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Abstract001

The Transformer’s quadratic complexity with002
input length imposes an unsustainable compu-003
tational load on large language models (LLMs).004
In contrast, the Selective Scan Structured State-005
Space Model, or Mamba, addresses this com-006
putational challenge effectively. This paper ex-007
plores a query-based cross-modal projector de-008
signed to bolster Mamba’s efficiency for vision-009
language modeling by compressing visual to-010
kens based on input through the cross-attention011
mechanism. This innovative projector also re-012
moves the need for manually designing the 2D013
scan order of original image features when014
converting them into an input sequence for015
Mamba LLM. Experimental results across vari-016
ous vision-language understanding benchmarks017
show that the proposed cross-modal projec-018
tor enhances Mamba-based multimodal LLMs,019
boosting both performance and throughput.020

1 Introduction021

Multimodal Large Language Models (MLLMs)022

aim to extend the capabilities of Large Language023

Models (LLMs) to various modalities, including024

text and images. By fusing visual information025

into the textual domain, MLLMs effectively lever-026

age the powerful language generation and logical027

reasoning abilities of text-only pre-trained LLMs.028

This integration has demonstrated significant poten-029

tial in solving real-world vision-language problems,030

with diverse applications such as visual question an-031

swering (VQA) and multimodal dialogue response032

generation.033

The core element behind this advancement lies034

in the Transformer (Vaswani et al., 2017), an archi-035

tecture defined by stacked layers of attention mech-036

anisms capable of scaling up to over 100 billion037

parameters. Due to its capability and flexibility to038

capture long-term dependencies, the Transformer039

can better represent different modalities, serving040

as a foundational model for MLLMs. Unfortu-041

nately, the Transformer also inherits intrinsic bot- 042

tlenecks due to its defining attention mechanism. 043

The computational and memory complexities of 044

self-attention increase quadratically with sequence 045

length, imposing a limit on the input sequence 046

length. Recent efforts have focused on extending 047

the Transformer’s context window to overcome this 048

limitation, but the challenge of computational bur- 049

den remains. 050

To address this issue, the state-space model 051

(SSM) (Gu et al., 2021, 2022a,b; Fu et al., 2023) 052

has been studied as an alternative architecture for 053

efficiently capturing long-range dependencies. The 054

SSM can be viewed as combining Convolutional 055

Neural Networks (CNNs) and Recurrent Neural 056

Networks (RNNs), enabling parallelizable training 057

and fast inference. The latest advancement in SSMs 058

is Mamba (Gu and Dao, 2023), which incorporates 059

an input-dependent gating mechanism that enables 060

selective scanning, along with a hardware-aware al- 061

gorithm for efficient computation. Mamba matches 062

or even surpasses the performance of advanced 063

Transformers while achieving faster training and 064

inference speeds, leading to applications in vari- 065

ous domains, including image (Zhu et al., 2024; 066

Liu et al., 2024b), speech (Jiang et al., 2024; Li 067

and Guo, 2024), and video processing (Li et al., 068

2024). The utilization of Mamba architecture for 069

MLLM foundation models has been considered 070

(Qiao et al., 2024; Zhao et al., 2024) but not exten- 071

sively explored. Moreover, there remains a limited 072

understanding of the most effective methods for 073

aligning visual information within the textual do- 074

main using Mamba. 075

Building upon the previous architecture, we in- 076

troduce a non-trivial Mamba-based architecture for 077

cross-modal projection to connect the pre-trained 078

vision encoder and Mamba-based LLM. Inspired 079

by Querying Transformer (Q-Former) (Li et al., 080

2023a), we utilize learnable queries to project 081

vision information from image features into 1D 082
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Figure 1: Model comparison between (a) LLaVA (Liu et al., 2023), (b) BLIP-2 (Li et al., 2023a), (c) Cobra (Zhao
et al., 2024), (d) VL-Mamba (Qiao et al., 2024), and (e) ours. The key differences stem from the choice of LLM
backbone architecture, the design of the projector architecture, and the incorporation of learnable queries for
flexibility.

