,
given m labeled examples drawn from D and a query point x′ ∈ Rd, to return a subset S ∈ H with
x′ ∈ S such that Pr(x,y)∼D{y = 1 | x ∈ S} ≥ 1− ϵ with probability 1− δ.

Unfortunately, Juba and Li (2020) showed that anyH with the ability to express conjunctions (ANDs
of Boolean literals) cannot be efficiently learned as a reference class. As halfspaces may express
conjunctions on {0, 1}d domain, personalized prediction with halfspace subsets is intractable without
distributional assumptions, even in the noiseless setting. Therefore, in the presence of adversarial
noise, the use of some niceness assumptions on the attribute marginals seems inevitable.

Despite the simplicity of halfspaces in comparison to models, such as neural networks and trans-
formers, it is surprisingly challenging to obtain a descent upper bound for agnostically learning
halfspaces even under nice distributions. On the other hand, a recent work by Diakonikolas et al.
(2023) presented a distribution-specific cryptographic lower bound for learning halfspaces as shown
in Table 1. Of greater relevance, Huang and Juba (2025) proved a similar lower bound (see Table 1)
for conditional classification (cf. Definition A.1), which resembles personalized prediction in many
ways. In fact, we prove that personalized prediction is at least as hard as conditional classification.
Claim 2.3 (Informal). Conditional classification is efficiently reducible to personalized prediction.

Therefore, the lower bound for conditional classification shown in Table 1 suggest potential computa-
tional barriers for learning general halfspace subsets in personalized prediction even under Gaussian
distributions. Other problems with a similar structure, which require models of sub-populations
defined by halfspaces, often exhibit comparable or even stronger hardness (Hsu et al., 2024). These
observations motivate us to consider personalized prediction with a subset class that is strictly simpler
than general halfspaces, i.e., homogeneous halfspaces, under nice distributions.

3 LEARNING OF HOMOGENEOUS HALFSPACE REFERENCE CLASS

In this section, we present our learning algorithms for homogeneous halfspaces reference classes under
distributions with well-behaved x-marginals (see Appendix C for formal definitions). Noticeably,
these algorithms will be used as subroutines in the Algorithm 3 introduced in Section 4.

Well-Behaveness: Informally speaking, the family of well-behaved distributions must satisfy the
following properties: every low-dimensional marginal of a the distribution must have sub-exponential
tail, density bounds, low-degree moment upper bounds, and every halfspace containing the distribution
mean must have non-negligible probability mass. The well-behaved family is a natural generalization
of many common distributions, such as uniform, Gaussian, and many log-concave distributions
(Lovász and Vempala, 2007; Diakonikolas et al., 2020c). For completeness, we prove a few instances
in Appendix C. Note that the parameters of these distributional properties only matters in proving
the fully parameterized theorems presented in the appendix. For better clarity, we suppress the
distribution related parameters in the main paper, as they won’t affect our guarantees asymptotically.
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While directly optimizing the target loss Pr{y = 1 | x ∈ h(w)} is hard in general, Huang and Juba
(2025) showed there exists a simple convex surrogate approximation to this kind of target loss that
may approximately captures the optimal solution, i.e., LD(w) = E[y ·max(0, ⟨x,w⟩)]. Even though
our objective functions are the same, we further require the resulting halfspace h(w) to contain the
query point x. Interestingly, we show that a few tweaks on the gradient descent algorithms given in
Huang and Juba (2025) can guarantee x ∈ h(w) with the same performance.

3.1 ALGORITHM OVERVIEW

Overall, Algorithm 1 consists of both pre-processing and post-processing for Algorithm 2, while
Algorithm 2 is our main learning algorithm for homogeneous halfspace reference classes.

Algorithm 1 Learning Reference Class

1: procedure REFCLASS(D, ϵ, δ,x)
2: T ← O(ϵ−5/4)
3: λ← O(ϵ3/4)

4: D̂1 ← Õ(ϵ−1)-sample from D with
negated labels

5: W ← PROJECTEDGD(D̂1, T, λ,x)

6: D̂2 ← Õ(ϵ−1/2)-sample from D
7: w∗ ← max

w∈W
PrD̂2

{y = 1 | x ∈ h(w)}
8: return w∗

9: end procedure

Algorithm 2 PGD With Contractive Projection

1: procedure PROJECTEDGD(D̂, T, λ,x)
2: w(0) ← x̄
3: for i = 1, . . . , T do
4: u(i) ← w(i−1) − λED̂[gw(i−1)(x, y)]

5: if ⟨u(i),x⟩ < 0 then
6: w(i) ← ū

(i)

x⊥

7: else
8: w(i) ← ū(i)

9: end if
10: end for
11: return (w(0), . . . ,w(T ))
12: end procedure

Notably, the training set D̂1 is sampled from D with negated labels because Algorithm 2 is designed
to solve minimization problems. Negating the labels allows us to equivalently minimize Pr{y =
0 | x ∈ h(w)} instead of maximizing Pr{y = 1 | x ∈ h(w)}. Given that Algorithm 2 returns a list
of halfspaces, one of which is guaranteed to have Pr{y = 1 | x ∈ h(w)} = 1−O(ϵ1/4), we sample
a validation set D̂2 to select a good halfspace from the list. Inspired by Huang and Juba (2025), our
Algorithm 2 uses the projected gradient gw(x, y) = y · xw⊥1{x ∈ h(w)} to update the normal
vector w. Also motivated by Diakonikolas et al. (2022), we show that our Algorithm 2 is guaranteed
to return at least one good halfspace through an angle contraction analysis next.

3.2 PERFORMANCE ANALYSIS

We now state our main theorem for Algorithm 1, but postpone the formal proof to Appendix D.
Notice that REFCLASS (cf. Algorithm 1) is actually no more than a wrapper of PROJECTEDGD (cf.
Algorithm 2) with some empirical estimates. Therefore, we focus on analyzing Algorithm 2 here.

Theorem 3.1. Let D be any distribution on Rd × {0, 1} with centered well-behaved x-marginal and
x ∈ Rd be an query. If there exists a unit vector v ∈ Rd such that x ∈ h(v) and Pr{y = 1 | x ∈
h(v)} ≥ 1 − ϵ, then, with at most Õ(ϵ−1) examples, Algorithm 1 runs in time at most Õ(dϵ−9/4)
and returns a w∗ such that x ∈ h(w∗) and Pr{y = 1 | x ∈ h(w∗)} = 1−O(ϵ1/4) w.h.p.

Prior to the detailed analysis, we sketch the main proof idea as follows. It can be shown that the
gradient step (Line 4 of Algorithm 2) decreases the angle between the optimal normal vector v and
the algorithm’s “guess” w by a fixed amount in each iteration of Algorithm 2 as long as the halfspace
h(w) is far from optimal. This implies that, with a few iterations, the output of Algorithm 2 will
contain at least one halfspace of low error. Then, we can use this guarantee of Algorithm 2 to show
the optimality of Algorithm 1 with a simple label mapping and empirical risk estimation.

As a key property to ensure angle contraction for each gradient step, we observed that the projected
gradient E[−gw(x, y)] always approximately “points” at the right direction or, in another word,
the projected gradient has non-negligible correlation with the optimal normal vector v if w is
significantly sub-optimal. In particular, Huang and Juba (2025) proved the same property under
Gaussian x-marginals, we show that slightly worse guarantee holds under well-behaved x-marginals.
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Lemma 3.2 (Gradient Projection Lower Bound). Let D be any distribution on Rd × {0, 1} with
centered well-behaved x-marginal, and gw(x, y) = y·xw⊥1{x ∈ h(w)}. Suppose there exists a unit
vector v ∈ Rd that satisfies Pr{y = 1 | x ∈ h(v)} ≤ ϵ, then, for every unit vector w ∈ Rd such that
θ(v,w) ∈ [0, π/2) and Pr{y = 1 | x ∈ h(w)} ≥ Ω(ϵ1/4), there is ⟨E[−gw(x, y)], v̄w⊥⟩ ≥

√
ϵ.

We leave the formal proof to Appendix D due to the page limit, but sketch the proof idea as
follows (also see Figure 1a). When a homogeneous halfspace h(w) is substantially sub-optimal,
the probability of true labels within the domain of disagreement with the optimal halfspace h(v),
i.e. h(w)\h(v), must be large. However, the same probability cannot be too large in the optimal
halfspace h(v) and, hence, h(v) ∩ h(w). Then, if the underlying distribution has a well-behaved
x-marginal, it implies that the l2 norm of the expectation of x within that domain is also large.

O
e1

w

v

θ(v,w)

(a) blue area is h(v) ∩ h(w), orange area is h(w)\h(v).

O

x

w

w̄x⊥

v

(b) 3-d visualization of Contractive Projection.

