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Abstract—In this work, we replace Mamba in UMamba with
recent xLSTM, and surprisingly, it works well! Convolutional
Neural Networks (CNNs) and Vision Transformers (ViT) have
been pivotal in biomedical image segmentation. Yet, their ability
to manage long-range dependencies remains constrained by
inherent locality and computational overhead. To overcome these
challenges, in this technical report, we first propose xLSTM-
UNet, a UNet structured deep learning neural network that lever-
ages Vision-LSTM (xLSTM) as its backbone for medical image
segmentation. xLSTM has recently been proposed as the suc-
cessor of Long Short-Term Memory (LSTM) networks and has
demonstrated superior performance compared to Transformers
and State Space Models (SSMs) like Mamba in Neural Language
Processing (NLP) and image classification (as demonstrated in
Vision-LSTM, or ViL implementation). Here, we provide the
first integration of xLSTM with image segmentation backbone
– namely xLSTM-U, which extend the success of xLSTM in the
biomedical image segmentation domain. By integrating the local
feature extraction strengths of convolutional layers with the long-
range dependency-capturing abilities of xLSTM, the proposed
xLSTM-UNet offers a robust solution for comprehensive image
analysis. We validate the efficacy of xLSTM-UNet through exper-
iments. Our findings demonstrate that xLSTM-UNet consistently
surpasses the performance of leading CNN-based, Transformer-
based, and Mamba-based segmentation networks in multiple
datasets in biomedical segmentation including organs in abdomen
MRI, instruments in endoscopic images, and cells in microscopic
images. With comprehensive experiments performed, this paper
highlights the potential of xLSTM-based architectures in advanc-
ing biomedical image analysis in both 2D and 3D. We believe
this new finding will be of interest to the research community
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and may inspire future studies. The code, models, and datasets
are publicly available at https://github.com/tianrun-chen/xLSTM-
UNet-PyTorch/tree/main.

Index Terms—3D Medical Image Segmentation, Long Range
Sequential Modeling, Long Short-Term Memory (LSTM), State
Space Models, UNet, Vision Mamba, Vision Transformer, xLSTM

I. INTRODUCTION

Biomedical image segmentation is a critical task in medical
imaging, enabling precise delineation of anatomical structures
and anomalies essential for diagnosis, treatment planning, and
research [1], [2]. In recent years, deep learning methods have
achieved remarkable success in tumor segmentation [3] and
organ segmentation in 3D Computed Tomography (CT) scans
[4], as well as in cell segmentation in microscopy images
[5], [6]. These advancements underscore the transformative
impact of deep learning on the landscape of biomedical image
segmentation, paving the way for more accurate and efficient
diagnostic and treatment planning tools. Traditionally, Convo-
lutional Neural Networks (CNNs) have been the backbone of
this domain in deep learning-enabled methods, leveraging their
powerful local feature extraction capabilities [7]–[9]. More
recently, Vision Transformers (ViTs) have gained popularity
by offering a robust alternative, capable of capturing global
context through self-attention mechanisms [10]–[12]. Despite
their successes, both CNNs and ViTs face inherent limita-
tions. CNNs struggle with long-range dependencies due to



their localized receptive fields, while ViTs encounter substan-
tial computational overhead [13], [14], especially with high-
resolution images or high-dimensional imaging modalities like
3D images or hyper-spectral imaging like stimulated Raman
scattering (SRS) imaging [15]–[17] or mid-infrared (IR) spec-
troscopic imaging [18].

To address these challenges, recent work has proposed to
integrate computation modules that have long-range depen-
dencies and also exhibit linear computational and memory
complexity w.r.t. sequence length. Among these computation
modules, State Space Models (SSMs) [19]–[21], like Mamba
[22], has demonstrated its huge success. SSMs excel in
handling long-range dependencies and have been successfully
integrated into conventional UNet architectures. Variants like
UMamba [23], VM-Unet [24]–[26], Mamba-Unet [27], Swin-
UMamba [28], and SegMamba [29], have demonstrated their
considerable success.

