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ABSTRACT

Vision Language Models (VLMs) have demonstrated great potential on zero-shot
classification tasks by computing the similarity between visual and textual embed-
dings. To adapt VLMs to a downstream task, recent advances introduced context
optimization. It learns a single embedding for either visual or textual modalities,
aiming to improve performance on both base and new classes. However, we iden-
tify a critical issue by using single embedding for each class. That is, for image
samples of a single class, the visual appearance may vary significantly. Thus,
existing methods relying on a singular textual embedding fail to capture the vi-
sual variance, leading to suboptimal performance on downstream tasks. In this
paper, we propose an Adaptive Prompt Prototype Learning (APPLe) for VLMs.
Specifically, we build various prompts as class prototypes to cover the visual vari-
ance. Moreover, there are inevitably some ambiguous words in prompts, bring-
ing noise to the textual features. To resolve this problem, an adaptive attention
mechanism is designed to weigh the importance of different prototypes. It learns
to assign higher scores to the representative prototypes, and lower scores to the
flawed or less representative prototypes. To evaluate the effectiveness of APPLe,
we conduct experiments on three representative tasks, i.e., generalization to un-
seen classes, new target datasets, and unseen domain shifts. APPLe exhibits a
consistent performance improvement of 3.66% on new classes and 2.79% on the
harmonic mean.

1 INTRODUCTION

In real-world scenarios, visual recognition grapples with high variability and intricate nuances. We
may consider a seemingly simple visual category: apple pies. As illustrated in Fig. 1, while they
all belong to the “apple pie” class, their presentations vary drastically in terms of color, texture,
shape, background, and even serving style. This rich visual variance challenges the simple prompt
template: “a photo of an apple pie”. Whereas the template seems broad and generic, apple pies in
these images can span from a round, golden-crusted masterpiece to a homemade pie adorned with a
delicate lattice crust. Therefore, a singular prompt, like “a photo of an apple pie”, may not be able
to encapsulate the myriad visual intricacies that these images present.

1. This image is of a round, 

golden-crusted apple pie.

2. The image is of a homemade 

apple pie with a lattice crust.

3. In the image, there is a slice of 

apple pie on a white plate.

4. A apple pie looks like a pie with 

a crust and apples inside.

1 2

3 4

Template: A photo of an apple pie.

Image 1 Image 2 Image 3 Image 4

CLIP Similarity
Template 1 2 3 4

Figure 1: Left: images and prompts of apple pies. Right: similarities between images and prompts.
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Large Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) and Align (Jia et al., 2021)
have made strides in zero-shot classification by leveraging relevant text prompts for testing an im-
age. These prompts, typically prefixed with “a photo of a,” paired with category names, have shown
promise in many benchmark datasets. Existing prompt-tuning methods (Zhou et al., 2022b;a; Khat-
tak et al., 2023) push forwards in-context learning, which optimizes the prefix embedding in either
text or visual modalities. It can not only improve the performance of the base classes, but also
improve the generalization ability to new classes without any visual samples.

However, the crux remains in real-world visual data. Due to the uncontrollable nature of visual data
generation, they are drenched in variance. It is not just about recognizing an apple pie; it is about
discerning its myriad presentations and subtleties. A simple prompt template can demonstrate strong
relevance to the category, but might not encapsulate this vast diversity. This disparity becomes even
more evident when we compare images with their varied textual descriptions, as shown in Fig. 1.
The level of similarity between an image and its detailed description often surpasses its similarity
to a generic category name. There is an intricate connection between class names and descriptive
keywords. While an image might resonate strongly with a combination of both, it may not connect
as powerfully with the class name only.

Borrowing from the adage “Don’t paint everyone with the same brush”, our approach discards the
way of using the same prompt template for every sample within a category. Instead, to encapsulate
this large visual variance, we take advantage of multiple prompt prototypes. There are diverse
prompts constructed by approaching an object from multiple angles. In this way, even if an image
sways from a typical visual example of its category, the rich textual keywords in the prompt can
guide through the classification process.

