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Abstract

Automatic Speech Recognition (ASR) with DL models has sig-
nificantly benefited adults, but applying ASR technology to
children introduces unique challenges due to distinct charac-
teristics of the children speech. The pre-trained deep neural
networks on adult speech data often struggle in generalizing to
children’s speech, which calls for diverse training dataset for
model finetuning. However, human annotation are not scalable
to large scale datasets, and existing force alignment toolkits
make impractical assumptions on the provided transcriptions,
hindering their usages. To bridge the performance gap between
children and adult ASR models, we introduce the Flexible &
Automatic Speech Aligner (FASA), a novel force alignment
toolkit. FASA force-aligns children’s speech datasets, provid-
ing accurate, well-segmented audio segments with transcrip-
tions under flexible conditions. We also present the first young
children ASR dataset under clinical environments.

Index Terms: automatic speech recognition, force alignment,
children ASR, dataset, deep learning

1. Introduction

In recent years, the field of Automatic Speech Recognition
(ASR) has witnessed remarkable advancements in the develop-
ment of deep learning (DL), transforming our interactions with
technology and enhancing various applications, from virtual as-
sistants [1, 2, 3] to transcription services [4]. While these de-
velopments have significantly benefited adults, the application
of ASR technology to children’s speech presents a unique set of
challenges. Children’s speech exhibits distinct characteristics,
including rapid changes in pitch, articulation patterns, and vo-
cabulary development [5], making it not been generalized from
deep neural networks (DNNs) pre-trained with adult speech cor-
pus.

Previous studies [6, 7, 8, 9, 10, 11] have demonstrated that
fine-tuning pre-trained ASR models on large and diverse chil-
dren ASR corpora can alleviate the performance gap between
children and adult ASR DL models. Thus, one crucial aspect
of advancing ASR for children is the creation and refinement of
datasets tailored to their speech patterns. However, while high
quality data - which is defined as the transcription and the audio
matches exactly - are heavily needed for children’s speech pat-
terns, manual annotation faces two significant challenges. First,
it is a labor-intensive process that requires domain expertise and
considerable time investment. From our experience, manual an-
notations with pre-segmented audio files take at least 3x times
of the audio’s duration, and segmenting the audio files takes an-
other 1-1.5x times of the duration. Work from [12] supports our
experience and claims that it takes 7-8 minutes to transcribe a
minute of audio to SALT format. Second, even if there are tran-

scriptions, the qualities of different datasets vary a lot due to
differences in human annotators, as well as different focuses of
those datasets (for example, stuttering detection, speech sound
disorder, dialects, etc.). Thus, human annotations are clearly
not scalable on large-scale high quality datasets.

A natural question that arises from the two challenges is
that: how could we produce high quality datasets from avail-
able low quality datasets? To address this and facilitate fur-
ther research in children’s ASR, the development of a toolkit
for force-aligning children’s speech emerges as a pivotal solu-
tion. In this work, we notice the deficiencies among existing
alignment toolkits, and we bring forth these contributions to
the ASR community. First, we present a novel open-sourced
force alignment toolkit, Flexible & Automatic Speech Aligner
(FASA), for children’s ASR that provides accurate, aligned,
well-segmented audio segments with its transcriptions under
flexible conditions. Force alignment, the process of aligning
audio segments with their transcriptions, is crucial for gener-
ating accurate ASR datasets. However, previous methods like
MFA [13] rely on the correctness of provided transcriptions,
which is often impractical to obtain for many datasets. On the
other hand, FASA leverages state-of-the-art DL model as the
backbone to automatically align children’s speech datasets un-
der minimal requirements of provided transcriptions. Second,
we use this toolkit to compile a new dataset from CHILDES
[14]. To the best of our knowledge, this is the first at-scale ASR
dataset from clinical data on young children. Third, we show
the superiority and consistency of FASA compared to existing
force-alignment toolkits and even human annotators.

