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Abstract

Machine learning applications incorporating dif-
ferential privacy frequently face significant util-
ity degradation. One prevalent solution involves
enhancing utility through the use of publicly ac-
cessible information. Public data-points, well-
known for their utility-enhancing capabilities in
private training, have received considerable at-
tention. However, it is worth noting that these
public sources can vary substantially in their na-
ture. In this work, we explore the feasibility of
leveraging public features from the private dataset.
For instance, consider a tabular dataset in which
some features are publicly accessible while oth-
ers need to be kept private. We delve into this
scenario, defining a concept we refer to as feature-
DP. We examine feature DP in the context of pri-
vate optimization, and propose a solution based
the widely used DP-SGD framework. Notably,
our framework maintains the advantage of privacy
amplification through sub-sampling, even while
some features are disclosed. We analyze our al-
gorithm for Lipschitz and convex loss functions
and we establish privacy and excess empirical risk
bounds. Importantly, due to our strategy’s ability
to harness privacy amplification via sub-sampling,
our excess risk bounds converge to zero as the
number of data points increases. This enables
us to improve upon previously understood excess
risk bounds for label differential privacy, and pro-
vides a response to an open question proposed by
(Ghazi et al., 2021). We applied our methodology
to the Purchase100 dataset, finding that the public
features facilitated by our framework can indeed
improve the balance between utility and privacy.
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1. Introduction
A principal catalyst for the advancement of machine learn-
ing resides in the availability of high-quality data, serving
as the basis for training models. In certain circumstances
the data for training these models contain private attributes
requiring protection. Differential privacy has emerged as a
standard strategy for handling such situations. Differential
privacy mandates the outcome of the training mechanism to
exhibit statistical "smoothness" with respect to changes in
the training set. A mechanism M is said to be (ϵ, δ)-DP if,
for all neighboring datasets D and D′ differing by a single
data point, and for all events S defined on the output of the
mechanism, the following inequality holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

As inferred from the definition, this approach aims to reg-
ulate an adversary’s capability to distinguish whether a
particular data-point was incorporated in the dataset or
not s(Dwork, 2006). The objective of our work is to re-
lax this definition and control the adversary’s information
access up to a certain level of permissible leakage. Specifi-
cally, rather than permitting the neighboring datasets D and
D′ to be chosen in the worst-case scenario, we necessitate
the differing points to be identical for some of their features.
This requirement imposes an increased challenge for the
adversary to differentiate between D and D′, but simultane-
ously obligates us to willingly expose those features. This
concept is formalized in the following definition:

Definition 1.1 (Feature Differential Privacy). Let f : X →
F be a feature that could be inferred from X. We say a
mechanism M is (ϵ, δ) feature DP relative to f if for all
datasets D and D′ where

∃x, x′;D \D′ = {x′} and D′ \D = {x} and f(x) = f(x′)

we have

∀S Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

In this definition, f represents a part of the data points that
can be disclosed. For instance, imagine a tabular dataset of
individuals wherein the education level of each individual
is anticipated to be publicly available. In this case, we can
assign the feature f as the education level, and the defini-
tion of feature-DP necessitates that the adversary should be
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unable to infer whether a data-point x or x′ was used in the
training set, given that x and x′ have the same level of edu-
cation, known to the adversary. As we increase the amount
of information in f , the feature DP definition becomes a
weaker notion of privacy.

One variant of this notion, termed "label differential pri-
vacy," where the adversary has knowledge of all the features
except the label, has been extensively studied(Ghazi et al.,
2021; Malek Esmaeili et al., 2021). However, we contend
that this notion holds broader applications and warrants fur-
ther exploration for other features. For example, consider
a federated learning scenario where devices can transmit
readings from some sensors openly, but others containing
sensitive data necessitate protection. In an example case, a
device’s location might require privacy, while the speed or
orientation of the device is permissible to disclose.

In our study, we attempt to devise a general-purpose
optimization algorithm that mirrors the well-known DP-
SGD(Song et al., 2013). Our primary focus is to design an
algorithm that can exploit amplification by sub-sampling, an
achievement that has eluded current algorithms developed
for label-differential privacy (Ghazi et al., 2021; Malek Es-
maeili et al., 2021; Tang et al., 2022).

