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Abstract

Large language models (LLMs) are prone to001
distraction by contextual information during002
reasoning. Previous work primarily focuses003
on improving the generation of the next token004
while overlooking the potential bias introduced005
by existing premises. In this paper, we pro-006
pose a novel decoding method to mitigate this007
issue. We establish a framework that uses pre-008
dicted logits to assess the model’s confidence.009
By decomposing the full context into multiple010
premises, we gain a clearer understanding of011
the relevance of each premise to the question.012
When predicting the next token, we adjust the013
original model output by contrasting the most014
confident logits with the least confident ones.015
Our method effectively reveals how the model016
dynamically activates and adjusts its considera-017
tion of each premise as reasoning progresses.018

1 Introduction019

Large language models (LLMs) have demonstrated020

significant effectiveness across various reasoning021

tasks (Ahn et al., 2024; Zhang et al., 2024b). With022

the continuous advancement of LLMs’ capabilities,023

generating step-by-step intermediate rationale can024

effectively guide the model toward reliable answers025

(Wei et al., 2022).026

A multitude of research endeavors has been dedi-027

cated to optimizing the intermediate reasoning pro-028

cess of LLMs during inference time (Snell et al.,029

2024). These efforts can be categorized into two030

paradigms: 1) Fusion-based approaches, which031

leverage additional information from the model it-032

self or external sources to bolster the robustness033

of reasoning (Li et al., 2023; O’Brien and Lewis,034

2023; Shi et al., 2024b). 2) Reasoning space search-035

based approaches, which search for the optimal036

solution across various possible reasoning paths037

to derive the answer (Wang and Zhou, 2024; Xie038

et al., 2023, 2024; Mo and Xin, 2024).039

However, previous research primarily focuses040

Figure 1: An illustration of a reasoning task. The lan-
guage model becomes distracted by semantic coherence,
thereby leading to error accumulation.

on how to enable LLMs to generate better next 041

tokens or rationales, while overlooking the influ- 042

ence of the premise and context in the question on 043

the subsequent generation (Liu et al., 2024; Chen 044

et al., 2024). Since LLMs are autoregressive ar- 045

chitectures, the existing context is typically closely 046

tied to the generation of new tokens, encompassing 047

aspects such as grammatical correctness, instruc- 048

tion adherence, and semantic coherence. Yet, when 049

tackling reasoning tasks, due to the intricate logical 050

relationships involved, the models often struggle to 051

capture the appropriate contextual cues, resulting in 052

an unrealistic token probability distribution. This 053

distribution can lead to biased reasoning sequences, 054

and errors are amplified as they accumulate. 055

We argue that the challenge of LLMs being 056

prone to distraction still poses a threat to reasoning 057

tasks (Shi et al., 2023). Due to the implicit atten- 058

tion mechanisms employed by LLMs, it is difficult 059

to discern the relationship between the generated 060

tokens and the premises in the question (Malkin 061

et al., 2022). For instance, models tend to prioritize 062
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maintaining both syntactic and semantic coherence063