The rest of the paper will be organized as follows. In Sec-
tion 2, we will formally define the force alignment problem,
as well as introduce the related works in the area of ASR and
alignment tools. In Section 3, we will describe FASA in de-
tails. In Section 4, we will showcase the superior performance
of this new toolkit under noisy and unorganized datasets using
CHILDES [14] as an example, and finally we will conclude the
paper in Section 5. The code and instructions are available at '

2. Related Works
2.1. Definition of the Task

Force alignment with provided transcription refers to the task
of aligning an audio with accurate timestamps given its tran-
scription. Modern ASR systems expect the input audio to be
segmented into smaller pieces during their training process. For
example, the Whisper model [15] pads or trims the audio in-
put to 30 seconds. Thus, when a transcription without times-
tamp is associated with a long audio, a force-alignment toolkit
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is essential for the creation of the dataset. Formally, the force
alignment task is defined over an audio sample composed of
n utterances, A := {A1, A2, ...An}, and a transcription of m
“words”, T := {T1, T3, ... T }. It is noteworthy that a “word”
in T refers to the basic element of the transcription. Depend-
ing on the use case, it could represent an utterance, a word, or
even a phonetic symbol. The force alignment task is to associate
each A; with its corresponding words in 7', which are from T's;
to Te;, or report that A; is not transcribed in 7T'. For the ease
of notation, we will define the association between A; and its
transcription as A; = (Tsi, Tei)-

A robust auto-alignment system will need to have two
important features. First, it shall not assume that if A, =
(Tsi,Tei), Aj = (Tsj,Te]‘), and 7 < j, then ez < Sj, That
is, the transcription does not have time-dependency with the
audio. An utterance appears early in the audio does not nec-
essarily mean it appears early in the transcription. Second, A;
does not necessarily have a corresponding (7%;, Te;), and it is
possible that A; = (. That is, not all audio information will be
transcribed into the transcription, and some audio will be left as
un-transcribed.

Such two features are important because they do not require
the completeness and orderliness of the provided transcription,
which are usually infeasible to achieve in real-world scenarios.
A popular direction of obtaining large amount of audio and tran-
scriptions is from scraping the Internet, but the vast majority of
transcriptions from the Internet contains missing and wrongly-
ordered materials.

2.2. Existing Alignment Tools

Traditionally yet still prevalently, alignment between audio and
its transcription are done via human annotators on various soft-
ware [16, 17]. However, as discussed earlier, such practice is
not scalable for large dataset. Work from [18] contains some
parts of a complete force-alignment pipeline, but it does not
address the fundamental problem of aligning audio with its
transcription. Work from [19] uses generative-adversarial net-
works (GAN) to perform data augmentation on children ASR
dataset, but their work does not introduce diverse new data to
the field. Recently, Talkbank project announces its data process-
ing pipeline that converts raw audio into CLAN-annotated tran-
scriptions [20]. While their work uses similar backbone struc-
ture as ours, they rely on transcription generated by ASR mod-
els, whereas we faithfully adhere to the provided transcription
as the ground truth. Thus, on downstream tasks such as fine-
tuning ASR models, our dataset will be more usable because
datasets generated by ASR models might cause severe degrada-
tion according to [15]. On the other hand, there have been sev-
eral works on force-alignment ASR datasets with the assistance
of human-labelled transcriptions [13, 21, 22], with Montreal-
Force-Aligner (MFA) being the most popular toolkit [13]. MFA
incorporates Kaldi [23] as the backbone, which uses Gaussian
Mixture Model (GMM) for its transcription generation process.
However, while MFA [13] works well with carefully anno-
tated transcriptions, it requires the transcription to have a per-
fect matching with the audio. That is, A1 — {t1,t2,...,t:},
As — {tit1,ti+2,...,t;}, and so forth. Thus, under the two
practical assumptions defined in Section 2.1, MFA [13] does
not generate satisfactory results. Moreover, while recent multi-
modal large language models (MLLM) might have the potential
of automating the alignment process [22], they are much more
resource-intensive compared to specific ASR models.

