
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT HYPER-PARAMETER SEARCH FOR LORA
VIA LANGUAGE-AIDED BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA)
enables resource-efficient personalization or specialization, but it comes at the ex-
pense of additional hyperparameter tuning. Although LoRA makes fine-tuning
efficient, it is highly sensitive to the choice of hyperparameters, and exhaustive
hyperparameter search is still computationally very demanding. To address these
challenges, we propose a framework that integrates the domain knowledge of pre-
trained LLMs into Bayesian Optimization (BO) to efficiently search for LoRA
hyperparameters. To leverage the informed knowledge of LLMs, we repurpose
LLMs as a discrete-to-continuous mapping to link the hyperparameters and their
domain knowledge with a continuous vector space, where BO is conducted. We
design and control the mapping by language prompting, where we provide a
domain-aware textual prompts describing the relationships among hyperparam-
eters and their respective roles; thereby, we explicitly inject domain knowledge
about LoRA into the LLM in natural language. Also, we model the residual
information hard to be linguistically described in the prompt with an additional
learnable token. This aids BO to sample more high-performing hyperparameters.
In addition, by leveraging the observation of the strong correlation between the
respective performance obtained from full and subset training datasets in LoRA
training regimes, we introduce proxy training and evaluation with a data subset.
This further increases the efficiency of our method. We demonstrate that our hy-
perparameter found with only about 30 iterations achieves more than 20% per-
formance improvement over standard hyperparameters found from about 45,000
combinations. Code will be released upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Team, 2024; Team et al., 2024) have been
recognized as strong foundation models that can be easily adapted to diverse downstream tasks
with high performance. However, fully fine-tuning LLMs for specific applications is computation-
ally heavy. It requires updating billions of parameters, which demands substantial memory and
computational resources (Brown et al., 2020; Gururangan et al., 2020). To overcome these limi-
tations, Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019; Ding et al., 2023) methods
have emerged as effective alternatives, enabling strong task adaptation at significantly reduced cost.
Among these approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2022) stands out as one of the
most widely adopted techniques. LoRA freezes the pre-trained weights and introduces lightweight,
trainable low-rank adapters, allowing models to adapt efficiently to new tasks with only a fraction
of the parameters and resources required for full fine-tuning.

Despite its effectiveness, identifying an optimal hyperparameter configuration for LoRA remains
challenging, as performance is highly sensitive to hyperparameter choices (Sengupta et al., 2024;
Biderman et al., 2024; Mao et al., 2025). LoRA involves several key hyperparameters, including the
rank (r), scaling factor (α), batch size, learning rate, and dropout rate, which are entangled in com-
plex ways. Consequently, performance can vary significantly depending on their combinations (Hal-
fon et al., 2024; Sengupta et al., 2024; Mulakala et al., 2024). Therefore, systematically searching
for the appropriate configuration is a critical issue. Yet, naı̈ve exploration is infeasible: the hyper-
parameter search space is combinatorially large, and each evaluation is extremely costly (Valipour
et al., 2022; Chavan et al., 2023; Sun et al., 2024; Meo et al., 2024; Bini et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This challenge motivates the use of Bayesian optimization (BO) as a principled framework for Hy-
perparameter Optimization (HPO). BO has proven highly effective in real-world applications where
target function evaluations are expensive, such as drug discovery and materials design (Korovina
et al., 2020; Ranković & Schwaller, 2023; 2025). BO relies on a surrogate model to approximate the
black-box function defined by hyperparameters and their performance, and uses an acquisition func-
tion to select the next configuration by balancing exploration and exploitation. However, directly
applying BO to LoRA HPO is non-trivial, since traditional BO methods require the underlying
function domain to be continuous while the hyperparameters involve discretes and have no way to
integrate the domain knowledge during the optimization process (Yan et al., 2025).

In this work, we propose an efficient BO-based HPO framework tailored to LoRA that incorporates
domain knowledge through the LLM. Specifically, hyperparameter configurations are expressed as
structured text templates describing each hyperparameter’s name, value, role, and interactions. An
LLM processes this template along with a learnable token and converts it into a continuous embed-
ding, where domain knowledge is effectively encapsulated in the learnable token. The learnable
token, paired with observed performance, is then used to train a surrogate model, which in turn
proposes the hyperparameter candidates that maximize the acquisition function. To further improve
efficiency, we introduce a proxy training evaluation that significantly reduces evaluation cost and
iteration time, enabling faster and more sample-efficient optimization.

Our framework generalizes beyond LoRA to its variants, including DoRA (Liu et al., 2024a),
rsLoRA (Kalajdzievski, 2023), and PiSSA (Meng et al., 2024), and is compatible across different
model architectures. Experimental results demonstrate consistent performance improvements when
applying our HPO framework across diverse settings. Moreover, our approach proves both more
efficient and effective than existing search methods (Oliver & Wang, 2024; Tribes et al., 2024) and
alternative optimization strategies (Bergstra & Bengio, 2012; Akiba et al., 2019; Li et al., 2021). Fi-
nally, by analyzing the experimental results, we observe that previously unexplored hyperparameter
combinations can also deliver strong performance, offering insights for new guidelines.

In summary, our contributions are as follows:

• The first framework combining an LLM with BO specialized for LoRA HPO. We propose an
efficient BO-based LoRA HPO framework that integrates domain knowledge into the optimization
process by leveraging an LLM. This framework enables the selection of appropriate hyperparam-
eters from a vast number of possible combinations.

• Improving efficiency of the proposed framework. We introduce a projection layer and a learn-
able token to accelerate BO process. We also introduce a proxy training evaluation protocol that
significantly reduces computational cost, enabling efficient optimization.

• Empirical validation of efficiency and generalizability. We demonstrate the generalizability of
our framework across LoRA variants and model architectures, showing consistent improvements
and offering new insights into effective hyperparameter configurations.

2 RELATED WORK

Low-Rank Adaptation (LoRA) and hyperparameter sensitivity in LoRA. LoRA (Hu et al.,
2022) has become one of the most widely adopted parameter-efficient fine-tuning (PEFT) meth-
ods (Houlsby et al., 2019) for Large Language Models (LLMs). By introducing a trainable low-rank
adapter into a frozen pre-trained model, LoRA allows efficient task-specific adaptation without up-
dating the full set of model parameters. Building on this idea, various LoRA variants have been
proposed to improve stability, convergence, and performance. For example, DoRA (Liu et al.,
2024a) decomposed each weight into a fixed magnitude and a learnable low-rank direction and
rsLoRA (Kalajdzievski, 2023) rescaled LoRA updates by a factor of α/

√
r to improve stability.

Meng et al. (2024) suggest PiSSA leveraging the principal singular vectors and values of the origi-
nal weights to initialize LoRA adapters for faster convergence and performance improvement.

