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ABSTRACT

Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA)
enables resource-efficient personalization or specialization, but it comes at the ex-
pense of additional hyperparameter tuning. Although LoRA makes fine-tuning
efficient, it is highly sensitive to the choice of hyperparameters, and exhaustive
hyperparameter search is still computationally very demanding. To address these
challenges, we propose a framework that integrates the domain knowledge of pre-
trained LLMs into Bayesian Optimization (BO) to efficiently search for LoRA
hyperparameters. To leverage the informed knowledge of LLMs, we repurpose
LLMs as a discrete-to-continuous mapping to link the hyperparameters and their
domain knowledge with a continuous vector space, where BO is conducted. We
design and control the mapping by language prompting, where we provide a
domain-aware textual prompts describing the relationships among hyperparam-
eters and their respective roles; thereby, we explicitly inject domain knowledge
about LoRA into the LLM in natural language. Also, we model the residual
information hard to be linguistically described in the prompt with an additional
learnable token. This aids BO to sample more high-performing hyperparameters.
In addition, by leveraging the observation of the strong correlation between the
respective performance obtained from full and subset training datasets in LoRA
training regimes, we introduce proxy training and evaluation with a data subset.
This further increases the efficiency of our method. We demonstrate that our hy-
perparameter found with only about 30 iterations achieves more than 20% per-
formance improvement over standard hyperparameters found from about 45,000
combinations. Code will be released upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Team, 2024; Team et al., 2024) have been
recognized as strong foundation models that can be easily adapted to diverse downstream tasks
with high performance. However, fully fine-tuning LLMs for specific applications is computation-
ally heavy. It requires updating billions of parameters, which demands substantial memory and
computational resources (Brown et al., 2020; Gururangan et al., 2020). To overcome these limi-
tations, Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019; Ding et al., 2023) methods
have emerged as effective alternatives, enabling strong task adaptation at significantly reduced cost.
Among these approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2022) stands out as one of the
most widely adopted techniques. LoRA freezes the pre-trained weights and introduces lightweight,
trainable low-rank adapters, allowing models to adapt efficiently to new tasks with only a fraction
of the parameters and resources required for full fine-tuning.

Despite its effectiveness, identifying an optimal hyperparameter configuration for LoRA remains
challenging, as performance is highly sensitive to hyperparameter choices (Sengupta et al., 2024;
Biderman et al., 2024; Mao et al., 2025). LoRA involves several key hyperparameters, including the
rank (r), scaling factor (α), batch size, learning rate, and dropout rate, which are entangled in com-
plex ways. Consequently, performance can vary significantly depending on their combinations (Hal-
fon et al., 2024; Sengupta et al., 2024; Mulakala et al., 2024). Therefore, systematically searching
for the appropriate configuration is a critical issue. Yet, naı̈ve exploration is infeasible: the hyper-
parameter search space is combinatorially large, and each evaluation is extremely costly (Valipour
et al., 2022; Chavan et al., 2023; Sun et al., 2024; Meo et al., 2024; Bini et al., 2025).
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This challenge motivates the use of Bayesian optimization (BO) as a principled framework for Hy-
perparameter Optimization (HPO). BO has proven highly effective in real-world applications where
target function evaluations are expensive, such as drug discovery and materials design (Korovina
et al., 2020; Ranković & Schwaller, 2023; 2025). BO relies on a surrogate model to approximate the
black-box function defined by hyperparameters and their performance, and uses an acquisition func-
tion to select the next configuration by balancing exploration and exploitation. However, directly
applying BO to LoRA HPO is non-trivial, since traditional BO methods require the underlying
function domain to be continuous while the hyperparameters involve discretes and have no way to
integrate the domain knowledge during the optimization process (Yan et al., 2025).

In this work, we propose an efficient BO-based HPO framework tailored to LoRA that incorporates
domain knowledge through the LLM. Specifically, hyperparameter configurations are expressed as
structured text templates describing each hyperparameter’s name, value, role, and interactions. An
LLM processes this template along with a learnable token and converts it into a continuous embed-
ding, where domain knowledge is effectively encapsulated in the learnable token. The learnable
token, paired with observed performance, is then used to train a surrogate model, which in turn
proposes the hyperparameter candidates that maximize the acquisition function. To further improve
efficiency, we introduce a proxy training evaluation that significantly reduces evaluation cost and
iteration time, enabling faster and more sample-efficient optimization.