Meanwhile, Extended Long-Short Term Memory (xLSTM)
has recently emerged as a powerful successor to Long Short-
Term Memory (LSTM) networks, challenging Transformers
in sequence modeling [30]. Like SSMs, xLSTM can handle
long-range dependencies and maintain linear computational
and memory complexity. However, xLSTM has demonstrated
superior performance in neural language processing (NLP)
and image classification (in its Vision-LSTM (ViL) imple-
mentation [31]). This success naturally raises the question:
Can xLSTM, or ViL, also excel in image segmentation,
specifically in the field of medical image segmentation?

The answer is Yes! In this technical report, we introduce
xLSTM-UNet, the first xLSTM-enabled U-Net image segmen-
tation network that can perform both 2D and 3D medical
image segmentation tasks and achieves state-of-the-art (SOTA)
results. We conducted comprehensive experiments in various
2D and 3D medical segmentation scenarios, including organs
in abdominal MRI, instruments in endoscopy, cells in mi-
croscopy, and cancer segmentation in 3D brain MRI volumes.
The results show that xLSTM-UNet outperforms existing
CNN-based and Transformer-based segmentation methods, as
well as its Mamba-based counterparts. These findings highlight
the potential of xLSTM-based architecture to set new bench-
marks in the field of medical image segmentation, offering
improved accuracy and efficiency across a wide range of
applications. To further advance research in this area, we will
release the model and code, enabling future explorations in
various fields such as automated pathology detection, cam-
ouflaged image segmentation, precision agriculture, environ-
mental monitoring, satellite imagery analysis, and industrial
inspection, and so on.

II. RELATED WORK

Medical image segmentation is a crucial application of
computer vision, involving the delineation of pathological and
anatomical structures from volumetric data for diagnosis, treat-
ment planning, and patient monitoring. This task is complex
due to the multidimensional nature of the data, requiring
highly accurate segmentation outputs.

Deep learning has significantly advanced medical image
segmentation, particularly with convolutional neural networks
(CNNs) [32]. Early works [8], [33] used CNNs as a backbone
for segmentation tasks. A key breakthrough came with U-Net
[7], which introduced a symmetric encoder-decoder structure
that captured both fine-grained spatial information and abstract
features. Extensions like Unet++ [9] improved performance
through nested skip connections and deep supervision. How-
ever, CNNs often struggle with long-range dependencies.

Transformers [34] addressed this limitation by modeling
global dependencies with self-attention mechanisms, as seen
in hybrid models like TransUNet [10], which combine CNNs
for local features and Transformers for global context.

While Transformers improve segmentation, they are com-
putationally expensive. To mitigate this, State Space Models
(SSMs) [19]–[21], such as Mamba [22], offer efficient long-
range dependency handling with linear computational com-
plexity, as demonstrated in Unet-based models [23]–[29].

Extended Long-Short Term Memory (xLSTM) networks
[30] present another alternative, efficiently modeling long-
range dependencies with reduced computational demands.
Vision-xLSTM [31] integrates global context with computa-
tional efficiency, making it a promising approach for develop-
ing precise and efficient medical image segmentation models.

III. METHOD

1) Vision-xLSTM: Vision-xLSTM (ViL) is an adaptation
of xLSTM specifically for computer vision tasks. The con-
figuration contains interchanging mLSTM segments where
even-indexed segments handle flattened features starting from
the top left moving to the bottom right, while odd-indexed
segments proceed from the bottom right to the top left.
This two-way operation allows ViL segments to grasp strong
worldwide dependencies within the input.

The flattened features, after being normalized, are projected
into an embedding domain, doubling their size. These enlarged
embeddings are split into two paths: xmlstm ∈ RN×2Z and
y ∈ RN×2Z . xmlstm undergoes a 1D causal convolution
process with the SiLU activation function applied to it. The
intermediate outcome (X ∈ RN×2Z) is subsequently mapped
to query, key, and value vectors, which are akin to the
vectors used in the Transformer model. These vectors are then
forwarded to the mLSTM cell. The mLSTM sublayer consists
of n parallel attention heads, each equipped with a matrix
memory unit.