Although several advanced LoRA variants have been proposed, the common issue of sensitivity to
hyperparameter selection remains a challenge. In particular, rank (r) (Zhang et al., 2024), scal-
ing factor (α) (Liu et al., 2025), learning rate (Jin et al., 2023), batch size (Marek et al., 2025),
and dropout rate (Lin et al., 2024) identified as key factors that influence final results. This sensi-
tivity often leads to large performance variance and complicates fair comparisons across methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Moreover, the “optimal” configuration frequently depends on the dataset and base model in use (Ra-
jabzadeh et al., 2024; Yan et al., 2025). Consequently, systematic approaches for optimizing LoRA
hyperparameters remain underexplored, as it is difficult to identify effective configurations while
accounting for all these factors. Prior work has explored black-box optimization methods (Inouye
et al., 2024; Tribes et al., 2024; Oliver & Wang, 2024; Sengupta et al., 2024) and efficient grid-search
strategies (Yan et al., 2025) for LoRA hyperparameter selection. Nevertheless, these approaches
commonly suffer from two limitations: (i) domain knowledge is not incorporated into the optimiza-
tion process, and (ii) evaluation remains costly. Hyperparameter optimization generally requires
substantial domain knowledge (Wu et al., 2019; Shawki et al., 2021; Czako et al., 2021; Bowler
et al., 2022), and LoRA is no exception due to its adapter-specific properties (Halfon et al., 2024;
Yan et al., 2025). To address these limitations, we propose a framework that integrates Bayesian
optimization and an LLM. This framework can automatically and effectively identify suitable hy-
perparameters for LoRA, reducing the need for extensive manual tuning.

Bayesian optimization for hyperparameter optimization. Hyperparameter optimization is a crit-
ical task that significantly impacts model performance in machine learning. However, evaluating
each configuration is often expensive due to the high cost of training. In this context, Bayesian
optimization has emerged as a prominent method for HPO, especially in expensive evaluation set-
tings (Snoek et al., 2012; Shahriari et al., 2015). BO uses a surrogate model and acquisition function
to efficiently search for high-performing hyperparameters with fewer evaluations.

Although BO is an effective approach, its application in discrete input space such as LoRA is lim-
ited (Oh et al., 2019; Deshwal & Doppa, 2021; Chu et al., 2024). To mitigate this, several stud-
ies (Zhang et al., 2023; Ramos et al., 2023; Agarwal et al., 2025) have shown that hybrid frameworks
combining LLMs with BO represent a promising direction, achieving empirical gains across diverse
domains. Such approaches include using LLM agents to propose candidate hyperparameter configu-
rations (Liu et al., 2024b), reformulating BO tasks in natural language to flexibly incorporate search
spaces and constraints (Liu et al., 2024c), and enhancing surrogate models with LLM embeddings as
input features (Nguyen et al., 2024). These synergies between LLMs and BO extend beyond HPO to
other domains, further emphasizing their effectiveness (Ranković & Schwaller, 2023; 2025). Build-
ing on this trend, we propose the first framework that integrates BO with LLMs for LoRA HPO. We
construct an embedding space tailored to LoRA HPO using an LLM with domain prompting and
learnable tokens, and perform BO within this space, improving search efficiency under high-cost
evaluation conditions.

3 METHOD

We propose a framework that combines a Large Language Model (LLM) with Bayesian optimization
(BO) to discover appropriate hyperparameters for LoRA tuning in each task. We obtain continuous
embeddings from the LLM and use them as inputs to the surrogate model, enabling a BO process
tailored to LoRA Hyperparameter Optimization (HPO). The LLM in our framework not only en-
codes rich prior knowledge through large-scale pretraining, but also provides a convenient interface
for injecting additional knowledge in textual form. Furthermore, to reduce cost, we introduce proxy
training evaluation, which estimates the performance of a full-dataset model using a model trained
on a subset of the data. With these components, our framework improves not only the sample ef-
ficiency of BO, but also the computational efficiency of LoRA hyperparameter optimization as a
whole. Section 3.1 introduces the preliminaries of BO, Sec. 3.2 presents the proposed framework
and its components, and Sec. 3.3 details our proxy training evaluation.

3.1 PRELIMINARY: BAYESIAN OPTIMIZATION

BO is an efficient approach for optimizing black-box functions, particularly when the evaluation
cost is expensive. The goal of BO is to find the optimal input x∗ from a candidate pool X that
maximizes a black-box function f . The objective of BO can be formulated as follows:

x∗ = arg max
x∈X

f(x). (1)

Since f is hard to estimate, surrogate model f̂ is used to approximate f . A common choice for the
surrogate model is a Gaussian Process (GP), which can be expressed as: f̂ ∼ GP(µ, kω), where µ

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is mean function and kω denotes the kernel function with hyperparameter ω. For example, in the
case of the Matérn 5/2 kernel, ω includes trainable hyperparameters,

kω(x,x
′) = σ2

(
1 +

√
5d

ℓ
+

5d2

3ℓ2

)
exp

(
−
√
5d

ℓ

)
, (2)

where ℓ denotes the lengthscale, σ2 denotes covariance and d = ∥x−x′∥2. Given n observed points
setDn = {(xi, yi)}ni=1, the surrogate model is tuned on observed points, and an acquisition function
α is used to determine the next evaluation point x̃ based on the posterior from the surrogate model:

x̃ = arg max
x∈X

α(x|f̂ ,D). (3)

3.2 PROPOSED FRAMEWORK

Overview. Our framework performs 4 steps in each iteration: (1) Proxy training evaluation
(Proxy), which fine-tunes LoRA on a subset of the dataset and measures its performance; (2)
Embedding extraction using the LLM; (3) Surrogate model update; and (4) Next evaluation point
suggestion. For example, in the n-th iteration, a hyperparameter configuration xn is selected, and
its benchmark performance yn is obtained through proxy training evaluation. The configuration xn
is then converted into a structured template tn via domain-aware prompting. This template, together
with the learnable token ψ, is passed into the LLM ϕ and projection layer P (·; θ) to produce an
embedding: zn = P (ϕ(tn, ψ); θ). The surrogate model parameterized ω is updated by maximizing
the marginal log-likelihood using embedding zn paired with the observed target yn, jointly updat-
ing all trainable parameters ω, θ, and ψ. Finally, the next evaluation point is selected by generating
embeddings for every hyperparameter configuration xj in the candidate pool Xcand and evaluating
the acquisition function α. Algorithm 1 describes the entire procedure in pseudo-code.

Algorithm 1 Pseudo code for our framework

Require: Candidate pool Xcand, observed dataset Dn = {(xi, yi)}ni=1, budget N ,
parameters ω (GP), θ (Projection layer), ψ (Learnable token),
LLM ϕ, acquisition function α, feature extractor g(·; θ, ψ)

Initialize: parameters ω, θ, ψ; D0 ← ∅; Choose initial candidate x1 ∈ Xcand
1: for n = 1 to N do
2: yn ← Proxy(xn) ▷ Proxy means Proxy training evaluation
3: Dn ← Dn−1 ∪ {(xn, yn)}
4: Remove xn from Xcand
5: while not convergence do ▷ Surrogate model update
6: for all xi ∈ Dn do
7: ti ← Template(xi) ▷ Template means Domain-aware prompting
8: zi ← g(xi; θ, ψ) = P (ϕ(ti, ψ); θ)
9: end for

10: Compute marginal log-likelihood log p(y|Z, ω, θ, ψ)
11: Update ω, θ, ψ
12: end while
13: for all xj ∈ Xcand do ▷ Bayesian optimization
14: tj ← Template(xj)
15: zj ← g(xj ; θ, ψ) = P (ϕ(tj , ψ); θ)
16: Compute α(zj ;ω, θ, ψ)
17: end for
18: j′ = argmaxj α(zj ;ω, θ, ψ)
19: Suggest next evaluation point xn+1 ← xj′
20: end for
21: (x∗, y∗)← argmax(x,y)∈D y
22: return x∗