Intuitively, since E[−g(x, y)] has non-negligible projection on v̄w⊥ by Lemma 3.2, it should roughly
point at the same direction as the optimal normal vector v does. Hence, the gradient step (Line 4) in
Algorithm 2 should move the normal vector w closer to the optimal normal vector v in each iteration.
According to Diakonikolas et al. (2020a), this movement can be translated to correlation improvement,
i.e., ⟨w(i),v⟩ > ⟨w(i−1),v⟩+Ω(1), which, in turn, implies w(i) is closer to v in terms of angle. We
formally state the angle contraction guarantee in the following lemma (see Appendix D for proofs).

Lemma 3.3 (Angle Contraction). Fix a unit vector v ∈ Rd, ϕ ∈ (0, π/2], and κ > 0, let w,u ∈
Rd be any vectors such that θ(w,v) ∈ [ϕ, π/2], ⟨v̄w⊥ ,u⟩ ≥ κ, and ⟨w,u⟩ = 0. If w′ =
(w + λu) /∥w + λu∥2 with λ = κϕ/4, it holds that θ(w′,v) ≤ θ(w,v)− κ2ϕ/64.

Recall that, in reference class learning, we not only wish to obtain a small Pr{y = 1 | x ∈ h(w)},
but also are required to satisfy the condition that x ∈ h(w). Even though Lemma 3.3 guarantees
us that θ(u(i),v) is smaller than θ(w(i−1),v) given Lemma 3.2 holds, u(i) could still “walk” out
of the halfspace defined by the normal vector x or, equivalently, x /∈ h(u(i)). Therefore, if
θ(u(i),x) ≥ π/2, we need to project it back onto the halfspace h(x) (line 5-9) in Algorithm 2
to make sure the resulting w(i) satisfies θ(w(i),x) ∈ [0, π/2]. In fact, we can prove that such a
projection is always contractive in Lemma 3.3. We defer the proof to Appendix D as it involves a lot
of tedious vector decompositions, while the angle contraction can be illustrated by Figure 1b.

Lemma 3.4 (Contractive Projection). Fix x,v ∈ Rd such that ∥v∥2 = 1 and ⟨x̄,v⟩ ≥ 0. For any
unit vector w ∈ Rd that satisfies ⟨w, x̄⟩ < 0 and ⟨w,v⟩ ≥ 0, it holds that θ(w̄x⊥ ,v) ≤ θ(w,v).

It is clear now that, by applying Lemma 3.2 and Lemma 3.3 (and Lemma 3.4 if θ(u(i),x) ≥ π/2),
we have that the angle between w and v will decrease by poly(ϵ) amount in each iteration until
Pr{y = 1 | x ∈ h(w)} = O(ϵ1/4). Because small θ(w,v) implies small Pr{y = 1 | x ∈ h(w)}
under well-behaved distributions, it suffices to run at most T = 1/poly(ϵ) iterations in Algorithm 2
to guarantee the existence of a good normal vector inW = {w(0), . . . ,w(T )}.
Proposition 3.5 (Optimality Of Projected Gradient Descent). LetD be any distribution on Rd×{0, 1}
with centered well-behaved x-marginal and x ∈ Rd be an observation example. If there exists a unit
vector v ∈ Rd such that x ∈ h(v) and Pr{y = 1 | x ∈ h(v)} ≤ ϵ, then, Algorithm 2 runs in time at
most Õ(dϵ−9/4) and outputs a listW , where there exists a w ∈ W that satisfies both x ∈ h(w) and
Pr{y = 1 | x ∈ h(w)} ≤ O(ϵ1/4) with high probability.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 3 Personalized Prediction

1: procedure PERPREDICT(D, opt,x, s, ϵ, δ)
2: m← O((s log d+ log 2

δ )/ϵ
4)

3: L←SPARSELIST(D,m, s)
4: W ← {∅}
5: for c ∈ L do
6: D(c) ← Dx × 1{c(x) = y}
7: w(c) ← REFCLASS

(
D(c), opt + ϵ4, δ/2 |L| ,x

)
8: W ←W ∪

{
(c,w(c))

}
9: end for

10: D̂ ← O(ln (d/ϵδ) /ϵ2) i.i.d. samples of D
11: c∗,w∗ ← minW PrD̂

{
c(x) ̸= y | x ∈ h(w(c))

}
12: return c∗(x)
13: end procedure

4 APPLICATION: PERSONALIZED PREDICTION

Recall that the objective of personalized prediction is to learn a predictor c : Rd → {0, 1} that
performs well on a given query point x ∈ Rd. As discussed previously, an intuitively good strategy
to learn such a personalized predictor is to jointly find a pair of a classifier c and a subset S ⊆ Rd
such that not only the predictor c performs well on S but also the points in S resemble x.

In this section, we consider learning such a classifier-subset pair for the query point x such that
PrD{c(x) ̸= y | x ∈ S} is minimized subject to x ∈ S. We give a computationally efficient person-
alized prediction scheme for sparse linear classifiers and homogeneous halfspaces by leveraging
the learning algorithm (cf. Algorithm 1) for reference classes as described in Section 3 as well as a
robust list learning algorithm (cf. Algorithm 4) for sparse linear representations. More specifically,
recall that Algorithm 1 in Section 3 guarantees to return us a homogeneous halfspace h(w∗) ⊆ Rd
for any given query x ∈ Rd such that Pr(x,y)∼D{y = 1 | x ∈ h(w∗)} is approximately maximized
and x ∈ h(w∗) over any distribution D with well-behaved x-marginals. Suppose now that, for some
query point x, we have some binary classifier c such that

min
u∈Rd:x∈h(u)

Pr(x,y)∼D{c(x) = y | x ∈ h(u)} ≥ 1− opt, (1)

we can run Algorithm 1 on the labels, 1{c(x) = y}, with the same x-marginal to obtain a homoge-
neous halfspace h(w∗) such that both x ∈ h(w∗) and Pr{c(x) = y | x ∈ h(w∗)} ≥ 1−O(opt1/4).

Note that, if we can find such a good classifier for the query x, our algorithm for learning reference
classes could approximately verify its performance on some homogeneous halfspace that contains
x. Therefore, the question is how to find the personalized classifier for the given query. Fortunately,
a list learning algorithm for sparse linear representations can return us a small list of sparse linear
classifiers, at least one of which will satisfy the optimality condition (1) (see Appendix B for details).

Definition 4.1 (Robust list learning). Let D = αD∗ + (1− α)D̃ for an inlier distribution D∗ and
outlier distribution D̃ each supported on Rd×{0, 1} with α ∈ (0, 1). A robust list learning algorithm
for a class of Boolean classifiers C will produce a finite list {h1, . . . , hℓ} ⊆ C for some c∗ ∈ C
efficiently such that maxi=1,...,l PrD∗{hi(x) = c∗(x)} ≥ 1− ϵ with probability 1− δ.

As with Huang and Juba (2025), we obtain our main result by using the (md)
O(1) time algorithm (with

a sample of size m) for list learning sparse linear classifiers from a sample of size O( 1
αϵ (log d+log 1

δ ))
(Juba, 2017; Mossel and Sudan, 2016). We show both theoretical analysis and experiments of our
personalized prediction approach (cf. Algorithm 3) in the following sections.

4.1 ALGORITHM AND PERFORMANCE ANALYSIS

As an overview, Algorithm 3 first calls a robust list learning algorithm (cf. Algorithm 4) to generate a
list of sparse linear classifiers L (Line 2-4) and, then, calls the reference class learning algorithm for
each such sparse classifier in L to obtain a homogeneous halfspace (Line 5-10). At last, we sample a
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small set of examples to compute the empirical risk minimizer over all the classifier-halfspace pairs.
Notice that, if L returned by SPARSELIST contains some classifier c′ that (approximately) satisfies the
optimality condition (1), the optimality of Algorithm 3 follows immediately from that of Algorithm 1
(cf. Theorem 3.1) by standard concentration analysis. Therefore, the existence of an (approximately)
optimal sparse classifier c′ in the candidate list L is crucial for proving the performance guarantee of
Algorithm 3, which can be formalized as the theorem below.
Theorem 4.2 (Personalized Prediction). Let D be a distribution on Rd × {0, 1} with well-behaved
x-marginal, C be a class of sparse linear classifiers, and x ∈ Rd be a query point. If there exists
some (c,v) ∈ C × Rd such that x ∈ h(v) and Pr{c(x) ̸= y | x ∈ h(v)} ≤ opt, then, Algorithm
3 will run in time poly(d, 1/ϵ, 1/δ) and find some (c∗,w∗) ∈ C × Rd such that x ∈ h(w∗) and
Pr{c∗(x) ̸= y | x ∈ h(w∗)} = O(opt1/4) + ϵ w.p. 1− δ.

