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Learning with Explicit Shape Priors for Medical
Image Segmentation

Xin You, Junjun He, Jie Yang, Senior Member, IEEE , Yun Gu, Member, IEEE

Abstract— Medical image segmentation is a fundamental
task for medical image analysis and surgical planning. In
recent years, UNet-based networks have prevailed in the
field of medical image segmentation. However, convolu-
tional neural networks (CNNs) suffer from limited receptive
fields, which fail to model the long-range dependency of
organs or tumors. Besides, these models are heavily de-
pendent on the training of the final segmentation head.
And existing methods can not well address aforemen-
tioned limitations simultaneously. Hence, in our work, we
proposed a novel shape prior module (SPM), which can
explicitly introduce shape priors to promote the segmenta-
tion performance of UNet-based models. The explicit shape
priors consist of global and local shape priors. The for-
mer with coarse shape representations provides networks
with capabilities to model global contexts. The latter with
finer shape information serves as additional guidance to
relieve the heavy dependence on the learnable prototype
in the segmentation head. To evaluate the effectiveness of
SPM, we conduct experiments on three challenging public
datasets. And our proposed model achieves state-of-the-art
performance. Furthermore, SPM can serve as a plug-and-
play structure into classic CNNs and Transformer-based
backbones, facilitating the segmentation task on different
datasets. Source codes are available at https://github.
com/AlexYouXin/Explicit-Shape-Priors.

Index Terms— Medical image segmentation, explicit
shape prior, UNet, BraTS 2020.

I. INTRODUCTION

Medical image segmentation is regarded as one of the
most essential and challenging tasks for medical image analy-
sis, which is a prerequisite for image-guided diagnosis and
computer-assisted intervention [23]. It provides anatomical
shape information by making per-pixel predictions for organs
or lesions in images [31]. Recently, deep learning techniques
[45] have dominated medical image segmentation. The most
successful architectures are U-shape networks [43]. The multi-
scale features are extracted for specific regions in the encoder,
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which contain semantic and detail information. Then deep
features from the bottleneck are fused with encoded features
via skip connections in the decoder structure. Lastly, per-
pixel classifications are carried out on decoded features via
the segmentation head [59], which is a learnable prototype.
Deep networks are free from hand-crafted features to achieve
outstanding performance for segmentation.

A. Limitations

However, current UNet-based models suffer from the fol-
lowing limitations for medical image segmentation. 1⃝ CNNs
bear limited receptive fields due to intrinsic properties of
convolutional kernels, which cannot exploit long-range and
global spatial relations between organs or tissues, then they
fail to achieve fine shape representations. Thus, some implicit
attention modules [17], [24], [41], [52] are employed to
enlarge models’ receptive fields, and they are termed implicit
shape models in our work. We will talk about them compre-
hensively in Section I-B. 2⃝ Segmentation masks are primarily
based on the training of the final learnable prototype [59]
interpreted by the segmentation head. Specifically, considering
a segmentation task with N semantic classes, N class-wise
prototypes are learned for pixel-wise classification. Only one
learnable prototype is learned for each class, which employs
limited representation abilities, thus insufficient to describe
rich intra-class variance. Under this circumstance, UNet-based
models meet a major challenge to extract precise shape infor-
mation of organs or tumors. Specific loss functions [18], [37]
are designed to integrate explicit shape priors or anatomical
constraints to segmentation frameworks instead of Dice loss
or cross-entropy loss, which can extract sufficient structure
information related to the regions of interest, including shapes
and topology. However, these loss functions are task-specific
and cannot be easily extended on different datasets. Moreover,
explicit shape models [22], [29] are proposed to enhance
models’ capacities for shape representations, with shape priors
as an additional input. More thorough descriptions can be
referred to in Section I-C.

B. Implicit Shape Models

To address the limitation on restricted receptive fields of
CNNs, previous works try to introduce implicit anatomical
shape priors to the U-shape structures, which are termed
implicit shape models. These shape priors can be injected into
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Fig. 1. The comparison between different segmentation paradigms with explicit shape priors. (a) Atlas-based models employ m ground truths
from source datasets as shape priors, and construct the transformation matrix R between source and target images. Then R is applied to shape
priors for achieving segmentation masks. (b) Gaussian Mixture Model (GMM) gathers N (the number of segmentation classes) learnable Gaussian
distributions as shape priors to deal with the per-pixel classification. (c) Our model adopts N-channel learnable shape priors as additional inputs to
boost the segmentation performance of deep neural networks.

network structures via implicit attention modules. Theoreti-
cally, attention modules M [10], [17], [24], [41], [52] are in-
troduced to strengthen deep features generated from encoders
E , driving them more focused on foreground regions with
specific shapes. Then decoders D merge enhanced features
to attain more precise masks Y of corresponding images X .
This process can be described as follows:

Y = D(M(E(X ))) (1)

More specifically, the attention modules can be divided into
two categories. The first type belongs to convolution-based at-
tention modules. BB-UNet [17] enhanced skipped features via
bounding box (BB) filters generated before training. Though
BB filters can provide shape information of specific organs,
obtaining BB filters requires manual interventions. Besides,
Attention UNet [41] employs attention gates (AGs) to enhance
salient features beneficial for specific tasks. AGs can also
suppress redundant feature activation from irrelevant regions,
which bear shape priors to some extent. SE blocks [24] adap-
tively recalibrate channel-wise feature responses by modeling
inter-dependencies between channels. CBAM [52] adopted
the channel attention module and spatial attention module to
boost representation abilities on the shape of specific regions.
However, stacking convolution-based attention modules cannot
efficiently broaden effective receptive fields [36]. And they still
show limited competence to model long-term dependency.

Different from that, the second type of attention module is
based on the self-attention mechanism [16], which provides a
feasible way of modeling global contexts via query, key, and
value vectors. Many Transformer-based models with various
types of self-attention [10], [20], [48], [49], [58] are pro-
posed to model the long-range dependency of medical images.
TransUNet [10] combines 2D UNet with a pre-trained Vision
Transformer (ViT) to solve volumetric image segmentation
by stacking each slice’s prediction. SwinUNETR [48] adopts
the shifted window-based attention to extract features of 3D
patches, then merge multi-scale encoded features via residual
convolutional blocks to attain final masks. However, unlike
CNNs, these Transformer-based models require large data
resources for training, which fail to simply and finely learn

inductive bias such as shape prior information inside data
sources [54].

C. Explicit Shape Models
To relieve the heavy dependence on the training of the

final learnable prototype, prior methods attempt to introduce
additional shape information into the segmentation framework,
which we call explicit shape priors. Different from implicit
shape priors mentioned above, explicit shape priors show
strong interpretability, which presents a rough localization for
the regions of interest (ROIs). These works can be divided
into two categories, including atlas-based models [29], and
statistical shape models, represented by Gaussian Mixture
Model (GMM) [47].