Domain-aware prompting. We employ domain-aware prompting to explicitly incorporate domain
knowledge about LoRA hyperparameters into the optimization process. A straightforward text tem-
plate can be written as t = {name, value} (Table A10a). However, this simple format fails to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

capture the roles or relationships between hyperparameters. Prior studies have highlighted practical
know-how and manual tuning guidelines for hyperparameter tuning (Mohammed & Kora, 2025; He,
2024; Diehl, 2024; unsloth, 2025). For example, Hu et al. (2022) suggest that the scaling factor (α)
in LoRA behaves similarly to adjusting the learning rate. To better reflect existing know-how and
guidelines, we design a structured text template t = {explanation,name, value} (Table A10b). The
explanations emphasize relationship between hyperparameters (e.g. how rank and alpha are com-
monly set) as well as the training dynamics that arise when their magnitudes vary. This approach
goes beyond simple LLM embeddings, enabling the direct insertion of structured, prompt-level in-
formation into the embedding space.

Learnable token and projection layer. Calibrating the embedding space extracted from the LLM
during feature extraction can enhance BO performance compared to using fixed embeddings (Kris-
tiadi et al., 2024; Ranković & Schwaller, 2025). Motivated by this insight, we introduce a learnable
token ψ along with a projection layer P (·; θ), parameterized by θ, to transform embeddings into a
space better suited for BO. We append the learnable token to the domain-aware text template t and
feed both into the LLM to extract embeddings, allowing the token to compactly capture LoRA hy-
perparameter’s knowledge. These embeddings are then passed through the projection layer, produc-
ing representations tailored for BO. Throughout this process, the pre-trained LLM remains frozen,
while ψ and θ are learnable. The final embedding is obtained via pooling the embedding at last
token’s position, resulting in the final feature: z = P (ϕ(t, ψ); θ). As a result, the embedding not
only explicitly reflects the explanations encoded in the prompt, however also implicitly internal-
izes LoRA-specific domain knowledge. This improves representational power and enhances BO
efficiency with minimal additional parameters.

Bayesian optimization with LLM. BO typically employs Gaussian Processes (GPs) as surrogate
models, which are effective for modeling distributions over continuous spaces (Beckers, 2021).
However, when dealing with complex input spaces that require understanding the relationships
among variables, it becomes crucial to use representations capable of capturing such structure (Lee
et al., 2025). This is particularly true for the LoRA hyperparameter space, which is inherently
discrete and requires domain knowledge. To address this challenge, we integrate an LLM with a
learnable token and a projection layer, which inject domain knowledge about LoRA HPO into when
extracting embeddings: z = g(x; θ, ψ) = P (ϕ(t, ψ); θ). Therefore, we employ LLM-based deep
kernel learning to combine the prior knowledge encoded in the LLM with these trainable neural
architecture for the GP, thereby transforming standard GP regression into deep kernel learning:

k(x,x′|ω)→ k(g(x; θ, ψ), g(x′; θ, ψ)|ω, θ, ψ). (4)

We jointly optimize all trainable parameters, Φ = {ω, θ, ψ}, where ω, θ, and ψ denote the GP kernel,
projection layer, and learnable token parameters, respectively. These are optimized by maximizing
the marginal log-likelihood:

L(Φ) = log p(y|X,Φ) = −1

2
{(y − µ1)⊤K−1

Φ (y − µ1) + log |KΦ|+ n log 2π}, (5)

Φ∗ = argmax
Φ
L(Φ), (6)

where KΦ denotes covariance matrix determined from the covariance kernel of the GP, X =
{x1,x2, ...,xn} and y = {y1, y2, ..., yn}.

3.3 PROXY TRAINING EVALUATION

Previous studies (Klein et al., 2017; Oliver & Wang, 2024) have shown that it is not always necessary
to train on the entire dataset at every optimization step because training performance on subset
datasets strongly correlates with that of full training. Building on these insights, we introduce a
proxy training evaluation strategy to reduce fine-tuning time cost. Specifically, instead of training
on the full dataset, we fine-tune the model on a randomly selected subset and measure performance
on this smaller training run as a proxy for the true performance. Despite its simplicity, this approach
exhibits strong correlation with the true performance, and we find that using only 10% of the data can
be sufficient. As a result, we reduce the overall time cost by up to 10x, enabling more optimization
iterations within the same computational budget. We further consider data selection strategies such
as Liu et al. (2024d), but we observe that our simple random subset achieves comparably high
correlation with full-data results relative to these strategies.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

LoRA hyperparameters and setup. We define the candidate pool of hyperparameters as shown in
Table 1. Specifically, we optimize five hyperparameters: rank (r), scaling factor (α), learning rate,
dropout rate, and batch size—resulting in a search space of more than 45,000 configurations. To
validate our proposed framework, we conduct experiments across multiple LoRA variants, including
rsLoRA (Kalajdzievski, 2023), DoRA (Liu et al., 2024a), and PiSSA (Meng et al., 2024).

Table 1: Hyperparameter search range. We set
the hyperparameter search ranges based on prior
work (Meng et al., 2024; Wang et al., 2024; In-
ouye et al., 2024; Diehl, 2024; Yan et al., 2025;
unsloth, 2025), resulting in a search space of over
45,000 configurations.

Hyperparameters Search Range Count
Rank (r) 1 ∼256 (2n) 9

Scaling Factor (α) r
2 ∼ 128r (2nr) 9

Batch Size 2 ∼256 (2n) 8
Learning Rate 1e-6 ∼ 5e-3 10
Dropout Rate 0.0 ∼ 0.3 (0.5× n) 7

Tasks. Following prior work (Meng et al.,
2024), we fine-tune models on the Meta-
MathQA dataset (Yu et al., 2023) and evaluate
performance on GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021), and re-
port Accuracy (%). To test generalization be-
yond mathematical reasoning, we extend ex-
periments to code generation, fine-tuning on
the CodeFeedback dataset (Zheng et al., 2024)
and evaluating on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), report-
ing Pass@1 which is the probability that the
first generated solution solves the task. Each
training dataset contains 100K samples, with a 10K subset used for proxy training evaluation.

Baselines. We benchmark our framework against several HPO methods: random search (Bergstra
& Bengio, 2012), Optuna (Akiba et al., 2019), standard BO (Oliver & Wang, 2024), latent BO
(LBO) (Li et al., 2021), and NOMAD (Tribes et al., 2024). Details are reported in Appendix B.

4.2 EXPERIMENTAL RESULTS

Hyperparameter optimization for LoRA variants and various models. Based on previous find-
ings that tasks and architectures demand distinct hyperparameters (Sengupta et al., 2024; He, 2024;
Mohammed & Kora, 2025), we evaluate our framework across diverse LoRA variants and mod-
els. Table 2 shows that adapting our HPO framework enables effective hyperparameter search for
each LoRA variant, consistently improving performance compared to the originally reported re-
sults. Surprisingly, our framework achieves up to 21.46% accuracy improvement, emphasizing the
importance of hyperparameter selection. These results suggest that there is significant room for im-
provement in existing LoRA variants through systematic hyperparameter search. Similarly, Table 3
demonstrates that our approach can identify appropriate model-specific hyperparameters. Across
different backbone Large Language Models (LLMs), adapting our framework consistently achieves
substantial improvements, highlighting its practical utility for fine-tuning newly introduced models.