We defer the proof to Appendix E. As the proof sketch, note that the sample distribution D can be
viewed as a convex combination of a noiseless distribution D∗, whose labels are determined by some
sparse linear classifier, and a noisy distribution D̃, whose labels are produced arbitrarily. Observe
that this decomposition of D matches exactly with the definitions inlier and outlier distributions in
the robust list learning problem (cf. Definition 4.1). As SPARSELIST (cf. Algorithm 4) is guaranteed
to solve the robust list learning task with arbitrary precision (cf. Theorem B.2), at least one of the
sparse classifiers in L must be (approximately) optimal in the form of inequality (1).

4.2 EXPERIMENTS

Table 2: Test error rates. TOTAL and LIST denote the number of examples used in the entire training
process (Algorithm 3 and baseline models) and the list learning (Algorithm 4) only. The models from
left (LOGREG) to right (PERS) are logistic regression, SVM with Linear, RBF kernel, XGBoost tree,
random forest, ERM sparse classifier (SPARSE), and personalized prediction (PERS) respectively. ∗

indicates statistically significant improvement with 95% confidence (over SPARSE for PERS, and
over PERS for the other baselines). For Pima and Hepa, PERS obtains improvement over SPARSE
with 85% confidence, and the difference from the other baselines is not significant at this level.

D/S TOTAL LIST DIM LOGREG LIN RBF XGB FOREST SPARSE PERS

HABE 204 204 3 .2647 .2647 .2941 .3529 .3039 .2745 .2745
PIMA 512 192 8 .2461 .25 .2344 .2344 .2304 .2852 .2461
HEPA 103 103 20 .1538 .1538 .1346 .2115 .1538 .2308 .1538
HYPO 2109 64 20 .0199∗ .019∗ .0285 .0133∗ .0142∗ .0579 .0379∗

WDBC 379 48 30 .0368 .0474 .0421 .0421 .0579 .0789 .0474∗

We evaluated our algorithms on several UCI medical datasets that are commonly used as benchmarks
(Grandvalet et al., 2008; Wiener and El-Yaniv, 2011; 2015). We compare our result to a few standard
machine learning models as shown in Table 2. We stress that our method differs from these standard
models in the key respect that we obtain a 2-sparse linear classifier whose decision making is
inherently interpretable, whereas the other models are typically not humanly understandable. More
detailed analysis will be presented in Appendix F due to page limitation.

5 LIMITATIONS AND FUTURE DIRECTIONS

Several questions naturally present themselves for future work. The first question is whether our
O(opt1/4) error bound can be improved for a similarly broad family of distributions, perhaps by
assuming some additional (natural) properties. The second is how we might target different coverage
levels. Although Huang and Juba (2025) obtained a 1/

√
log d additive lower bound, obtaining a

multiplicative upper/lower bound for general halfspaces is still an open question, even for Gaussian
marginals. Also, alternatively, we could consider families of non-homogeneous halfspaces that are
still not completely general, such as halfspaces with bounded coefficients. And, finally, we were
restricted to the use of sparse linear classifiers because this was the only family of classifiers for which
we had a strong robust learning guarantee. It would be interesting to learn other classes, perhaps
using similar kinds of distributional assumptions.
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A OMITTED DEFINITIONS AND PROOFS IN SECTION 2

For completeness, we give a formal definition of conditional classification problem following Huang
and Juba (2025).

Definition A.1 (Conditional Classification). Let D be any probability distribution over Rd × {0, 1},
C ⊆

{
c : Rd → {0, 1}

}
be a class of classifiers, and H be a collection of subsets of Rd. For

parameters α > 0 and ϵ, δ ∈ (0, 1), the α-approximate Conditional Classification problem is, given
m labeled examples drawn from D, to return a pair (c, S) ∈ C ×H such that with probability 1− δ,
for any (c∗, S∗) ∈ C ×H,

Pr(x,y)∼D{c(x) ̸= y | x ∈ S} ≤ αPr(x,y)∼D{c∗(x) ̸= y | x ∈ S∗}+ ϵ.

If α = 1, we simply refer to the problem as Conditional Classification.

Now we prove that the personalized prediction problem is at least as hard as conditional classification.

Claim A.2 (Claim 2.3). There is an efficient reduction from conditional classification to personalized
prediction whenever there is a population lower bound on the subset class.

Proof. With a population lower bound µ ∈ (0, 1), we may obtain an example inside the optimal
subset of the conditional classification instance with high probability by sampling O(1/µ) points. By
using these points as the observations and taking the best reference class as our output, solving the
personalized prediction problem for the same hypothesis classes enables us to efficiently solve the
conditional classification instance.

B REVIEW OF ROBUST LIST LEARNING OF SPARSE LINEAR CLASSIFIERS

For completeness, we give the formal definition of Robust List Learning problem as follow:

Definition B.1 (Definition 4.1). Let D = αD∗ + (1− α)D̃ for an inlier distribution D∗ and outlier
distribution D̃ each supported on Rd × {0, 1}, with α ∈ (0, 1). A robust list learning algorithm for a
class of Boolean classifiers C, given α and parameters ϵ, δ ∈ (0, 1), and sample access to D such
that for (x,b) in the support of D∗, b = c∗(x) for some c∗ ∈ C, runs in time poly(d, 1

α ,
1
ϵ , log

1
δ ),

and with probability 1 − δ returns a list of ℓ = poly(d, 1
α ,

1
ϵ , log

1
δ ) classifiers {h1, . . . , hℓ} such

that for some hi in the list, PrD∗{hi(x) = c∗(x)} ≥ 1− ϵ.

Algorithm 4 Robust list learning of sparse linear classifiers

1: procedure SPARSELIST(D,m, s)
2: L← ∅
3: ν ← 2−(bs+s log s)

4: Sample (x(1), y(1)), . . . , (x(m), y(m)) ∼ D
5: Re-map y(i) from {0, 1} to {−1,+1} for all i ∈ [m]
6: for (i1, . . . , is) ∈ [d]s and (j1, . . . , js) ∈ [m]s do

7: w ←


y(j1)x

(j1)
i1

· · · y(j1)x
(j1)
is

...
y(js)x

(js)
i1

· · · y(js)x
(js)
is


−1  y(j1) − ν

...
y(js) − ν


8: L← L ∪ {w}
9: end for

10: return L
11: end procedure

For completeness, we now describe an algorithm to solve the robust list learning problem for sparse
linear classifiers. It is based on the approach used in the algorithm for conditional sparse linear
regression Juba (2017), using an observation by Mossel and Sudan (2016). We will prove the
following:
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Theorem B.2 (Mossel and Sudan (2016); Juba (2017); Huang and Juba (2025)). Suppose the
numbers are b-bit rational values, Algorithm 4 solves robust list-learning of linear classifiers with
s = O(1) nonzero coefficients, margin ν ≥ 2−(bs+s log s), and probability at least 1 − δ from
m = O( 1

αϵ (s log d+ log 1
δ )) examples in polynomial time with list size O((md)s).

Proof. We observe that the running time and list size of Algorithm 4 is clearly as promised. To see
that it solves the problem, we first recall that results by Blumer et al. (1989) and Hanneke (2016)
showed that given O( 1ϵ (D + log 1

δ )) examples labeled by a class of VC-dimension D, any consistent
hypotheses achieves error ϵ with probability 1− δ. In particular, halfspaces in Rd have VC-dimension
d; Haussler (1988) observed that s-sparse linear classifiers in Rd have VC-dimension s log d. Hence,
if the data includes a set S of at least Ω( 1ϵ (s log d+ log 1

δ )) inliers and we find a s-sparse classifier
that agrees with the labels on S, it achieves error 1 − ϵ on S with probability 1 − δ/2. Observe
that in a sample of size O( 1

αϵ (s log d + log 1
δ )), with an α fraction of inliers, we indeed obtain

Ω( 1ϵ (s log d+ log 1
δ )) inliers with probability 1− δ/2.

Now, suppose we write our linear threshold function with a standard threshold of 1, and suppose
are examples are drawn from Rd × {−1, 1}. Then a classifier with weight vector w labels x with
1 if ⟨w,x⟩ ≥ 1, and labels x with −1 if ⟨w,x⟩ < 1. We observe that by Cramer’s rule, we can
find a value ν∗ > 0 (of size at least 2−(bs+s log s) if the numbers are b-bit rational values) such that
if ⟨w,x⟩ < 1, ⟨w,x⟩ ≤ 1 − ν∗. So, it is sufficient for ⟨w, yx⟩ ≥ y − ν for a given (x, y), for
some margin ν ≥ 2−(bs+s log s). Thus, to find a consistent w, it suffices to solve the linear program
⟨w, y(j)x(j)⟩ ≥ y(j) − ν for each jth example in S. Observe that if we parameterize w by only the
nonzero coefficients, we obtain a linear program in s dimensions, for which we can obtain a feasible
solution at a vertex, given by s tight constraints. Now, Algorithm 4 enumerates all s-tuples of indices
and examples, which in particular therefore must include any s-tuple of examples in the inlier set S
and the s nonzero coordinates of w. Hence, with probability at least 1− δ, L indeed contains some
w that attains error ϵ on S, as needed.