However, we also notice that the prompts inevitably involve ambiguous and flawed keywords that
are detrimental to decision-making. To mitigate this issue, we introduce an adaptive attention mech-
anism. It learns to lower the confidence for such prompts, while assigning higher attention values to
those more accurate and representative prototypes in a given context. In addition, it is unlikely for
a visual sample to align closely with every prototype. We thus introduce a prototype decorrelation
penalty to minimize the probability of the co-occurrence of multiple prototypes.

We show that, without fine-tuning any parameters like context optimization methods, zero-shot CLIP
with prompt prototypes can achieve better performance on unseen classes. The result challenges the
generalization ability claimed in existing context optimization methods. On the other hand, we
confirm that the original CLIP already possesses strong generalization ability on new classes, but a
singular prompt cannot exploit such ability. Specifically, we conducted experiments on 11 datasets
across different settings. On few-shot learning setting, APPLe can perform better than state-of-the-
art method PLOT (Chen et al., 2022) by 1.86%, 1.0%, 0.50%, 0.51%, and 0.12% PLOT at 1, 2, 4, 8,
and 16 shots. Our training-free version can achieve an averaged 3.83% performance gain on the new
classes on the state-of-the-art method MaPLe (Khattak et al., 2023). The training-free version does
not fine-tune any model parameters nor use any image samples as a support set. As for trainable
settings, our experimental results demonstrate consistent improvement over MaPLe on 11 datasets
when generalizing to new classes, new target datasets, and new domains.

2 RELATED WORK

Vision Language Models Inspired by the success of large-scale language models like BERT
(Devlin et al., 2018) and GPT series (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023)
in NLP, researchers began pre-training VLMs on large datasets to then fine-tune them on downstream
tasks (Su et al., 2019; Tan & Bansal, 2019). Recent trends in the field lean towards a unified model
for vision and language that can be jointly trained on multiple tasks. The CLIP (Radford et al., 2021)
model learns visual and linguistic representations in a zero-shot manner by training on a large set of
images paired with natural language descriptions. Similarly, ALIGN model (Jia et al., 2021) pushes
the boundary by scaling up the data and the model size, achieving state-of-the-art performance
on multiple benchmarks. Florence (Yuan et al., 2021) further extends the representations to fine-
grained objects, videos, and multiple modalities such as caption and depth. Although these pre-
trained VLMs have learned generalized representations for both vision and languages, adapting to
downstream tasks remains a challenging research problem. There have been many tailored methods
proposed to adapt VLMs for few-shot classification (Gao et al., 2021; Kim et al., 2021; Zhang
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et al., 2021), object detection (Feng et al., 2022; Gu et al., 2021; Maaz et al., 2022), and semantic
segmentation (Ding et al., 2022; Li et al., 2021; Lüddecke & Ecker, 2022).

Prompt Engineering In VLMs, a text encoder can embed the hand-crafted prompts (Wang et al.,
2022) constructed by the category names into a common space shared with visual features, enabling
zero-shot visual recognition. To adapt to downstream tasks, CoOp (Zhou et al., 2022b) presents a
context optimization method that fine-tunes a continuous set of prompt vectors in the text encoder.
Co-CoOp (Zhou et al., 2022a) shows CoOp can overfit to the base classes, leading to inferior per-
formance on new classes. They instead learn a context vector conditioned on the visual samples to
solve the overfitting issue. ProDA (Lu et al., 2022) is proposed to learn the distribution of prompts
by optimizing multiple sets of prompts. PLOT (Chen et al., 2022) apply optimal transport to match
the vision and text modalities for prompt learning. Instead of optimizing the context vector for tex-
tual prompts, VisPro (Bahng et al., 2022) presents a visual prompting method that learns an image
perturbation to adapt to VLMs. Along the same line, MaPLe (Khattak et al., 2023) proposes to
optimize the context information in both vision and text modalities to improve the connection be-
tween the visual and textual representations. These methods have a common constraint on learning
a single context vector to cover the entire downstream tasks. We instead leverage multiple prompt
prototypes to reflect the visual variance from various angles. Menon & Vondrick (2022) and Pratt
et al. (2023) also explore the use of GPT-generated prompts for visual classification. While there are
similarities in leveraging GPT for prompt generation, our approach diverges in several key aspects.
Firstly, unlike their idea of leveraging the prompts for zero-shot CLIP inference, we further fine-tune
these prompts and provide the in-context ability for downstream tasks. In conclusion, while there
are thematic overlaps with (Menon & Vondrick, 2022; Pratt et al., 2023), our approach introduces an
adaptive prompt prototype learning method for better leveraging GPT-3 prompts for VLMs, adding
valuable insights and alternatives to the current body of research on visual classification using lan-
guage models.