Table 2: Results of applying our framework to LoRA variants. We set the hyperparameter
configurations suggested by each work, where they were dedicatedly tuned (Kalajdzievski, 2023;
Liu et al., 2024a; Meng et al., 2024; Wang et al., 2024). Using our method, we observe consistent
performance improvements across all variants.

Strategy Ours Accuracy (%) Pass@1

GSM8K MATH HumanEval MBPP

LoRA (Hu et al., 2022) ✗ 41.47 5.24 16.31 35.47
✓ 62.93 (+21.46) 12.88 (+7.64) 30.49 (+14.18) 42.59 (+7.12)

rsLoRA (Kalajdzievski, 2023) ✗ 41.16 5.46 16.46 35.72
✓ 58.15 (+16.99) 10.76 (+5.3) 29.87 (+13.41) 42.06 (+6.34)

DoRA (Liu et al., 2024a) ✗ 40.11 5.36 17.07 36.51
✓ 57.01 (+16.9) 10.78 (+5.42) 30.58 (+13.51) 42.33 (+5.82)

PiSSA (Meng et al., 2024) ✗ 52.46 7.34 22.56 40.48
✓ 60.88 (+8.42) 12.06 (+4.72) 31.71 (+9.15) 41.53 (+1.05)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results of applying our framework across diverse models. We compare against the hy-
perparameter settings suggested by PiSSA (Meng et al., 2024), where they were dedicatedly tuned.
The experiments demonstrate that our method is effective across a wide range of models.

Model Ours Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B (Touvron et al., 2023) ✗ 41.47 5.24 16.31 35.47
✓ 62.93 (+21.46) 12.88 (+7.64) 30.49 (+14.18) 42.59 (+7.12)

Mistral-7B-v0.1 (Jiang et al., 2023) ✗ 69.90 19.96 45.73 61.90
✓ 74.07 (+4.17) 23.46 (+3.5) 54.27 (+8.54) 65.08 (+3.18)

Gemma-7B (Team et al., 2024) ✗ 75.51 29.44 49.39 63.23
✓ 78.77 (+3.26) 30.24 (+0.8) 53.05 (+3.66) 67.46 (+4.23)

Table 4: Comparison against existing HPO
methods. Our method outperforms existing HPO
approaches under the same optimization budget.

Search Method Accuracy (%) Pass@1

GSM8K MATH HumanEval MBPP

Random 59.14 10.51 23.17 36.77
Optuna (TPE) 37.38 4.74 27.44 38.62

BO 57.32 11.42 20.12 35.19
LBO 59.51 11.88 26.83 37.83

Ours 62.93 12.88 30.49 42.59

Table 5: Comparison against existing LoRA
HPO method. We compare our approach
with Tribes et al. (2024), which applies the NO-
MAD algorithm specifically for LoRA hyperpa-
rameter tuning. Our method is both more time-
efficient and more effective, achieving superior
performance by a significant margin. Note that
H denotes hours.

Method Time GSM8K MATH HumanEval MBPP

Tribes et al. (2024) 180 H 52.16 9.12 24.39 37.30
Ours 24 H 62.93 12.88 30.49 42.59

Overall, our framework can be applied as a plug-and-play module that adapts to the LoRA variants
and models, giving consistent gains without manual hyperparameter tuning.

We further analyze the hyperparameter combinations discovered in our experiments. As shown in
Tables A1 and A2, smaller batch sizes are often preferred, consistent with prior findings (Marek
et al., 2025). In addition, applying dropout often leads to better performance. Interestingly, we
sometimes observe strong performance when the scaling factor (α) is 16 or even 32 times larger
than the rank. This observation has not been reported in prior studies, where α was set to twice
the rank according to existing guidelines (Diehl, 2024; unsloth, 2025), or determined based on a
rank or fixed α (Kalajdzievski, 2023; Sun et al., 2024; Liu et al., 2025). This suggest that there may
exist settings beyond the commonly chosen rank and α values that can further improve performance,
thereby hinting at the possibility of proposing a new guideline.

Comparison with various HPO methods. We evaluate the effectiveness of our framework, against
widely adopted baselines for HPO. Table 4 summarizes the results of applying each method under
the same optimization budget. The results demonstrate that our approach identifies more suitable
hyperparameters within a constrained budget. Notably, our method discovers better configurations
than other BO-based methods, indicating that leveraging LLMs to provide domain knowledge about
the search space can improve both search efficiency and effectiveness. We also compare our frame-
work with Tribes et al. (2024), a dedicated approach for LoRA HPO that employs validation loss
with the NOMAD algorithm for hyperparameter estimation. As shown in Table 5, our method finds
more appropriate configurations in a shorter time. These experiments support that the combination
of LLM and BO leads to improvement in both accuracy and efficiency.

Table 6: Ablation results. We validate each of
our proposed components and find that all con-
tribute effectively to LoRA HPO.

Projection
Layer

Domain-aware
Prompting

Learnable
Token GSM8K MATH

✗ ✗ ✗ 47.76 8.72
✓ ✗ ✗ 53.98 9.16
✓ ✓ ✗ 61.41 12.46
✓ ✓ ✓ 62.93 12.88

Ablation studies. We conduct a series of exper-
iments to evaluate the effect of each proposed
component. Our framework incorporates domain
knowledge into the optimization process through
three components: domain-aware prompting for
explicit knowledge injection, and a projection
layer with a learnable token for implicitly encod-
ing domain knowledge. As shown in Table 6,
adding each component consistently helps BO to
discover better-performing hyperparameter set-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1

0

Pe
rf
or
m
an

ce

(a) 𝜙(𝑡) (b) 𝑃(𝜙 𝑡 ; 𝜃) (c) 	𝑃(𝜙 𝑡, 𝜓 ; 𝜃)

Figure 1: Qualitative analysis of embedding space evolution using our components. We illus-
trate how the embedding space evolves with our proposed components: (a) shows the embedding
space from a frozen LLM ϕ; (b) shows the space when a projection layer P (·; θ) is added to the
frozen LLM; and (c) shows the space when both the projection layer and the learnable token ψ are
employed. The trajectories in each figure indicate optimization paths across steps, shown in arrow
sequence. These results suggest that incorporating the projection layer and learnable token produces
a smoother, more structured embedding space suited for BO, thereby enabling efficient optimization.

tings, demonstrating the effectiveness of our framework. Notably, domain-aware prompting plays
a crucial role in performance improvement, emphasizing the importance of explicitly injecting do-
main knowledge at the prompt level. We further analyze the differences in the optimization process
introduced by each component. Without any components, BO tends to keep the learning rate nearly
fixed, resulting in insufficient exploration of the search space. In contrast, BO with all components
explores broadly across the hyperparameter candidate pool. These findings show that our framework
enables effective exploration of diverse hyperparameters even with a small number of iterations, al-
lowing BO to operate over a much broader search space.