At first, input and forget gate pre-activations, ĩ ∈ RN×dh

and f̃ ∈ RN×dh respectively, are calculated by linearly
projecting the concatenated Q, K, and V matrices as expressed
below mathematically:

ĩ = WI [Q,K, V ] +B (1)

f̃ = WF [Q,K, V ] +B (2)

Here, B ∈ RN×dh is the bias matrix. The formation of
query, value, and key is mathematically defined as:



Fig. 1. The framework of the proposed xLSTM-UNet, which is based on the conventional U-Net structure. xLSTM is used in multi-resolution feature
extraction process in the encoder.

Q = XWT
Q ,K = XWT

K , V = XWT
V (3)

Where Q belongs to RN×d, K resides in RN×d, V is in
RN×d, these are query, key, and value matrices. The WQ

resides in R2Z×d, WK is within R2Z×d, and WV is found in
R2Z×d, they are the adjustable weight matrices for generating
the query, key, and value per head. Herein, d symbolizes the
intended dimension for queries, keys, and values.

The pre-activation outputs further derive the gate decay
matrix D ∈ RN×dh following this equation:

D = ĩ⊕ log σ(f̃) (4)

Herein, log σ denotes the log-sigmoid activation function.
The decay matrix D is stabilized to ensure subsequent expo-
nentiation of D results in stable output. The final gate decay
matrix output D̂ ∈ RN×dh is represented as:

D̂ = exp(D) (5)

Here, exp represents the exponentiation operation. The Q
and K vectors perform a dot product to derive the attention
scores S ∈ RN×N , analogous to the self-attention mechanism
in Transformers. A causal mask M ∈ RN×N ensures that
attention is solely from the previous patch to the current one.
It is mathematically represented as:

S = Softmax(
QK⊤
√
d

+M) (6)

The attention score matrix undergoes element-wise multipli-
cation with D̂ to form the combination matrix C ∈ RN×dh .

C = S⊤D̂ (7)

Finally, the cell state h̃t is updated as:

h̃t = C ⊗ V (8)

Then, the embedding y from the second path is multiplied
with h̃t, followed by a down-projection operation. This final
output o is projected into a Z-dimensional embedding space
using the projection matrix WD ∈ R2Z×Z . Mathematically,
this can be expressed as:

o = W⊤
D (y ⊗ h̃t) (9)

2) The Architecture of xLSTM-UNet: Fig. 1 showcases
the xLSTM-UNet network architecture. xLSTM-UNet follows
a conventional UNet-like structure. The input information
first passes a convolution layer for initial down-sampling.
Then several subsequent layers that are constructed using the
aforementioned xLSTM building blocks to capture both local
features and long-range dependencies form the main part of
the encoder. Note that the xLSTM-UNet is designed with
the goal of harnessing the best aspects of both U-Net and
xLSTM for improved global comprehension in medical image
understanding. Therefore, instead of only applying xLSTM
in the compressed latent space after the down-sampling has
finished, we hereby use the xLSTM in multiple layers in
the encoder, in which each layer contains two successive
Residual blocks with one plain convolution and an Instance
Normalization (IN) and followed by a xLSTM block as in
[31]. Specifically, the image features passing the residual
blocks has a shape of (B,C,H,W,D), which is first flattened
and transposed to (B,H × W × D,C), followed by a layer
normalization, and then feed to the ViL block. Such the
practice of involving xLSTM in multiple layers helps the
feature extractions in multiple resolutions/perception fields,
and this information extracted by xLSTM blocks is reshaped
to (B,C,H,W,D) and concatenated to the layers in the
decoding steps to facilitate the segmentation mask generation.