causal tokens by interleaving the Mamba sequence083

modeling layer and cross-modal attention. Our084

architectural design is motivated by three key ob-085

jectives: (1) eliminating the heuristic choice of086

2D visual scan order, (2) effectively and dynami-087

cally downsampling the projected visual feature se-088

quence length, and (3) enhancing text-image align-089

ment by adopting a structure tailored for Mamba-090

based multimodal modeling. We further propose091

MLLM with a pre-trained Mamba LLM backbone092

connected to the vision encoder using the proposed093

projector. The overall comparison between the pre-094

vious models and ours is depicted in Figure 1.095

Our contributions can be summarized as follows:096

• We propose Querying Mamba, the multimodal097

connector based on the Mamba module, and098

the cross-modal attention for adaptive flexibil-099

ity in downsampling the visual token lengths.100

• We propose MLLM based on Querying101

Mamba and pre-trained Mamba LLM. We102

meticulously explore a range of choices re-103

garding the components that integrate these104

models to boost Mamba’s effectiveness in mul-105

timodal modeling.106

• We carry out comprehensive experimental107

evaluations using multimodal comprehension108

benchmarks to assess the performance and109

robustness of our proposed models.110

2 Related Works111

2.1 State-Space Models (SSMs) and Mamba112

Current state-space models are inspired by classi-113

cal state-space models, which represent continuous114

systems that map a 1-dimensional function or se- 115

quence through an implicit latent state. The Linear 116

State Space Layer (LSSL) (Gu et al., 2021) was one 117

of the earliest attempts at deep SSMs, aiming to 118

enhance sequence modeling performance by stack- 119

ing multiple SSM layers. Although LSSL demon- 120

strated the potential of deep SSMs for addressing 121

long-range dependencies, its high computational 122

and memory costs rendered it impractical. 123

The Structured State-Space Model (S4) (Gu 124

et al., 2022a) tackled this bottleneck by re- 125

parameterizing the latent matrix through decom- 126

position into low-rank and normal terms. This in- 127

novation led to several variant architectures, such as 128

the Diagonalized State-Space (DSS) (Gupta et al., 129

2022) and S4D (Gu et al., 2022b), which enabled 130

more efficient and simplified computation via diag- 131

onalization. However, S4 and its variants can not 132

remember specific past tokens or compare tokens 133

across the sequence—capabilities crucial for lan- 134

guage modeling. Hungry Hungry Hippos (H3) (Fu 135

et al., 2023) aimed to overcome these shortcomings 136

of S4 by incorporating 1-dimensional convolution 137

along the sequence, allowing SSMs to compare 138

and remember past tokens by shifting the input 139

sequence. 140

The latest work, Mamba (Gu and Dao, 2023), 141

further refines S4 by introducing a selective mech- 142

anism that utilizes input-dependent latent state pa- 143

rameters, making the model content-aware and 144

enabling it to selectively focus on relevant infor- 145

mation. Mamba also incorporates 1-dimensional 146

convolution shifting from H3 and a gating mecha- 147

nism similar to Long Short-Term Memory (LSTM) 148

(Hochreiter and Schmidhuber, 1997), which en- 149

hances its ability to handle long sequences with 150
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increased robustness and flexibility. With parallel151