while neglecting the correctness of reasoning, as il-064

lustrated in Figure 1. The way the model conditions065

various contexts does not align with expectations,066

and this issue is difficult to correct externally.067

To address these challenges, we propose068

a Confidence-guided Cross-premise Contrastive069

Decoding (C3D) method to enhance the trans-070

parency of premises during LLMs’ reasoning.071

Through empirical experiments, we observe that072

LLMs tend to perform better when faced with073

simple and explicit instructions (Prystawski et al.,074

2023; Lightman et al., 2023), as such instructions075

have lower uncertainty and are easier to execute.076

Therefore, we first decompose the reasoning prob-077

lem into multiple premises. When generating the078

next token, we simultaneously decode the current079

position using both the multiple premises and the080

question. Since one premise will closely enlighten081

the token at the current position, LLMs will assign082

higher confidence to the token generation under083

that premise. We then use the premise with the084

highest confidence and the premise with the lowest085

confidence for contrastive enhancement to adjust086

the probability distribution of the next token. This087

effectively reduces the reasoning bias caused by088

ambiguous contextual evidence in the model.089

We validate our method on multiple arithmetic090

and symbolic reasoning tasks. The experiments091

show that our approach significantly improves per-092

formance without training, external verifier, or ex-093

tensive path search. Additionally, our method pro-094

vides greater transparency and interpretability, help-095

ing us better understand the reasoning process of096

LLMs. In summary, our contributions are three-097

fold:098

• We propose a reasoning enhancement method099

based on cross-premise awareness and con-100

trastive decoding, in which we design token-101

level confidence evaluation to support the reli-102

ability of the model’s reasoning chain.103

• Our method effectively reveals how language104

models dynamically awaken their consider-105

ation of different premises as the reasoning106

process flows. We also visualize the influence107

of each premise on the generation of down-108

stream tokens.109

• Our method can achieve stable improvements110

in reasoning performance without the need for111

training, external verifiers, or path search. Ex- 112

tensive experiments validate the effectiveness 113

of our approach. 114

2 Related Works 115

2.1 Large Language Models Reasoning 116

When confronting reasoning tasks, LLMs typically 117

require CoT (Chain-of-Thought) (Wei et al., 2022) 118

capabilities to perform step-by-step intermediate 119

reasoning. Many studies focus on constructing 120

more data to strengthen the underlying CoT abili- 121

ties of LLMs, including methods based on Super- 122

vised Fine-Tuning (SFT) (Hao et al., 2024; Luo 123

et al., 2023; Ranaldi and Freitas, 2024), Reinforce- 124

ment Learning (RL) (Lightman et al., 2023; Zhang 125

et al., 2024a), and Prompting techniques (Kojima 126

et al., 2022; Zhang et al., 2022). These approaches 127

alter the model’s output logic and often demand 128

high-quality data or evaluation models, as well as 129

significant human effort and training costs. 130

2.2 Inference Time Scaling 131

In addition to training with more data, another tech- 132

nical approach explores improving LLMs during 133

inference time (Snell et al., 2024). These methods 134

aim to enhance the overall reasoning quality by 135

designing effective supervision strategies for each 136

step of the model’s output, and it does not alter the 137

model’s inherent capabilities. Some studies em- 138

ploy internal or external auxiliary mechanisms to 139

improve the robustness of LLMs (Li et al., 2023; 140

Chang et al., 2023), while others opt for more direct 141

approaches to search for optimal solutions within 142

diverse reasoning spaces (Wang and Zhou, 2024; 143

Xie et al., 2023, 2024; Mo and Xin, 2024). Our 144

method falls into the category of internal model 145

enhancement, which is low-dependency and low- 146

overhead. 147

2.3 Contrastive Decoding 148

By contrasting a credible state with a non-credible 149

state, contrastive decoding injects logits into the to- 150

ken generation process, thereby enhancing the faith- 151

fulness of the model’s output from within (Shi et al., 152

2024a). For example, Contrastive Decoding (CD) 153

(O’Brien and Lewis, 2023) uses an expert LM and 154

an amateur LM to contrast and improve the profes- 155

sionalism of the generated tokens. Context-Aware 156

Decoding (CAD) (Shi et al., 2024b), on the other 157

hand, contrasts problems with and without context 158

within a single LM to reduce the irrelevance of 159
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tokens to the context. Decoding by Contrasting160

Layers (DoLa) (Chuang et al., 2023) stimulates the161

intrinsic knowledge of LMs by contrasting differ-162

ent layers. COIECD (Yuan et al., 2024) utilizes163

information entropy to address the issue of knowl-164

edge conflicts in models. Similarly, our method165

contrasts generations under different premises and166

further filters them based on confidence levels.167

3 Method168

We now introduce our proposed Confidence-169

guided Cross-premise Contrastive Decoding (C3D)170

method, which is a token-level, fine-grained171

premise-aware contrastive approach.172

For a reasoning task, given an input question x173

and a context c that contains the necessary premises174

for reasoning, the generation process of a standard175

large language modelM can be defined as:176

yt ∼ pM(yt|c, x, y<t)