After encoding, the decoder, comprising Residual blocks
and transposed convolutions, concentrates on the meticulous
recovery of detailed local information. Additionally, we inherit



the skip connection from the U-Net architecture to intercon-
nect the hierarchical features from the encoder to the decoder.
The final decoder feature is fed into a 1 x 1 convolutional
layer, coupled with a Softmax layer, to generate the ultimate
segmentation probability map. Furthermore, following [23]
in 2D segmentation, we also implemented a variant where
the U-xLSTM block is exclusively utilized in the bottleneck,
denoted as ’ours bot’, while ’ours enc,’ denotes the network
that applies xLSTM block in all encoder blocks in all 2D
segmentation tasks. In 3D segmentation, the xLSTM blocks is
added in the bottleneck.

IV. EXPERIMENTS

A. Datasets

To validate the effectiveness of our xLSTM-UNet, we
utilized several representative medical image segmentation
datasets, covering organ, instrument, and cell segmentation
across different resolutions and modalities. This comprehen-
sive evaluation demonstrates the applicability and superiority
of xLSTM-UNet across diverse medical imaging scenarios.

Abdomen MRI: We used the Abdomen MRI dataset from
the MICCAI 2022 AMOS Challenge [4] for abdominal organ
segmentation. The dataset, annotated by radiologists using
MedSAM [2] and ITK-SNAP [35], includes 60 MRI scans
for training and 50 for testing, with 13 organ classes. For 2D
tasks, images were cropped to 320x320 pixels, and for 3D
tasks, patches were 48x160x224 pixels, following U-Mamba
settings [23].

Endoscopy images: The endoscopy image dataset was
sourced from the MICCAI 2017 EndoVis Challenge [36],
focusing on the segmentation of seven surgical instruments
from endoscopic images. We used the official split of 1800
training and 1200 testing frames, with images resized to
384x640 pixels for nnU-Net.

Microscopy images: The microscopy image dataset was
obtained from the NeurIPS 2022 Cell Segmentation Challenge
[6], which focuses on cell segmentation in various microscopy
images. We trained on 1000 images and tested on 101,
converting the task to semantic segmentation as in [23], with
images resized to 512x512 pixels for nnU-Net.

BraTS2023: The BraTS2023 dataset [37]–[39] comprises
1,251 3D brain MRI volumes. Each volume features four
imaging modalities (T1, T1Gd, T2, and T2-FLAIR) and three
segmentation targets: Whole Tumor (WT), Enhancing Tumor
(ET), and Tumor Core (TC). For training, we use a random
crop size of 128×128×128 to process the 3D data.

B. Implemetation details

The network is implemented based on UMamba [23]. The
loss function used is the sum of Dice loss and cross-entropy
loss. We employ the AdamW optimizer with a weight decay
of 0.05. The learning rates were set to 0.005 for the Abdomen
MRI dataset, 0.01 for the Endoscopy dataset, 0.007 for training
xLSTM-UNet Bot on the Microscopy dataset, 0.0015 for
training xLSTM-UNet Enc on the Microscopy dataset, and
0.01 for training on the BraTS2023 dataset. The batch sizes

were set as follows: 2 for the 3D Abdomen MRI dataset, 30 for
the 2D Abdomen MRI dataset, 2 for the Endoscopy dataset, 12
for the Microscopy dataset, and 4 for the BraTS2023 dataset.
All networks were trained from scratch for 1000 epochs on a
single NVIDIA A100 GPU. For more implementation details,
please refer to our codebase.

C. Baselines

In 2D medical segmentation, to ensure a fair compari-
son, we follow the evaluation protocol in UMamba [23].
We selected two CNN-based segmentation networks (nnU-
Net [4] and SegResNet [40]) and two Transformer-based
networks (UNETR [12] and SwinUNETR [11]), as well as the
UMamba itself, which has two variations: U-Mamba Bot and
U-Mamba Enc. Similar to our configuration, U-Mamba Bot is
applied only at the bottleneck, while U-Mamba Enc is used in
each encoder. We used the Dice Similarity Coefficient (DSC)
and Normalized Surface Distance (NSD) as evaluation metrics
for the semantic segmentation tasks on the Abdomen MRI
and Endoscopy datasets [41]. For cell segmentation on the
Microscopy dataset, we employed the F1 score.