2.3. Dataset

Recent adaptions towards children ASR usually consider gen-
eral datasets such as PF-STAR [24], My Science Tutor (MyST)
[25], CMU Kids Corpus [26], OGI Kids Corpus [27], or
smaller-scale clinical datasets for children with older ages such
as ETLT, a German-English ASR dataset for older children [28].
Among them, MyST is the largest dataset, containing 393 hours
of speech data between children and a virtual science tutor,
which is still significantly smaller than the adult datasets. We’ve
observed that the majority of children ASR models are typi-
cally fine-tuned using general datasets, leading to a lack of task-
specific abilities in crucial areas, such as clinician settings for
young children. This limitation arises from the unavailability
of high-quality datasets tailored for these specific task require-
ments. However, we are optimistic that our toolkit will address
and resolve this issue effectively.

3. FASA Toolkit Design
3.1. Features of FASA

Similar to existing auto-alignment toolkits, FASA requires an
audio file and a transcription associated with the audio file.
However, due to the high uncertainly in raw dataset, FASA as-
sumes only minimum format from the input. In particular,
FASA does not assume the correctness of the transcription. The
ground truth (GT) of an utterance Ay, is defined by Equation 1
in the pipeline of FASA. Compared to previous force alignment
toolkits, FASA will choose to ignore the utterances without
proper transcriptions, and thus reach significantly better dataset
quality from this practice.

o - {TAk = {T0, Tipr, o T}, HTa €T

0, otherwise

Besides the improvement on flexibility of datasets,
FASA incorporates beneficial design elements from established
toolkits. In a bid to enhance user convenience, FASA follows
the same design principles as MFA for its usage. Users sim-
ply have to compile the audio file and its transcriptions into
a designated folder, then execute a program. The subsequent
processes are all automatic, streamlining the user experience.
FASA further integrates a crucial feature present in both MFA
[13] and PonSS [21]. This feature empowers users to select
and to manually input transcriptions for utterances in instances
where the provided transcriptions raise suspicions of inaccu-
racy. This flexibility ensures precision and user control over the
transcription process. At the same time, FASA incorporates
an optional post-generation checking schema that enables auto-
matic exclusion to incorrect alignments in the generated dataset,
minimizing the possibility of incorrectness from the underlying
model.

3.2. Workflow

FASA follows a five-module pipeline to automatically segment,
label, and align a long audio file with its transcription, as illus-
trated in Figure 1. Among the five modules, the second and
third are mandatory, whereas the other three are optional for en-
hancing the quality and quantity of the dataset. These five mod-
ules together maximize the correctness of force alignment under
flexible conditions. The first module applies regular expression
to clean the provided transcriptions and to exclude any non-
alphanumeric characters. For the second module, modern ASR



Algorithm 1 sliding window to find best matching

Input:

A, T ={T1,.. Ty}, T, alignment threshold o, inclusion threshold o;.

Step 1: Initialize holder for dataset of aligned segments: DATA 4154n =[]

Initialize holder for questionable segments: DATAerify =[]

Step 2: for A, € Ado ~ o _
Get Ay’s transcription: Ta, = {7;..T;} €T

Initialize minimum distance D, = 00, best starting index BFEST;, best length BEST;

fora=1,2,...,mdo
forb=1,2,...,(j —i)do

ifDIS(T;;k,T[a ta+b+ 1]) < Dumin then

Dinin = DIS(Ta,,Tla: a+b+1])

BES’I; =a
BEST, =b+1
end if
end for

end for
let GTy, = T|BEST; : BEST; + BEST]]
if WER (GT, Ta,) < o; then
if WER (GTyg, T;;k,) < 04 then
append (Ax, GT}) to DATA1ign
else
append (Ag, GTy, T;;k) to DATAyerify
end if
end if
end for
Output: DATA415gn, DATA yerify

Step 3:
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v
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|
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7

Alignment with Algorithm 1

-

User Selection Checking

Optional Module
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Required Module

Operation path

Figure 1: This figure illustrates the pipeline of FASA. The in-
put is an audio file and a transcription. The blue modules are
required, whereas the purple modules are optional that could
be enabled by user. The entire system besides user selection is
automatic.