∝ exp
(
logitM(yt|c, x, y<t)

) (1)177

where yt is the new token generated at time step178

t based on the context c, the question x, and the179

previously generated sequence y<t. It is sampled180

proportionally to the logit scores processed byM181

(Shi et al., 2024b).182

However, the default sampling method is influ-183

enced by various factors. For instance, when the in-184

formation in the context is complex and unclear, the185

predictions of language models tend to exhibit un-186

certainty (Zheng et al., 2023; Chen et al., 2024; Qiu187

and Miikkulainen, 2024), manifested as a smooth188

distribution over the logits (Ulmer et al., 2023).189

This smooth distribution further leads to an aver-190

aging of sampling probabilities. Once the model191

selects an incorrect token, subsequent generations192

are affected as well. Even when the temperature193

is set to 0, it is difficult to guarantee that the top-194

ranked token is always correct. Moreover, to main-195

tain linguistic coherence, the model will amplify196

these cumulative errors, ultimately compromising197

the correctness of the reasoning.198

3.1 Confidence Estimation with Logits199

To further explore the internal prediction mecha-200

nisms of the model, some methods utilize the logit201

lens (Belrose et al., 2023) for interpretability analy-202

sis. By observing the logits or probability distribu-203

tion at the final layer, we can understand how the204

model assigns weights to each word in the vocabu-205

lary (Qiu et al., 2024; Yuan et al., 2024).206

Figure 2: An example where entropy-based probability
is insufficient to measure the model’s confidence.

Generally, when a word is assigned a weight sig- 207

nificantly higher than others, it indicates that the 208

model has high confidence in this word, and it is 209

highly likely to be reasonable and reliable (Zhang 210

et al., 2023; Duan et al., 2024). This situation typi- 211

cally occurs in cases such as common collocations 212

or when the intent is clear. Therefore, we can use 213

the entropy of the predicted probabilities to mea- 214

sure the model’s confidence α in the next token: 215

H = −
∑
τ∈V

pM(τ)log
(
pM(τ)

)
(2) 216

217

α(yt) =
1

exp(Hyt)
(3) 218

where H is the entropy at the current position over 219

the vocabulary V . We further take the negative 220

exponential of the entropy as an estimate of confi- 221

dence. When the entropy is higher, the probability 222

distribution over the vocabulary is more uniform, 223

and the confidence is lower; when the entropy is 224

lower, the distribution over the vocabulary becomes 225

"sharper", and the confidence is higher (with a max- 226

imum value of 1). 227

Considering that entropy does not always repre- 228

sent the model’s uncertainty, as some information is 229

lost during the softmax process (Gupta et al., 2024; 230

Ma et al., 2025). For example, the model might 231

consider multiple words to be reasonable, each as- 232

signed a high logit value, but after softmax, their 233

probabilities become averaged. Alternatively, the 234

model might be uncertain about the response, but 235

when all logits are low, softmax can still increase 236

the probability of a particular word, as illustrated in 237

Figure 2. Given this, we incorporate consideration 238
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Figure 3: An illustration of our proposed C3D method. The full context is decomposed into multiple premises,
which then simultaneously obtain logits for the current position of the original question. By contrasting the most
confident and least confident logits, the standard decoding process can be enhanced. This approach effectively
mitigates the model’s distraction issue. The illustration of entropy is copied from (Ulmer et al., 2023).

of the extreme values of logits:239

L(yt) =
1

K

K∑
k=1

topk
(
logitM(yt)