Qualitative analysis of the effect of our framework. We visualize the embedding z of hyperpa-
rameter configurations to illustrate the effect of adding each component of our framework, as shown
in Fig. 1. The figure compares three settings: (a) frozen LLM embeddings, (b) embeddings after ap-
plying the projection layer, and (c) embeddings with both the projection layer and a learnable token.
With frozen LLM embeddings, high- and low-performing hyperparameters configurations remain
entangled, leading to an unstable search process. This results indicates that the embedding space
does not effectively separate hyperparameter combinations and may hinder the balance between
exploration and exploitation. Introducing a projection layer begins to separate the embeddings, re-
vealing clearer structures that distinguish the performance levels. When we additionally incorporate
a learnable token, the embeddings exhibit directional organization aligned with performance, en-
abling more reliable surrogate fitting and a better-organized space overall. Furthermore, we analyze
the trajectories of the BO process across different settings and find that optimization using only a
frozen LLM proceeds without a clear direction. In contrast, when components for embedding cali-
bration are included, the BO process consistently moves toward the high-performing region. These
observations suggest that calibration with a projection layer and a learnable token makes the BO
landscape more discriminative and smooth compared to using fixed embeddings, thereby improving
search efficiency and final performance.

Table 7: Correlation between the performance
trained on a subset and on the full dataset.
Proxy training evaluation shows comparable cor-
relation to full dataset accuracy, at both random
sampling and TSDS (Liu et al., 2024d).

Sampling Method MATH
Reasoning

Code
Generation

Random (1%) 0.7031 0.7429
Random (5%) 0.8360 0.9282
Random (10%) 0.8713 0.9427
TSDS (10%) by Test dataset 0.8754 0.9290
TSDS (10%) by Train dataset 0.8649 0.9278

Validation of proxy training evaluation. To
reduce the time cost of fine-tuning during
HPO, we introduce proxy training evaluation
in Sec. 3.3. Using the proposed proxy train-
ing evaluation, we estimate the performance by
training on a subset of the dataset, treating it
as a proxy for full-data performance. To fur-
ther investigate this, we examine the Pearson
correlation between the training performance of
subset datasets at various sampling ratios and
that of the full dataset. Additionally, we com-
pare with the existing data sampling method,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: Performance differences across model sizes. We apply the hyperparameters discovered
for each model size of Qwen2.5 to fine-tune all model sizes. “Model” denotes the model being
fine-tuned, while “Settings” indicate the size of the model from which the hyperparameters were
obtained. The results show that variations in model size do not significantly affect the discovery of
effective hyperparameter settings.

Model Settings Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

Qwen2.5-3B (Qwen et al., 2025)
3B 79.53 43.18 70.12 77.78
7B 78.54 42.40 68.29 75.13

14B 78.47 42.94 67.07 77.25

Qwen2.5-7B (Qwen et al., 2025)
3B 84.08 48.90 81.09 78.84
7B 83.93 48.08 79.88 78.57

14B 83.09 48.58 81.71 78.31

Qwen2.5-14B (Qwen et al., 2025)
3B 87.41 51.68 82.32 82.80
7B 86.81 50.62 79.88 81.22

14B 87.34 51.50 81.71 82.01

TSDS (Liu et al., 2024d), setting the target distribution to the test dataset or to the training dataset.
Table 7 demonstrates that proxy training evaluation with a randomly selected 10% subset provides
a sufficiently accurate approximation of full dataset performance. These results indicate that our
proxy training evaluation serves as an effective and reliable indicator of model performance on the
full dataset. Moreover, the correlation obtained from the 10% random subset is comparable to that
of TSDS (Liu et al., 2024d) and even achieves the highest correlation in the code generation task.
Based on these findings, we adopt 10% random sampling to construct the subset dataset.

Effect of model size on LoRA HPO. We investigate the effect of model size on finding suitable
LoRA hyperparameters. Specifically, we apply our framework to Qwen2.5 models with 3B, 7B, and
14B parameters, identifying the best hyperparameters for each model size. We then use these con-
figurations to fine-tune models across all sizes. As shown in Table 8, hyperparameter configurations
discovered on one model size generally remain effective for other sizes. These results suggest that
variations in model size do not significantly affect the discovery of effective hyperparameter settings.
In contrast, we find differences between architecture: compared to LLaMA2, Qwen2.5 models tend
to prefer smaller ranks and larger batch sizes (see Tables A1 and A2). Moreover, as shown in Ta-
ble A8, when we cross-apply the configurations found with the Qwen2.5 model to LLaMA2 model
and vice versa, we observe substantially larger performance degradation than when each config-
uration is used within the same model series. These observations indicate that hyperparameters
are influenced more by model architecture than scale, which is consistent with findings from prior
work (Yan et al., 2025). Since the configurations are largely transferable across scales within the
same model series, this implies that tuning costs can be reduced by applying configurations found
on smaller models to larger ones, rather than running the framework directly on larger models.

5 CONCLUSION

We propose a framework that combines Large Language Models (LLMs) with Bayesian optimiza-
tion (BO) for LoRA Hyperparameter Optimization (HPO). Domain knowledge about LoRA is ex-
plicitly injected into the BO process via domain-aware prompting, while a learnable token and a
projection layer transform LLM embeddings into a space better suited for optimization. To further
reduce cost, we employ empirically validated proxy training evaluation, which estimates fine-tuning
performance using a subset of the training data. As a result, our framework identifies appropri-
ate hyperparameter configurations from a large candidate pool with significantly reduced optimiza-
tion time. It functions as a plug-and-play module, achieving consistent performance improvements
across LoRA variants, model architectures, and model scales. Comparisons with existing HPO
methods validate its effectiveness both in terms of cost and performance. Beyond LoRA, we believe
this framework can serve as a practical baseline for broader HPO in diverse fine-tuning strategies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We provide comprehensive details of the experimental setup in the Appendix B, D, including
full specifications of the hyperparameters configuration searched, and training procedures, and the
prompt used for LLM feature extraction to ensure clarity and transparency. These materials are
intended to make it straightforward for others to replicate our experiments and verify the reported
results. In addition, we will make the complete codebase publicly available upon acceptance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Dhruv Agarwal, Manoj Ghuhan, Rajarshi Raj Das, Sandesh Swamy, Sopan Khosla, and Rashmi
Gangadharaiah. Searching for optimal solutions with llms via bayesian optimization. 2025.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

Thomas Beckers. An introduction to gaussian process models. arXiv preprint arXiv:2102.05497,
2021.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The journal
of machine learning research, 13(1):281–305, 2012.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Massimo Bini, Leander Girrbach, and Zeynep Akata. Delora: Decoupling angles and strength in
low-rank adaptation. arXiv preprint arXiv:2503.18225, 2025.

Alexander L Bowler, Michael P Pound, and Nicholas J Watson. A review of ultrasonic sensing and
machine learning methods to monitor industrial processes. Ultrasonics, 124:106776, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
lora for parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jaewon Chu, Jinyoung Park, Seunghun Lee, and Hyunwoo J Kim. Inversion-based latent bayesian
optimization. Advances in Neural Information Processing Systems, 37:68258–68286, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Zoltan Czako, Gheorghe Sebestyen, and Anca Hangan. Automaticai–a hybrid approach for auto-
matic artificial intelligence algorithm selection and hyperparameter tuning. Expert Systems with
Applications, 182:115225, 2021.

Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for bayesian op-
timization over combinatorial spaces. Advances in neural information processing systems, 34:
8185–8200, 2021.