Prototype Learning Prototype learning traces its roots to classical models such as K-Nearest Neigh-
bors (Peterson, 2009) and Learning Vector Quantization (Kohonen & Kohonen, 1995). These meth-
ods inherently rely on instance-based learning, where decisions are based on the proximity to a set
of representative examples or prototypes. Deep models, such as Prototypical Networks for few-
shot learning (Snell et al., 2017), learn a metric space in which classification can be performed by
computing distances to prototype representations of each class. These models have demonstrated
strong performances, especially in tasks with limited labeled data. Recognizing that a single pro-
totype might not capture the entire variance within a class, there are methods to construct multiple
prototypes for pathology (Deuschel et al., 2021), face recognition (Zhao et al., 2019), semantic
segmentation (Yang et al., 2020; Sacha et al., 2023). This enables capturing diverse modes within
each category, leading to more nuanced and accurate recognition. Yet, a significant constraint arises
when these prototypes are constructed solely from visual data. In a few-shot scenario, the quality and
diversity of prototypes become limited to the number of available samples within each class. Con-
sequently, if class samples have a skew towards a particular style or attribute, these multi-prototype
models may fail to capture the genuine variance of the class. This limitation serves as our motiva-
tion. In this work, we investigate beyond visual samples, harnessing the capabilities of VLMs. By
sourcing multiple prototypes directly from textual descriptions, we manage to paint a more compre-
hensive and varied picture of visual categories, resulting in both diverse and accurate prototypes.

3 PRELIMINARIES

Prompt engineering leverages the versatility of VLMs (CLIP in this work) to perform zero-shot
classification. In essence, class names are combined with manually tailored textual templates to
produce prompts. Consider C class names, represented as classc, c ∈ {1, . . . , C}. Each class
name is placed within a template, generating a prompt hc = a photo of a {classc}. The
CLIP text encoder processes this prompt TextEnc(·), and compute the class-specific text feature
tc = TextEnc(hc). For any image x to be classified, they are passed through the image encoder,
ImageEnc(·), resulting in image features f = ImageEnc(x). The image class probabilities are
then computed by the cosine similarity between its visual features and the text features, normalized
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Figure 2: An illustration of APPLe for VLMs. We calculate the cosine similarities between the
prompt prototypes and the visual features. The adaptive attention matrix is introduced to weight the
prototype logits. The maximum prototype logits are used to calculate ℓmax. For the prototype logits
within one class, we apply a decorrelation loss ℓdec to suppress the co-occurrence of prototypes. The
averaged class logits are used to calculate ℓavg.

by a temperature factor τ :

P (y|x) =
exp

(
cos(ty,f)/τ

)∑C
c=1 exp

(
cos(tc,f)/τ

) . (1)

Subsequently, the class label of the image x is deduced as ỹ = argmaxyP (y|x).

4 ADAPTIVE PROMPT PROTOTYPE LEARNING

Prompt Construction To acquire precise, articulate, and high-quality prompts, we leverage the
pre-trained large language model GPT-3 (Brown et al., 2020). For each class in our downstream
tasks, GPT-3 generates an array of richly varied descriptions, ensuring broad coverage of potential
visual interpretations for each category. Taking the example illustrated in Figure 1, descriptions of an
apple pie capture disparate visual facets. Notably, certain descriptors, such as round and slice,
are mutually exclusive in the context of visualizing apple pies. Suppose we acquire K prompts for
C classes, {hk

c}
C,K
c=1,k=1, where each hk

c corresponds to the kth prompt for the cth class.

Prompt Prototype Learning In traditional supervised learning, the prototype for a given class is
typically represented by the mean vector of the visual features. However, with the advent of VLMs,
this paradigm has been reshaped. In the context of VLMs, text features derived from prompts can
serve as an arbitrary number of prototypes, offering a more semantic perspective on class represen-
tation. Given K prompts, the averaged class logits over multiple prototypes can be represented as∑K

k=1 cos(t
k
y ,f)/K. The main advantage of this approach lies in the diverse textual descriptions

of the prompts. CLIP adeptly fuses visual and semantic modalities. The diversity ensures a broader
coverage of visual variance. This is particularly valuable, especially when visual samples are biased
or limited.