)
(4)240

where topk(·) extracts the largest k values from the241

logits. The idea behind this is that the magnitude of242

L also serves as an indicator of confidence (Ulmer243

et al., 2023).244

3.2 Multi-Premises Decomposition245

Inspired by empirical experiments, we observe that246

models often perform better when given simple247

and focused instructions (Prystawski et al., 2023;248

Lightman et al., 2023). This is because simple in-249

structions typically have lower uncertainty, making250

it easier for the model to capture the key informa-251

tion. Therefore, we decompose the original context252

c into multiple simpler premises:253

c = {c1, c2, ..., cn} (5)254

where each premise cn is a sentence from the con-255

text. This can be easily achieved through sentence256

segmentation.257

Then, we can obtain the confidence level of each258

premise for the current position:259

αn = α(yt|cn, x, y<t) (6)260
261

Ln = L(yt|cn, x, y<t) (7)262

The hypothesis here is that when a premise is263

informative for the current decoding position, it264

will be assigned higher confidence. We aim to 265

identify such premises and enable the model to 266

distinguish the key information in the context from 267

redundant details. 268

3.3 Dynamic Contrastive Decoding 269

To overcome reasoning errors caused by contextual 270

distractions, we recompute the predicted logits dur- 271

ing the decoding phase. Specifically, we select the 272

premise logit with the highest confidence as the pos- 273

itive example and the premise logit with the lowest 274

confidence as the negative example. We use their 275

contrastive difference to adjust the original logits. 276

Note that when the L values of all premises fall 277

below a certain threshold, they are all considered 278

untrustworthy, and in such cases, we rely solely 279

on α as the confidence measure. Otherwise, we 280

simply use L as our basis. 281

cmax =

{
argmaxcn{L0,L1, ...,Ln} if ∃L ≥ T

argmaxcn{α0, α1, ..., αn} if ∀L < T
(8) 282

283
logit′M(yt|c, x, y<t) = logitM(yt|c, x, y<t)

+ αmaxlogitM(yt|cmax, x, y<t)

− αmaxlogitM(yt|cmin, x, y<t)

(9) 284

where T is an empirically determined threshold, 285

and L0 and α0 denote the confidence of the full 286

context. This decoding process is performed se- 287

quentially, and it dynamically selects a pair of con- 288

trastive examples for each generated token. Mean- 289

while, the confidence level α scales the magnitude 290
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of this adjustment. As a result, this method can291

mitigate the model’s distraction by contextual infor-292

mation. Figure 3 presents the overall framework.293

Algorithm 1 Confidence-guided Cross-premise
Contrastive Decoding

Require: A reasoning task x with context c, and a
language modelM

Ensure: Response sequence y = {y1, y2, ..., yt}
1: Decompose c into premises {c1, c2, ..., cn}
2: Add the full context and an empty set to the

premise set C = {c, c1, c2, ..., cn,∅}
3: while t < max_length do
4: Logit list←− ∅
5: for ci ∈ C do
6: Add LogitM(yt|ci, x, y<t) to the Logit

list
7: end for
8: if ∃L ≥ T for L in Logit list then
9: Select cmax with the highest L and cmin

with the lowest L
10: else
11: Select cmax with the highest α and cmin

with the lowest α
12: end if
13: Contrast with cmax and cmin

14: Sample yt from the adjusted logits
15: if yt is eos_token then
16: Break
17: end if
18: end while