Specifically, the first paradigm is based on the atlas, whose
essence is the label propagation via registration transform
between source and target images [6]. Then after applying
this transform to source ground truths (GTs), we can attain
GTs of target images. Obviously, nonrigid registration cannot
perfectly deal with the segmentation task due to limited data
sources and imaging noise [1]. Thus, a more feasible solution
is to build matching relations in a non-local way. Besides, it
is beneficial to achieve a more refined segmentation mask by
adopting the weighted combination of a group of candidates
from source images, which are called registration bases. The
segmentation masks of registration bases serve as shape priors
to promote the segmentation of target images. The whole
model can be described by Eq (2):

Ytest =
m∑
i=1

ωi × T (Yi
b;R(X i

b ⇒ Xtest)),X i
b ∈ Xtrain,Yi

b ∈ Ytrain (2)

where Xtrain and Ytrain, Xtest and Ytest represent images
and GTs from the training and testing data sources, Xb and Yb

represent the group of registration bases containing m pairs
of source images and GTs, ωi is the weighting coefficient.
Besides, R refers to the registration transform between X i

b

and Xtest. And T is the transformation matrix, which applies
the registration transform to each GT of registration bases Yi

b.
For atlas-based models, there exists a large computational

cost during inference. Furthermore, the choice of registration
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bases is significant to the model’s robustness. Detailedly, the
base vector should cover the distribution property of the
whole dataset. However, adopting fixed template shapes cannot
cover all biological objects due to the existence of shape
variations. Thus, gathering a number of shape priors in a
statistical way from training datasets is essential to boost
models’ segmentation performance and robustness.

The second segmentation paradigm is statistical shape mod-
els [22]. A representative method is the Gaussian Mixture
Model (GMM) [42], which completes a consecutive mapping
from image space I to label space L via a group of learnable
Gaussian distributions. And these Gaussian distributions can
be regarded as explicit shape priors of the dataset. During
training, the Expectation Maximization (EM) algorithm is
iteratively implemented to update the learnable Gaussian dis-
tributions and segmentation masks [32], [47]. In the inference
process, we utilize learned shape priors as independent kernels.
The whole model is illustrated by the following equation:

Ytest = argmax
i=1,...,N

G(Xtest;Ki),Ki ∈ K(Xtrain,Ytrain) (3)

Where K means learned Gaussian distributions generated
from the training process, Ki refers to each element in K, N
is the number of Gaussian kernels, which is also the number
of semantic classes. G is a mapping function by distributing n
Gaussian probability values to each pixel, each value generated
from kernel Ki. However, GMM is still sensitive to noises and
dynamic backgrounds. Besides, the initial setting of the EM
algorithm is crucial to the final solution [42].

Some other related works expand the impacts of statistical
shape models. The point distribution model (PDM) [15] was
devised to represent the mean geometry of a shape and
some statistical modes of geometric variation inferred from
a training set of shapes. Active shape model (ASM) [14] is a
statistical model of the object shape that iteratively deforms to
fit an example of the object in a new image. The shapes are
constrained by the point distribution model to vary in ways
seen in a training set of labeled examples. However, ASM
only uses shape constraints and does not take advantage of all
the available information. Thus, the active appearance Model
(AAM) [13] was proposed for matching a statistical model
of object shape and appearance to a new image. Specifically,
this algorithm uses the difference between the current estimate
of appearance & shape and the target image to drive the
optimization process. Besides, constrained local models [55]
combine a global shape model with local texture models
for the delineation of every landmark point. This method is
effective in modeling the shape deformation in local regions.
Nevertheless, these explicit shape models cannot be embedded
into deep segmentation networks, which still suffer from poor
generalization abilities for unseen datasets.

D. Contributions
To address those two limitations in the meantime, we

incorporate learnable explicit shape priors to enhance shape
representations of UNet-based models. In the field of object
detection, DETR [8] introduced a set of learnable object
queries, then reasons about the relations of the objects and the

global image context to directly output the final predictions.
Motivated by this design, we devise the learnable shape prior,
which is indeed an N-channel vector, and each channel con-
tains rich shape information for the specific class of regions.
Shape priors are generated based on self-attention, which
endow the segmentation model with global receptive fields.
Meanwhile, learnable shape priors can boost encoded deep
features with richer shape information, then drive networks
to generate better masks, which can ease the heavy depen-
dence on the learnable prototype. Also, encoded features will
contribute to iterative updates of shape priors. Based on this
theory, we propose the shape prior module (SPM) consisting
of the self-update block (SUB) and cross-update block (CUB).

Firstly, SUB is devised to generate global shape priors
of specific datasets. Based on the self-attention mechanism
[16], learnable shape priors are globalized to model the inter-
class relations by calculating the similarity between each
channel pair of shape priors. Here each channel in shape priors
corresponds to shape representations of the specific anatomical
structure. Thus, SUB plays an essential role in modeling
the long-range dependency of datasets, which alleviates the
drawback of convolution-based implicit attention modules.

Secondly, the structure of SUB is deficient in reductive
bias [54] to model refined shape representations of anatomies.
That is why CUB is designed to characterize local shape
priors. Convolutional features from the encoder reveal strong
abilities to localize discriminative structures [60]. Hence, the
interaction between convolutional features and global shape
priors will output local priors with finer shape representations,
which mitigates the convergence challenge of self-attention-
based implicit shape enhancement modules. Meanwhile, shape
priors can enrich convolutional features with abundant global
contexts, including texture and structural information.

Thirdly, learnable shape priors are explicitly incorporated
into segmentation models for better performance with good
interpretability as illustrated by Fig.1. And they are capable
of relieving the heavy reliance on prototype learning. In
comparison with other explicit shape models, our proposed
SPM presents stronger generalization abilities on different
datasets. Specifically, learnable N-channel shape priors are
more robust than the atlas selected from training sets due to the
fact that fixed templates cannot cover the distribution property
of the whole dataset. Besides, deep segmentation networks
with SPM are less sensitive to background noise and the initial
solution in the optimization process compared to statistic shape
models (SSM) including GMM, ASM, etc.

Lastly, to demonstrate the efficacy of the proposed SPM,
we carry out evaluations on three public datasets, containing
BraTS 2020, ACDC, and VerSe 2019. Here SPM is plugged
into the position of skip connections as shown in Fig.1.
And our model achieves state-of-the-art (SOTA) segmentation
performance on these challenging datasets. Specifically, under
the productive guidance of explicit shape priors, our model
achieves an absolute gain of 1.06% in the term of Dice score
on VerSe 2019, a significant decrease of 0.92mm in the term
of HD95 on BraTS 2020, a finer connectivity for the shape
of the myocardial region. Besides, due to its plug-and-play
property, we probe into the generalization ability on other
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networks, including classic CNNs and recent Transformer-
based models. Our contributions are briefly summarized as
follows:

1) We conduct a thorough comparative analysis of three
types of segmentation paradigms with explicit shape priors,
consisting of Atlas-based models, Statistical shape models
represented by GMM and learnable shape priors plugged into
deep segmentation networks.

2) We propose a novel shape prior module (SPM), com-
prised of the self-update and cross-update blocks. And they
will generate global contexts and local shape priors with finer
shape representations of anatomical structures.

3) The proposed module plugged into deep segmentation
networks alleviates the limitations on networks’ limited recep-
tive fields and prototype learning. The enhanced segmentation
model achieves SOTA performance on BraTS 2020, VerSe
2019, and ACDC.

4) SPM is a plug-and-play structure, which brings a sig-
nificant boost to shape representations of classic CNNs and
Transformer backbones.

II. METHODOLOGY

A. Unified Framework for Explicit Shape Models

As shown in Fig.1, we mainly discuss three types of
segmentation paradigms, which can provide explicit shape
priors. These paradigms can be unified as follows:

O = D(P(I;S)) (4)

where I represents testing images as the input of the seg-
mentation framework, and O refers to the model’s outputs. S
denotes explicit shape priors generated with different manners,
which are used for enhancing the segmentation performance.
P refers to the process of model prediction with joint inputs.
D means the one-hot decoding on the generated N-channel
prediction, and N is the number of segmentation classes.