Our framework generalizes beyond LoRA to its variants, including DoRA (Liu et al., 2024a),
rsLoRA (Kalajdzievski, 2023), and PiSSA (Meng et al., 2024), and is compatible across different
model architectures. Experimental results demonstrate consistent performance improvements when
applying our HPO framework across diverse settings. Moreover, our approach proves both more
efficient and effective than existing search methods (Oliver & Wang, 2024; Tribes et al., 2024) and
alternative optimization strategies (Bergstra & Bengio, 2012; Akiba et al., 2019; Li et al., 2021). Fi-
nally, by analyzing the experimental results, we observe that previously unexplored hyperparameter
combinations can also deliver strong performance, offering insights for new guidelines.

In summary, our contributions are as follows:

• The first framework combining an LLM with BO specialized for LoRA HPO. We propose an
efficient BO-based LoRA HPO framework that integrates domain knowledge into the optimization
process by leveraging an LLM. This framework enables the selection of appropriate hyperparam-
eters from a vast number of possible combinations.

• Improving efficiency of the proposed framework. We introduce a projection layer and a learn-
able token to accelerate BO process. We also introduce a proxy training evaluation protocol that
significantly reduces computational cost, enabling efficient optimization.

• Empirical validation of efficiency and generalizability. We demonstrate the generalizability of
our framework across LoRA variants and model architectures, showing consistent improvements
and offering new insights into effective hyperparameter configurations.

2 RELATED WORK

Low-Rank Adaptation (LoRA) and hyperparameter sensitivity in LoRA. LoRA (Hu et al.,
2022) has become one of the most widely adopted parameter-efficient fine-tuning (PEFT) meth-
ods (Houlsby et al., 2019) for Large Language Models (LLMs). By introducing a trainable low-rank
adapter into a frozen pre-trained model, LoRA allows efficient task-specific adaptation without up-
dating the full set of model parameters. Building on this idea, various LoRA variants have been
proposed to improve stability, convergence, and performance. For example, DoRA (Liu et al.,
2024a) decomposed each weight into a fixed magnitude and a learnable low-rank direction and
rsLoRA (Kalajdzievski, 2023) rescaled LoRA updates by a factor of α/

√
r to improve stability.

Meng et al. (2024) suggest PiSSA leveraging the principal singular vectors and values of the origi-
nal weights to initialize LoRA adapters for faster convergence and performance improvement.

Although several advanced LoRA variants have been proposed, the common issue of sensitivity to
hyperparameter selection remains a challenge. In particular, rank (r) (Zhang et al., 2024), scal-
ing factor (α) (Liu et al., 2025), learning rate (Jin et al., 2023), batch size (Marek et al., 2025),
and dropout rate (Lin et al., 2024) identified as key factors that influence final results. This sensi-
tivity often leads to large performance variance and complicates fair comparisons across methods.
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Moreover, the “optimal” configuration frequently depends on the dataset and base model in use (Ra-
jabzadeh et al., 2024; Yan et al., 2025). Consequently, systematic approaches for optimizing LoRA
hyperparameters remain underexplored, as it is difficult to identify effective configurations while
accounting for all these factors. Prior work has explored black-box optimization methods (Inouye
et al., 2024; Tribes et al., 2024; Oliver & Wang, 2024; Sengupta et al., 2024) and efficient grid-search
strategies (Yan et al., 2025) for LoRA hyperparameter selection. Nevertheless, these approaches
commonly suffer from two limitations: (i) domain knowledge is not incorporated into the optimiza-
tion process, and (ii) evaluation remains costly. Hyperparameter optimization generally requires
substantial domain knowledge (Wu et al., 2019; Shawki et al., 2021; Czako et al., 2021; Bowler
et al., 2022), and LoRA is no exception due to its adapter-specific properties (Halfon et al., 2024;
Yan et al., 2025). To address these limitations, we propose a framework that integrates Bayesian
optimization and an LLM. This framework can automatically and effectively identify suitable hy-
perparameters for LoRA, reducing the need for extensive manual tuning.

Bayesian optimization for hyperparameter optimization. Hyperparameter optimization is a crit-
ical task that significantly impacts model performance in machine learning. However, evaluating
each configuration is often expensive due to the high cost of training. In this context, Bayesian
optimization has emerged as a prominent method for HPO, especially in expensive evaluation set-
tings (Snoek et al., 2012; Shahriari et al., 2015). BO uses a surrogate model and acquisition function
to efficiently search for high-performing hyperparameters with fewer evaluations.