In 3D medical segmentation, for the 3D Abdomen MRI
dataset, the baseline methods and tasks remain consistent with
those used in 2D medical segmentation. For the BraTS2023
dataset, to ensure a fair comparison, we follow the evaluation
protocol outlined in SegMamba [29]. We use the same base-
line methods, including three CNN-based methods (SegresNet
[40], UX-Net [42], MedNeXt [43]), three transformer-based
methods (UNETR [12], SwinUNETR [11], and SwinUNETR
V2 [44]), and the Mamba-based method SegMamba itself.
Following previous evaluation protocols, Dice and HD95 were
used as evaluation metrics.

D. Quantitative and Qualitative Results for 2D Segmentation

Table I presents the segmentation performance of vari-
ous methods on the Abdomen MRI 2D, Endoscopy, and
Microscopy datasets for 2D image segmentation task. Our
proposed xLSTM-UNet outperforms all baseline methods and
achieves state-of-the-art (SOTA).

Notably, both variations of xLSTM-UNet show superior per-
formance across all datasets. Specifically, xLSTM-UNet Enc
demonstrates the highest performance with a DSC of 0.7747
and an NSD of 0.8374 on the Abdomen MRI 2D dataset,
outperforming the previous state-of-the-art (SOTA) model,
U-Mamba by a significant margin. Additionally, xLSTM-
UNet Bot achieves DSC and NSD scores of 0.7636 and
0.8322, respectively, surpassing the similarly structured U-
Mamba Bot. Similarly, on the Endoscopy dataset, both
xLSTM-UNet Bot and xLSTM-UNet Enc achieve the best
DSC and NSD scores of 0.6843 and 0.7001, respectively.
For the Microscopy dataset, xLSTM-UNet Enc and xLSTM-
UNet Bot achieve F1 scores of 0.6036 and 0.5818, respec-
tively, both surpassing the previous SOTA results, indicating
their robustness in cell segmentation tasks.

The visualized segmentation examples of 2D medical im-
ages further illustrate the effectiveness of xLSTM-UNet. As



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Methods Organs in Abdomen MRI 2D Instruments in Endoscopy Cells in Microscopy
DSC ↑ NSD ↑ DSC ↑ NSD ↑ F1 ↑

nnU-Net 0.7450 ± 0.1117 0.8153 ± 0.1145 0.6264 ± 0.3024 0.6412 ± 0.3074 0.5383 ± 0.2657
SegResNet 0.7317 ± 0.1379 0.8034 ± 0.1386 0.5820 ± 0.3268 0.5968 ± 0.3303 0.5411 ± 0.2633
UNETR 0.5747 ± 0.1672 0.6309 ± 0.1858 0.5017 ± 0.3201 0.5168 ± 0.3235 0.4357 ± 0.2572
SwinUNETR 0.7028 ± 0.1348 0.7669 ± 0.1442 0.5528 ± 0.3089 0.5683 ± 0.3123 0.3967 ± 0.2621
U-Mamba Bot 0.7588 ± 0.1051 0.8285 ± 0.1074 0.6540 ± 0.3008 0.6692 ± 0.3050 0.5389 ± 0.2817
U-Mamba Enc 0.7625 ± 0.1082 0.8327 ± 0.1087 0.6303 ± 0.3067 0.6451 ± 0.3104 0.5607 ± 0.2784
Ours bot 0.7636 ± 0.1006 0.8322 ± 0.1034 0.6843 ± 0.3005 0.7001 ± 0.3046 0.5818 ± 0.2386
Ours enc 0.7747 ± 0.0950 0.8374 ± 0.0951 0.6843 ± 0.3024 0.7001 ± 0.3067 0.6036 ± 0.2435

shown in Figure 2, xLSTM-UNet is more robust to hetero-
geneous appearances and exhibits fewer segmentation outliers
compared to other models. This visual evidence underscores
the quantitative results, highlighting the superior performance
and reliability of xLSTM-UNet in diverse medical image
segmentation tasks.