In this work, the proposed paradigm introduces learnable ex-
plicit shape priors S to U-shape neural networks. Specifically,
S is utilized as inputs of networks combined with images. The
outputs of networks are predicted masks and attention maps
generated by S. Then channels of attention maps can provide
rich shape information of the ground truth region. The explicit-
shape-prior model can be depicted as follows:

Ytest, attention = F(Xtest,S(Xtrain,Ytrain)) (5)

where F represents the forward propagation during inference,
S stands for consecutive shape priors constructing the mapping
between image space I and label space L. Here S is updated in
the training process as the image-GT pair varies. Once training
is finished, learnable shape priors are fixed, which can dynam-
ically generate refined shape priors as input patches vary in the
inference process. And refined shape priors serve as attention
maps, which can localize regions of interest, and suppress
background areas. Furthermore, a small portion of inaccurate
ground truths will not affect the learning for S significantly,
revealing the robustness of our proposed paradigm.

B. Shape Prior Module
Overview. As depicted in Fig.1, our proposed model is a
hierarchical U-shape network, which consists of a ResNet-
like encoder, a Resblock-based [48] decoder and the shape
prior module (SPM). And SPM is a plug-and-play module,
which can be flexibly plugged into other network structures
to improve segmentation performance. In the sections below,
we will give a detailed description of SPM, including the
motivation for this module, the detailed structure, and the
functions.

In order to get rid of the dependency on the final learnable
prototype, we propose to introduce explicit shape priors to
UNet-based networks, which will exert anatomical shape con-
straints for each class to enhance the representation abilities of
networks. Motivated by DETR [8], we devise n (the number
of segmentation classes) learnable prototypes, the analogy to
object queries in the Transformer decoder of DETR. As shown
in Fig.2, inputs of SPM are original skipped features Fo

and original shape priors So, which are refined as enhanced
skipped features Fe and enhanced shape priors Se. Specif-
ically, learnable shape priors will generate refined attention
maps with sufficient shape information under the guidance
of convolutional encoded features. In the meantime, encoded
features will generate more accurate segmentation masks via
shape priors. Different from DETR, SPM will interact with
multi-scale features, not just features from the bottleneck of
the encoder. Thus, hierarchical encoded features before skip
connections will be equipped with richer shape information via
SPM. Enhanced shape priors are made up of two components,
global and local shape priors, generated from the self-update
block and cross-update block respectively. We will give a more
elaborate description of these two blocks.
Self-Update Block: Modeling long-range dependency. On
the ground that we aim to introduce explicit shape priors
which can localize the target regions, the size of shape priors
So is N × spatial dimension. N refers to the number of
classes, and spatial dimension is related to the patch size. To
alleviate the drawback of limited receptive fields, the long-
range dependency inside shape priors is considered in this
work. Specifically, the self-update block (SUB) is proposed
to model relations between inter-classes and generate global
shape priors with interactions between N channels. Motivated
by the self-attention mechanism of Vision Transformer (ViT)
[16], the affinity map of self-attention Smap between N classes
is constructed by the Eq (6), which describes the similarity and
dependency relationship between each channel of shape priors.

Smap = Softmax(
Qs(So)×Ks(So)

T

√
N

) (6)

where Qs and Ks represent convolutional transforms which
project So into the query and key vector, T is the transpose
operator, and the dimension for Smap is N ×N . The vanilla
self-attention module shows quadratic computational complex-
ity, which poses an obstacle to dense prediction tasks. Thus,
many related works [9] attempt to reduce the computational
cost of the self-attention module for faster convergence and
less memory consumption. Here we set the spatial dimension
of So as h × w × l, 1

16 ratio of the patch size H × W × L.
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16
of the patch size.

Besides, So bears N tokens, which means the self-attention
module in SUB is a linear attention module. And Eq (6) shows
O(N2 ×HWL) computational complexity.

After that, the weighted sum of Smap and value vector of
So, noted as Vs(So), are adopted to obtain global shape priors.
This process also requires O(N2 × HWL) computational
costs. To further model the long-range dependency inside
learnable shape priors, multi-layer perceptron (MLP) and layer
normalization (LN) are employed. The detailed process can be
illustrated as follows:

S ′ = LN(Smap × Vs(So)) + So (7)
SG = LN(MLP (S ′)) + S ′ (8)

where Vs represents the convolutional transform, × means the
process of matrix multiplication, SG is global shape priors.
Detailedly, SG can build the long-term dependency inside So,
which contains global contexts of sampled input patches, in-
cluding coarse shape and positional representations combined
with sufficient texture information for global regions.
Cross-Update Block: Modeling local shape priors. To
relieve the dependence on the learnable prototype, we attempt
to introduce explicit shape priors to boost the representation
abilities for shape information. However, the structure of SUB
falls lack of inductive bias [54] to model local visual structures
and localize objects with various scales. As a result of that,
global shape priors do not have precise shape and contour
information. Further, models have to learn intrinsic inductive
bias from large amounts of data for a longer training time.
To address this limitation, we propose the cross-update block
(CUB). Motivated by the fact that convolutional kernels intrin-
sically bear the inductive bias of locality and scale invariance,
CUB based on convolution injects inductive bias to SPM for

local shape priors with finer shape information. Moreover,
based on the fact that convolutional features from the encoder
have remarkable potentials to localize discriminative regions
[60], we attempt to interact original skipped features Fo from
the backbone with shape priors So as demonstrated in Fig.2.

Specifically, we calculate the similarity map between fea-
tures Fo and shape priors So. Here the dimension of Fo is
C × H

k × W
k × L

k (k = 2, 4, 8), and C represents the channel
number of features. However, Fo and So bear different scales,
which makes it difficult to fuse two elements. Thus, we firstly
upsample So to the same resolution as Fo, then integrate
them based on the cross attention mechanism [8]. The detailed
computational process is illustrated as Eq (9):

Cmap = Softmax(
Qc(Fo)×Kc(Upsample(SG))

T

√
N

) (9)

where Cmap means the affinity map in the cross attention
stage, Qc and Kc represent convolutional transforms which
project Fo and So into the query and key vector. Cmap is
a C × N matrix, which evaluates the relations between C-
channel feature maps Fo and N -channel shape priors. The
specific channel of convolutional feature maps Fo correlates
with specific channels of shape priors. After that, Cmap acts
on transformed global shape priors SG to refine Fo, with more
accurate shape characteristics and rich global textures.

Fe = Cmap × Vc(Upsample(SG)) + Fo (10)

where Vc refers to convolutional transforms projecting So into
the value vector, Fe represents enhanced skipped features.
At the same time, local shape priors SL are generated from
downsampled Fe, which bear the property to model local
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TABLE I
COMPARISON WITH OTHER MODELS ON VERSE 2019. (CERV: CERVICAL VERTEBRAE, THOR: THORACIC VERTEBRAE, LUMB: LUMBAR

VERTEBRAE, MEAN: THE AVERAGE EVALUATION METRIC OF ALL CASES, MEDIAN: THE MEDIAN EVALUATION METRIC OF ALL CASES.)