associative scanning and a hardware-aware imple-152

mentation, Mamba achieves efficient training and153

inference, matching or surpassing the capabilities154

of advanced Transformers.155

The success of Mamba has led to various adap-156

tations across different domains. For instance, sev-157

eral attempts have been made to apply Mamba158

in speech separation (Li and Guo, 2024; Jiang159

et al., 2024). In computer vision, Vision Mamba160

(Vim) (Zhu et al., 2024) and V-Mamba (Liu et al.,161

2024b) employ bidirectional SSMs to process two-162

dimensional image data with one-dimensional se-163

quence modeling in Mamba. SiMBA (Patro and164

Agneeswaran, 2024) further enhances this by incor-165

porating a channel-mixing layer into the Mamba166

block, analogous to the role of the feedforward167

network in the Transformer block.168

2.2 Multimodal Large Language Models169

With the introduction of ChatGPT (Ouyang et al.,170

2022), also referred to as InstructGPT, Large Lan-171

guage Models (LLMs) have emerged as a domi-172

nant approach for real-world natural language pro-173

cessing tasks. These models, typically featuring174

billions of parameters and trained on extensive cor-175

pora, are not only proficient in generating language176

responses but also in tasks requiring logical com-177

prehension and reasoning. Although InstructGPT178

has not been publicly released, the research com-179

munity has been actively developing open-source180

LLMs (Touvron et al., 2023; Gunasekar et al., 2024;181

Li et al., 2023c; Zhang et al., 2022), which have182

shown performance on par with InstructGPT. This183

progress has led to various adaptations and modi-184

fications of pre-trained LLMs for diverse applica-185

tions.186

A notable advancement is the development of187

Multimodal Large Language Models (MLLMs),188

which leverage pre-trained LLMs to process multi-189

modal data. This extends beyond the original text-190

only domain, integrating capabilities to understand191

both textual and visual inputs. Models like LLaVA192

(Liu et al., 2023), BLIP(Li et al., 2022, 2023a), and193

GPT-4(OpenAI, 2024) have shown robust perfor-194

mance in tasks requiring nuanced vision-language195

integration. These models utilize transformer-196

based frameworks known for handling long-range197

dependencies effectively. However, the innate char-198

acteristic of high computational demands and slow199

inference rates of these transformer-based frame-200

works have started to become a target for recent re-201

search, leading to the adoption of the more efficient 202

Mamba architecture in MLLMs. This initiative has 203

given rise to models like Cobra(Zhao et al., 2024) 204

and VL-Mamba(Qiao et al., 2024), which demon- 205

strate promising pathways for enhanced efficiency 206

in MLLM deployment. 207

Cobra (Zhao et al., 2024) employs a state-space 208

model for multimodal tasks, leveraging the linear 209

scalability of the Mamba architecture. It introduces 210

an innovative approach to vision encoding by merg- 211

ing outputs from DINOv2 (Oquab et al., 2024) and 212

SigLIP (Zhai et al., 2023), thereby generating vi- 213

sual representations that capture both spatial and 214

semantic properties effectively. These outputs are 215

then processed through a learnable projector mod- 216

ule, which aligns the visual and textual features 217

by adjusting the dimensions of the visual represen- 218

tations to match those of the Mamba LLM via a 219

multi-layer perceptron. This approach enables Co- 220

bra to deliver the same volume of output tokens 221

in just 30% of the time required by comparable 222

3B transformer-based LLMs, such as TinyLLaVA 223

(Zhou et al., 2024) or MobileVLM v2 (Chu et al., 224

2024). 225

Similarly, VL-Mamba (Qiao et al., 2024) builds 226

upon a pretrained Mamba framework and intro- 227

duces a novel MultiModal Connector (MMC) ar- 228

chitecture. This connector features a Vision Se- 229

lective Scan (VSS) module and two linear layers, 230

which enhance the causal relationships among im- 231

age blocks from the vision encoder. Furthermore, 232

this paper assesses the performance difference be- 233

tween the Bidirectional-Scan Mechanism (BSM), 234

which scans the image blocks in both forward and 235

backward directions, and the Cross-Scan Mecha- 236

nism (CSM), which scans both from forward to 237

backward and top to bottom. This paper suggests a 238

preference for the simple BSM, as the two scanning 239

methods show comparable efficacy. 240

However, the previous projector modules used 241

in Cobra and VL-Mamba have limitations in that 242

these connectors have no flexibility in vision token 243

number, causing longer vision token input, and re- 244

quire manual scan mechanisms that grant causality 245

between image blocks. 246

3 Method 247

In this section, we first review the preliminary con- 248

cepts of structured state-space models and Mamba 249

(Sec. 3.1). Then, we describe the details of 250

the Cross-modal Mamba projector, which extracts 251
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Figure 2: Overall architecture of Querying Mamba (left) and the Multimodal Mamba LLM (right) based on the
proposed design. Querying Mamba projects the visual information, which is encoded by a pre-trained vision encoder
with an additional bidirectional Mamba layer, into the learnable queries with causal Mamba prior via cross attention.
The projected vision features work as vision token inputs for pre-trained Mamba LLM.