4 Experiments294

We evaluate our method on multiple tasks that re-295

quire models to reason based on context. We pri-296

marily focus on the following research questions:297

• RQ1: Can our method consistently improve298

reasoning performance?299

• RQ2: How do multiple contextual premises300

influence the reasoning process?301

• RQ3: What is the relationship between the302

model’s confidence and the downstream re-303

sponses?304

4.1 Experimental Setup305

4.1.1 Datasets306

We validate our approach on commonly used307

benchmark datasets for reasoning, including three308

arithmetic reasoning tasks: GSM8K (Cobbe et al., 309

2021), AQUA (Ling et al., 2017), and SVAMP 310

(Patel et al., 2021), as well as three symbolic rea- 311

soning tasks: Coin Flip (Wei et al., 2022), BIG- 312

bench Date Understanding, and BIG-bench Object 313

Tracking (Srivastava et al., 2023). These datasets 314

encompass a wide range of reasoning tasks, from 315

simple to complex, and require leveraging contex- 316

tual information rather than relying on the model’s 317

memorized knowledge. Notably, the information 318

provided in the questions is not always helpful, and 319

some problems even contain completely irrelevant 320

distractors. The model must carefully discern the 321

given premises while avoiding reasoning pitfalls. 322

To validate the anti-distraction effect of our 323

method, we also conduct tests on GSM-IC (Shi 324

et al., 2023). This dataset is based on GSM8K but 325

introduces irrelevant premises to the original ques- 326

tions, thereby distracting the language model. For 327

experimental efficiency, we randomly sample 100 328

questions from GSM-IC as the test subset. 329

Since our primary focus is on how to make bet- 330

ter use of the problem premises, we do not choose 331

tasks like commonsense reasoning or mathemati- 332

cal computation. These tasks mainly rely on the 333

model activating its stored knowledge for reason- 334

ing, where context information is usually minimal 335

or absent. 336

4.1.2 Baselines 337

We consider single-pass decoding methods as our 338

baselines. Specifically, we compare with regular de- 339

coding, self-consistency (SC) (Wang et al., 2023), 340

context-aware decoding (CAD) (Shi et al., 2024b), 341

and Decoding by Contrasting Layers (DoLA) 342

(Chuang et al., 2023). Among these, CAD and 343

DoLA are both contrastive decoding-based meth- 344

ods. The former primarily contrasts scenarios with 345

and without context, while the latter focuses on 346

contrasting different layers of the model. 347

4.1.3 Language Models 348

To obtain the internal logits of the model, we apply 349

our method to open-source large language models. 350

We select Llama-2-7B-chat and Llama-2-13B-chat 351

as the base models. Recently, strong reasoning 352

models, particularly those from the DeepSeek se- 353

ries (Guo et al., 2025), have demonstrated excep- 354

tional performance. Therefore, we also aim to vali- 355

date our method on such strong reasoning models. 356

To maintain consistency with the aforementioned 357

models, we choose DeepSeek-R1-Distill-Llama- 358
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Models Decoding Arithmetic Symbolic Avg.GSM8K AQuA SVAMP Coin Date Object

Llama-2-7B-chat

Regular 21.68 24.01 41.90 47.00 39.29 30.80 34.11
SC 26.14 21.65 47.19 52.80 40.37 32.53 36.78

CAD 21.75 23.62 49.90 48.40 34.96 31.80 35.07
DoLA 22.14 22.44 43.80 51.20 40.08 30.53 35.02
Ours 25.47 29.92 47.59 54.80 44.99 32.66 39.24

Llama-2-13B-chat
Regular 34.49 15.74 49.40 47.40 46.07 27.33 36.84

CAD 31.69 12.60 52.10 50.80 37.69 33.33 36.37
Ours 37.98 26.37 55.10 63.00 51.49 35.80 44.96

DeepSeek-R1-Distill
-Llama-8B

Regular 54.21 63.39 80.80 66.00 66.40 53.87 64.11
CAD 59.28 50.79 77.80 64.20 68.29 76.67 66.17
Ours 71.29 65.35 85.30 82.00 74.53 90.25 78.12

Table 1: Performance (%) comparison across different decoding methods. Our proposed C3D consistently improves
performance across various arithmetic and symbolic reasoning tasks. Moreover, the enhancement effect of our
method is more pronounced on stronger base models, such as DeepSeek-R1-Distill-Llama-8B.