Method Dice score (%) ↑ HD95 (mm) ↓ Params(M) FLOPs(G)
Cervical Thoracic Lumbar Mean Median Cervical Thoracic Lumbar Mean Median

3D UNet [12] 83.10 78.37 70.88 81.28 87.54 4.04 8.75 11.56 7.97 4.84 16.49 520.98
VNet [39] 86.32 87.78 73.45 85.57 92.14 2.82 4.77 10.29 5.24 2.27 45.73 957.88

nnUNet [28] 87.81 88.80 74.96 86.59 92.62 2.94 3.74 8.39 5.21 2.60 30.90 502.80
TransUNet (3D) [10] 85.49 82.67 73.88 83.53 88.06 2.56 4.90 9.38 5.43 3.34 146.68 682.96

CoTr [53] 81.48 79.68 68.83 80.59 85.72 5.57 10.01 17.42 11.34 7.77 48.53 507.68
UNeXt [49] 77.00 86.73 71.06 83.36 88.39 4.57 3.98 12.24 5.82 3.51 4.02 12.17

maskformer [11] 87.14 84.59 69.72 82.20 90.27 2.38 5.80 25.50 7.55 2.79 64.40 943.48
EG-Trans3DUNet [56] 83.67 82.41 74.11 86.01 91.12 3.38 4.06 9.87 5.32 3.18 161.89 748.20

Verteformer [57] 87.25 88.76 72.73 86.54 90.74 2.50 3.62 10.90 4.93 2.52 330.65 336.45
Swin UNETR [48] 89.30 81.43 73.36 83.46 88.91 2.21 7.79 10.09 7.66 5.22 62.19 732.18

Ours 89.87 88.69 74.15 87.65 93.43 2.01 3.15 9.08 4.36 1.81 46.55 457.63

visual structures (edges or corners).

SL = Downsample(Conv(Fe)) (11)
Se = SL + SG (12)

In conclusion, original shape priors are enhanced with
global and local characteristics [46]. Global shape priors
can model the inter-class relations, which bear coarse shape
priors with sufficient global texture information based on
the self-attention block. Local shape priors show finer shape
information via the introduction of inductive bias based on
convolution. Besides, original skipped features are further
enhanced via the interaction with global shape priors, which
will promote generating features with discriminative shape
representations and global contexts, then acquire more precise
predicted masks.

III. EXPERIMENT

A. Datasets

In this work, we conduct experiments on three public
datasets for segmentation including the Brain Tumor Segmen-
tation (BraTS) 2020 challenge [2], [3], [38], the Large Scale
Vertebrae Segmentation Challenge (VerSe 2019) [44] and the
Automatic Cardiac Diagnosis Challenge (ACDC) [4].
BraTS 2020: This MRI dataset contains 369 training cases,
125 validation cases, and 166 testing cases. Each case bears
the same volume size 155×240×240 and the same voxel space
1×1×1 mm3. Besides, each sample consists of four modality
inputs, which are T1, T1-weighted, T2-weighted, and T2-
FLAIR. The segmentation ground truth contains four classes,
label 0 for background, label 1 for non-enhancing tumor core
(NET), label 2 for peritumoral edema (ED), and label 4 for
GD-enhancing tumor (ET). And the final evaluation metrics
are Dice scores [39] and 95% Hausdorff distance HD95

[27] on three regions, ET region (label 4), tumor core (TC,
including label 1 and 4), the whole tumor (WT, containing
label 1, 2 and 4). Furthermore, we introduce the average Dice
score and HD95 for an average evaluation of three regions.
VerSe 2019: This CT dataset is composed of 80 training
cases, 40 validation cases, and 40 testing cases. There are
26 segmentation classes, including label 0 for the background
and label 1-25 for 25 vertebrae. Of all 25 vertebrae, label 1-7
represents cervical vertebrae, label 8-19 for thoracic vertebrae

and label 20-25 for lumbar vertebrae. Different samples show
different field of views (FOVs), which means they may have
different kinds of vertebrae. Here we select Dice scores and
HD95 for cervical, thoracic, and lumbar. Besides, mean and
median values for all testing cases are also reported.
ACDC: This dataset involves 100 MRI scans from 100
patients. The target ROIs are the left ventricle (LV), right
ventricle (RV), and myocardium (Myo). And we follow the
data split setting of nnFormer [58], with 70 training cases, 10
validation cases, and 20 testing cases.
Implementation Details. The proposed model is implemented
with PyTorch 1.8.0 and trained on 2 NVIDIA Telsa V100, with
a batch size of 2 in each GPU. For the BraTS 2020 dataset,
all models are trained with the AdamW [35] optimizer for
2000 epochs, with a warm-up cosine scheduler for the first 50
epochs. The initial learning rate is set as 8e-4 with 1e-5 weight
decay. And the size of cropped patches is 128×128×128. We
do not utilize complicated data augmentations like previous
works [28], [58]. Instead, we adopt strategies of random mirror
flipping, random rotation, random intensity shift and scale. For
the VerSe 2019 dataset, we train all models for 1000 epochs.
All preprocessed cases are cropped with a patch size of 128×
160× 96. Random rotation between [−15◦, 15◦] and random
flipping along the XOZ or YOZ plane are employed for the
data diversity. For the ACDC dataset, models are trained for
1500 epochs and the patch size is set as 20 × 256 × 256.
Similarly, we augment the cardiac data with random rotation
and random flipping. And for both VerSe 2019 and ACDC,
we choose the Adamw optimizer with the initial learning rate
set as 5e-4 and the cosine warm-up strategy for 50 epochs
during training. Following the setup in [28], we choose a sum
of Dice loss and cross-entropy loss for model training.

B. Experimental Results
Brain tumor segmentation: Table II illustrates the quan-

titative segmentation performance of our proposed model
compared with other CNNs and Transformer-based models. It
can be figured out that our model shows absolute superiority
on the Dice score and HD95 of all three regions. Compared
with TransBTSV2 [30], our model achieves higher Dice scores
of 0.07%, 0.52%, 0.85% and a lower HD95 of 0.46mm,
0.35mm, 0.48mm on the ET, WT and TC region. This
improvement results from the fact that enhanced shape priors
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3D UNet ResUNet UNETRUNeXt Swin UNETR Ours GT

3D UNet ResUNet Maskformer UNeXt nnFormer Ours GT

Non-enhancing Tumor Peritumoral Edema GD-enhancing Tumor

Right Ventricle Myocardium Left Ventricle

Fig. 3. Predicted masks of different models on BraTS 2020 and ACDC. Each column refers to a segmentation result of a network model.

serve as anatomical priors to be injected into networks, which
eases the dependence on the final learnable prototype. Com-
pared with nnUNet [28], the proposed model outperforms that
powerful baseline on the HD95 metric, with a significant drop
of 2.71mm and 0.92mm on the ET and the whole foreground
regions. This performance superiority indicates that the shape
prior module (SPM) can enlarge models’ receptive fields. Fur-
thermore, our model significantly surpasses other Transformer-
based baselines, revealing a more reasonable inductive bias for
unseen data. It is worth mentioning that there is a significant
improvement in the metrics for WT and TC regions. We claim
that our model with refined shape priors is aimed at enhancing
shape representations for region WT and TC because they

bear a relatively fixed shape in contrast to region ET. We will
prove this viewpoint in the ablation study on the generalization
abilities of SPM with different network structures.

Vertebrae segmentation: To further evaluate the performance
of our proposed model, we conduct experiments on VerSe
2019. Table I presents the segmentation performance on the
hidden test dataset. Our model outperforms the powerful
nnUNet on the metric of cervical, and thoracic vertebrae.
Specifically, there is 2.06%, 1.06% Dice score increases and
0.93mm, 0.85mm HD95 decreases for cervical and the whole
spine. Besides, different cases have different field of views
(FoVs), which bring difficulty for models to identify the last
several vertebrae. And nnUNet is superior to other models
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(a) (b)

C1 C2 C3 C4

S1

S2

S3

S4

Image/GT Image/GTC1 C2 C3 C4

Fig. 4. Different channels (from Channel 1 to Channel 4) and different stages (from Stage 1 to Stage 4) of generated shape priors on two cases of
BraTS 2020. Ci and Si (i=0, 1, 2, 3) represent the respective channels and stages.