the 2-dimensional vision information into a 1-252

dimensional causal token sequence (Sec. 3.2).253

Lastly, we describe the two-stage fine-tuning of the254

multimodal Mamba with our proposed Q-Mamba255

(Sec. 3.3).256

3.1 Preliminaries257

State-Space Models (SSMs) (Gu et al., 2021,258

2022a; Smith et al., 2023) represent linear time-259

invariant systems that map a continuous 1-260

dimensional function or a sequence x(t) ∈ R to261

a corresponding response y(t) ∈ R, via a hid-262

den state h(t) ∈ RN with N latent dimensions.263

These systems are characterized by four parameters264

(A,B,C,D), which define the system dynamics265

and outputs as follows:266

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(1)267

Typically, the parameter D is omitted as it can be268

interpreted as a skip connection, which is computa-269

tionally straightforward to implement.270

In practice, to deal with discrete-time input se-271

quences, SSMs are discretized with matrices A272

and B. One common discretization method is the273

Zero-Order Hold (ZOH) method, outlined as:274

A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) · (∆B)
(2)275

where the parameter ∆ specifies the discretization 276

step size. The reformulated discretized system is 277

given by: 278

ht = Aht−1 +Bxt

yt = Cht
(3) 279

Structured State-Space Model (S4) (Gu et al., 280

2022a) operates as a time-invariant system, mean- 281

ing its defining parameters (A,B,C,∆) remain 282

constant across all time-steps. Mamba (Gu and 283

Dao, 2023) addresses this constraint by making B, 284

C, and ∆ input-dependent, enabling a dynamic gat- 285

ing mechanism based on the input sequence. This 286

allows Mamba to selectively focus on pertinent 287

information, significantly enhancing its language 288

modeling capabilities. 289

3.2 Cross-Modal Mamba Projector 290

We propose the cross-modal projector, named Q- 291

Mamba, which integrates the Mamba architecture 292

with cross-attention. The architecture of Q-Mamba 293

is shown in the left side of Figure 2. Q-Mamba 294

comprises stacked Q-Mamba blocks, each contain- 295

ing a Mamba layer, cross-attention, and a feedfor- 296

ward network. The Mamba layer functions as a se- 297

quence mixer, while the feedforward network func- 298

tions as a channel mixer. The set of learnable query 299

embeddings is utilized as the input sequence of the 300

Q-Mamba. The queries form causal dependencies 301
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Figure 3: Example of local attention mask applied in
the cross-attention layer inside Querying Mamba with 4
queries (Q) and 9 keys (K). Each query attends exclu-
sively to K/Q keys, enabling the focused extraction of
information from distinct visual components.