Adaptive Attention Apart from the benefits derived from the diversity of prompt prototypes, our
approach also acknowledges the presence of ambiguous and flawed descriptors within the prompts.
To mitigate the impact of these flawed descriptors, our model is designed to assign lower confidence
to such prompts while amplifying the influence of more accurate and representative ones.

To this end, we introduce adaptive attention to consider the varying significance among the diverse
prototypes. Given prototypes across C classes, each with K prompts, we formulate an attention
matrix W ∈ RC×K . This matrix is employed to weigh the cosine similarities as follows:

cos∗(tkc ,f) = cos(tkc ,f)⊙W k
c , W ∈ RC×K . (2)
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When averaging the cosine similarities of prototypes within a class, the representative ones might
be smoothed out by others. Thus, allocating a higher attention score to the representative prototypes
is crucial to preserving their influence on the averaged result.

The Closest Prototype We assume that every visual sample will exhibit the highest degree of
similarity to one specific prompt prototype. To take advantage of these optimal visual-prompt pairs,
we exclusively consider the logits corresponding to the prompt prototypes that are the closest to the
visual samples for loss computation. We design a maximum cross-entropy loss as follows:

ℓmax = −log
exp(cos∗(tk̃y ,f)/τ)∑C
c=1 exp(cos∗(tk̃c ,f)/τ)

, k̃ = argmax
k

cos∗(tky ,f), (3)

where k̃ is the index of the prototype with maximum cosine similarity. This approach ensures that
the primary emphasis is placed on optimizing the relationships between visual samples and the most
congruent prompt prototypes.

Prototype Decorrelation Our method ensures diversity among the constructed prototypes within
each class, acknowledging the inherent intra-class variance. Given this variance, it is unlikely for
a visual sample to align closely with every prototype. To mitigate the cumulative impact of many
prototypes, we integrate a decorrelation loss:

ℓdec =

C∑
c=1

K∑
k=1

∥∥cos∗(tky ,f)
∥∥
2
, (4)

where a ℓ2 norm is adopted to reduce the magnitude of the summed logits within each class, aiming
to suppress the likelihood of co-occurrence of multiple prototypes and enhance the modal’s ability
to discriminate different visual instances effectively.

Training The overall training process of APPLe is presented in Fig. 2. The prompt prototypes are
initialized by extracting the textual features from the prompts with the text encoder. In APPLe, the
trainable parameters include the prompts prototypes, T =

∑K
k=1

∑C
c=1 t

k
c ,T ∈ RC×K×Dt , along

with the attention matrix W ∈ C×K. In addition to the above two loss functions, we consider the
prediction logits from all prototypes and take the average logits to calculate the cross-entropy loss:

ℓavg = −log
exp

((∑K
k=1 cos

∗(tky ,f)
)
/(τ ∗K)

)
∑C

c=1 exp
((∑K

k=1 cos
∗(tkc ,f)

)
/(τ ∗K)

) . (5)

Therefore, the overall training objective is:

ℓoverall = ℓavg + λ1ℓmax + λ2ℓdec, (6)

where λ1 and λ2 are consistently set to 3 for all experiments in all datasets. It is worth mention-
ing that fine-tuning the textual features typically poses the overfitting issue to base classes, which
significantly degenerates the generalization ability to new classes. However, APPLe with multiple
prototypes can mitigate this issue, and instead enhance the generalization ability.

Inference At test time, the class distribution of a test image can be computed as follows:

P (y|x) =
exp

((∑K
k=1 cos

∗(tky ,f) + βcos∗(tk̃y ,f)
)
/(τ ∗K)

)
∑C

c=1 exp
((∑K

k=1 cos
∗(tkc ,f) + βcos∗(tk̃c ,f)

)
/(τ ∗K)

) , (7)

where we consider the weighted average cosine similarities of the prototypes of every class and also
pick the maximum cosine similarity from the closest prototype. β controls the weight of the closest
prototype. The class label of image x is then deduced as ỹ = argmaxy P (y|x).
Notably, without training the prototypes, the formulation in Eq. 7 offers a distinct zero-shot classifi-
cation approach compared to Eq. 1. This training-free method simply uses the k prompts to conduct
classification on Base and New classes, which neither requires fine-tuning any CLIP components
nor using image samples as a support set.
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Figure 3: The few-shot learning results on 11 datasets. We compare our APPLe with CoOp, ProDA,
PLOT and observe the consistent and significant performance improvement on most datasets. (The
average accuracy on all datasets is shown on the left top.)