Although BO is an effective approach, its application in discrete input space such as LoRA is lim-
ited (Oh et al., 2019; Deshwal & Doppa, 2021; Chu et al., 2024). To mitigate this, several stud-
ies (Zhang et al., 2023; Ramos et al., 2023; Agarwal et al., 2025) have shown that hybrid frameworks
combining LLMs with BO represent a promising direction, achieving empirical gains across diverse
domains. Such approaches include using LLM agents to propose candidate hyperparameter configu-
rations (Liu et al., 2024b), reformulating BO tasks in natural language to flexibly incorporate search
spaces and constraints (Liu et al., 2024c), and enhancing surrogate models with LLM embeddings as
input features (Nguyen et al., 2024). These synergies between LLMs and BO extend beyond HPO to
other domains, further emphasizing their effectiveness (Ranković & Schwaller, 2023; 2025). Build-
ing on this trend, we propose the first framework that integrates BO with LLMs for LoRA HPO. We
construct an embedding space tailored to LoRA HPO using an LLM with domain prompting and
learnable tokens, and perform BO within this space, improving search efficiency under high-cost
evaluation conditions.

3 METHOD

We propose a framework that combines a Large Language Model (LLM) with Bayesian optimization
(BO) to discover appropriate hyperparameters for LoRA tuning in each task. We obtain continuous
embeddings from the LLM and use them as inputs to the surrogate model, enabling a BO process
tailored to LoRA Hyperparameter Optimization (HPO). The LLM in our framework not only en-
codes rich prior knowledge through large-scale pretraining, but also provides a convenient interface
for injecting additional knowledge in textual form. Furthermore, to reduce cost, we introduce proxy
training evaluation, which estimates the performance of a full-dataset model using a model trained
on a subset of the data. With these components, our framework improves not only the sample ef-
ficiency of BO, but also the computational efficiency of LoRA hyperparameter optimization as a
whole. Section 3.1 introduces the preliminaries of BO, Sec. 3.2 presents the proposed framework
and its components, and Sec. 3.3 details our proxy training evaluation.

3.1 PRELIMINARY: BAYESIAN OPTIMIZATION

BO is an efficient approach for optimizing black-box functions, particularly when the evaluation
cost is expensive. The goal of BO is to find the optimal input x∗ from a candidate pool X that
maximizes a black-box function f . The objective of BO can be formulated as follows:

x∗ = arg max
x∈X

f(x). (1)

Since f is hard to estimate, surrogate model f̂ is used to approximate f . A common choice for the
surrogate model is a Gaussian Process (GP), which can be expressed as: f̂ ∼ GP(µ, kω), where µ
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is mean function and kω denotes the kernel function with hyperparameter ω. For example, in the
case of the Matérn 5/2 kernel, ω includes trainable hyperparameters,

kω(x,x
′) = σ2

(
1 +

√
5d

ℓ
+

5d2

3ℓ2

)
exp

(
−
√
5d

ℓ

)
, (2)

where ℓ denotes the lengthscale, σ2 denotes covariance and d = ∥x−x′∥2. Given n observed points
setDn = {(xi, yi)}ni=1, the surrogate model is tuned on observed points, and an acquisition function
α is used to determine the next evaluation point x̃ based on the posterior from the surrogate model:

x̃ = arg max
x∈X

α(x|f̂ ,D). (3)

3.2 PROPOSED FRAMEWORK

Overview. Our framework performs 4 steps in each iteration: (1) Proxy training evaluation
(Proxy), which fine-tunes LoRA on a subset of the dataset and measures its performance; (2)
Embedding extraction using the LLM; (3) Surrogate model update; and (4) Next evaluation point
suggestion. For example, in the n-th iteration, a hyperparameter configuration xn is selected, and
its benchmark performance yn is obtained through proxy training evaluation. The configuration xn
is then converted into a structured template tn via domain-aware prompting. This template, together
with the learnable token ψ, is passed into the LLM ϕ and projection layer P (·; θ) to produce an
embedding: zn = P (ϕ(tn, ψ); θ). The surrogate model parameterized ω is updated by maximizing
the marginal log-likelihood using embedding zn paired with the observed target yn, jointly updat-
ing all trainable parameters ω, θ, and ψ. Finally, the next evaluation point is selected by generating
embeddings for every hyperparameter configuration xj in the candidate pool Xcand and evaluating
the acquisition function α. Algorithm 1 describes the entire procedure in pseudo-code.