through the sequential Mamba layers, then inter-302

act with vision features from the frozen pre-trained303

vision encoder through cross-attention layers. For304

the cross-attention, we found that applying local305

attention mask as in Figure 3 empirically enhances306

the model performance.307

This design offers three key advantages for cross-308

modal projection. The first advantage is its inde-309

pendence from visual scan order. Previous Mamba-310

based vision encoders relied on heuristic choices of311

visual scan order, such as bidirectional or cross-312

directional scans (Qiao et al., 2024; Zhu et al.,313

2024; Liu et al., 2024b). Q-Mamba eliminates this314

dependency by using cross-attention to project vi-315

sion information from arbitrarily ordered image fea-316

tures onto a one-dimensional query sequence. The317

second advantage is the flexible choice of query318

sequence length. Direct application of Mamba319

on vision feature sequences typically yields pro-320

jected features of equivalent length, which may be321

too extensive even for Mamba LLM. Our design,322

however, facilitates effective downsampling of the323

vision feature length. Finally, the architecture’s re-324

semblance to the Q-Former (Li et al., 2023a) from325

transformer-based MLLMs ensures proper align-326

ment of text-image features.327

We explore several architectural variants to328

identify the optimal configuration for Q-Mamba.329

Our investigation includes the use of bidirectional330

Mamba for preprocessing visual features, the in-331

corporation of a feedforward network for channel332

mixing, and determining the optimal length of the333

learnable query sequence. The findings are detailed334

in Section 4.3.335

3.3 Multimodal Mamba Language Model 336

We introduce the MLLM based on our querying 337

cross-modal projector (Q-Mamba). As shown in 338

Figure 3.2, the overall architecture consists of a pre- 339

trained vision encoder, our cross-modal projector, 340

and a pre-trained Mamba LLM. Initially, visual fea- 341

tures are extracted from the input image using the 342

vision encoder. These features are then processed 343

by our projector, which outputs queries embedded 344

with projected visual information. Subsequently, 345

this output sequence is combined with a tokenized 346

text prompt and fed into the Mamba LLM, which 347

generates the corresponding text response. 348

Training We adopt a two-stage training scheme 349

from LLaVA (Liu et al., 2023), where the ini- 350

tial stage involves aligning the projected features 351

within the frozen LLM using a filtered visual 352

instruction-following dataset. The subsequent 353

stage entails end-to-end fine-tuning of both the 354

projector and the LLM using an extensive visual 355

instruction-following dataset. 356

4 Experiments 357

4.1 Settings 358

Datasets For the fine-tuning stage, we follow the 359

existing two-stage training paradigm and dataset 360

based on LLaVA (Liu et al., 2023) with additional 361

datasets. For the alignment stage, we use a filtered 362

dataset from CC3M with 595K image-text pairs. 363

For the end-to-end fine-tuning stage, we use the 364

combined dataset consisting of LLaVA v1.5 mixed 365

dataset (Liu et al., 2023) with 655K visual con- 366

versations, LVIS-Instruct-4V (Wang et al., 2023) 367

dataset with 220K context-aware visual instruction 368

pairs, and LRV-Instruct dataset (Liu et al., 2024a) 369

with 400K visual instruction pairs aimed for hallu- 370

cination mitigation. 371

Models For the pre-trained vision encoder, we 372

employ pre-trained SigLIP (Zhai et al., 2023), 373

which encodes vision features for each patched 374

image. We utilize a ViT structure with 400 mil- 375

lion parameters. The input image resolution is 376

configured at 384 × 384, and the total number of 377

visual features is 729. We also attached a bidi- 378

rectional multimodal connector from trained VL- 379

Mamba (Qiao et al., 2024) to the vision encoder. 380

The output of the multimodal connector is used as 381

a vision feature input for the Q-Mamba projector. 382

The backbone of our model is the pre-trained 383

Mamba (Gu and Dao, 2023) LLM, which consists 384
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Name Query Length VQAv2 GQA VizWiz VQAT POPE MMB sec/iter

Cobra∗ - 75.38 58.16 49.22 44.9 87.6 56.2 -

VL-Mamba∗ - 74.38 56.69 51.66 48.7 83.9 57.0 7.26
+ forward scan only - 72.34 51.92 29.17 45.6 85.9 56.7 -
+ backward scan only - 72.06 52.42 34.92 45.1 86.1 55.9 -

Ours 128 74.51 57.59 51.03 47.1 87.9 57.2 5.52
Ours 256 75.01 58.10 50.53 48.8 86.9 57.7 6.54
Ours 512 75.42 58.37 48.90 50.2 86.5 57.6 5.94
Ours 729 75.62 58.33 49.30 51.2 86.8 58.0 7.54

Table 1: Comparison with Multimodal Mamba LLMs on 6 benchmarks: VQAv2 (Goyal et al., 2017), GQA (Hudson
and Manning, 2019), VizWiz (Gurari et al., 2018), VQAT (TextVQA) (Singh et al., 2019), POPE (Li et al., 2023b),
and MMB (MMBench) (Yuan Liu, 2023). ∗ indicates the results were reproduced. We also examined variants
of the previous Multimodal Mamba LLMs: + forward scan only and + backward scan only indicate the visual
scanning order of multimodal connector inside VL-Mamba (Qiao et al., 2024). We also report the time consumed
per fine-tuning iteration in seconds.