2. Optimization with feature differential
privacy

Assuming a dataset D, and a loss function ℓ, we target
the resolution of the following optimization problem with
feature differential privacy pertaining to a leak fed feature
f :

min
θ

∑
x∈D

ℓ(x, θ).

DP-SGD, the deferentially private variant of SGD, is an
algorithm designed to resolve this optimization with DP as-
surances. A single iteration of DP-SGD involves computing
the gradient of the loss function on a randomly chosen subset
of data points, aggregating these to yield the gradient of the
total loss function on the batch, and subsequently introduc-
ing noise to the aggregated gradient. Under the assumptions
concerning the Lipschitz constant of the loss function ℓ, and
the magnitude of the added noise, DP for each optimization
step can be attained. The random batch selection further
amplifies the privacy of each step, utilizing known privacy
amplification by sub-sampling results (Balle et al., 2018).
Concurrently, considering that the addition of noise and sub-
sampling doesn’t bias the optimization, one can also obtain
proven guarantees for DP-SGD’s convergence, under the
right set of assumptions on the loss function (Bassily et al.,

2019; Kifer et al., 2012).

min
θ

∑
x∈D

(
ℓ(x, θ)− ℓ′(f(x), θ)

)
+

∑
x∈D

ℓ′(f(x), θ)

This way, we hope to disentangle the signal from the public
and private features. Specifically, our goal is to ensure that
ℓ(x, θ)− ℓ′(f(x), θ) possesses a smaller Lipschitz constant
than that of ℓ to improve the privacy analysis. Although
it might appear that we can instantly attain better privacy
after this operation, given that we’ve reduced the Lipschitz
constant of the loss function applied to private features,
we can’t implement DP-SGD and analyze it based on the
Lipschitzness of ℓ− ℓ′. The primary reason is that privacy
amplification from sub-sampling becomes ineffective since
we’re leaking the public features of the examples in the
batch, nullifying the amplification effect. In simpler terms,
the adversary can precisely identify which examples were
selected in the batch by observing the public features, hence
no additional entropy from sub-sampling is gained. To
address this challenge, we propose an alternate algorithm
that employs two separate batches for the two losses. This
approach is detailed in Algorithm 1.

Regularization with public features We also note that in
addition to reducing the lipschitzness of the loss function,
the public feature could create an inductive bias using a
regularization factor. Specifically, we can instead aim to
solve the following optimization problem:

min
θ

∑
x∈D

(
ℓ(x, θ)− ℓ′(f(x), θ)

)
︸ ︷︷ ︸

Private loss

+
∑
x∈D

ℓ′(f(x), θ) + ℓreg(f(D), θ)︸ ︷︷ ︸
Public loss

.

Here, by f(D) we mean the set of public features for all
examples in D. For instance, in the context of label differ-
ential privacy, this regularizer could be a unsupervised loss
function on the feature space of a neural network that does
not depend on the label. As we will see, such a regular-
ization will not affect the privacy analysis of our proposed
algorithm. From now on, we define two general losses ℓpriv
and ℓpub and define our optimization algorithm based on
that.

2.1. Convex optimization

n this section, we present a formal analysis of our algo-
rithm’s privacy, followed by an evaluation of its utility,
specifically for convex loss functions.
Theorem 2.1. [Privacy analysis] Assume the private loss
function in Algorithm 1 is L-Lipschitz. Let

Lf = sup
x,x′∈X
w∈W

|| ∇ℓpriv(w, x)−∇ℓpriv(w, x′) ||2
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Algorithm 1 Noisy SGD with Public Features
Require: Public feature f , Dataset D, Batch sizes m, m′,

Learning rate η, standard deviation σ, Projection space
W ∈ Rd, Loss functions ℓpriv, ℓpub, Number of itera-
tions T

1: Initialize w1 ∈ W
2: for t = 1, . . . , T do
3: Sample a mini-batch Bpriv

t with Poisson sampling
with probability m/|D|.

4: Compute private gradient:

gprivt =
1

m

∑
x∈Bpriv

t

∇ℓpriv(wt;x)

5: Sample a second mini-batch Bpub
t of size m′ uni-

formly at random.
6: Compute public gradient:

gpubt =
1

m′

∑
x∈Bpub

t

∇ℓpub(wt; f(x)).