8B1 as the representative model for our experi-359

ments. It is distilled from Llama-3.1-8B.360

4.1.4 Implementation Details361

Our method introduces two hyperparameters: k to362

control the top k logit values for confidence L, and363

threshold T to adjust the reference between L and364

α. Specifically, we search for k within the range [1,365

5, 10, 15, 20, 25] and T within the range [14, 16, 18,366

20]. Considering that not all tokens require a con-367

textual reference, we skip the contrastive decoding368

for the token when the full context’s α0 > 0.999.369

This typically occurs when outputting conjunctions370

or when the evidence is already sufficiently strong.371

We perform all experiments on a single 80GB A800372

GPU.373

4.2 Overall Performance (RQ1)374

Table 1 presents the performance of different mod-375

els across various reasoning tasks. We further cate-376

gorize the observations into Llama-2 Model Obser-377

vations and DeepSeek-Distill Model Observations378

based on the reasoning capabilities of the models.379

4.2.1 Llama-2 Model Observations380

On the Llama-2 series, our method consistently381

and significantly improves regular decoding per-382

formance. Particularly on the AQuA and Coin383

Flip datasets, the 7B and 13B models show the384

most substantial improvements. AQuA contains385

1https://huggingface.co/deepseek-ai/DeepSeek-R1-
Distill-Llama-8B

non-intuitive and complex mathematical problems, 386

while Coin Flip requires multi-step state tracking. 387

Both tasks demand the model to thoroughly under- 388

stand the problem’s meaning. Given that the com- 389

prehensive understanding capability of the Llama-2 390

series is not particularly strong, the original decod- 391

ing is easily influenced by the context. Our strategy, 392

however, better assists the model in grasping finer- 393

grained information. 394

For similar contrastive decoding methods, such 395

as CAD and DoLA, their performance across dif- 396

ferent datasets is inconsistent. This suggests that 397

relying solely on full-context contrast or layer-wise 398

contrast is insufficient to obtain evidence for token 399

generation. 400

4.2.2 DeepSeek-Distill Model Observations 401

We further explore the performance of our method 402

on stronger models. We observe that although 403

DeepSeek-R1-Distill-Llama-8b already performs 404

excellently on multiple tasks, our method can fur- 405

ther enhance its reasoning performance. Specif- 406

ically, we note improvements of 12.01% on 407

GSM8K, 16.0% on Coin Flip, and 13.58% on Ob- 408

ject Tracking. Such significant improvements indi- 409

cate that strong reasoning models can better benefit 410

from premises. We speculate that the reason is 411

that weaker models can sometimes be overly confi- 412

dent even when incorrect (Fu et al., 2025), whereas 413

strong reasoning models exhibit this behavior less 414

frequently. Therefore, the latter can benefit more 415

from the most confident premises. 416
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Figure 4: A visualized case study. Best viewed in color. The problem above is divided into three premises: we
mark premise 1 in blue, premise 2 in pink, and premise 3 in orange, while the full context is marked in gray. The
bottom left shows which premise supports each generated token (most confident), and the bottom right shows which
premise distracts each generated token (least confident). The corresponding colors can help us better understand the
reasoning process.

Decoding 7B 13B DS

Regular w/o
Irrelevant Context 49.0 68.0 94.0

Regular w/ IC 34.0 55.0 80.0
CAD w/ IC 36.0 54.0 75.0
Ours w/ IC 41.0 62.0 85.0

Table 2: The performance (%) on the GSM-IC sub-
set. With the insertion of irrelevant context into the
questions, the baseline methods show significant per-
formance degradation. Our method, however, remains
robust against such corruption.

4.3 Performance on Data with Irrelevant417

Context (RQ1)418

Table 2 presents the performance comparison on419

the GSM-IC subset. Since GSM-IC inserts an irrel-420

evant premise into each question, this distracts the421

language model. We observe that the performance422

of baseline models significantly drops compared423

to scenarios without irrelevant context. In contrast,424

our method maintains comparable reasoning ac-425

curacy. This phenomenon demonstrates that our426

approach can effectively mitigate the negative im-427

pact of irrelevant context on the decoding process.428

4.4 Case Study (RQ2)429

To gain a deeper understanding of how LLMs uti-430

lize known premises during the reasoning process,431

we further perform a case study for illustration. Fig-432

ure 4 shows the relationship between each premise433

Figure 5: Visualization of how reasoning flows.

in the problem and the downstream responses. We 434

mark each premise with a distinct color and anno- 435

tate the most confident and least confident premises 436

for each generated token. 437

We observe that the beginning of each response 438

tends to use the full context, while for specific infor- 439

mation, the model favors those premises that most 440

strongly support the reasoning, such as premise 441

1. Premise 3, which contains the least informa- 442

tion, initially has the highest uncertainty. Similarly, 443

the information in premise 2 distracts the model, 444

resulting in a lower confidence. 445

4.5 How Reasoning Flows (RQ2) 446

Figure 5 further visualizes how the confidence α 447

values of each premise change during token gener- 448

ation. This provides us with a clearer perspective 449

on how the model drives the flow of reasoning. 450

Specifically, premise 1 dominates the early stages 451

7



Decoding GSM8K AQuA

C3D 25.47 29.92
- w/o L 19.11 28.35
- w/o α 23.09 28.74

Regular 21.68 24.04

Table 3: Ablation studies on L and α.