of 2.8 billion parameters. This model was initially385

pre-trained on the SlimPajama datasets (Soboleva386

et al., 2023) for 600 billion tokens, instruction-387

tuned on the UltraChat 200K dataset (Ding et al.,388

2023), and then fine-tuned on the UltraFeedback389

dataset (Cui et al., 2023) using Direct Preference390

Optimization (DPO) (Rafailov et al., 2023).391

For the Q-Mamba projector, we stack 24 blocks392

with an inner dimension of 768. This choice of393

hyperparameter is to copy the pre-trained weights394

of Mamba (Gu and Dao, 2023) with the size of395

130M parameters.396

Training We train the model using four NVIDIA397

A100 80GB GPUs. During training, we leverage398

the PyTorch Fully Sharded Data Parallel (Zhao399

et al., 2023) framework, utilizing automatic mixed-400

precision with FP32 and BF16 for efficient dis-401

tributed training. The batch sizes are set to 256402

for the alignment stage and 128 for the end-to-end403

fine-tuning stage. We employ the Rectified Adam404

(RAdam) optimizer (Liu et al., 2020), coupled with405

a cosine decay learning rate scheduler. The learn-406

ing rates are set at 1×10−4 for the alignment stage407

and 2× 10−5 for the end-to-end fine-tuning, both408

with a warmup ratio of 0.03. Each training stage is409

conducted in a single epoch.410

Evaluation To validate the performance of our411

model, we benchmarked it against five different412

datasets: VQA-v2 (Goyal et al., 2017), GQA (Hud-413

son and Manning, 2019), VizWiz (Gurari et al.,414

2018), Text-VQA (Singh et al., 2019), POPE (Li415

et al., 2023b) and MMBench (Yuan Liu, 2023).416

Each dataset offers unique challenges and measures417

different aspects of the model’s capabilities: 418

• VQA-v2 (Goyal et al., 2017) evaluates the 419

model’s general ability to reason over Vision- 420

Question pairs. 421

• GQA (Hudson and Manning, 2019) extends 422

VQA-v2 by testing the model’s reasoning 423

skills across a broader spectrum, incorporat- 424

ing spatial understanding and multi-step infer- 425

ence along with various reasoning skills. 426

• VizWiz (Gurari et al., 2018), similar to VQA- 427

v2, includes unanswerable questions, thereby 428

assessing the model’s ability to identify when 429

a question cannot be answered. 430

• Text-VQA (Singh et al., 2019) specifically 431

measures the model’s proficiency in recogniz- 432

ing text within images and answering related 433

questions. 434

• POPE (Li et al., 2023b) differentiates itself 435

by focusing on the model’s susceptibility to 436

hallucination problems. It provides a score 437

based on the probability of the given answer, 438

hence evaluating the likelihood that the model 439

avoids generating incorrect information. 440

• MMBench (Yuan Liu, 2023) evaluates the 441

multi-modal capabilities of vision-language 442

models across 20 distinct abilities, including 443

object localization, social reasoning, and fine- 444

grained perception. It introduces a novel Cir- 445

cularEval strategy, ensuring comprehensive 446

evaluation through multiple passes of QA to 447

reduce biases and improve reliability. 448
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Attention VQAv2 GQA VizWiz VQAT POPE

Global 73.12 52.87 49.09 44.0 85.1

Local 75.01 58.10 50.53 48.8 86.9

Table 2: Comparison between global attention and local attention for cross-attention layer inside our cross-modal
Mamba projector. We used 256 learned queries for both models.

Bi-directional Mamba VQAv2 GQA VizWiz VQAT POPE

From Scratch 74.22 56.30 53.12 48.0 86.4

From Trained 75.01 58.10 50.53 48.8 86.9

Table 3: Comparison between using bidirectional multimodal connector inside vision encoder from scratch or from
trained VL-Mamba (Qiao et al., 2024). We used 256 learned queries and local attention for both models.

Visual Scan Order VQAv2 GQA VizWiz VQAT POPE

Forward Only 76.58 58.44 50.00 50.0 86.9

Bidirectional 75.01 58.10 50.53 48.8 86.9

Table 4: Comparison between using raster scan only or bidirectional multimodal connector inside vision encoder
from trained VL-Mamba (Qiao et al., 2024). We used 729 learned queries and local attention for both models.