7: Let gt = gpubt + gprivt +N (0, σ2)
8: Update wt+1 = wt − η · gt
9: Project wt+1 into the set W: wt+1 = ProjW(wt+1)

10: end for
11: return aggregate(w1, . . . ,wT+1)

then, Algorithm 1 is (ϵ, δ) feature DP for σ =

c
mLf

ϵ·n

√
T log( 1δ ) log(

T
δ ) for a constant c. Note that Lf ≤

2 · L by triangle inequality.

Proof. We first analyze one step of the mechanism. Let us
start with a lemma about feature-DP.

Proposition 2.2. Let f be a feature and Mλ be a parameter-
ized mechanism that is (ϵ, δ) feature DP with respect f , for
all parameters λ. Also, let M ′λ be an arbitrary parameter-
ized mechanism that operates on f(D). Then, adaptive com-
position of M and M ′ in both orders (MoM ′ and M ′oM )
is also (ϵ, δ) feature DP. Note that adaptive composition
means that the parameter of M (or M ′) could be a function
of the output of M ′ (or M ).

We defer the proof of Proposition 2.2 to Appendix. Note
that in the Proposition above, it is crucial that M and M ′

do not share internal randomness. This is the main reason
we cannot use the same batch for the public and private loss
functions. We also state a proposition without proof about
the connection between feature-DP and DP.

Proposition 2.3. If a mechanism M is (ϵ, δ)-DP (based
on the notion of DP with replacement), then it is also (ϵ, δ)
feature DP with respect to all public features f .

Now note that each iteration of the algorithm can be stated
as MoM ′ where M ′(f(D)) is the process of calculating
gpubt , and M(D) is a sub-sampled Gaussian mechanism that
calculates 1

m

∑
x∈D ∇ℓpriv(wt, x) +N (gpubt , σ2). There-

fore, each step of the algorithm is as private as of a
sub-sampled Gaussian mechanism with sub-sampling rate
q = m/n and noise multiplier σ/Lf . So, using Proposi-
tions 2.2 and 2.3 also applying the advanced composition
theorem we get that the entire mechanism is (ϵ, δ)-DP for

ϵ = c
mLf

σ·n

√
log( 1δ ) log(

T
δ ) and some constant c.

Note that standard deviation of the noise is independent of
the lipschitz constant of ℓpub and this enables to obtain a
better utility for the same privacy. We now bound the excess
risk of the algorithm for convex and lipschitz loss functions.

Theorem 2.4. [Excess empirical risk] Assume ℓ = ℓpriv +
ℓpub is convex, and L-Lipschitz and ℓpriv is L′-Lipschitz.
Let M = maxw∈W || w || Then, setting m′ = |D|, and
using uniform averaging for aggregating the final models,
and setting σ based on Theorem 2.1 we have the following

Ew←L(D)[
∑
x∈D

ℓ(w, x)]− argmin
w∈W

∑
x∈D

ℓ(w, x)] ≤

M2

2ηT
+ ηL′2 + cη

m2L′2d

ϵ2 · n2
T log(

1

δ
) log(

T

δ
).

Note that this excess empirical risk is smaller than what one
can obtain from the analysis of DP-SGD (see Lemma 3.3
in (Bassily et al., 2019)) because we are working with a
smaller Lipschitz constant and our noise is also smaller.