TABLE II
COMPARISON WITH OTHER MODELS ON BRATS 2020. (ET: THE

GD-ENHANCING TUMOR, WT: THE WHOLE TUMOR, TC: THE TUMOR

CORE, MEAN: THE AVERAGE EVALUATION METRIC OF THREE REGIONS.)
Method Dice score (%) ↑ HD95 (mm) ↓ Params(M) FLOPs(G)

ET WT TC Mean ET WT TC Mean
3D UNet [12] 77.85 90.41 83.26 83.84 17.94 4.90 5.77 9.53 16.47 516.71
Liu et al. [34] 76.37 88.23 80.12 81.57 21.39 6.68 6.49 11.52 - -
Vu et al. [50] 77.17 90.55 82.67 83.46 27.04 4.99 8.63 13.55 - -

Nguyen et al. [40] 78.43 89.99 84.22 84.21 24.02 5.68 9.57 13.09 - -
ResUNet [21] 78.64 90.48 85.18 84.77 17.77 6.56 5.46 9.93 17.16 334.31

TransUNet [10] 78.42 89.46 78.37 82.08 12.85 5.97 12.84 10.55 105.18 1035.52
Swin UNETR [48] 79.61 89.51 84.69 84.60 14.61 11.18 6.10 10.63 62.19 790.61

UNeXt [49] 76.49 88.70 81.37 82.19 16.61 4.98 11.50 11.04 4.02 14.92
TransBTS [51] 78.73 90.09 81.73 83.52 17.95 4.96 9.77 10.89 32.99 412.97

TransBTSV2 [30] 79.63 90.56 84.50 84.90 12.52 4.27 5.56 7.45 15.30 320.54
nnUNet [28] 79.37 91.05 85.11 85.18 14.79 3.65 5.36 7.94 30.43 534.36

Ours 79.70 91.08 85.35 85.38 12.06 3.92 5.08 7.02 43.53 438.23

TABLE III
COMPARISON WITH OTHER MODELS ON ACDC. METRIC: DICE SCORES

(%). (RV: RIGHT VENTRICLE, MYO: MYOCARDIUM, LV: LEFT

VENTRICLE, MEAN: THE AVERAGE EVALUATION METRIC OF ALL

REGIONS.)
Method RV Myo LV Mean Params (M) FLOPs (G)

R50 Att-UNet [41] 87.58 79.20 93.47 86.75 107.60 639.09
TransUNet [10] 88.86 84.54 95.73 89.71 105.50 643.20
Swin-UNet [7] 88.55 85.62 95.83 90.00 27.17 118.00
UNETR [20] 85.29 86.52 94.02 88.61 93.10 195.62

MISSFormer [26] 86.36 85.75 91.59 87.90 42.46 187.80
Maskformer [11] 87.89 87.34 94.92 90.05 45.87 712.69

nnUNet [28] 90.24 89.24 95.36 91.61 30.43 471.86
nnFormer [58] 90.94 89.58 95.65 92.06 147.11 291.76

Ours 92.28 88.13 96.61 92.34 41.86 257.90

3D UNet VNet nnUNet UNeXt Swin UNETR Ours GT

Fig. 5. Predicted masks of different models on VerSe 2019.

including ours on the ability to localize and segment lumbar
vertebrae (Label 20-25). Furthermore, in contrast with other

models, we achieve the highest median Dice score 93.43%
and lowest HD95 1.81mm, which means that our model can
boost the overall performance of testing cases. Due to the
additional shape guidance, segmentation performance will not
be restricted by the limited generalization ability of learnable
prototypes. Fig.5 illustrates that our model presents better
visualization results, with more consistent predictions in a
singular vertebra. This phenomenon indicates that learnable
explicit shape priors for vertebrae are truly effective in the
refinement of predicted masks.
Automated cardiac segmentation: We also conduct quan-
titative and qualitative experiments on the ACDC dataset. As
shown in Table III, our model outperforms the previous SOTA
model nnFormer [58] on the evaluation metrics for the RV and
LV regions. Specifically, the Dice scores of RV and LV reach
92.28% and 96.61%, with 1.34% and 0.96% higher than that
of nnFormer. Fig.3 demonstrates that our model outputs more
accurate segmentation masks, particularly in the RV and LV
regions. That phenomenon proves that SPM can boost shape
representations for anatomical structures with relatively fixed
shapes. However, the segmentation performance for Myo is
lower than that of nnUNet [28] and nnFormer. We argue that
networks will be more focused on larger regions and ignore
smaller regions due to the label imbalance between RV, LV
and Myo [37]. Besides, this MRI dataset shows a large voxel
space, which will aggravate the effect of label imbalance.
And the unique and effective resampling strategy of nnUNet
and nnFormer will improve the imbalanced distribution of
the myocardium tissue, which results in stronger attention of
models on this region. Thus, nnUNet and nnFormer achieve a
higher Dice score on the Myo region.

C. Visualizations of shape priors and skipped features
In this section, we probe into the qualitative results of

shape priors and skipped features. In fact, they are mutually
enhanced. We first discuss the impact of skipped features on
explicit shape priors. As mentioned in section II-A, explicit
shape priors are iteratively updated under the guidance of
skipped convolutional features, then optimized shape priors
will activate regions of interest. We visualize two cases from
the BraTS 2020 dataset in Fig.4. Case (a) illustrates generated
explicit shape priors from different stages. Specifically, shape
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Image/GT S0-mean S1-mean S2-mean S3-mean

Fig. 6. Mean shape priors on Channel 1 to Channel 26 of different
stages (from Stage 0 to Stage 3) on two cases of VerSe 2019. Si-mean
(i=0, 1, 2, 3) means average shape priors on channels of the ith stage.

Global shape priors Local shape priors

C1 C2 C3 C4

S1

S3

C1 C2 C3 C4

Fig. 7. Different channels and different stages of global and local
shape priors on case (a) in Fig.4. Ci and Si (i=0, 1, 2, 3) represent
the respective channels and stages.

C1 C2 C3 C4 C5 Mean Image/GT

Fig. 8. Feature visualizations of baseline and baseline with SPM on
BraTS 2020 and ACDC. Ci (i=1, 2, 3, 4, 5) represents the respective
channel. ’Mean’ refers to mean features across all 32 channels.

priors consist of N-channel attention maps, in which N refers
to the number of segmentation classes, and each row represents
shape priors from each stage. We can figure out that shape
priors reveal more accurate activation maps for the ground
truth region as the top-to-down process. In particular, wrongly
activated regions in the first stage will be suppressed in the
second and third stages of SPM. Here in our visualization
results, there exists a phenomenon called the reverse activation
[19], which means that all regions except the ground truth area
are activated. A canonical example is visualized in the last
stage and last channel of shape priors in case (b). We claim that
this phenomenon results from the global shape priors, which
bring global contexts and sufficient texture information for the
whole region, even including regions from the background. In
essence, it is simple to locate the ROIs via reverse attention,
in which ROIs are highlighted with distinct contours. From
this point of view, reverse activation is similar to positive
activation.