C WELL-BEHAVED DISTRIBUTIONS

We recall the formal definition of the family of well-behaved distributions as follows:

Definition C.1 (Well-Behaved Distributions). A distribution Dx on Rd is said to be (K,U,L,R)-
well-behaved if the following properties hold:

1. K-bounded: there exists a constant K such that ∥̂⟨x,u⟩∥̂p ≤ Kp for all unit vectors
u ∈ Rd and p ≥ 1.

2. U -concentration and anti-concentration: let V be any subspace with dimensionality at
most 2 and γV be the corresponding probability density function ofDx on R2 when projected
onto V . Then, for all x ∈ V , there exists a non-negative function p : R+ → R+ such that
γV (x) ≤ p(∥x∥2) ≤ U and

∫
V
∥x∥2p(∥x∥2)dx ≤ U .

3. L-anti-anti-concentration: let γu be the marginal density function of ⟨x,u⟩ for any unit
vector u ∈ Rd. Then γu(⟨x,u⟩) ≥ L for all |⟨x,u⟩| ≤ 1.

4. R-rounded: Prx∈Dx{x ∈ ht(u)} ≥ R for all halfspaces ht(u) ⊆ Rd such that
Ex∼Dx [x] ∈ ht(u).

In comparison to the class of distributions considered by Diakonikolas et al. (2020c) for agnostic
classification, we require two additional properties, boundedness and roundedness. Notice that the
K-bounded property is equivalent to a sub-exponential tail bound Vershynin (2018). Roundedness can
be ensured in polynomial time by centering the data Har-Peled and Jones (2021), though this of course
changes the sets corresponding to homogeneous halfspaces. One can verify that the distributions
satisfying our definition include a wide variety of classes such as log-concave distributions Lovász
and Vempala (2007).

Let’s see a few specific examples of well-behaved distributions.
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Example C.2 (Gaussian Distribution). Any Gaussian distribution N d(0, σ2) is a well-behaved

distribution with K = σ, U = max(
(
σ
√
2π
)−3/2

,
√
3+O(σ2)), L = eσ

−2/2/σ
√
2π, and R = 1/2.

Proof. Let’s first notice that the projection of a random vector x ∼ N d(0, σ2) onto a k ≤ d dimension
subspace will result to z ∼ N k(0, σ2).

To show K = σ, by the integral identity, we have that

∥̂⟨x,u⟩∥̂
p

p =

∫ ∞

0

Prz∼N (0,σ2){zp ≥ u}du

(i)
=

∫ ∞

0

Prz∼N (0,σ2){|z| ≥ t}ptp−1dt

(ii)

≤
∫ ∞

0

2e−t
2/2σ2

ptp−1dt

(iii)
=
(
σ
√
2
)p

pΓ(p/2)

≤
(
σ
√
2
)p

p (p/2)
p/2

where inequality (i) is obtained by change of variables u = tp. Inequality (ii) holds due to Fact G.1.
Then, setting t2 = 2σ2s and using definition of Gamma function give inequality (iii). And the last
inequality holds since Γ(x) ≤ xx by Stirling’s approximation. Taking the pth root over the above
inequality gives the first property.

For the second property U = max(
(
σ
√
2π
)−3/2

,
√
3 + O(σ2)), notice that the density of any

k-dimensional 0-mean Gaussian distribution is upper bounded by
(
σ
√
2π
)−k/2

by definition. Mean-
while, taking p to be the density of such Gaussian distribution, it holds that∫

Rk

∥z∥2p(∥z∥2)dz =

∫
Rk

∥z∥2ϕ(∥z∥2)dz

= E
z∼Nk(0,σ2)

[∥z∥2]

≤
√
k +O(σ2)

where the last inequality can be acquired by referring to Exercise 3.1.4. of Vershynin (2018). This
implies the claimed property.

The third property L = eσ
−2/2/σ

√
2π holds because the density function of a one dimension

Gaussian distribution is monotonically decrease from 0 to 1.

The last property is obvious.

To see another example, we first define the d-dimensional hyper-ball as follows.
Definition C.3 (d-Dimensional Hyper-Ball). For any r > 0 and µ ∈ Rd, we define

Bd(µ, r) =
{
x ∈ Rd | ∥x− µ∥2 ≤ r

}
to be the d-dimensional hyper-ball of radius r centered at µ.
Fact C.4 (Volume Of Hyper-Ball). There is Vol(Bd(0, r)) = πd/2rd/Γ(d/2− 1).

Now, we show that the uniform distribution over a large variety of compact sets are also well-behaved.
Example C.5 (Uniform Distribution Over Compact Sets). Let Unif (S) denote the uniform distribu-
tion over any S ⊆ Rd, and T ⊂ Rd be a compact set such that Vol(T ) = ν, maxx∈T ∥x∥2 ≤ τ for
some τ ≥ 1, and sup

{
r | Bd (µT , r) ⊆ T

}
≥ 1 where µT = Ex∼Unif(T )[x]. Then, Unif (T − µT )

is a well-behaved distribution such that

K = τ, U ≈ max

(
τd

′

ν
√
d′π

(
2πe

d′

)d′/2
, τ

)
, L ≈ 1

ν
√
d′π

(
2πe

d′

)d′/2
, R ≈ 1

2ν
√
d′π

(
2πe

d′

)d′/2
where d′ = d− dim(V ) for any subspace V of dimension at most 3.
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Proof. To show the K-boundedness, let’s first notice that ⟨x− µT ,u⟩ ≤ ∥x− µT ∥2 by the Cauchy-
Schwartz inequality. Then, similar to the Gaussian example, we have that

∥̂⟨x− µT ,u⟩∥̂
p

p =

∫ ∞

0

Prx∼Unif(T ){∥x− µT ∥p2 ≥ u}du

(i)
=

∫ τp

0

Prx∼Unif(T ){∥x− µT ∥p2 ≥ u}du

(ii)

≤
∫ τp

0

1du

≤τp

where inequality (i) holds because maxx∈T ∥x∥2 ≤ τ and inequality (ii) holds because any probability
is less than or equal to 1. Again, take the pth root over the above inequality gives the first property.

For the second property, denote z = x−µT , d′ = d− dim(V ), and projV (S) = {xV | x ∈ S}, we
have that

γV (z) =

∫
proj

V ⊥ (T )

1

ν
dz

(i)

≤ 1

ν

∫
proj

V ⊥ (Bd(0,τ))

dz

(ii)
=

1

ν

∫
Bd′ (0,τ)

dz

=Vol(Bd
′
(0, τ))/ν

(iii)
=

πd
′/2τd

′

νΓ(d′/2− 1)

≈ τd
′

ν
√
d′π

(
2πe

d′

)d′/2
where inequality (i) holds because T−µT ⊆ Bd(0, τ). Equation (ii) holds because V ⊥ has dimension
d− dim(V ). Equation (iii) is obtained by invoking Fact C.4. The last equation results from Stirling’s
approximation. Meanwhile, we have that∫

proj
V ⊥ (T )

∥z∥2γV (z)dz ≤τ
∫
proj

V ⊥ (T )

γV (z)dz

=τ

which completes the proof for the second property.

For the third property, notice that it suffices to show this property holds for all ∥z∥2 ≤ 1. Therefore,
for ∥z∥2 ≤ 1, we have that

γV (z) =

∫
proj

V ⊥ (T )

1

ν
dz

(i)

≥ 1

ν

∫
proj

V ⊥ (Bd(0,1))

dz

=
1

ν

∫
Bd′ (0,τ)

dz

(ii)
=

πd
′/2

νΓ(d′/2− 1)

≈ 1

ν
√
d′π

(
2πe

d′

)d′/2
where inequality (i) holds because we assumed Bd (µT , 1) ⊆ T . Inequality (ii) and the last equation
hold due to, again, Fact C.4 and Stirling’s approximation.
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The last property holds because any halfspace containing µT must also contain at least a half of the
hyper-ball Bd (µT , 1), which has volume at least

1

2ν
√
d′π

(
2πe

d′

)d′/2
by Fact C.4 and Stirling’s approximation.

D ANALYSIS OF ALGORITHM 1

Lemma D.1 (Lemma 3.2). Let D be any distribution on Rd×{0, 1} with centered and (K,U,L,R)-
well-behaved x-marginal, and define gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose there exists a
unit vector v ∈ Rd that satisfies Pr(x,y)∼D{y = 1 | x ∈ h(v)} ≤ ϵ for some sufficiently small
ϵ ∈ (0, 1/2), then, for every unit vector w ∈ Rd such that θ(v,w) ∈ [0, π/2) and

Pr(x,y)∼D{y = 1 | x ∈ h(w)} ≥ (U
√
2(2K + 1)/R2L+ 1/R)ϵ1/4,

there is 〈
E

(x,y)∼D
[−gw(x, y)], v̄w⊥

〉
≥
√
ϵ.