Case Study: Logistic Regression under Label-
Differential Privacy In this example, we present an ap-
plication of our proposed algorithm to logistic regression
under the condition of label differential privacy (label-DP),
illustrating the specific bounds for this scenario. Consider
the logistic regression loss function for a classification prob-
lem with K labels {0, . . . , k − 1}, denoted as ℓ(w, x, y).
Let us define the public loss function ℓpub(w, x) so the
we have ∇ℓpub = x × pT , where p is the probability
vector, namely, p = softmax(x × w) . Since this pub-
lic loss does not depend on the label y, it can indeed be
treated as public. Then, we set the private loss function
ℓpriv(w, x, y) = ℓ(w, x, y) − ℓpub(w, x). Consequently,
we can say that ℓ = ℓpriv + ℓpub. Using these definitions
of private and public losses in our Algorithm 1, we can
derive the concrete bounds for this scenario. The first step
is to calculate the Lipschitz constants L′ and Lf . Assume
that the input space X = {x ∈ Rp, ||x|| ≤ 1}. Since the
gradient of the logistic loss equals x(p − y)T , where p
represents the prediction probability vector and y stands
for the one-hot encoding of the ground truth (the label),
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we deduce that the gradient of ℓpriv equals −xyT . From
this, we infer that the loss function ℓpriv is 1-Lipschitz,
and it also enjoys Lf ≤ 2. In the context of label-DP, the
leaked feature f is defined by f(x, y) = x. Applying our
bounds, assuming the projection is mapping to an ℓ2 ball of
radius 1, and with m = 1, we obtain the excess empirical
risk as 1

1ηT + 4η
(
1 + cdT

ϵ2·n2 log(
1
δ ) log(

T
δ )
)

. Comparing
this bound for the bound one would obtain from analyz-
ing DP-SGD, we are saving a factor

√
2 in the Lipschitz

constant, therefore, the last term of the excess risk will be
8η cdT

ϵ2·n2 log(
1
δ ) log(

T
δ ) instead of 4η cdT

ϵ2·n2 log(
1
δ ) log(

T
δ ).

Comparison with the Excess Bound in Ghazi et al., 2021
for Label-DP The work of Ghazi et al.(Ghazi et al., 2021)
presents an excess risk bound for label-DP under convex
functions, thereby raising the question of whether we can
leverage sub-sampling for label-DP. Our analysis above an-
swers this query affirmatively. Their approach involves a
variant of DP-SGD in which a single example is sampled
at each round, and all possible labels for that example are
considered to calculate the corresponding gradients. A Gaus-
sian noise is then sampled and projected into the span of all
gradients created by different labels. The resulting noise is
added to the true gradient. This approach enables them to
benefit from the privacy provided by the Gaussian mecha-
nism in the label-DP setting, while reducing the variance
created by noise to Kσ2, where K is the number of classes.
This is in stark contrast with the conventional DP-SGD,
where the noise creates a variance of dσ2. For the logistic
regression setting, their empirical excess risk is bounded by
1

2ηT +2η
(
1+ 2cKT

ϵ2 log( 1δ ) log(
T
δ )
)
. When compared, their

excess empirical loss increases by the number of classes K,
while ours increases by d

n2 . The division by n2 in our case is
due to our ability to leverage amplification by sub-sampling,
a capability they lack. Particularly, as long as the number of
examples n is greater than

√
d/K, our algorithm yields a

lower excess risk than theirs.

3. Experimental results
To demonstrate the performance of our algorithm, we design
an experiment for feature differential privacy and demon-
strate the results here.
Dataset and Architecture: We use the Purchase100 ()
dataset to perform our experiments. This dataset contains
600 real valued features and each example is labeled with
class from a set of 100 classes. The high number of classes
makes this dataset specially challenging for training with
differential privacy. Our models are two-layer perceptrons
with ReLU activations and 300 neurons in the middle layer.
Selecting the public feature f : As stated in the definition
of feature DP (Definition 1.1), we need to specify the public
features that we want to leak through a function f . For the
case of purchase dataset, we select 100 out of 600 features at

Figure 1: Comparing DP-SGD with our feature DP frame-
work while leaking 100 random features.Our algorithm is
able to leverage the public features and achieve 10-20%
more accuracy in all values of ϵ.