E. Quantitative and Qualitative Results for 3D Segmentation

3D medical image segmentation is generally more challeng-
ing compared to its 2D counterpart, as it involves processing
a larger amount of information. The increased dimensionality
leads to a dramatic surge in computational complexity, with
the resolution increase causing a cubic rise in the number of
computations. Accurate spatial relationship modeling is also
essential for achieving satisfactory segmentation results. These
factors make the xLSTM-based building blocks, with their
computational efficiency, well-suited for this task.

We conducted evaluations on the 3D segmentation dataset
in BraTS2023 and Abdomen MRI 3D. Table II shows the
performance comparison on the BraTS2023 dataset, including
metrics for whole tumor (WT), tumor core (TC), and enhanc-
ing tumor (ET) regions. Our proposed method demonstrates
superior performance across all evaluated metrics, including
Dice and HD95, compared to other baseline methods such
as SegresNet, UX-Net, MedNeXt, UNETR, SwinUNETR,
SwinUNETR-V2, and SegMamba. Specifically, our method
achieves the highest average Dice score of 91.80, highlighting
its effectiveness in accurately segmenting brain tumor regions.
Table III shows the performance comparison of the Organs
in the Abdomen MRI 3D dataset. Our proposed method,
xLSTM-UNet Bot, achieves the highest Dice score of 0.8483
and the best NSD score of 0.9153, surpassing other methods
such as nnU-Net, SegResNet, UNETR, SwinUNETR, and U-
Mamba Bot. This demonstrates the robustness and accuracy of
our approach in segmenting abdominal organs in MRI images.

The ability of xLSTM to effectively model semantic infor-
mation in complex spatial domains has been a key factor in
our success. The superior experimental results also underscore
the suitability of xLSTM-based building blocks for tackling
the challenge of semantic segmentation in complex imaging
applications.

F. Ablation Studies

To further validate the improvements introduced by our
newly proposed modules, we conducted a series of ablation

TABLE II
PERFORMANCE COMPARISON ON BRATS2023 DATASET FOR 3D IMAGE

SEGMENTATION

Methods WT TC ET Avg
Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓

SegresNet 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01
UX-Net 93.13 4.56 90.03 5.68 85.91 4.19 89.69 4.81
MedNeXt 92.41 4.98 87.75 4.67 83.96 4.51 88.04 4.72
UNETR 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49
SwinUNETR 92.71 5.22 87.79 4.42 84.21 4.48 88.23 4.70
SwinUNETR-V2 93.35 5.01 89.65 4.41 85.17 4.41 89.39 4.51
SegMamba 93.61 3.37 92.65 3.85 87.71 3.48 91.32 3.56
Ours 93.84 3.89 92.77 4.06 88.79 4.14 91.80 4.03

TABLE III
PERFORMANCE COMPARISON ON ORGANS IN ABDOMEN MRI 3D

DATASET

Methods DSC ↑ NSD ↑
nnU-Net 0.8309 ± 0.0769 0.8996 ± 0.0729
SegResNet 0.8146 ± 0.0959 0.8841 ± 0.0917
UNETR 0.6867 ± 0.1488 0.7440 ± 0.1627
SwinUNETR 0.7565 ± 0.1394 0.8218 ± 0.1409
U-Mamba 0.8453 ± 0.0673 0.9121 ± 0.0634
Ours 0.8483 ± 0.0774 0.9153± 0.0596

studies. The process began by using a baseline model where
all blocks in the U-Net architecture were fully convolutional
layers. Starting from this baseline, we incrementally replaced
the convolutional blocks with xLSTM modules. The results of
these ablation studies are presented in Table IV, illustrating the
effectiveness of each module on overall model performance.