Further, we decompose shape priors into two components,
global and local shape priors generated from SUB and CUB
respectively. We visualize these two components of case (a)
in Fig.7. Due to the self-attention module [16], global shape
priors bear globalized receptive fields, containing contexts and
textures. However, the structure of SUB lacks inductive bias to
model local visual structures. Here we can discover that global
shape priors are responsible for a coarse localization for the
region of ground truths. And local shape priors generated from
CUB can provide finer shape information for the ROIs via the
introduction of convolutional kernels, which bear the inductive
bias of locality.

We then thoroughly analyze the impact of shape priors on
skipped features with the direct comparison between original
skipped features Fo and enhanced skipped features Fe. In
detail, specific channels of Fo and Fe are selected from
all 32 channels for a qualitative visualization. As shown in
Fig.8, features in the tumor region are enhanced and some
voxels which are not activated before, are highlighted after
processing by SPM. Besides, via the introduction of global
shape priors, skipped features are enriched with sufficient
texture information for the whole region. We also explain the
process of feature refinement with a cardiac CT case as shown
in Fig.8. The channel-average skipped features are refined with
more attention on the LV and Myo regions.

D. Ablation Studies

1) Plug-and-play: To prove the plug-and-play characteristic
of SPM, we detailedly carry out ablation studies on the gener-
alization ability of SPM on different network structures. Here
we choose CNNs, Transformer-based and MLP-based models,
including 3D UNet [12], ResUNet [21], UNETR [20], Swin
UNETR [48] and UNeXt [49]. For evaluations on the BraTS
2020 dataset, we report the segmentation performance on 41
split validation cases during training. For the ACDC dataset,
each MRI scan consists of thick slices, which is not applicable
to the input size of UNETR and Swin UNETR. Thus, we only
report quantitative results on 3D UNet, ResUNet and UNeXt.

According to Table IV, it can be observed that SPM can
boost the segmentation performance of different networks.
Specifically, SPM can bring an increase on ResUNet [21],
with a Dice score increase of 0.77%, 0.51%, 1.48% on the ET,
WT, TC region. And combined with SPM, 3D UNet [12]shows
an improvement on the metric of HD95, with a decrease of
0.43mm, 0.67mm, 0.07mm on region ET, WT, TC. Further-
more, SPM also upgrades the segmentation performance of
Transformer-based models. SPM brings a Dice score increase
of 1.27% and 0.97% on the WT region for UNETR [20]
and Swin UNETR [48], which reveals the potential of SPM
to significantly enhance the representation ability for regions
with relatively regular shapes. And we can also explain this
phenomenon from the perspective of inductive bias. With the
introduction of shape priors, we introduce a strong inductive
bias to Transformer-based models, which will relieve the
requirements for a huge amount of datasets and accelerate
the convergence of Transformers. Besides, SPM can improve
the segmentation performance of the enhanced tumors, which
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Fig. 9. Qualitative comparisons of baseline and baseline with SPM on BraTS 2020, VerSe 2019 and ACDC.

TABLE IV
ABLATION STUDY ABOUT THE PLUG-AND-PLAY CHARACTERISTIC AND

STRUCTURAL COMPOSITION OF SPM ON THE BRATS 2020, VERSE

2019 AND ACDC DATASETS.
BraTS

Method Dice score (%) ↑ HD95 (mm) ↓

ET WT TC Mean ET WT TC Mean
3D UNet [12] 82.38 91.89 90.24 88.16 4.20 4.93 3.35 4.16

+ SPM 82.86 92.42 90.46 88.58 3.77 4.26 3.28 3.77
ResUNet [21] 83.33 92.36 89.47 88.38 4.09 6.38 4.09 4.85

+ SPM 84.26 92.70 91.05 89.34 4.04 3.30 3.56 3.63
UNETR [20] 79.84 88.81 83.22 83.96 8.95 17.99 14.02 13.65

+ SPM 80.25 90.08 85.69 85.34 8.41 15.16 10.65 11.41
UNeXt [49] 79.72 91.61 89.32 86.88 4.06 4.64 4.46 4.39

+ SPM 80.61 91.89 89.75 87.42 3.40 4.11 4.39 3.97
Swin UNETR [48] 83.51 91.95 90.20 88.55 5.95 8.99 4.93 6.63

+ SPM 83.68 92.92 90.36 88.99 4.83 6.73 6.39 5.98
nnUNet [28] 83.42 92.56 90.87 88.95 3.78 6.17 4.29 4.75

+ SPM 84.47 93.27 91.10 89.61 3.77 3.60 3.16 3.51
Baseline 83.33 92.36 89.47 88.38 4.09 6.38 4.09 4.85
+ CUB 84.19 92.47 90.40 89.02 3.86 3.52 4.09 3.82

+ SUB & CUB 84.26 92.70 91.05 89.34 4.04 3.30 3.56 3.63
VerSe 2019

Method Dice score (%) ↑ HD95 (mm) ↓

Cerv Thor Lumb Mean Cerv Thor Lumb Mean
3D UNet [12] 83.10 78.37 70.88 81.28 4.04 8.75 11.56 7.97

+ SPM 85.30 84.79 72.28 84.16 3.14 7.17 10.46 7.38
ResUNet [21] 88.59 84.50 73.08 84.98 2.66 5.34 9.97 5.49

+ SPM 89.87 88.69 74.15 87.65 2.01 3.15 9.08 4.36
UNETR [20] 72.10 69.33 67.07 73.86 9.29 13.53 18.11 13.42

+ SPM 79.95 74.62 66.32 75.86 5.34 9.41 17.46 11.08
UNeXt [49] 77.00 86.73 71.06 83.36 4.57 3.98 12.24 5.82

+ SPM 85.35 86.18 73.15 84.62 2.61 4.22 8.86 5.15
Swin UNETR [48] 89.30 81.43 73.36 83.46 2.21 7.79 10.09 7.66

+ SPM 81.82 85.58 73.61 84.69 4.32 4.45 10.07 6.04
Baseline 88.59 84.50 73.08 84.98 2.66 5.34 9.97 5.49
+ CUB 82.48 85.63 74.02 84.46 4.09 5.06 9.47 5.95

+ SUB & CUB 89.87 88.69 74.15 87.65 2.01 3.15 9.08 4.36
ACDC

Method Dice score (%) ↑ HD95 (mm) ↓

RV Myo LV Mean RV Myo LV Mean
3D UNet [12] 91.13 85.75 95.95 90.94 1.46 1.17 1.07 1.24

+ SPM 91.78 86.73 96.29 91.60 1.45 1.12 1.09 1.22
ResUNet [21] 91.66 85.26 95.72 90.88 1.47 1.21 1.09 1.26

+ SPM 92.28 88.13 96.61 92.34 1.43 1.10 1.09 1.21
UNeXt [49] 91.85 86.91 96.34 91.70 1.47 1.09 1.05 1.21

+ SPM 92.14 87.48 96.58 92.07 1.37 1.13 1.05 1.18
nnUNet [28] 90.24 89.24 95.36 91.61 1.53 1.12 1.17 1.27

+ SPM 91.52 89.67 95.94 92.38 1.43 1.09 1.10 1.21
Baseline 91.66 85.26 95.72 90.88 1.47 1.21 1.09 1.26
+ CUB 91.60 87.69 96.61 91.97 1.46 1.15 1.10 1.24

+ SUB & CUB 92.28 88.13 96.61 92.34 1.43 1.10 1.09 1.21

bear various and irregular shapes. This phenomenon can be
explained by the fact that global shape priors inject global

texture information to skipped features as shown in Fig.8,
and the context information is effective to improve models’
representation abilities for enhanced tumors.