random and call them xpub. We call the remaining features
xpriv. We also use y to refer to the label. Then we define
f(x, y) = (xpub, y). This means that we leak 100 public
features as well as the label. Then, we want to preserve the
privacy of the remaining 500 features.
Training: We use our Algorithm 1 to train the model. We
first create a public loss function as follows. Let g : R100 →
R600 be a Gaussian padding that extends the 100 public
features into a full vector of size 600 and fills the private
features with Gaussian noise N (0, 1). We then define the
public loss function ℓpub(w, f(x), y) = ℓ(w, g(f(x)), y)
where ℓ is the cross entropy loss function. Then we set
ℓpriv(w, x, y) = ℓ(w, x, y) − ℓpub(w, x, y). Our privacy
analysis in Section 2 heavily relies on the private loss func-
tion being lipschitz. Unfortunately, we cannot guarantee this
for a neural network. To achieve the same privacy, we use
clipping of the gradient from the private loss function. In
particular, we calculate gpriv = ∇ℓpriv · min(|∇ℓpriv|,C)

|∇ℓpriv| for
C = 0.01. Then we add Gaussian noise to get g̃pub =
gpub + N (0, C2σ2). We also calculate gpub = ∇ℓpub.
Now, since clipping has biased the ratio between the norm
of gpub and g̃priv, we aggregate them using a ratio α,
g = gpub + αg̃priv. We fix α in all iterations and tune
it as a hyperparameter. We use a learning rate of 0.1 and use
momentum of 0.9 to update our model.

Results: Figure 1 shows the result of our experiments as
described above. As it is clear from the figure, in all values
of ϵ we are able to improve the accuracy by 10− 20%. This
comes at the cost of leaking 100 features from the set of
600 features available. In both experiments the sampling
rate is 1/16 and the noise multiplier is set to 1.0. The
optimal learning rate schedule is different for two cases and
is hyperparameter tuned for best results.
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A. Proof of Proposition 2.2
We first restate the Proposition.

Proposition A.1. Let f be a feature and Mλ be a param-
eterized mechanism that is (ϵ, δ) feature DP with respect
f , for all parameters λ. Also, let M ′λ be an arbitrary pa-
rameterized mechanism that operates on f(D). Then, adap-
tive composition of M and M ′ in both orders (MoM ′ and
M ′oM ) is also (ϵ, δ) feature DP. Note that adaptive compo-
sition means that the parameter of M (or M ′) could be a
function of the output of M ′ (or M ).

Proof. We have

Pr[MoM ′(D) ∈ S] = Eλ∼Λ(M ′(f(D)) Pr[Mλ(D) ∈ S]

= Eλ∼Λ(M ′(f(D′)) Pr[Mλ(D) ∈ S]

≤ Eλ∼Λ(M(f(D′))e
ϵ Pr[Mλ(D

′) ∈ S] + δ

= eϵ Pr[MoM ′(D′) ∈ S] + δ.

Similarly, for the other direction we have,

Pr[M ′oM(D) ∈ S] = Eλ∼Λ(M(f(D)) Pr[M
′
λ(f(D)) ∈ S]

= Eλ∼Λ(M(f(D)) Pr[M
′
λ(f(D

′)) ∈ S]

≤ Eλ∼Λ(M(D′))e
ϵ Pr[Mλ(f(D

′)) ∈ S] + δ

= eϵ Pr[M ′oM(D′) ∈ S] + δ.

B. Proof of Theorem 2.4
Theorem 2.4. [Excess empirical risk] Assume ℓ = ℓpriv +
ℓpub is convex, and L-Lipschitz and ℓpriv is L′-Lipschitz.
Let M = maxw∈W || w || Then, setting m′ = |D|, and
using uniform averaging for aggregating the final models,
and setting σ based on Theorem 2.1 we have the following

Ew←L(D)[
∑
x∈D

ℓ(w, x)]− argmin
w∈W

∑
x∈D

ℓ(w, x)] ≤

M2

2ηT
+ ηL′2 + cη

m2L′2d

ϵ2 · n2
T log(

1

δ
) log(

T

δ
).

Proof. First note that the gradient gt is and unbiased esti-
mate of the empirical gradient by linearity of expectation.
We can also bound the variance of the estimate by the vari-
ance from sub-sampling, which is L′2/m and the variance
of the added noise, which is dσ2. Therefore, applying the
standard stochastic gradient oracle techniques for analyzing
the convergence of SGD, we can bound the gap between
between the empirical risk of the optimal and the obtained
model to be at most

M2

2ηT
+ ηL′2 + ησ2d.
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Setting σ according to Theorem 2.1, we get the empirical
excess risk

M2

2ηT
+ ηL′2 + cη

m2L′2d

ϵ2 · n2
T log(

1

δ
) log(

T

δ
).
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