Stephen Diehl. Introduction to fine-tuning large language models. https://www.
stephendiehl.com/posts/training_llms/#:˜:text=However%20if%
20you%20are%20going,increasing%20order%20from%20the%20default,
2024.

11

http://arxiv.org/abs/1910.06403
https://www.stephendiehl.com/posts/training_llms/#:~:text=However%20if%20you%20are%20going,increasing%20order%20from%20the%20default
https://www.stephendiehl.com/posts/training_llms/#:~:text=However%20if%20you%20are%20going,increasing%20order%20from%20the%20default
https://www.stephendiehl.com/posts/training_llms/#:~:text=However%20if%20you%20are%20going,increasing%20order%20from%20the%20default

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature machine intelligence, 5(3):220–235, 2023.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Alon Halfon, Shai Gretz, Ofir Arviv, Artem Spector, Orith Toledo-Ronen, Yoav Katz, Liat Ein-
Dor, Michal Shmueli-Scheuer, and Noam Slonim. Stay tuned: An empirical study of the impact
of hyperparameters on llm tuning in real-world applications. arXiv preprint arXiv:2407.18990,
2024.

Pengfei He. Parameter efficient instruction tuning: An empirical study. arXiv preprint
arXiv:2411.16775, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Darren Inouye, Lucas Lindo, Robin Lee, and Edmund Allen. Applied auto-tuning on lora hyperpa-
rameters. 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

Hongpeng Jin, Wenqi Wei, Xuyu Wang, Wenbin Zhang, and Yanzhao Wu. Rethinking learning
rate tuning in the era of large language models. In 2023 IEEE 5th International Conference on
Cognitive Machine Intelligence (CogMI), pp. 112–121. IEEE, 2023.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
timization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528–536. PMLR, 2017.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with syn-
thesizable recommendations. In International Conference on Artificial Intelligence and Statistics,
pp. 3393–3403. PMLR, 2020.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian
optimization over molecules? arXiv preprint arXiv:2402.05015, 2024.

Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J Kim. Latent bayesian
optimization via autoregressive normalizing flows. arXiv preprint arXiv:2504.14889, 2025.

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, and Alistair Shilton. High
dimensional bayesian optimization using dropout. arXiv preprint arXiv:1802.05400, 2021.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. Lora dropout
as a sparsity regularizer for overfitting control. arXiv preprint arXiv:2404.09610, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jun Liu, Zhenglun Kong, Peiyan Dong, Xuan Shen, Pu Zhao, Hao Tang, Geng Yuan, Wei Niu,
Wenbin Zhang, Xue Lin, et al. Rora: Efficient fine-tuning of llm with reliability optimization for
rank adaptation. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024b.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. arXiv preprint arXiv:2402.03921, 2024c.

Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model
finetuning. Advances in Neural Information Processing Systems, 37:10117–10147, 2024d.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models. Frontiers of Computer Science, 19(7):197605, 2025.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful. arXiv preprint arXiv:2507.07101, 2025.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Cristian Meo, Ksenia Sycheva, Anirudh Goyal, and Justin Dauwels. Bayesian-lora: Lora based
parameter efficient fine-tuning using optimal quantization levels and rank values trough differen-
tiable bayesian gates. arXiv preprint arXiv:2406.13046, 2024.

Ammar Mohammed and Rania Kora. A comprehensive overview and analysis of large language
models: Trends and challenges. IEEE Access, 2025.

Benarji Mulakala, Madan Lal Saini, Ashirvad Singh, Vamsi Bhukya, and Arnod Mukhopadhyay.
Adaptive multi-fidelity hyperparameter optimization in large language models. In 2024 8th In-
ternational Conference on Computational System and Information Technology for Sustainable
Solutions (CSITSS), pp. 1–5. IEEE, 2024.

Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jorg Bornschein, Yingjie Miao, Sagi
Perel, Yutian Chen, and Xingyou Song. Predicting from strings: Language model embeddings
for bayesian optimization. arXiv preprint arXiv:2410.10190, 2024.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian opti-
mization using the graph cartesian product. Advances in Neural Information Processing Systems,
32, 2019.

Michael Oliver and Guan Wang. Crafting efficient fine-tuning strategies for large language models.
arXiv preprint arXiv:2407.13906, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

Hossein Rajabzadeh, Mojtaba Valipour, Tianshu Zhu, Marzieh Tahaei, Hyock Ju Kwon, Ali Ghodsi,
Boxing Chen, and Mehdi Rezagholizadeh. Qdylora: Quantized dynamic low-rank adaptation for
efficient large language model tuning. arXiv preprint arXiv:2402.10462, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian opti-
mization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bojana Ranković and Philippe Schwaller. Bochemian: Large language model embeddings for
bayesian optimization of chemical reactions. In NeurIPS 2023 Workshop on Adaptive Experi-
mental Design and Active Learning in the Real World, 2023.

Bojana Ranković and Philippe Schwaller. Gollum: Gaussian process optimized llms–reframing llm
finetuning through bayesian optimization. arXiv preprint arXiv:2504.06265, 2025.

Bojana Ranković, Ryan-Rhys Griffiths, Henry B Moss, and Philippe Schwaller. Bayesian optimisa-
tion for additive screening and yield improvements–beyond one-hot encoding. Digital Discovery,
3(4):654–666, 2024.

Ayan Sengupta, Vaibhav Seth, Arinjay Pathak, Aastha Verma, Natraj Raman, Sriram Gopalakrish-
nan, Niladri Chatterjee, and Tanmoy Chakraborty. Robust and efficient fine-tuning of llms with
bayesian reparameterization of low-rank adaptation. arXiv preprint arXiv:2411.04358, 2024.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

N Shawki, R Rodriguez Nunez, I Obeid, and J Picone. On automating hyperparameter optimiza-
tion for deep learning applications. In 2021 IEEE Signal Processing in Medicine and Biology
Symposium (SPMB), pp. 1–7. IEEE, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Christophe Tribes, Sacha Benarroch-Lelong, Peng Lu, and Ivan Kobyzev. Hyperparameter opti-
mization for large language model instruction-tuning, 2024. URL https://arxiv.org/
abs/2312.00949.

unsloth. Lora hyperparameters guide. https://docs.unsloth.ai/get-started/
fine-tuning-llms-guide/lora-hyperparameters-guide, 2025. Accessed:
2025-09-18.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? arXiv preprint arXiv:2407.18242, 2024.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal of Electronic
Science and Technology, 17(1):26–40, 2019.