As shown in Table IV, a significant improvement is obtained
on the segmentation performance of the ACDC dataset after
employing the proposed SPM to the baseline model. Partic-
ularly, the Dice score for the myocardium region increases
by 0.98%, 2.87%, 0.57% on 3D UNet [12], ResUNet [21]
and UNeXt [49] respectively. We carry out a visualization
comparison between ResUNet and ResUNet with SPM. Fig.9
reveals that SPM can refine segmentation masks with a
roughly circular shape, which benefits from the learnable shape
priors. Besides, false positive predictions of RV introduce
inconsistency to the segmentation result of LV, which will be
suppressed by anatomical shape priors learned from training
datasets.

Furthermore, we conduct comprehensive experiments on
VerSe 2019 to evaluate the efficacy of SPM when plugged
into CNNs and Transformer-based structures. As shown in
Table IV, SPM brings considerable improvements on the Dice
score and 95% Hausdorff distance of cervical, thoracic, and
lumbar vertebrae. For ResUNet, the introduction of shape pri-
ors brings remarkable gains on the segmentation performance
of cervical, thoracic, lumbar vertebrae, with 1.28%, 4.19%,
1.07% Dice score increases and 0.65mm, 2.19mm, 0.89mm
HD95 decreases. And for Swin UNETR [48], a Transformer-
based model, substantial improvements have been achieved
on the Dice score and HD95 of thoracic vertebrae (↑ 4.15%,
↓ 3.34mm). However, SPM will degrade the segmentation
performance of cervical vertebrae, with the Dice score de-
creasing by 7.48%. We argue that there are 220 cervical, 884
thoracic, 621 lumbar vertebrae in the VerSe 2019 dataset [44],
in which cervical vertebrae make up a small proportion of all
vertebrae. Therefore, there might be a risk of biased learning,
where explicit shape priors focus on the leaning of thoracic
and lumbar vertebrae. Even if a segmentation degradation in
the cervical region, average evaluation metrics for the whole
spline is still improved, with a 1.23% Dice score increase
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TABLE V
QUANTITATIVE COMPARISONS BETWEEN SPM AND OTHER ATTENTION

MODULES ON BRATS 2020, VERSE 2019 AND ACDC (THE

PARAMETERS AND FLOPS ARE CALCULATED BASED ON MODELS

DEVISED FOR BRATS 2020)
.

Method BraTS 2020 VerSe 2019 ACDC Params(M) FLOPs(T)
Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓

Baseline + attention gate [41] 88.77 4.54 85.47 5.55 91.67 1.23 44.21 456.98
Baseline + residual attention gate 88.84 4.02 86.40 5.29 91.91 1.24 44.21 456.98

Baseline + SE [24] 88.87 4.09 86.89 5.06 91.33 1.32 20.24 354.34
Baseline + CBAM [52] 88.65 3.83 85.00 5.52 91.91 1.27 22.21 386.52

Baseline + SPM 89.34 3.63 87.65 4.36 92.34 1.21 43.53 438.23

and a 1.62mm HD95 decrease. Besides, Fig.9 shows more
consistent predictions in each vertebra, which is a strong proof
that shape priors can enhance models’ representation abilities
via the introduction of shape constraints.

2) Structural Ablations of SPM: SPM is composed of SUB
and CUB, which play a different role in the process of
enhancing skipped features and refining explicit shape priors.
Thus, we further research on the effectiveness of these two
components. According to Table IV, the introduction of the
individual CUB brings a significant improvement on the
baseline model, with a 0.64% ↑ Dice score increase and a
1.03mm ↓ HD95 decrease on the BraTS 2020, a 1.09% ↑
average Dice score increase on ACDC. And this is a strong
proof that CUB can boost the shape representation for local
GT regions. When SUB is applied to the structure of SPM,
there is a further performance increase on these two datasets.
However, for the VerSe 2019 dataset, removing SUB from
SPM will sharply degrade the segmentation performance, even
lower than that of the baseline as shown in Table IV. We give
an explanation that global contexts from SUB are essential
for the identification of vertebrae due to the existence of long-
range dependency contained in the longitudinal axis of the
spines. Besides, after introducing CUB to the baseline model,
the segmentation performance for cervical vertebrae declines
significantly while thoracic and lumbar vertebrae are finely
segmented, which might result from the biased ratio between
three kinds of vertebrae [44].

E. Discussions
1) Comparison with other implicit shape models: Here SPM

is intrinsically a type of attention module to enhance skipped
features with luxurious shape information. Thus, we conduct
quantitative experiments on the performance comparison with
other classic attention modules, popularly employed in the
field of medical image segmentation. As shown in Table V, our
proposed attention module can achieve better improvements
compared with other attention modules on the three public
datasets. Although the parameters and FLOPs of SPM are
heavier than those of SE [24] and CBAM [52] block, there
exist significant improvements on the average Dice score due
to the fact that our module introduces additional shape in-
formation generated from learnable shape priors. Specifically,
SPM outperforms SE block on VerSe 2019 and ACDC with
0.76% and 1.01% Dice score increases, shows superior to
CBAM block on BraTS2020 and VerSe 2019 with a 0.69% and
2.65% Dice score increase. Apart from that, the attention gate
from attention UNet [41] bears the same form for outputs, with
a refined skipped feature and an attention map for the target

(a) (b) (c)

Fig. 10. Attention map comparisons between attention gate and SPM.
For (a)-(c) cases, the left and right columns represent attention maps
from the attention gate and SPM respectively.

TABLE VI
QUANTITATIVE COMPARISONS WITH OTHER ATLAS-BASED MODELS AND

STATISTICAL SHAPE MODELS ON BRATS 2020, VERSE 2019 AND

ACDC. DAFWM: DIFFERENTIABLE ATLAS FEATURE WARPING MODULE.
BraTS

Method Dice score (%) ↑ HD95 (mm) ↓

ET WT TC Mean ET WT TC Mean
ResUNet [21] 78.64 90.48 85.18 84.77 17.77 6.56 5.46 9.93

Deep Atlas Prior [25] 78.19 90.04 82.36 83.53 16.39 5.21 8.87 10.16
DAFWM [33] 78.39 87.60 83.47 83.15 20.69 8.61 5.81 11.70

Deep GMM [32] 56.71 69.06 74.63 66.80 45.49 15.74 11.12 24.12
DeepSSM [5] 78.99 90.44 85.11 84.84 17.66 7.80 5.38 10.28

Ours 79.70 91.08 85.35 85.38 12.06 3.92 5.08 7.02
VerSe 2019

Method Dice score (%) ↑ HD95 (mm) ↓

Cerv Thor Lumb Mean Cerv Thor Lumb Mean
ResUNet [21] 88.59 84.50 73.08 84.98 2.66 5.34 9.97 5.49

Deep Atlas Prior [25] 87.53 87.92 73.58 85.53 2.52 4.91 9.70 5.18
DAFWM [33] 84.19 81.41 72.56 83.31 3.93 6.70 10.59 7.10
DeepSSM [5] 87.54 87.58 73.76 85.85 2.85 4.25 9.16 4.94

Ours 89.87 88.69 74.15 87.65 2.01 3.15 9.08 4.36
ACDC

Method Dice score (%) ↑ HD95 (mm) ↓

RV Myo LV Mean RV Myo LV Mean
ResUNet [21] 91.66 85.26 95.72 90.88 1.47 1.21 1.09 1.26

Deep Atlas Prior [25] 90.99 86.15 96.14 91.09 1.59 1.25 1.12 1.28
DAFWM [33] 91.15 86.56 95.86 91.19 1.54 1.17 1.09 1.26

Deep GMM [32] 88.79 34.50 93.79 72.36 3.81 23.64 1.30 9.58
DeepSSM [5] 91.44 86.88 96.45 91.59 1.52 1.22 1.15 1.30

Ours 92.28 88.13 96.61 92.34 1.43 1.10 1.09 1.21

region. Thus, we give a qualitative visualization for attention
maps between the attention gate and SPM. As illustrated
by Fig.10, shape priors generated from SPM show stronger
localization abilities than attention maps from the attention
gate. More detailedly, the latter attention can cover regions of
the whole CT spine, which proves that SPM can model global
dependency due to the existence of SUB.