Proof. For conciseness, let θ = θ(v,w) and define two orthonormal basis e1, e2 such that w = e2
and v = −e1 sin θ + e2 cos θ, which implies e1 = −v̄w⊥ . Denote xi = ⟨x, ei⟩ so that ⟨x,w⟩ = x2
and ⟨x,v⟩ = −x1 sin θ+x2 cos θ. Because ⟨x, e1⟩ = ⟨x2e2 +xe⊥

2
, e1⟩ = −⟨xw⊥ , v̄w⊥⟩, we have

⟨E[−gw(x, y)], v̄w⊥⟩ =E[−y · ⟨xw⊥ , v̄w⊥⟩1{x ∈ h(w)}]
(i)
= E[y · ⟨xw⊥ , e1⟩1{x2 ≥ 0}]
=E[y · x11{x2 ≥ 0,x ∈ hc(v)}]− E[y · x11{x2 ≥ 0,x ∈ h(v)}]
≥E[y · x11{x2 ≥ 0,x ∈ hc(v)}]− E[|x1|1{x2 ≥ 0,x ∈ h(v), y = 1}]
(ii)

≥ E[y · x11{x2 ≥ 0,x ∈ hc(v)}]−
√

E[x21]Pr{x2 ≥ t ∩ x ∈ h(v) ∩ y = 1}
(iii)

≥ E[y · x11{x2 ≥ 0,x ∈ hc(v)}]− 2K
√
Pr{y = 1 | x ∈ h(v)}Pr{x ∈ h(v)}

≥E[|x1| · 1{x1 tan θ > x2 ≥ 0, y = 1}]︸ ︷︷ ︸
I

−2K
√
ϵ. (2)

where equation (i) holds because x ∈ h(w) is equivalent to ⟨x,w⟩ ≥ 0, which is equivalent to
x2 ≥ 0 by definition, inequality (ii) holds by applying Cauchy’s inequality to the second expectation,
inequality (iii) is obtained since Pr{x2 ≥ t ∩ x ∈ hc(v) ∩ y = 1} ≤ Pr{x ∈ hc(v) ∩ y = 1} as
well as Dx is K-bounded, and the last inequality holds due to optimality assumption and the fact that
Pr{x ∈ h(v)} ≤ 1.

Then, we will apply lemma D.2 to lower bound I . Observe that the event x1 tan θ > x2 ≥ 0 in I is a
subset of event x1 ≥ 0 because θ(v,w) ∈ [0, π/2). Therefore, we can view the event x1 ≥ 0 as T in
lemma D.2 and show that, by the anti-concentration property of Dx, there exists a β > 0 such that
Pr{0 ≤ x1 ≤ β} ≤ Pr{x1 tan θ > x2 ≥ 0 ∩ y = 1} to apply lemma D.2.

Observe that, due to the anti-concentration property of Dx, the density of x1 is upper bounded by U .
Therefore, taking β =

√
2(2K + 1)/Lϵ1/4 yields

Pr{0 ≤ x1 ≤ β} ≤U
√

2(2K + 1)/Lϵ1/4

=(U
√

2(2K + 1)/R2L+ Pr{x ∈ h(v)}/R)Rϵ1/4 − Pr{x ∈ h(v)}ϵ1/4

(i)

≤(U
√

2(2K + 1)/R2L+ 1/R)Rϵ1/4 − Pr{x ∈ h(w) ∩ x ∈ h(v) ∩ y = 1}
(ii)

≤R · Pr{y = 1 | x ∈ h(w)} − Pr{x ∈ h(w) ∩ x ∈ h(v) ∩ y = 1}
(iii)

≤ Pr{x ∈ hc(v) ∩ x ∈ h(w) ∩ y = 1}
=Pr{x1 tan θ > x2 ≥ 0 ∩ y = 1}
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where inequality (i) holds due to our assumption that Pr{y = 1 | x ∈ h(v)} ≤ ϵ ≤ ϵ1/4 as well
as the fact that Pr{x ∈ h(v)} ≤ 1, and inequality (ii) holds because we assumed Pr{y = 1 | x ∈
h(w)} ≥ (U

√
2(2K + 1)/R2L+ 1/R)ϵ1/4, inequality (iii) is obtained since Dx is R-rounded and

centered so that Pr{x ∈ h(w)} ≥ R.

Now, applying lemma D.2 gives

I ≥E[x1 · 1{0 ≤ x1 ≤
√

2(2K + 1)/Lϵ1/4}]
(i)

≥L
∫ √2(2K+1)/Lϵ1/4

0

x1dx1

=(2K + 1)
√
ϵ (3)

where inequality (i) is due to L-anti-anti-concentration property of Dx. At last, taking inequality (3)
back to equation (2) leads to the claimed result.

The following lemma plays a key role in proving the above proposition.
Lemma D.2 (Lemma C.3 in Huang and Juba (2025)). Let D be an arbitrary distribution on Rd, and
S, T be any events such that PrD{S ∩T} = p for some p ∈ (0, 1). Then, for any unit vector u ∈ Rd,
and parameters α, β that satisfies Pr{T ∩ |⟨x,u⟩| ≤ β} ≤ p ≤ Pr{T ∩ |⟨x,u⟩| ≥ α}, there are

E
D
[|⟨x,u⟩| · 1{T, |⟨x,u⟩| ≤ β}] ≤ E

D
[|⟨x,u⟩| · 1{S, T}] ≤ E

D
[|⟨x,u⟩| · 1{T, |⟨x,u⟩| ≥ α}].

Lemma D.3 (Lemma 3.3). Fix a unit vector v ∈ Rd, ϕ ∈ (0, π/2], and κ > 0, let w,u ∈ Rd be any
vectors such that θ(w,v) ∈ [ϕ, π/2], ⟨v̄w⊥ ,u⟩ ≥ κ, and ⟨w,u⟩ = 0. If

w′ =
w + λu

∥w + λu∥2
with λ = κϕ/4, it holds that θ(w′,v) ≤ θ(w,v)− κ2ϕ/64.

Proof. By the assumptions that ⟨w,u⟩ = 0 and ⟨v̄w⊥ ,u⟩ ≥ κ, we must have that
⟨v,u⟩ =∥vw⊥∥2 ⟨v̄w⊥ ,u⟩

≥κ sin(θ(w,v))

≥κθ(w,v)

2
where the last inequality holds because sin(x) ≥ x/2 for x ∈ [0, π/2]. Then, with λ ≤ κθ(w,v)/4,
Lemma D.4 indicates

⟨w′,v⟩ ≥ ⟨w,v⟩+ λκθ(w,v)

16
which implies

cos(θ(w′,v)) ≥ cos(θ(w,v)) +
λκθ(w,v)

16
. (4)

Because cos(t) is a decreasing function in [0, π], we have that θ(w,v) ≥ θ(w′,v). Now, using the
trigonometric identity cos(x)− cos(y) = 2 sin((y + x) /2) sin((y − x) /2) gives

cos(θ(w′,v))− cos(θ(w,v)) =2 sin

(
θ(w,v) + θ(w′,v)

2

)
sin

(
θ(w,v)− θ(w′,v)

2

)
≤θ2(w,v)− θ2(w′,v)

2
(5)

where the last inequality holds because sin(x) ≤ x for x ∈ [0, π]. Combining inequality (4) and
inequality (5) gives

θ(w′,v) ≤θ(w,v)

√
1− λκ

8θ(w,v)

(i)

≤θ(w,v)

(
1− λκ

16θ(w,v)

)
≤θ(w,v)− κ2ϕ

64
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where inequality (i) holds because
√
1− x ≤ 1− x/2 for x ∈ [0, 1), and the final result is obtained

by taking λ = κϕ/4.

Lemma D.4 (Correlation Improvement (Diakonikolas et al., 2020a)). For unit vectors v,w ∈ Rd, let
u ∈ Rd be such that ⟨u,v⟩ ≥ c, ⟨u,w⟩ = 0, and ∥u∥2 ≤ 1, with c > 0. Then, for w′ = w + λu,
with λ ≤ c/2, we have that ⟨w̄′,v⟩ ≥ ⟨w,v⟩+ λc/8.

Lemma D.5 (Lemma 3.4). Fix two vectors x,v ∈ Rd such that ∥v∥2 = 1 and ⟨x̄,v⟩ ≥ 0. Then, for
any unit vector w ∈ Rd that satisfies ⟨w, x̄⟩ < 0 and ⟨w,v⟩ ≥ 0, it holds that θ(w̄x⊥ ,v) ≤ θ(w,v).