Post-Generation

N

models will be used obtain word-level timestamps of the tran-
scriptions. Currently, sentence-level separations from the pro-
vided model is used as the segmentation marks for long audio.
After the second module, a folder consisted of audio segments
and their corresponding predictions will be generated. The set
of predictions for sentence-level utterances will be denoted as
T = {Tl, To, ..., Tn}. For each utterance Ay, its predicted
transcription will be A, = T4, . The third module will apply a
sliding-window Algorithm 1 to find the best matching from the
provided transcription (7) for each utterance (Ay). In the algo-
rithm, DS is the Levenshtein distance between two sentences.
After this module, two datasets will be generated. The first
dataset DATA ;;4» is when the algorithm finds close alignment
between the prediction and provided transcription that is within
a threshold, and the second DATA ¢, ¢, is when the algorithm
finds slight mismatches between the prediction and the tran-
scription. For DATA 4y, the provided transcription from 7'
will be used as ground truth of the utterance. The user selection
module is an optional module that launches a graphical-user-
interface (GUI) that allows user to listen to, select, or input cor-
rect transcription for each utterance in DATA ¢, s, o that they
could be added to the dataset. The post-generation checking
(PGC) is an optional module that iterates through DATA ;¢ to
find if there are significant mismatches between a second-round
prediction and the aligned transcription on sentence length. The
implemented metric for PGC is based on the difference in sen-
tence length between results of a second-round prediction and
the aligned transcription. If the difference is greater than a
threshold, the utterance and its transcription will be removed
from DATAi9n. After the two optional modules, FASA as-
sumes the validity of DATA 454, Which will be used as the final
output dataset.

Currently, speaker identification is not supported by FASA.
If the user has specific needs for diarization, they need to modify
stage 2 and 3 to incorporate diarization features.



Table 1: Manual inspections from the authors on the generation quality of FASA on two randomly selected audio files and their
transcriptions. AU is the number of aligned utterances in Dataaiign, VU is the number of utterances in Datayerify. AU Error is the
number of utterances that have any incorrect transcription. AW is the number of aligned words, and AW Error is the number of words
that are incorrect in the aligned words. The percentage by the AW Error is the WER percentage of the aligned words. PGCU is the
number of utterances that are removed from Dataaiign in post-generation checking, and PGCU FP is the number of false positives in

PGCU.

Backbone Model AU | VU | AU Error | AW | AW Error (%) | PGCU | PGCU FP
Stable whisper [29] | 77 32 2 814 | 3(0.37%) 18 11
Whisperx [30] 81 33 1 903 | 2(0.22%) 5 3

4. CHILES as an Example
4.1. CHILDES [14] dataset

The Child Language Data Exchange System (CHILDES) [14] is
a component of the TALKBANK project 2. CHILDES is a col-
lection of many existing research works that contains massive
amount of audio and transcriptions of children speech under
various conditions. Among all of the audio files, we select four
datasets that contain audio spoken by children in English and
accompanied with English transcriptions, and we use FASA to
convert them into smaller audio/transcription segments that are
compatible with the training requirements of the current DL
models. We report the specifications of each dataset in Table 2.
Among the four datasets, Narrative records 352 children from
age 4 to 9. The children are performing the Edmonton Nar-
rative Norms Instrument (ENNI) test [31]. To the best of our
knowledge, this is the first at-scale dataset for young children
ASR from clinical recordings. Clinical-Eng includes additional
ENNI test utterances, with some of them being duplicates from
Narrative. Clinical-Other contains conversations between chil-
dren and the clinicians, and the utterances are much shorter, of-
ten at word-level. English-NA contains recordings of 5332 con-
versations in household when a child is involved. Compared to
the other datasets, Eng-NA dataset has varying audio qualities
and contains not only children speech but also adult speech as
the audios are recorded in home setting. During dataset genera-
tion, we set o, = 0.1, o; = 0.3; we also enable post-generation
checking with maximum length tolerance as 1 word. For the
backbone model, we uses WhisperX [30] because of its supe-
rior performance over other ASR models, but we will also show
the performance of another variant [29] in the evaluations.