5 EXPERIMENTS

Baselines and Datasets We quantitatively and qualitatively compare our methods against CoOp
(Zhou et al., 2022b), Co-CoOp (Zhou et al., 2022a), ProDA (Lu et al., 2022), PLOT (Chen et al.,
2022) , and MaPLe (Khattak et al., 2023). These are the most recently established methods for adapt-
ing CLIP to downstream object recognition tasks. To analyze the capabilities of our approach on
real images, we consider a variety of image domains, including a scene recognition dataset SUN397
(Xiao et al., 2010); an action recognition dataset UCF101 (Soomro et al., 2012); a satellite image
dataset EuroSAT (Helber et al., 2019); a texture dataset DTD (Cimpoi et al., 2014); two coarse-
grained object datasets, ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) and five
fine-grained datasets, OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flow-
ers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji
et al., 2013). More information about the datasets, the generated prompts, and the implementation
details are given in the Appendix.

Few-Shot Learning Results We compare our methods with CoOp, ProDA and PLOT on the few-
shot learning setting. The results are summarized in Figure 3, where the green line denotes our
APPLe method, the red line is the CoOp, blue line is ProDA and the purple line represents PLOT.
Taking the average accuracy (at the left top) as the example, PLOT respectively gained 1.86%, 1.0%,
0.50%, 0.51%, and 0.12% performance boost over PLOT at 1, 2, 4, 8, and 16 shots. It can be seen
that APPLe performs particularly well on very low shots. The numeric results are reported in Section
A.7

Training-Free Results As shown in Table 1, the method APPLe∗ represents the training-free ver-
sion, in which there are no training samples observed by the model or used as support samples. It
is worth mentioning that the average performance in new classes surpasses all existing training-
based methods. Overall, we can achieve an average accuracy on HM of 74.83% on 11 datasets.
Particularly, the performance gain over zero-shot CLIP on the texture dataset DTD is most signifi-
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Table 1: Comparison with state-of-the-art methods on base-to-new generalization. APPLe demon-
strates strong generalization results over existing methods on 11 recognition datasets. * represents
the training-free version of APPLe. Absolute performance improvements are indicated in blue.

Training-free Methods Training-based Methods

Dataset Set CLIP APPLe∗ ∆ CoOp Co-CoOp MaPLe APPLe ∆

Average
Base 69.34 72.21 +2.87 82.69 80.47 82.28 84.26 +1.98
New 74.22 78.05 +3.83 63.22 71.69 75.14 78.80 +3.66
HM 71.70 74.83 +3.13 71.66 75.83 78.55 81.34 +2.79

ImageNet
Base 72.43 74.62 +2.19 76.47 75.98 76.66 78.17 +1.51
New 68.14 71.94 +3.80 67.88 70.43 70.54 72.12 +1.58
HM 70.22 73.26 +3.04 71.92 73.10 73.47 75.02 +1.55

Caltech101
Base 96.84 96.06 -0.78 98.00 97.96 97.74 98.26 +0.52
New 94.00 95.74 +1.74 89.81 93.81 94.36 95.63 +1.27
HM 95.40 95.90 +0.50 93.73 95.84 96.02 96.93 +0.91

OxfordPets
Base 91.17 93.46 +2.29 93.67 95.20 95.43 95.64 +0.21
New 97.26 97.99 +0.73 95.29 97.69 97.76 98.04 +0.28
HM 94.12 95.67 +1.55 94.47 96.43 96.58 96.83 +0.25

Stanford
Cars

Base 63.37 64.49 +1.12 78.12 70.49 72.94 80.23 +7.29
New 74.89 75.79 +0.90 60.40 73.59 74.00 75.12 +1.12
HM 68.65 69.68 +1.03 68.13 72.01 73.47 77.59 +4.12