In our ablation experiments, replacing even a single con-
volutional layer with an xLSTM module resulted in signifi-
cant improvements, particularly on the Dataset704 Endovis17
dataset, where DCS and NSD metrics increased by 18.9%
and 19.1%, respectively. As more xLSTM layers were added,
accuracy consistently improved across all datasets. These
results demonstrate that integrating xLSTM blocks into the U-
Net architecture effectively enhances segmentation accuracy in
medical imaging.

V. EFFICIENCY ANALYSIS

The efficiency analysis of different methods, as shown
in Table V, highlights the performance and computational
complexity of models. The scatter plot (Figure 3) visualizes
the relationship between FLOPs and F1 scores for various
models for the task of cell segmentation in microscopy image,
with the circle size representing the number of parameters.
Our models, Ours bot and Ours enc, demonstrate a significant



Fig. 2. Visualized examples of 2D medical segmentation in various dataset. xLSTM-UNet demonstrates greater robustness to heterogeneous appearances and
exhibits fewer segmentation errors.

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON VARIOUS DATASETS

Methods Organs in Abdomen MRI 3D Cells in Microscopy Instruments in Endoscopy Organs in Abdomen MRI 2D
DSC ↑ NSD ↑ F1 ↑ DSC ↑ NSD ↑ DSC ↑ NSD ↑ Inference Speed(s)

FCN 0.8315 ± 0.1544 0.8961 ± 0.1467 0.5685 ± 0.2351 0.4737 ± 0.2968 0.4878 ± 0.3008 0.7402 ± 0.1955 0.8076 ± 0.1938 2.1051
one xlstm 0.8459 ± 0.1299 0.9147 ± 0.1225 0.5835 ± 0.2453 0.6621 ± 0.3030 0.6786 ± 0.3074 0.7562 ± 0.1847 0.8222 ± 0.1868 6.0244
two xlstms 0.8452 ± 0.1307 0.9123 ± 0.1226 0.5860 ± 0.2423 0.6683 ± 0.3026 0.6859 ± 0.3068 0.7692 ± 0.1755 0.8373 ± 0.1783 6.1156
Ours enc(three xlstms) 0.8483 ± 0.0774 0.9153± 0.0596 0.6036 ± 0.2435 0.6843 ± 0.3024 0.7001 ± 0.3067 0.7747 ± 0.0950 0.8374 ± 0.0951 6.4247

advantage in terms of efficiency and performance. Specif-
ically, Ours enc achieves the highest F1 score of 0.6036
with a moderate computational cost of 125.9G FLOPs, which
is considerably lower than the FLOPs of UNETR (120.1G
FLOPs with an F1 score of 0.4357) and nnFormer (136.7G
FLOPs with an F1 score of 0.5818). Furthermore, Ours bot
maintains a competitive F1 score of 0.5818 with only 101.7G
FLOPs, which is significantly more efficient than nnFormer
and other high-parameter models like U-Mamba Bot and U-
Mamba Enc. This analysis underscores the superior balance
achieved by our models between computational efficiency and
segmentation accuracy, making them particularly suitable for
practical applications where both performance and resource
consumption are critical. Our models’ lower parameter counts
and FLOPs, combined with high F1 scores, clearly demon-
strate their superiority over existing methods, affirming the
effectiveness of our approach in optimizing model architecture
for both efficiency and accuracy.

We also evaluated the inference speed of the models as part
of the ablation studies, focusing on the 2D segmentation task
from the Dataset702 AbdomenMR dataset. The results, shown
in the last column of Table IV, provide the average inference
time per nii.gz file, highlighting the trade-off between perfor-

mance and computation time. While the baseline FCN model
had the fastest inference speed, the xLSTM-based models
progressively increased inference time with each additional
layer. However, the improvements in segmentation accuracy
justify the added computation time for tasks requiring high
precision.