14

https://arxiv.org/abs/2312.00949
https://arxiv.org/abs/2312.00949
https://docs.unsloth.ai/get-started/fine-tuning-llms-guide/lora-hyperparameters-guide
https://docs.unsloth.ai/get-started/fine-tuning-llms-guide/lora-hyperparameters-guide

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Minghao Yan, Zhuang Wang, Zhen Jia, Shivaram Venkataraman, and Yida Wang. Plora: Efficient
lora hyperparameter tuning for large models. arXiv preprint arXiv:2508.02932, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large lan-
guage models for hyperparameter optimization. arXiv preprint arXiv:2312.04528, 2023.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tun-
ing matrix ranks in low-rank adaptation based on meta learning. arXiv preprint arXiv:2403.09113,
2024.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A OPTIMIZING ω, θ, ψ THROUGH MARGINAL LOG-LIKELIHOOD

This part is inspired by Wilson et al. (2016) and Ranković & Schwaller (2025), from which we
partially adopt several equations. We formulate marginal log-likelihood as follows:

L(Φ) = log p(y|X,Φ) = −1

2
{(y − µ1)⊤K−1

Φ (y − µ1) + log |KΦ|+ n log 2π}, (7)

where X = {x1,x2, ...,xn} and y = {y1, y2, ..., yn}.
To maximize marginal log-likelihood, gradient-based optimization is used to optimize kernel hy-
perparameter ω, weight of projection layer θ, and learnable token ψ. We define the parameter set
Φ = {ω, θ, ψ}. The gradient of the marginal log-likelihood can be computed by applying the chain
rule with respect to each parameter, resulting in the following decomposition:

∂L
∂ω

=
∂L
∂KΦ

∂KΦ

∂ω
,

∂L
∂θ

=
∂L
∂KΦ

∂KΦ

∂g(x; θ, ψ)

∂g(x; θ, ψ)

∂θ
,

∂L
∂ψ

=
∂L
∂KΦ

∂KΦ

∂g(x; θ, ψ)

∂g(x; θ, ψ)

∂ψ
,

(8)
∂L
∂KΦ

=
1

2
K−1

Φ (y − µ1)(y − µ1)⊤K−1
Φ − 1

2
K−1

Φ , (9)

where ∂KΦ

∂ω are the derivatives of the kernel with respect to the kernel hyperparameters, ∂KΦ

∂g(x;θ,ψ)

means the implicit derivatives of the kernel with respect to the g. ∂g(x;θ,ψ)
∂θ are the derivatives of

the projection layer parameters via backpropagation and ∂g(x;θ,ψ)
∂ψ are the derivatives of the learn-

able token parameters via backpropagation. Finally, we can compute the gradient of marginal log-
likelihood by applying the chain rule.

B DETAILS OF THE EXPERIMENTAL SETTING

Implementation details. Motivated by Ranković & Schwaller (2025), we use Qwen2-7B as the
LLM in our framework to extract embeddings for BO, applying last-token pooling. The embedding
dimension is set to 3584. We define the projection layer as follows:

P (x; θ) = ELU(Dropout(Wx+ b)). (10)

We also utilize Matérn-5/2 kernel and Expected Improvement (EI) as acquisition function based on
previous studies (Ranković et al., 2024; Ranković & Schwaller, 2025). The backbone LLM used
for experiments on LoRA variants is LLaMA2-7B. For cases where our method is not applied, we
follow the settings reported in prior work (Meng et al., 2024; Wang et al., 2024). We set the model’s
sequence length to 1024 and use a warmup ratio of 0.03 with a cosine learning rate scheduler. To
reduce computational cost, all models are trained for a single epoch.

Details on competing methods. We conduct our experiments on several HPO methods, random
search (Bergstra & Bengio, 2012), Optuna (Akiba et al., 2019), standard BO (Oliver & Wang, 2024),
latent BO (LBO) (Li et al., 2021), and NOMAD (Tribes et al., 2024). To ensure fairness, all meth-
ods are constrained to 30 optimization iterations. For each method, the top-1 result is obtained
by selecting the best hyperparameter configuration on the training subset. We use the BoTorch li-
brary (Balandat et al., 2020) for BO and LBO implementations, conducting hyperparameter search
with the same design space as ours. For both BO and LBO, each hyperparameter configuration is
represented as a 5-dimensional vector and fed into the baselines. For LBO, we adapt the feature
extractor proposed by Lee et al. (2025), which consists of two repeated blocks of linear and ReLU
layers with a hidden dimension of 64. For Optuna, we use the default TPE setting with categorical
hyperparameter candidates. For the method of Tribes et al. (2024), we run the NOMAD algorithm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A1: Hyperparameters for math reasoning tasks. We present the hyperparameter configu-
ration used to train MetaMathQA for evaluating on the GSM8K and MATH datasets.

Models Strategy Ours Hyperparameter

Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

LLaMA2-7B

LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 8192 0.0 4 5e-06

rsLoRA ✗ 8 16 0.0 32 2e-05
✓ 128 1024 0.05 64 5e-05

DoRA ✗ 8 16 0.0 32 2e-05
✓ 16 16 0.3 16 5e-04

PiSSA ✗ 128 128 0.0 128 2e-05
✓ 256 4096 0.0 4 5e-06

LLaMA2-13B LoRA ✗ 8 16 0.0 32 2e-05
✓ 32 512 0.0 2 5e-05

Mistral-7B-v0.1 LoRA ✗ 128 128 0.0 128 2e-05
✓ 128 128 0.1 4 3e-05

Gemma-7B LoRA ✗ 128 128 0.0 128 2e-05
✓ 64 256 0.0 2 5e-06

Qwen2.5-3B LoRA ✓ 1 4 0.25 32 5e-05

Qwen2.5-7B LoRA ✓ 32 64 0.25 16 5e-05

Qwen2.5-14B LoRA ✓ 1 4 0.25 32 2e-05

Table A2: Hyperparameters for code generation tasks. We present the hyperparameter configu-
ration used to train CodeFeedback for evaluating on the HumanEval and MBPP datasets.

Models Strategy Ours Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

LLaMA2-7B

LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.0 4 5e-05

rsLoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.25 4 5e-05

DoRA ✗ 8 16 0.0 32 2e-05
✓ 128 256 0.15 2 3e-05

PiSSA ✗ 128 128 0.0 128 2e-05
✓ 32 1024 0.0 2 3e-05

LLaMA2-13B LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.25 2 1e-04

Mistral-7B-v0.1 LoRA ✗ 128 128 0.0 128 2e-05
✓ 128 256 0.0 2 5e-06

Gemma-7B LoRA ✗ 128 128 0.0 128 2e-05
✓ 256 256 0.25 32 2e-05

Qwen2.5-3B LoRA ✓ 128 64 0.1 128 5e-06

Qwen2.5-7B LoRA ✓ 8 4 0.0 64 2e-05

Qwen2.5-14B LoRA ✓ 128 128 0.15 64 5e-06

by executing our LoRA tuning Python script. All experiments are conducted on two A100-80GB
GPUs.

Discovered hyperparameters for each experiment. The hyperparameters discovered after opti-
mization and used for training are reported in Tables A1 and A2. Tables A3 and A4 present the
details of the hyperparameters identified by the competing search methods, while Table A5 reports
those obtained during the ablation studies. Our experiments show that, when applied to diverse mod-
els and LoRA variants, our framework consistently discovers hyperparameter configurations with a
higher rank than the baselines. This suggests that our method effectively identifies hyperparameters
most appropriate for each model and each LoRA variant.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A3: Discovered hyperparameters by competing methods for math reasoning tasks. We
present the hyperparameter configuration, obtained through the competing method, that is used to
train MetaMathQA for evaluating on the GSM8K and MATH datasets.

Search Method Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

Random 128 1024 0.1 16 5e-05
Optuna (TPE) 256 128 0.0 32 5e-04

BO 16 64 0.25 2 1e-04
LBO 128 4096 0.0 2 5e-06

Tribes et al. (2024) 8 256 0.1 4 1e-04

Table A4: Discovered hyperparameters by competing methods for code generation tasks. We
present the hyperparameter configuration, obtained through the competing method, that is used to
train CodeFeedback for evaluating on the HumanEval and MBPP datasets.