Proof. First and foremost, since w̄x⊥ ,w,v are all unit vectors, it suffices to show that ⟨w̄x⊥ ,v⟩ ≥
⟨w,v⟩. Observe that we can decompose any vector u ∈ Rd into ux on the direction of x and ux⊥

on the orthogonal space of x as illustrated in Figure 2. Therefore, we must have

⟨w̄x⊥ ,v⟩ = ⟨w̄x⊥ −wx⊥ −wx +w,v⟩
= ⟨w̄x⊥ −wx⊥ ,vx⊥⟩ − ⟨wx,vx⟩+ ⟨w,v⟩ .

O

x

w

w̄x⊥

wx⊥

wx

v

vx⊥

vx

Figure 2: A 3-dimensional visualization of Contractive Projection.

Then, we only need to show ⟨wx,vx⟩ ≤ 0 and ⟨w̄x⊥ −wx⊥ ,vx⊥⟩ ≥ 0. The former inequality holds
because we have ux = ⟨u, x̄⟩ x̄ for any u ∈ Rd by definition, while ⟨w, x̄⟩ < 0 and ⟨v, x̄⟩ ≥ 0 due
to our assumption. To prove the latter inequality, note that, because ⟨wx,vx⟩ ≤ 0, it holds that

⟨wx⊥ ,vx⊥⟩ ≥ ⟨wx⊥ ,vx⊥⟩+ ⟨wx,vx⟩
= ⟨w,v⟩
≥0 (6)

Furthermore, since ∥wx⊥∥2 ≤ ∥w∥2 = ∥w̄x⊥∥2 by the triangle inequality and the unit vector
assumption, there must exists an α ≥ 0 such that w̄x⊥ − wx⊥ = αwx⊥ , which, along with
inequality (6), implies ⟨w̄x⊥ −wx⊥ ,vx⊥⟩ = α ⟨wx⊥ ,vx⊥⟩ ≥ 0.

Lemma D.6 (Wedge Upper Bound). Let D be any distribution on Rd × {0, 1} with U -concentrated
and anti-concentrated x-marginal, then, for any unit vectors w,v ∈ Rd, it holds that Pr(x,y)∼D{x ∈
h(w)\h(v)} ≤ Uθ(w,v).

Proof. Let V be the subspace spanned by {w,v}, where we choose e2 = w and e1 = −v̄w⊥ to be
a basis when projecting x ∼ D onto V . Suppose φ : Rd → R is the density function of Dx and φV
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is its projection on V , then we have

Pr(x,y)∼D{x ∈ h(w)\h(v)} =
∫
x∈h(w)\h(v)

φ(x)dx

=

∫
xV ∈h(w)\h(v)

φV (xV )dxV

(i)

≤
∫
xV ∈h(w)\h(v)

p(∥xV ∥2)dxV

(ii)
=

∫ θ(w,v)

0

∫ ∞

0

rp(r)drdϕ

≤Uθ(w,v)

where inequality (i) holds because Dx is anti-concentrated. Equation (ii) is obtained by transforming
the Cartesian coordinates into Polar coordinates with r = ∥xV ∥2, x1 = r cos(θ(xV , e1)), x2 =
r sin(θ(xV , e1)), and, hence, dxV = dx1dx2 = rdrdϕ. And, the last inequality holds, again, due to
the U -concentration property.

Proposition D.7 (Proposition 3.5). Let D be any distribution on Rd × {0, 1} with centered and
(K,U,L,R)-well-behaved x-marginal and x ∈ Rd be an observation example with non-zero support.
If there exists a unit vector v ∈ Rd such that x ∈ h(v) and

Pr(x,y)∼D{y = 1 | x ∈ h(v)} ≤ ϵ,

then, Algorithm 2 takes

T =32πϵ−5/4/
√
2(2K + 1)/L,

λ =
√

2(2K + 1)/Lϵ3/4/4,

|D̂| =O(K2 ln(2T/δ)/ϵ),

x ∈ Rd as inputs, runs in time at most Õ(dϵ−9/4), and outputs a listW = {w(0), . . . ,w(T )}, where
there exists a w(t) that satisfies both x ∈ h(w(t)) and

Pr(x,y)∼D{y = 1 | x ∈ h(w(t))} ≤ (U
√
2(2K + 1)/R2L+ 1/R)ϵ1/4

with probability at least 1− δ.

Proof. Obviously, the first condition x ∈ h(w(t)) must hold because the Contractive Projection (line
5-9 of Algorithm 2) guarantees that

〈
x,w(i)

〉
≥ 0 for each i ∈ [T ].

To prove the second condition, we shall consider three possible cases. If we directly have

Pr{y = 1 | x ∈ h(w(i))} ≤ (U
√

2(2K + 1)/R2L+ 1/R)ϵ1/4

in some iteration i ∈ [T ], we are done.

Instead, if some w(i) satisfies θ(w(i),v) ≤
√
2(2K + 1)/Lϵ1/4, we must have that

Pr{y = 1 | x ∈ h(w(i))} =Pr{y = 1 ∩ x ∈ h(w(i)) ∩ x ∈ h(v)}+ Pr{y = 1 ∩ x ∈ h(w(i)) ∩ x /∈ h(v)}
Pr{x ∈ h(w(i))}

≤Pr{y = 1 ∩ x ∈ h(v)}+ Pr{x ∈ h(w(i)) ∩ x /∈ h(v)}
Pr{x ∈ h(w(i))}

(i)

≤
ϵ+ U

√
2(2K + 1)/Lϵ1/4

Pr{x ∈ h(w(i))}
≤(U

√
2(2K + 1)/R2L+ 1/R)ϵ1/4

where inequality (i) results from an application of Lemma D.6 and the fact that Pr{x ∈ h(v)} ≤ 1,
and the last inequality holds because ϵ ≤ ϵ1/4 and Dx is R-Rounded. So θ(w(i),v) ≤√
2(2K + 1)/Lϵ1/4 also gives the desired result.
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However, we show that the third case, where we have both

Pr{y = 1 | x ∈ h(w(i))} > (U
√
2(2K + 1)/R2L+ 1/R)ϵ1/4

and θ(w(i),v) >
√
2(2K + 1)/Lϵ1/4 in all T iterations, cannot exist by contradiction. Suppose,

for the sake of contradiction, both of the inequalities hold for all i ∈ [T ]. We argue that the
angle between w(i) and v monotonically decreases over iterations by induction, i.e., θ(w(i),v) ≤
θ(w(i−1),v)− Cϵ5/4 for C =

√
2(2K + 1)/L/64.

Observe that, for w(0) = x̄, the claim is trivially true. Suppose it holds that θ(w(i),v) ≤
θ(w(i−1),v) − Cϵ5/4 for all w(0), . . . ,w(i) and some constant C > 0, we wish to show
θ(w(i+1),v) ≤ θ(w(s),v)− Cϵ5/4.

Note that θ(w(0),v) ∈ [0, π/2] by our assumption and the initialization step, we must have
θ(w(i),v) ∈ [0, π/2] because of the inductive hypothesis. Then, due to the assumed error lower
bound on w(i), we can invoke Lemma D.1 to obtain ⟨E[−gw(i)(x, y)], v̄w(i)⊥⟩ ≥

√
ϵ. With

|D̂| ≥ max(C2
0K

2 ln(T/δ)/ϵ, C0K ln(T/δ)/
√
ϵ), where C0 > 0 is a constant, Lemma G.9 gives

Pr

{〈
Ê
D
[−gw(i)(x, y)], v̄w(i)⊥

〉
<

√
ϵ

2

}
≤ δ

T
. (7)

Conditioned on
〈
ED̂[−gw(i)(x, y)], v̄w(i)⊥

〉
≥
√
ϵ/2, Lemma D.3 indicates that θ(u(i+1),v) ≤

θ(w(i),v)−Cϵ5/4. Notice that, if θ(u(i+1),x) > π/2, Lemma D.5 will guarantee that the contractive
projection (line 9) doesn’t increase θ(w(i+1),v) ≤ θ(u(i+1),v), which completes the inductive
proof.

With T = 32πϵ−5/4/
√
2(2K + 1)/L and θ(w(0),v) ≤ π/2, taking a Union Bound on inequality

(7) over all T iterations, we must have θ(w(T ),v) ≤
√
2(2K + 1)/Lϵ1/4 with probability at least

1− δ, which leads to a contradiction.

At last, the sample complexity of Algorithm 2 is obviously |D̂| = O(K2 ln(2T/δ)/ϵ) as
no new examples are sampled during the run. For time complexity, note that it will take
d|D̂| = O(K2d ln(T/δ)/ϵ) time to compute the projected gradient in each iteration, and there
are T = 32πϵ−5/4/

√
2(2K + 1)/L iterations in total. Therefore, the total running time should be

dT |D̂| = Õ(dϵ−9/4).

With lemma D.7 in hand, we are now ready to prove Theorem 3.1.