Flowers102
Base 72.08 75.02 +2.94 97.60 94.87 95.92 96.58 +0.66
New 77.80 80.35 +2.55 59.67 71.75 72.46 78.58 +6.12
HM 74.83 77.59 +2.76 74.06 81.71 82.56 86.66 +4.10

Food101
Base 90.10 90.37 +0.27 88.33 90.70 90.71 90.99 +0.28
New 91.22 91.68 +0.46 82.26 91.29 92.05 91.88 -0.17
HM 90.66 91.02 +0.36 85.19 90.99 91.38 91.43 +0.05

FGVC
AirCraft

Base 27.19 30.07 +2.88 40.44 33.41 37.44 44.66 +7.22
New 36.29 41.15 +4.86 22.30 23.71 35.61 43.13 +7.52
HM 31.09 34.75 +3.66 28.75 27.74 36.50 43.88 +7.38

SUN397
Base 69.36 74.57 +5.21 80.60 79.74 80.82 82.44 +1.62
New 75.35 78.17 +2.82 65.89 76.86 78.70 79.04 +0.34
HM 72.23 76.33 +4.10 72.51 78.27 79.75 80.70 +0.95

DTD
Base 53.24 63.54 +10.30 79.44 77.01 80.36 82.41 +2.05
New 59.90 67.27 +7.37 41.18 56.00 59.18 69.57 +10.39
HM 56.37 65.35 +8.98 54.24 64.85 68.16 75.45 +7.29

EuroSAT
Base 56.48 57.31 +0.83 92.19 87.49 94.07 90.90 -3.17
New 64.05 78.18 +14.13 54.74 60.04 73.23 81.69 +8.46
HM 60.03 66.14 +6.11 68.69 71.21 82.35 86.05 +3.7

UCF101
Base 70.53 74.77 +4.24 84.69 82.33 83.00 86.56 +3.56
New 77.50 80.31 +2.81 56.05 73.45 78.66 81.99 +3.33
HM 73.85 77.44 +3.59 67.46 77.64 80.77 84.21 +3.44

cant, achieving 8.98%. The overall performance is comparable to the training-based methods CoOp
and Co-CoOp, which demonstrates the effectiveness of prototypes.

Generalization from Base to New Classes Table 1 presents the performance comparison with
baseline methods in a base-to-new generalization setting. The evaluation is conducted on the base
and new classes separately to test generalizability. After fine-tuning the prompt prototypes and
learning the attention matrix on the base classes, we achieved significant performance gains on both
base and new classes. On the 11 datasets, we consistently outperform baseline methods on HM. The
average absolute gain on HM is 2.79%. In particular, our performance improvement on ImageNet is
1.55%, which is a significant improvement considering the 1,000 classes in ImageNet. In addition,
the performance of FGVC AirCraft and DTD are significantly improved from 31.09% to 43.88% and
68.16% to 75.45%, respectively. The great improvement showcases the strong adaptation ability to
those under-presentative classes in the original training set.

Impact of Prototype Number In Fig. 4, we study the impact of the number of prototypes
on the performance using the ImageNet dataset. The solid line represents the performance trend
of APPLe. The dashed line is the zero-shot CLIP performance, which provides a baseline com-
parison to APPLe. As we vary the number of prototypes from 1 to 50, there is an obvious up-
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Figure 4: Performance comparison
of APPLe with various numbers of
prototypes on ImageNet dataset.

trend in performance for both base and new classes. The
finding highlights our core motivation that a singular prompt
cannot cover the entire variance space of a visual category,
but employing a diverse range of prompt prototypes is in-
strumental in encompassing the extensive variance. Notably,
while fine-tuning with one prompt prototype, the performance
drops on new classes and HM. This observation confirms that
fine-tuning one prompt will lead to overfitting to base classes.
However, when we use more than 3 prototypes, the perfor-
mance of APPLe on new classes surpasses zero-shot CLIP.
Thus, we confirm that the overfitting problem can be miti-
gated by using more prompt prototypes.

Table 2: Comparison of APPLe and baselines on domain gener-
alization. All methods are trained on 16 images per class from
1,000 classes on ImageNet.