Search Method Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

Random 4 8 0.0 16 5e-05
Optuna (TPE) 256 128 0.2 16 1e-04

BO 16 8 0.15 2 5e-06
LBO 256 128 0.3 256 6e-04

Tribes et al. (2024) 4 64 0.0 4 3e-05

Table A5: Discovered hyperparameters in ablation studies. We present the hyperparameter con-
figuration during our ablation studies, used in Table 6.

Projection
Layer

Domain-aware
Prompting

Learnable
Token

Hyperparameter

Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

✗ ✗ ✗ 64 32 0.25 2 4e-04
✓ ✗ ✗ 8 8 0.1 8 1e-04
✓ ✓ ✗ 128 256 0.1 32 3e-04
✓ ✓ ✓ 256 8192 0.0 4 5e-06

Table A6: Performance across different model sizes. Adapting our framework to different model
sizes consistently shows improvements, indicating its effectiveness.

Models Ours Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B ✗ 41.47 5.24 16.31 35.47
✓ 62.93 12.88 30.49 42.59

LLaMA2-13B ✗ 55.34 8.68 29.88 46.56
✓ 64.44 14.68 42.07 53.17

Table A7: Performance differences across model sizes. We apply the hyperparameters discovered
for each model size of LLaMA2 to fine-tune all model sizes. “Model” denotes the model being
fine-tuned, while “Settings” indicate the size of the model from which the hyperparameters were
obtained.

Model Settings Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B 7B 62.93 12.88 30.49 42.59
13B 60.12 10.74 34.15 44.97

LLaMA2-13B 7B 66.57 15.24 42.68 51.59
13B 64.44 14.68 42.07 53.17

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table A8: Results of cross-applying hyperparameters across models. We observe performance
degradation when hyperparameters discovered for one model series are applied to another. This
indicates that our framework effectively searches for hyperparameters suited to each model.

Model Settings GSM8K MATH

LLaMA2-7B

LLaMA2-7B 62.93 12.88

Qwen2.5-3B 39.5 5.2
Qwen2.5-7B 32.68 4.7
Qwen2.5-14B 52.46 8.06

Qwen2.5-7B
Qwen2.5-7B 83.93 48.08

LLaMA2-7B 81.12 41.06
LLaMA2-13B 80.06 40.18

Table A9: Correlation between performance on a subset and the full dataset. The percentages
indicate the sampling ratios from the full dataset. For TSDS (Liu et al., 2024d), we report results
separately when the target distribution is matched to the test dataset or the training dataset. Pearson
correlation is used as the evaluation metric.

Sampling Method Math Reasoning Code Generation
GSM8K MATH HumanEval MBPP

Random (1%) 0.6879 0.4335 0.8052 0.5469
Random (5%) 0.8197 0.6483 0.8857 0.8879
Random (10%) 0.8566 0.6578 0.8652 0.9286

TSDS (10%) by Test dataset 0.8651 0.7117 0.8589 0.8209
TSDS (10%) by Train dataset 0.8529 0.6602 0.8624 0.9245

C ADDITIONAL RESULTS

We provide supplementary experiments and analyses in addition to the main results presented in the
main paper.

Validation on models of different sizes. Table A6 summarizes the validity of our framework under
model size variations in LLaMA2. Even when the model size increases from 7B to 13B, our method
successfully identifies appropriate hyperparameters, demonstrating the framework’s robustness to
changes in scale.

Cross-application of hyperparameters within the same model series. We apply the same pro-
cedure as in Table 8 to the LLaMA2 series, transferring hyperparameter settings discovered for one
model size to another. The results in Table A7 show that hyperparameter configurations can re-
main effective across different scales within the same series. This further suggests the possibility of
searching for hyperparameters on smaller models and transferring them to larger ones.

Cross-application of hyperparameters between different model series. To examine whether
hyperparameters identified in one model transfer to another, we conduct experiments applying con-
figurations discovered on Qwen2.5 to LLaMA-2, and vice versa, as shown in Table A8. Apply-
ing hyperparameters found on Qwen2.5 to LLaMA-2 leads to substantial performance degradation.
Similarly, applying those from LLaMA-2 to Qwen2.5 also degrades performance. These results
support the claim in Sec. 4.2 that preferred hyperparameter settings vary with model architecture.

Correlation between subset training and full training. Table A9 shows that correlation between
subset training and full training remains consistent across all benchmarks. Notably, randomly sam-
pling only 10% of the data still yields high correlation with full-dataset performance. This supports
the claim in Sec. 4.2 that random sampling is a reasonable and efficient choice, comparable to more
sophisticated data selection methods (Liu et al., 2024d). Thus, instead of tuning on the full dataset,
leveraging proxy training evaluation provides a reliable proxy for estimating model performance
during hyperparameter search.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table A10: Prompt templates with and without domain-aware prompting.

rank(r)={rank value}, Scaling factor(α)={alpha value}, Dropout
Rate={dropout value}, Batch Size={batchsize value}, Learning
Rate={lr value}

(a) Prompt templates without domain-aware prompting

* Rank (r): Controls adapter capacity by setting the low-rank
dimension, higher r increases expressivity (and memory/compute)
but raises overfitting risk. If you raise r, consider stronger
regularization or a lower learning rate.
* Scaling factor (α): Scales the LoRA update; the effective
update magnitude is **alpha / r**, so setting alpha ≈ r keeps
update strength stable. Larger alpha amplifies adaptation but can
destabilize training if LR is high.
* Dropout: Probability of dropping the adapter path to regularize
training; higher dropout curbs overfitting, especially with large r
or small datasets. With higher dropout you can often afford slightly
larger alpha or LR without instability.
* Batch size: Number of samples per optimizer step|larger batches
give smoother gradients and typically permit a proportionally larger
learning rate (linear-scaling rule) at the cost of more memory.
Small batches may need gradient accumulation or a reduced LR.
* Learning rate: Step size for adapter parameters|too high can
diverge (especially with large alpha/r), too low slows convergence.
Tune in conjunction with batch size and consider schedules (e.g.,
cosine) to balance speed and stability.
* rank(r): {rank value}
* Scaling factor(α): {alpha value}
* Dropout Rate: {dropout value}
* Batch Size: {batchsize value}
* Learning Rate: {lr value}

(b) Prompt templates with domain-aware prompting

D TEMPLATE FOR DOMAIN-AWARE PROMPTING

We provide an example of the template for domain-aware prompting in Table A10. This template
focuses on the roles and relationships of each hyperparameter and describes how training dynamics
change as their values vary, based on prior studies (Kalajdzievski, 2023; Sun et al., 2024; Diehl,
2024; Meng et al., 2024; unsloth, 2025; Liu et al., 2025). Compared to a template without domain-
aware prompting, this design captures rich domain knowledge about LoRA hyperparameters, signif-
icantly improving the effectiveness of the following Bayesian Optimization. The template can also
be modified by users if needed.

20

	Introduction
	Related Work
	Method
	Preliminary: Bayesian optimization
	Proposed Framework
	Proxy training evaluation

	Experiments
	Experimental Setting
	Experimental Results

	Conclusion
	Reproducibility Statement
	Optimizing ,, through marginal log-likelihood
	Details of the Experimental Setting
	Additional Results
	Template for Domain-aware prompting