Theorem D.8 (Theorem 3.1). Let D be any distribution on Rd × {0, 1} with centered and
(K,U,L,R)-well-behaved x-marginal and x ∈ Rd be an observation example with non-zero support.
If there exists a unit vector v ∈ Rd such that x ∈ h(v) and

Pr(x,y)∼D{y = 1 | x ∈ h(v)} ≥ 1− ϵ

for some sufficiently small ϵ, then, with at most Õ(ϵ−1) examples, Algorithm 1 runs in time at most
Õ(dϵ−9/4) and returns a w∗ such that x ∈ h(w∗) and

Pr(x,y)∼D{y = 1 | x ∈ h(w∗)} = 1− (U
√

2(2K + 1)/R2L+ 1/R+ 1)ϵ1/4

with probability at least 1− δ.

Proof. First and foremost, let’s notice that the labels of the examples in D̂1 are negated in Algorithm
1. Thus, with T ≥ 32πϵ−5/4/

√
2(2K + 1)/L and |D̂1| ≥ CK2 ln(2T/δ)/ϵ for some sufficiently

large constant C, Proposition D.7 guarantees that there exists a w′ ∈ W such that

Pr(x,y)∼D {y = 1 | x ∈ h(w′)} =1− Pr(x,y)∼D{y = 0 | x ∈ h(w′)}

≥1− (U
√
2(2K + 1)/R2L+ 1/R)ϵ1/4 (8)

with probability at least 1− δ/2.
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Then, applying Corollary G.4 on both w′ and w∗ with |D̂2| = 32 ln(4T/δ)/R2
√
ϵ, we have

PrD̂2∼D

{
PrD̂2

{y = 1 | x ∈ h(w′)} < PrD {y = 1 | x ∈ h(w′)} − ϵ1/4

2

}
≤ δ

2T

or

PrD̂2∼D

{
PrD̂2

{y = 1 | x ∈ h(w∗)} > PrD {y = 1 | x ∈ h(w∗)}+ ϵ1/4

2

}
≤ δ

2T
.

We take a Union Bound overW to make sure the above two inequality holds simultaneously. Also,
because of empirical minimization step (Line 7) of Algorithm 1, we must have

PrD̂2
{y = 1 | x ∈ h(w∗)} ≥ PrD̂2

{y = 1 | x ∈ h(w′)} ,

which further implies that

Pr
{
PrD {y = 1 | x ∈ h(w∗)} ≥ PrD {y = 1 | x ∈ h(w′)} − ϵ1/4

}
≤ δ

2
. (9)

Finally, take another Union Bound over inequalities (8) and (9), we can conclude that

Pr(x,y)∼D {y = 1 | x ∈ h(w′)} ≥ 1− (U
√
2(2K + 1)/R2L+ 1/R+ 1)ϵ1/4

with probability at least 1− δ.

Obviously, the sample complexity is O(D̂1 + D̂2) = Õ(ϵ−1). For the time complexity, note first that
step 4 of Algorithm 2 takes O(d|D̂1|) = Õ(ϵ−1) time to run. Hence, the running time of Algorithm
2 is then Õ(dϵ−9/4) as T = O(ϵ−5/4). Similarly, estimating the conditional probability for each
w ∈ W at step 7 in Algorithm 1 takes O(d|D̂2|) = Õ(ϵ−1/2) time to run. Thus, it takes Õ(dϵ−7/4)

time to finish step 7. Overall, the running time of Algorithm will be Õ(dϵ−9/4).

E ANALYSIS OF ALGORITHM 3

Theorem E.1 (Theorem 4.2). LetD be a distribution on Rd×{0, 1} with (K,U,L,R)-well-behaved
x-marginal, C be a class of sparse linear classifiers on Rd × {0, 1} with sparsity s = O(1), and
x ∈ Rd be a query point. If there exists a unit vector v ∈ Rd and a c ∈ C such that x ∈ h(v) and

Pr(x,y)∼D{c(x) ̸= y | x ∈ h(v)} ≤ opt

for some sufficiently small opt, then, with at most poly(d, 1/ϵ, 1/δ) examples, Algorithm 3 will run
in time poly(d, 1/ϵ, 1/δ) and find a classifier c∗ and a halfspace h(w∗) such that x ∈ h(w∗) and

Pr(x,y)∼D{c∗(x) ̸= y | x ∈ h(w∗)} = O(opt1/4 + ϵ)

with probability at least 1− δ.

Proof. We first show that the returned list of Algorithm 4 will contain a classifier c′ ∈ L such that
minw Pr(x,y)∼D{c′(x) ̸= y | x ∈ h(w)} ≤ opt + ϵ4.

We decompose the distribution D into a convex combination of an inlier distribution D∗ and a outlier
distribution D̃ in the following way. Let D∗ be a distribution on Rd × {0, 1} with well-behaved
x-marginal such that its labels are generated by c(x), while D̃ will be a distribution on Rd × {0, 1}
with the same x-marginals to be specified later. Observe that, since Pr{c(x) ̸= y | x ∈ h(v)} ≤ opt
and Pr{x ∈ h(v)} ≥ R by Definition C.1, at least R (1− opt) fraction (weighted by the density of
Dx) of the labels of D are consistent with c(x). Therefore, there must exist some α ≥ R (1− opt)
such that the labels of Dx can be generated by selecting labels from D∗ with probability mass α and
from D̃, given by D conditioned on falling outside the support of D∗, with probability mass 1− α,
namely D = αD∗ + (1− α)D̃.

Hence, with m = O((s log d+log 2
δ )/ϵ

4) examples, we can inovke Theorem B.2 (and Definition B.1)
to conclude that there exists a classifier c′ ∈ L such that minw Pr{c′(x) ̸= y | x ∈ h(w)} ≤ opt+ϵ4
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with probability at least 1−δ/2. Meanwhile, it is easy to see that Algorithm 4 runs in poly(d, 1/ϵ, 1/δ)
time since α is a constant.

Then, by Theorem 3.1 and the parameters described at Line 8 of Algorithm 3, we have that

Pr(x,y)∼D{c′(x) = y | x ∈ h(w(c′))} = O(opt1/4 + ϵ)

with probability at least 1− δ/2 |L|. Applying Corollary G.4 (conditional Chernoff Bound) as well
as a Union Bound over all candidates inW (as defined in Algorithm 3) to the empirical estimation
(Line 11) with |D̂| = 8 ln (8 |L| /δ) /R2ϵ2 and |L| = O((md)

s
) gives

Pr(x,y)∼D{c∗(x) = y | x ∈ h(w∗)} = O(opt1/4 + ϵ)

with probability at least 1− δ/2. Finally, taking another Union Bound over the call of Algorithm 4
and the rest of the algorithm gives the desired result.

F DETAILS OF EXPERIMENTS

For convenience, we also list our experiment results here.

Table 3: Test error rates. TOTAL and LIST denote the number of examples used in the entire training
process (Algorithm 3 and baseline models) and the list learning (Algorithm 4) only. The models from
left (LOGREG) to right (PERS) are logistic regression, SVM with Linear, RBF kernel, XGBoost tree,
random forest, ERM sparse classifier (SPARSE), and personalized prediction (PERS) respectively. ∗

indicates statistically significant improvement with 95% confidence (over SPARSE for PERS, and
over PERS for the other baselines). For Pima and Hepa, PERS obtains improvement over SPARSE
with 85% confidence, and the difference from the other baselines is not significant at this level.

D/S TOTAL LIST DIM LOGREG LIN RBF XGB FOREST SPARSE PERS

HABE 204 204 3 .2647 .2647 .2941 .3529 .3039 .2745 .2745
PIMA 512 192 8 .2461 .25 .2344 .2344 .2304 .2852 .2461
HEPA 103 103 20 .1538 .1538 .1346 .2115 .1538 .2308 .1538
HYPO 2109 64 20 .0199∗ .019∗ .0285 .0133∗ .0142∗ .0579 .0379∗

WDBC 379 48 30 .0368 .0474 .0421 .0421 .0579 .0789 .0474∗

Overall, we simply evaluated seven algorithms, i.e. logistic regression, SVM with linear kernel, SVM
with RBF kernel, XGBoost, random forest, ERM sparse classifier (Algorithm 4 with an additional
evaluation, explained later), and personalized prediction (Algorithm 3), over five tabular datasets
of binary classification task. Since these datasets are all binary labeled, we only focused on the 0-1
classification loss as our experiment metric.

The first five baselines represent a variety of methods for real-world (moderate-to-small data) clas-
sification tasks, exemplified by the UCI benchmarks, while the ERM sparse classifier is used as a
special baseline to demonstrate that the sparse classifier selected with the help of our reference class
algorithm (Algorithm 1) could actually outperform the ERM of the sparse classifiers returned by the
robust classification algorithm (Algorithm 4). In particular, we simply run the robust list learner and
select the classifier in its returned list obtaining the highest accuracy using the same training dataset
(i.e., an Empirical Risk Minimizer (ERM)). This special baseline aims to verify that our approach
indeed improves the performance of stand alone sparse linear classifiers by learning a corresponding
homogeneous halfspace subset for each of them.