Source Target

ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R
CLIP 66.73 60.83 46.15 47.77 73.96
CoOp 71.51 64.20 47.99 49.71 75.21
Co-CoOp 71.02 64.07 48.75 50.63 76.18
MaPLe 70.72 64.07 49.15 50.90 76.98

APPLe* 69.88 63.31 49.18 50.92 77.09
APPLe 72.32 65.07 49.38 50.80 77.09

Domain Generalization The
effectiveness of APPLe in gen-
eralizing to out-of-distribution
datasets is demonstrated when
compared to methods such as
CoOp, Co-CoOp, and MaPLe.
We evaluate the direct gen-
eralization ability of a model
trained on ImageNet to several
out-of-domain datasets, includ-
ing ImageNetV2, ImageNet-
Sketch, ImageNet-Adversarial,
and ImageNet-Rendition. The results, presented in Table 2, showcase that APPLe outperforms
existing methods on both source domain and target domains, except on ImageNet-Adversarial. The
results confirm that APPLe is more domain-generalizable than context optimization methods.

Table 3: Ablation study of APPLe on ImageNet.
Components Performance

Prototypes Training Attention ℓmax ℓdec Base New HM

72.43 68.14 70.22
✓ 74.68 71.88 73.25
✓ ✓ 75.46 72.07 73.73

✓ 73.84 63.57 68.31
✓ ✓ 76.12 72.04 74.02
✓ ✓ ✓ 76.25 72.09 74.11
✓ ✓ ✓ 77.40 72.07 74.64
✓ ✓ ✓ 76.14 72.09 74.06
✓ ✓ ✓ ✓ 77.82 72.04 74.82
✓ ✓ ✓ ✓ 77.88 72.09 74.87
✓ ✓ ✓ ✓ ✓ 78.17 72.12 75.13

Ablation Study To analyze the
contribution of each proposed com-
ponent, we conduct an ablation study
on the proposed APPLe. As shown
in Table 3, we decompose the com-
plete framework into different com-
ponents: prototypes - utilizing 50
prompt prototypes to cover the large
visual variance; training - fine-tuning
the text features of the prompt pro-
totypes; attention - learning an adap-
tive attention matrix to weight differ-

ent prototypes for prediction; ℓmax - applying an extra cross-entropy loss on the closest prototypes;
ℓdec - applying a decorrelation loss to suppress the co-occurrence of multiple prototypes. The results
confirm that each component makes its unique contribution to the complete method.

0.0/1.0
0.5/0.5

0.6/0.4
0.8/0.2

0.9/0.1
0.95/0.05

1.0/0.0

Prototype Calibration Ratio
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To
p-

1 
Ac
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Figure 5: Performance comparison of
APPLe with different mean/max cali-
bration ratio.

Prototype Calibration To investigate the contribu-
tion of averaged confidence and the maximum confi-
dence among prototypes, we calibrate the inference con-
fidences. As shown in Fig. 5, we choose to balance the
weights of averaged logits and the maximum logits of
the prototypes with 0.5/0.5, 0.6/0.4, 0.8/0.2/, 0.9/0.1, and
0.95/0.05, respectively. This calibration ratio provides in-
sight into the contribution of inter-class and intra-class
discriminative power. In APPLe, we consider both the
overall prototype representations and the closest proto-
types. It can be seen that when we aggregate 0.8 of the
confidence from averaged logits and 0.2 of the maximum
logits, we can achieve the best calibration results.
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Table 4: Performance comparison on the image retrieval task with ImageNet (mAP(%))

@1 @5 @20 @50

Base New HM Base New HM Base New HM Base New HM

CLIP 85.60 82.00 83.76 83.40 79.64 81.48 77.32 71.28 74.17 61.68 54.56 57.90
CoOp 82.80 79.80 81.27 81.12 77.68 79.37 75.82 69.67 72.62 62.14 53.90 57.73
MaPLe 84.80 83.40 84.09 83.28 81.88 82.57 77.59 73.43 75.45 63.23 56.98 59.94

APPLe* 85.20 88.20 86.67 83.76 84.92 84.34 77.62 77.30 77.46 63.01 61.01 61.99
APPLe 85.60 88.00 86.78 84.28 84.76 84.52 78.80 77.27 78.03 63.99 61.01 62.46