2) Comparisons with other explicit shape models: In this
part, extensive comparative experiments are carried out be-
tween SPM and other atlas-based & statistical-based models
on BraTS 2020, VerSe 2019 and ACDC. The backbone of all
methodologies is set as ResUNet [21]. And we also present
how SPM can theoretically overcome the drawbacks of other
explicit shape models.

Atlas-based models: We adopt two recent deep atlas-based
methods [25], [33] for comparisons. Deep atlas prior (DAP)
[25] is integrated into deep segmentation networks through the
prior loss, which contains prior location and shape information
of organs. Thus, DAP can boost the segmentation performance
on ACDC and VerSe 2019, in which anatomies show a
relatively fixed shape and location. As revealed by Table VI,
there exist 0.89% and 3.42% Dice increases for the Myo
and thoracic vertebral region. Additionally, a differentiable
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Random K-means GT

Fig. 11. Predictions on ACDC by deep GMM under two settings of
initialized seed points: Random vs. K-means.

atlas feature warping module (DAFWM) [33] is devised to
establish feature-level atlas-target correspondence. Here two
pairs of source images/GTs are chosen as atlas for modeling
training. However, the atlas cannot cover the label distribution
properties of the whole dataset. For vertebral data, different
CT scans bear different field-of-views, and different scans
suffer from a label mismatch. As a result, DAFWM induces
3.09% and 1.67% Dice decreases for evaluations on thoracic
vertebrae and the whole spine. Besides the label property,
datasets like BraTS characterize a large shape variance, which
poses a challenge for segmenting tumor regions. Table VI
illustrates a 1.62% average Dice decrease and a 1.77mm
average HD95 increase. Indeed, DAP is encountered with the
same obstacle of shape variance, with a 2.82% ↓ Dice score
and 3.41mm ↑ HD95 on TC.

Compared with atlas-based models aforementioned, SPM
supplies models with N-channel explicit shape priors, which
can be regarded as learnable atlas corresponding to different
segmentation classes. During training, shape priors are itera-
tively updated under the coarse shape guidance from encoded
features [60]. Thus, learnable priors are adaptive to different
datasets with various shapes, alleviating the challenge of label
mismatch and shape variance.

Statistical-based models: Here deep GMM [32] and
DeepSSM [5] serve as two baselines. Specifically, deep GMM
calculates N Gaussian distributions via the Expectation Max-
imization (EM) algorithm based on decoded features from
ResUNet. As depicted by Fig.11, GMM is sensitive to initial
seed points [42]. Specifically, different predicted masks are
achieved under settings of the random initialization and K-
means initialization. Therefore, we choose a unified K-means
initialization mode, with 3 times of initializations (best results
are kept). Another baseline is DeepSSM, which is aimed at
implementing data augmentations via the Principal Component
Analysis (PCA) algorithm.

However, SSMs mentioned above are afflicted by input
noise. Since different regions of backgrounds represent dis-
tinct feature representations, deep GMM tends to classify
some background voxels as foregrounds. As shown in Fig.12,
this model wrongly activates background areas for BraTS/-
VerSe/ACDC, resulting in a huge amount of outliers. Con-
sequently, the HD95 value is significantly increased com-

GTDeep GMMDAP DAFWM OursDeepSSM

Fig. 12. Qualitative comparisons between our model and other atlas-
based models & SSMs on BraTS 2020, VerSe 2019 and ACDC. DAP:
deep atlas prior, DAFWM: differentiable atlas feature warping module.

pared with ResUNet, with the average HD95 increasing by
14.19mm and 8.32mm for BraTS and ACDC. Meanwhile,
linear transforms [5] generated from PCA suffer from CT/MRI
imaging noise, which leads to inaccurate transformed masks.
That is why DeepSSM cannot improve the evaluation metric
of HD95 as illustrated in Table VI. Moreover, SSMs fail
to address the label imbalance issue. For VerSe, the ratio
and volume of cervical vertebrae are smaller than those of
thoracic and lumbar. Thus, the main component transform of
DeepSSM will damage original shape properties of cervical
vertebrae, causing a 1.05% ↓ Dice score. As revealed by
Fig.12, DeepSSM neglects the prediction of several cervical
vertebrae. As for deep GMM, when one mixture set has
insufficient points, estimating the covariance matrices becomes
difficult, and the algorithm is known to diverge [47]. This
phenomenon is the same with BraTS and ACDC.

In contrast, shape priors of SPM are randomly initialized for
model training, demonstrating the strong robustness compared
with deep GMM. Due to the fact that multi-scale skipped fea-
tures are enhanced with the interaction of global shape priors,
refined features bear luxurious shape and texture information
as revealed in Fig.8. Hence, decoded features will suppress
imaging noise from backgrounds. For the challenge of label
imbalance, well-trained shape priors can provide additional
shape guidance for regions with smaller data ratios or volumes,
boosting models’ representation abilities for anatomies with
various sizes.

3) Limitations of SPM: Quantitative and qualitative experi-
mental results on BraTS 2020, VerSe 2019 and ACDC validate
the effectiveness of SPM. Besides, as shown in Fig.4, explicit
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shape priors show the potential for providing sufficient shape
information to guide the segmentation task. However, there
exist two drawbacks for the structure of SPM currently. The
first drawback is related to the phenomenon called repetitive
activation, which means that different channels of explicit
shape priors tend to activate the same region. Here the affinity
map Smap in the self-update block is employed to describe
inter-relations between different channels of shape priors. And
we expect to attain shape priors, in which each channel shows
discriminative shape priors. Due to the fact that no constraint
conditions are imposed to guide the learning of affinity map
Smap, there still exists dependency relations between channels
of global shape priors, which results in the repetitive activation
in the last stage of shape priors. Furthermore, the second
drawback is the occasional degradation of shape priors. On the
ground that global priors generated from SUB contain global
contexts and textures for the whole region, the last-stage shape
priors of some cases show less accurate shape information than
those in the second stage. As a result, the design for SUB will
be a potential direction that needs to be further researched.

IV. CONCLUSION

In this paper, we detailedly discuss three types of segmen-
tation models with shape priors, which consist of atlas-based
models, statistical-based models and UNet-based models. To
enhance the interpretability of shape priors on UNet-based
models, we proposed a shape prior module (SPM), which
could explicitly introduce shape priors to promote the seg-
mentation performance on different datasets. And our model
achieves state-of-the-art performance on the datasets of BraTS
2020, VerSe 2019 and ACDC. Furthermore, according to
quantitative and qualitative experimental results, SPM shows a
good generalization ability on different backbones, which can
serve as a plug-and-play structure.
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