For data cleaning, we used one-hot encodings for binary categorical features. Then, we centered and
normalized the features so that every feature has mean zero and variance one. For each dataset, we
randomly selected 2/3 of the data as a training sample and use the remaining data as our test set. For
all datasets, we use 2-sparse linear classifiers for our personalized prediction scheme.

Since LOGREG, LIN, RBF, XGB, and FOREST are deterministic algorithms, we only ran one trial
of each. However, due to the excessively high computational cost of list learning and our limited
computation resources (4×NVIDIA A40), we have to randomly sample a small subset from the
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training dataset for Algorithm 4, similar to Hainline et al. (2019). We do this because, for example,
running the list learning algorithm with sparsity two on a 128-sample of dimension 30 is already
prohibitively expensive, i.e., takes ≈ 2300 hours on Wdbc dataset.

Since the subsets are too small for the theoretical guarantees of probabilistic stability to hold, a good
(sparse) classifier may not be included in the list in some trials, and the accuracy may have high
variance. Thus, we ran 50 trials for each of these two algorithms, and reported the median of the
50 observed losses in Table 3. This explains why our method becomes less competitive as the data
dimension increases due to our sub-sampling strategy. Specifically, for Haberman, our classifier is not
actually “sparse” as the sparsity almost equals the data dimension. More importantly, we can afford
to run the robust list learning algorithm on the whole training dataset because of the low dimension.
Indeed, our approach performs the best for this dataset as shown in Table 3. Because of these
limitations, our experiment results may not be able to exhibit the full potential of the personalized
prediction scheme.

G CONCENTRATION TOOLS

Fact G.1 (Gaussian properties). Let z ∼ N (0, σ2), we have ∥z∥ψ2
=
√

8/3σ and Pr{z ≥ t} ≤
e−t

2/2σ2

.
Definition G.2 (Sub-exponential norm Vershynin (2018)). For any random variable x ∼ D on R, we
define ∥x∥ψ1

= inf
{
t > 0 | Ex∼D[e

|x|/t] ≤ 2
}

.
Lemma G.3 (Chernoff Bound of Additive Form). Let x1, . . . , xm be a sequence of m independent
Bernoulli trials, each with probability of success E[xi] = p, then with t ∈ [0, 1], there is

Pr

{∣∣∣∣∣ 1m
m∑
i=1

xi − p

∣∣∣∣∣ > t

}
≤ 2e−2mt2 .

Corollary G.4 (Conditional Chernoff Bound of Additive Form). Let D be any distribution on
Rd × {0, 1} with centered sub-exponential x-marginals, and S be any event such that PrD{x ∈
S} ≥ R for some constant R ∈ (0, 1]. Given D̂ =

{
(y(1),x(1)), . . . , (y(m),x(m))

}
sampled i.i.d.

from D, for every t ∈ [0, 1], we have

PrD̂∼D
{∣∣PrD̂{y = 1 | x ∈ S} − PrD{y = 1 | x ∈ S}

∣∣ > t
}
≤ 4e−mt

2R2/8

Proof. Observe that, by lemma G.3, we have

PrD̂∼D
{∣∣PrD̂{y = 1 ∩ x ∈ S} − PrD{y = 1 ∩ x ∈ S}

∣∣ > t1
}
≤ 2e−2mt21

as well as
PrD̂∼D

{∣∣PrD̂{x ∈ S} − PrD{x ∈ S}
∣∣ > t1

}
≤ 2e−2mt21

for some t1 ≥ 0. Suppose R ≥ 2t1. Taking a union bound over the above inequalities gives

1− 4e−2mt21 ≤PrD̂∼D

{
PrD{y = 1 ∩ x ∈ S} − t1

PrD{x ∈ S}+ t1
≤

PrD̂{y = 1 ∩ x ∈ S}
PrD̂{x ∈ S}

≤ PrD{y = 1 ∩ x ∈ S}+ t1
PrD{x ∈ S} − t1

}
(i)

≤PrD̂∼D

{
PrD{y = 1 ∩ x ∈ S} − 2t1

PrD{x ∈ S}
≤

PrD̂{y = 1 ∩ x ∈ S}
PrD̂{x ∈ S}

≤ PrD{y = 1 ∩ x ∈ S}+ 4t1
PrD{x ∈ S}

}
≤PrD̂∼D

{
PrD{y = 1 ∩ x ∈ S} − 4t1

PrD{x ∈ S}
≤

PrD̂{y = 1 ∩ x ∈ S}
PrD̂{x ∈ S}

≤ PrD{y = 1 ∩ x ∈ S}+ 4t1
PrD{x ∈ S}

}
=PrD̂∼D

{∣∣PrD̂{y = 1 | x ∈ S} − PrD{y = 1 | x ∈ S}
∣∣ ≤ 4t1

PrD{x ∈ S}

}
≤PrD̂∼D

{∣∣PrD̂{y = 1 | x ∈ S} − PrD{y = 1 | x ∈ S}
∣∣ ≤ 4t1

R

}
where inequality (i) holds because, when a = Pr{y = 1 ∩ x ∈ S} − t1 and b = Pr{x ∈ S}+ t1,
we can apply the inequality a

b ≤
a+t1
b+t1

to the first term, and, when a = Pr{y = 1 ∩ x ∈ S} and
b = Pr{x ∈ S} ≥ R ≥ 2t1, we can apply the inequality a+t1

b−t1 ≤
a+4t1
b to the third term. The final

inequality holds because of our assumption that Pr{x ∈ S} ≥ R. Finally, taking t = 4t1/R gives
the desired result.
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Lemma G.5 (Bernstein’s Inequality). Let x1, . . . , xm be a sequence of m independent, mean zero,
sub-exponential random variables. Then, for some absolute constant C > 0 and every t ≥ 0, we
have

Pr

{
1

m

m∑
i=1

xi ≥ t

}
≤ exp

(
−Cmin

(
t2

K2
,
t

K

)
m

)
where K = maxi∥xi∥ψ1 .

Lemma G.6 (Proposition 2.7.1 in Vershynin (2018)). Let D be any distribution on R such that
∥̂x∥̂p ≤ Kp for some constant K ≥ 0, then there exists some absolute constant C such that
∥x∥ψ1

≤ CK.

Lemma G.7. Let D be any distribution on Rd × {0, 1} with x-marginal such that ∥⟨x,u⟩∥ψ1
≤ K

for some unit vector u ∈ Rd. For any event T ⊆ Rd, we have ∥y · ⟨x,u⟩1{x ∈ T}∥ψ1
≤ K.

Proof. Because y and 1{x ∈ T} are boolean valued, we have

E[exp (|y · ⟨x,u⟩1{x ∈ T}| /K)] ≤E[exp (|⟨x,u⟩| /K)]

(i)

≤ E[exp (|⟨x,u⟩| /∥⟨x,u⟩∥ψ1
)]

≤2

where inequality (i) holds because E[exp (|⟨x,u⟩| /t)] is a decreasing function of t, and the last
inequality is by Definition G.2. Also, by the same definition, the above inequality implies the claimed
result.

Lemma G.8 (Exercise 2.7.10 in Vershynin (2018)). If x ∼ D is a sub-exponential random variable on
R such that ∥x∥ψ1 ≤ K, then there exists some absolute constant C such that ∥x− ED[x]∥ψ1 ≤ CK.

Corollary G.9. Let D be any distribution on Rd × {0, 1} with K-bounded x-marginal and D̂ i.i.d.∼ D
be an m-sample. Define gw(x, y) = y · xw⊥1{x ∈ h(w)}. For any fixed v,w ∈ Rd, it holds that

Pr

{∣∣∣∣〈Ê
D
[gw(x, y)]− E

D
[gw(x, y)], v̄w⊥

〉∣∣∣∣ > t

}
≤ exp

(
−min

(
t2

C2K2
,

t

CK

)
m

)
where C > 0 is an absolute constant.

Proof. Let ’s first notice that ⟨xw⊥ , v̄w⊥⟩ = ⟨x, v̄w⊥⟩ due to the definition of projec-
tion. Then, by Lemma G.6 and our distributional assumption, we have ∥⟨xw⊥ , v̄w⊥⟩∥ψ1

≤
C0K for some constant C0 > 0. Now, according to Lemma G.7 and G.8, it holds that
∥⟨gw(x, y), v̄w⊥⟩ − E[⟨gw(x, y), v̄w⊥⟩]∥ψ1

≤ CK for some constant C ≥ 0. At last, applying
Lemma G.5 on ⟨gw(x, y)− E[gw(x, y)], v̄w⊥⟩ gives the claimed tail bound.
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