Understanding Prototypes by Image Retrieval To understand the effect of prototypes in the
inference process, we performed a series of experiments on image retrieval. In these experiments,
we use the prompt prototypes to retrieve the closest image samples based on the cosine similarity.
The images we aim to retrieve are from the test samples of ImageNet. There are in total 25,000
images from 1,000 categories, 50 images for each category. We cast the prompt prototypes and
the images into the common space, retrieving the closest 1, 5, 20 and 50 images respectively. As
shown in Table 4, APPLe can consistently retrieve more accurate images than MaPLe, CoOp and
zero-shot CLIP. APPLe* represents the training-free version of our method. It is clear that APPLe*
can already achieve much better performance than baseline methods. Note that Co-CoOp cannot be
applied in image retrieval tasks, because the textual features need to be conditioned on images.

A cobwebbed texture 

is a very fine, delicate, 

and often clingy net-

like fabric.

cobwebbed

lacelike

×

Figure 6: Text cosine similarity between the cate-
gory names and the keywords.

As for retrieving the closest images with in-
dividual prompt prototypes, there are usually
many failure cases. The visual features regard-
ing these keywords are highly salient in the
wrongly retrieved images, making them closer
to the prototypes. We take one step further to
investigate a particular prompt, as shown in Fig.
6 We calculate the text cosine similarity be-
tween the two category names, i.e., cobwebbed,
and lacelike, and the keywords in the prompt.
All these keywords are highly correlated with
lacelike, instead of the ground-truth label
cobwebbed. Therefore, we may easily re-
trieve a lancelike image with this prompt.

Limitation of APPLe The primary constraints of APPLe include its necessity for fine-tuning new
prototypes to optimize performance when adapting to certain new classes. Its effectiveness is sig-
nificantly tethered to the quality of the prompts, as the prototypes may contain flawed keywords
that can lead to ambiguous decisions, as evident from the retrieval experiments. Additionally, com-
pared to context optimization methods, the time complexity of APPLe is less favorable due to the
requirement of producing multiple prompt prototypes for each class.

6 CONCLUSION

In this work, we have proposed an Adaptive Prompt Prototype Learning (APPLe) method for vision-
language models. By incorporating multiple prompts as class prototypes, we can largely enhance
zero-shot CLIP performance. To alleviate the noise and flaws within the prompts, we designed an
adaptive attention mechanism. It assigns lower confidence to the logits produced by the flawed
prompts, and higher confidence to the accurate and representative prototypes. In addition, it is un-
likely for a visual sample to align closely with every prototype. Thus, a prototype decorrelation loss
is introduced to suppress the co-occurrence of multiple confident prototypes. APPLe demonstrates
consistent performance gains on all 11 datasets and all tasks.
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Interpretable semantic segmentation with prototypical parts. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1481–1492, 2023.

11



Under review as a conference paper at ICLR 2024

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530, 2019.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490, 2019.

Suchen Wang, Yueqi Duan, Henghui Ding, Yap-Peng Tan, Kim-Hui Yap, and Junsong Yuan. Learn-
ing transferable human-object interaction detector with natural language supervision. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 939–948,
2022.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Boyu Yang, Chang Liu, Bohao Li, Jianbin Jiao, and Qixiang Ye. Prototype mixture models for
few-shot semantic segmentation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pp. 763–778. Springer, 2020.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Jian Zhao, Jianshu Li, Xiaoguang Tu, Fang Zhao, Yuan Xin, Junliang Xing, Hengzhu Liu, Shuicheng
Yan, and Jiashi Feng. Multi-prototype networks for unconstrained set-based face recognition. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 4397–4403,
2019.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

12


	Introduction
	Related Work
	Preliminaries
	Adaptive Prompt Prototype Learning
	Experiments
	Conclusion
	Appendix
	Datasets
	Implementation Details
	Discussion and Comparison to Context Optimization Methods
	Adaptive Attention Visualization
	Cross-Dataset Transfer
	Impact of Training Epochs
	More Retrieval Results
	Results on few-shot learning
	Comparison to the generic 80 prompts in the CLIP model
	Generalizability across different CLIP variants and other VLMs
	Prompt Quality Impact
	Prototype Calibration Strategies
	Best prototype selection
	Hyper-parameters Analysis
	Prompts