VI. DISCUSSION

This study demonstrates that xLSTM, a model with linear
computational complexity, can be an effective component
in image segmentation networks. Our experimental results
clearly show that xLSTM-UNet outperforms Mamba-based
counterparts, underscoring the promising future of xLSTM.
Given the recent huge interest in Mamba in academia, we
believe that it is important to also recognize and investigate
the potential of xLSTM, which has shown remarkable efficacy
in this domain.

Meanwhile, medical image segmentation is inherently chal-
lenging. General image segmentation foundation models, such
as Segment Anything, often fail when applied to medical
images [45]–[47]. Furthermore, medical imaging datasets are
typically small. In this study, the datasets used were limited
in size, which restricts our ability to explore the effects of



TABLE V
MODEL PARAMETERS AND FLOPS COMPARISON OF DIFFERENT METHODS IN DIFFERENT TASKS

Methods Organs in Abdomen MRI 2D Instruments in Endoscopy Cells in Microscopy
param number FLOPs param number FLOPs param number FLOPs

nnU-Net 33M 23.3G 33M 55.9G 46M 60.1G
SegResNet 6M 24.5G 6M 58.9G 6M 62.8G
UNETR 87M 42.1G 87M 111.5G 88M 120.1G
SwinUNETR 25M 27.9G 25M 67.1G 25M 71.7G
nnFormer 60M 50.2G 60M 125.5G 60M 136.7G
U-Mamba Bot 63M 45.7G 63M 109.7G 86M 117.8G
U-Mamba Enc 67M 49.9G 67M 119.8G 92M 128.7G
Ours bot 42M 41.2G 47M 99.2G 64M 101.7G
Ours enc 48M 65.7G 48M 229.6G 65M 125.9G

Fig. 3. The Visualization of Efficiency Analysis for Different Methods in
Cells in Microscopy Segmentation. It is obvious that our approach achieves
the highest F1 Score but with reasonable FLOPs and parameter numbers.

different network scales and dataset sizes on segmentation
outcomes. Investigating whether xLSTM-driven image algo-
rithms adhere to scaling laws remains an interesting question
for future research.

Currently, xLSTM lacks dedicated optimization for hard-
ware such as NVIDIA GPUs, which presents an opportunity
for the community to contribute. Collaborative efforts are es-
sential to optimize xLSTM for various vision tasks, leveraging
its full potential. By releasing our code, we aim to encourage
and facilitate further research and development, enabling the
community to build on our initial findings and drive progress
in this area.

This research represents an initial exploration into the
application of xLSTM in medical image segmentation. There
are many peaks to climb and numerous scenarios to test
in this field. We hope that our comprehensive experiments
and tests will demonstrate the significant potential of xLSTM
in practical applications, encouraging scholars to continue
exploring this promising model. With further development and
optimization, we envision xLSTM achieving success compa-
rable to that of Mamba and even Transformers, becoming a
cornerstone in image segmentation and beyond.

VII. CONCLUSION

In this paper, we introduce xLSTM-UNet, the first U-
Net architecture enhanced with Extended Long-short-memory
(xLSTM) / ViL for both 2D and 3D medical image segmen-
tation tasks. Through extensive experiments across a variety
of medical imaging scenarios—including abdominal MRI,
endoscopy, microscopy, and brain MRI—we have demon-
strated that xLSTM-UNet significantly outperforms existing
CNN-based and Transformer-based methods, as well as its
Mamba-based counterparts. These findings underscore the
effectiveness of xLSTM in handling complex segmentation
tasks, particularly in the challenging domain of 3D medical
image segmentation.

Our results show that the xLSTM-based architecture can
achieve state-of-the-art (SOTA) performance with reasonable
memory and computation cost, offering enhanced accuracy
and efficiency. This marks a significant advancement and
future potential of xLSTM or similar building blocks, not
only in the field of medical image segmentation, but also with
potential applications extending beyond healthcare. We believe
that this new findings will be interesting to the community and
can inspire future researches.
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