4.2 Results449

As presented in Table 1, our model consistently out-450

performs previous state-of-the-art Mamba-based451

multimodal models across all benchmarks. Specifi-452

cally, the Q-Mamba with 729 queries achieves the453

highest overall performance, demonstrating signif-454

icant improvements in tasks that require nuanced455

vision-language integration. Notably, our model456

shows remarkable gains in the VizWiz and Text-457

VQA datasets, which assess the model’s ability to458

understand and interpret textual information within459

images.460

The results indicate that increasing the number461

of queries generally improves performance. For462

instance, moving from 128 to 256 queries results463

in substantial performance gains across all bench-464

marks, highlighting the importance of having a465

sufficient number of queries to capture detailed vi-466

sual information. Further increasing the number467

of queries to 512 and 729 continues to improve468

performance, though the gains are less pronounced469

compared to the initial increase. This suggests that470

while more queries help in capturing more informa-471

tion, there is a point of diminishing returns where472

additional queries contribute less to overall perfor-473

mance.474

Compared to Cobra and VL-Mamba, the Q-475

Mamba design proves to be more effective in dy-476

namically downsampling visual token sequences 477

and eliminating the need for manual visual scan 478

orders, contributing to higher throughput and better 479

alignment of visual and textual information. The 480

flexibility in choosing the query sequence length 481

allows for a tailored balance between computa- 482

tional efficiency and model performance, making 483

Q-Mamba adaptable to various application require- 484

ments. 485

4.3 Ablation Studies 486

In our ablation study, we meticulously analyzed 487

various configurations to determine how different 488

components within Q-Mamba affect model per- 489

formance. Our initial investigations focused on 490

the type of cross-attention mechanism employed, 491

with results detailed in Table 2. These findings 492

demonstrate that local attention significantly out- 493

performs global attention in enhancing model per- 494

formance. We then evaluated the effect of utilizing 495

pre-trained weights for the bidirectional Mamba 496

connector within the vision encoder, with outcomes 497

presented in Table 3. The results confirm that lever- 498

aging weights from a trained VL-Mamba model 499

leads to performance improvements. Finally, we 500

explored the influence of the visual scan order in 501

the bidirectional Mamba connector, as shown in 502

Table 4. Interestingly, our data indicate that al- 503
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though the model is trained with a bidirectional504

scan setting, employing only a forward Mamba for505

inference does not decrease performance and can506

even enhance it.507

5 Conclusion508

This paper presents a query-based cross-modal pro-509

jector designed to enhance Mamba’s efficiency in510

multimodal vision-language modeling. By using511

the cross-attention mechanism between the learn-512

able queries and the outputs of the visual encoder513

within a Mamba architecture, the proposed mul-514

timodal projector dynamically compresses visual515

tokens based on an input image context, eliminat-516

ing the need for manually designing of the 2D scan517

order of image features. Experimental results on518

diverse vision-language understanding benchmarks519

demonstrate that the proposed cross-modal pro-520

jector boosts the effectiveness of Mamba-based521

MLLMs.522

Limitations523

Despite the promising results, our approach has524

several limitations that need to be addressed in525

future work. The primary limitation is related to the526

amount and quality of the dataset used for training527

and fine-tuning the model.528

For the alignment process, we used the LLaVA-529

LLVIS dataset, and for the fine-tuning process, we530

used the LLaVA-1.5 dataset. Both of these datasets531

are filtered and curated to ensure quality, but their532

limited size compared to the vast datasets typically533

used in training large language models (LLMs) can534

restrict the model’s ability to generalize across di-535

verse vision-language tasks. Specifically, we ran536

one epoch for each stage of our training process,537

whereas other models in the same domain were538

fine-tuned for two epochs instead of one. This dif-539

ference in training duration can result in less robust540

model performance, as the additional epochs in541

other models allow for more comprehensive learn-542

ing and fine-tuning of the parameters.543

Additionally, the Mamba architecture are liable544

to "forget." The hidden states of the Mamba model545

take input and output sequentially, similar to how546

hidden states within the RNN would, where the cur-547

rent state depends on the previous inputs and hid-548

den state outputs. This sequential dependency can549

potentially result in forgetting issues that plagued550

the RNN/LSTM-based models, if the input would551

be long enough.552

It would be also necessary to pretrain the pro- 553

posed Q-Mamba more thoroughly including con- 554

trastive learning as used in Q-Former based on 555

image-text pair datasets. In addition, the param- 556

eters of Q-Mamba can be initialized by the pre- 557

trained compact Mamba LLM. Also, it would be 558

helpful to perform more in-depth analysis on the 559

resulting attention map for each query according to 560

different input images. 561

Potential Risk 562

This paper presents a new architecture of a Large 563

Language Model with over a billion parameters, 564

which can cause potential discrimination in the use 565

of these methods due to the disparity in access to 566

computational resources. Also, the hallucination 567

of Large Language Model can cause potential bias 568

or harm when generating response. 569
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