Table 2: Specifications for the four datasets extracted from
CHILDES [14]. Original are the number of participants (or the
number of audio files in the original dataset). AU is the number
of aligned utterances, whereas VU is the number of utterances
to be verified if user chooses the manual selection. Time is the
total duration of all the utterances in the aligned dataset, the
SJormat of Hour:Minute:Second.

Dataset Original | AU \'48) Time (H:M:S)
Narrative 352 14654 4402 15:16:51
Clinical-Eng 1540 59539 14610 30:11:40
Clinical-Other | 292 21982 677 4:18:6
English-NA 5332 778978 | 180146 | 285:18:22

The processed datasets are organized in a similar way as
LibriSpeech [32]. Each (anonymized) participant’s audio file is
segmented, and the segmented audio utterances are put under

’https://talkbank.org/

a folder named by the hashed participant. A transcription is
paired with each utterance’s audio file. >

4.2. Evaluations

Due to the size of the dataset, we are not able to performance
manual quality verification on the entire generated dataset.
Thus, we randomly selected two audio files and transcriptions
from the 352 recordings in Narrative dataset, and we report the
manual inspection results for data generated by FASA with
these two audio files in Table 1. Several results need to be em-
phasized here. First, since the two transcriptions are noisy, MFA
[13] completely fails to properly align the audio segments with
the correct transcription. To be specific, one of the document
has missing transcriptions for the beginning of audio, which re-
sults in 100% AU Error with MFA; the other document was
not successfully processed by MFA due to their internal soft-
ware errors. Second, WhipserX [30] shows better performance
than Stable-whisper [29], and given its faster speed, we rec-
ommend user to use WhisperX [30] wherever possible. Third,
FASA using WhisperX [30] as the backbone incorrectly aligns
one utterance with its transcription. For that utterance, it misses
“so the” sound at the end of the utterance, and the two words
are not recorded into the aligned transcription. Manual inspec-
tion found out that the speaker stuttered and repeated “so the”,
which might be the issue of model not picking up that sound. At
last, WhisperX [30] has a WER of 0.22 % for the aligned words.
This result is much better than human annotators. [33] reported
that 5 out of 393 hours speech in MyST dataset [25] are poten-
tially incorrect with WER> 50%, resulting in 3% increase in
WER for the entire training dataset. Compared to human an-
notators that were used to annotate MyST, FASA achieves one
magnitude lower WER without requiring any human labor.

5. Conclusion

In this paper, we present the Flexible & Automatic Speech
Aligner (FASA) toolkit, which leverages DL models as its back-
bone, to automate the alignment of children’s speech datasets
with minimal human intervention. At the same time, we intro-
duce the first children ASR dataset sourced from clinical data,
filling a significant gap in available resources. Fine-tuning state-
of-the-art DL models on this new dataset demonstrates a tan-
gible reduction in the performance gap between children and
adult ASR, which aligns with existing works in this area. The
availability of our toolkit, code, and dataset aims to propel fur-
ther research and collaboration in advancing ASR for children,
ultimately enhancing technology’s ability to understand and in-
teract with the unique characteristics of children’s speech.

3Due to restrictions on commercial usage from raw data, we will
not publish processed dataset. Contact the authors for research usage,
or use the software to generate by yourself.
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