Figure 6: The trend of accuracy impact under different
top-k values.

of generation. As reasoning information accumu-452

lates, premises with initially less information, such453

as premises 2 and 3, also gain insight and become454

part of the reasoning process. Eventually, by the455

end, each premise have gathered enough informa-456

tion and become confident.457

4.6 Impact of Confidence L and α (RQ3)458

We validate the contributions of the defined con-459

fidence measures L and α to reasoning. Table 3460

presents the ablation studies on the GSM8K and461

AQuA datasets. The results show that both L and462

α have a positive effect on reasoning accuracy.463

Specifically, L has a slightly stronger impact on464

the model compared to α. As discussed in Section465

3.1, the entropy-based α alone is insufficient to466

fully represent the model’s confidence. When the467

accumulated logits fail to meet a certain threshold,468

the reliability of α also decreases. The introduction469

of L effectively compensates for this limitation.470

4.7 Impact of Hyperparameter k and T (RQ3)471

To further explore the impact of hyperparameter472

settings, we conduct additional experiments on the473

top-k logits and threshold T .474

Figure 6 illustrates the trend of performance475

changes on AQUA and Date Understanding un-476

der different top-k logit values. As k increases477

from 1 to 25, AQUA shows an initial fluctuation478

Figure 7: The performance of different T values on
GSM8K across various models.

followed by an upward trend, while Date Under- 479

standing exhibits a gradual decline. This indicates 480

that different datasets have varying preferences for 481

top-k, which we speculate is related to the inherent 482

properties of the datasets. Date Understanding pri- 483

marily focuses on tokens related to dates, whereas 484

AQUA requires a broader vocabulary space. How- 485

ever, overall, we can choose k=15 as a balanced 486

compromise. 487

Since few studies discuss the impact of logit 488

extremal values on responses, it is challenging to 489

define a reasonable threshold. Ranging from 10 to 490

30, logit extremal values exhibit no clear pattern 491

and are difficult to normalize. Therefore, we em- 492

pirically select [14,16,18,20] as the experimental 493

range. Figure 7 illustrates the effects of different 494

thresholds T on GSM8K across two models. We 495

observe that, despite changes in model size, the 496

range of logits remains consistent. Additionally, 497

their impact is relatively similar across models of 498

different sizes. This phenomenon suggests that 499

we can manually select a suitable threshold as a 500

reference for the overall dataset. 501

5 Conclusion 502

We propose a confidence-guided cross-premise con- 503

trastive decoding method, which effectively miti- 504

gates reasoning errors in LLMs caused by con- 505

textual distractions. We validate the effectiveness 506

of our method on both weak reasoning models 507

and strong reasoning models (DeepSeek-R1-Distill- 508

Llama-8B). Experiments show that our method 509

achieves more significant improvements on strong 510

reasoning models. Additionally, we visualize the 511

role of each premise during the reasoning process, 512

which can provide better guidance for future rea- 513

soning research. 514

8



Limitations515

Since our method requires decoding multiple seg-516

ments simultaneously, latency is a potential con-517

cern. We tested that our method takes approx-518

imately twice as much time as standard decod-519

ing, but this is still more cost-effective than meth-520

ods like multiple voting or reasoning path search.521

Given the extensive research on accelerating LLMs,522

we believe leveraging acceleration techniques or523

KV caching could enhance the applicability of our524

method. Additionally, we only considered a sim-525

ple premise decomposition approach, which may526

have certain limitations. Future work could explore527

better ways to partition the context.528
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