Algorithm 1 Pseudo code for our framework

Require: Candidate pool Xcand, observed dataset Dn = {(xi, yi)}ni=1, budget N ,
parameters ω (GP), θ (Projection layer), ψ (Learnable token),
LLM ϕ, acquisition function α, feature extractor g(·; θ, ψ)

Initialize: parameters ω, θ, ψ; D0 ← ∅; Choose initial candidate x1 ∈ Xcand
1: for n = 1 to N do
2: yn ← Proxy(xn) ▷ Proxy means Proxy training evaluation
3: Dn ← Dn−1 ∪ {(xn, yn)}
4: Remove xn from Xcand
5: while not convergence do ▷ Surrogate model update
6: for all xi ∈ Dn do
7: ti ← Template(xi) ▷ Template means Domain-aware prompting
8: zi ← g(xi; θ, ψ) = P (ϕ(ti, ψ); θ)
9: end for

10: Compute marginal log-likelihood log p(y|Z, ω, θ, ψ)
11: Update ω, θ, ψ
12: end while
13: for all xj ∈ Xcand do ▷ Bayesian optimization
14: tj ← Template(xj)
15: zj ← g(xj ; θ, ψ) = P (ϕ(tj , ψ); θ)
16: Compute α(zj ;ω, θ, ψ)
17: end for
18: j′ = argmaxj α(zj ;ω, θ, ψ)
19: Suggest next evaluation point xn+1 ← xj′
20: end for
21: (x∗, y∗)← argmax(x,y)∈D y
22: return x∗

Domain-aware prompting. We employ domain-aware prompting to explicitly incorporate domain
knowledge about LoRA hyperparameters into the optimization process. A straightforward text tem-
plate can be written as t = {name, value} (Table A10a). However, this simple format fails to
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capture the roles or relationships between hyperparameters. Prior studies have highlighted practical
know-how and manual tuning guidelines for hyperparameter tuning (Mohammed & Kora, 2025; He,
2024; Diehl, 2024; unsloth, 2025). For example, Hu et al. (2022) suggest that the scaling factor (α)
in LoRA behaves similarly to adjusting the learning rate. To better reflect existing know-how and
guidelines, we design a structured text template t = {explanation,name, value} (Table A10b). The
explanations emphasize relationship between hyperparameters (e.g. how rank and alpha are com-
monly set) as well as the training dynamics that arise when their magnitudes vary. This approach
goes beyond simple LLM embeddings, enabling the direct insertion of structured, prompt-level in-
formation into the embedding space.

Learnable token and projection layer. Calibrating the embedding space extracted from the LLM
during feature extraction can enhance BO performance compared to using fixed embeddings (Kris-
tiadi et al., 2024; Ranković & Schwaller, 2025). Motivated by this insight, we introduce a learnable
token ψ along with a projection layer P (·; θ), parameterized by θ, to transform embeddings into a
space better suited for BO. We append the learnable token to the domain-aware text template t and
feed both into the LLM to extract embeddings, allowing the token to compactly capture LoRA hy-
perparameter’s knowledge. These embeddings are then passed through the projection layer, produc-
ing representations tailored for BO. Throughout this process, the pre-trained LLM remains frozen,
while ψ and θ are learnable. The final embedding is obtained via pooling the embedding at last
token’s position, resulting in the final feature: z = P (ϕ(t, ψ); θ). As a result, the embedding not
only explicitly reflects the explanations encoded in the prompt, however also implicitly internal-
izes LoRA-specific domain knowledge. This improves representational power and enhances BO
efficiency with minimal additional parameters.

Bayesian optimization with LLM. BO typically employs Gaussian Processes (GPs) as surrogate
models, which are effective for modeling distributions over continuous spaces (Beckers, 2021).
However, when dealing with complex input spaces that require understanding the relationships
among variables, it becomes crucial to use representations capable of capturing such structure (Lee
et al., 2025). This is particularly true for the LoRA hyperparameter space, which is inherently
discrete and requires domain knowledge. To address this challenge, we integrate an LLM with a
learnable token and a projection layer, which inject domain knowledge about LoRA HPO into when
extracting embeddings: z = g(x; θ, ψ) = P (ϕ(t, ψ); θ). Therefore, we employ LLM-based deep
kernel learning to combine the prior knowledge encoded in the LLM with these trainable neural
architecture for the GP, thereby transforming standard GP regression into deep kernel learning:

k(x,x′|ω)→ k(g(x; θ, ψ), g(x′; θ, ψ)|ω, θ, ψ). (4)

We jointly optimize all trainable parameters, Φ = {ω, θ, ψ}, where ω, θ, and ψ denote the GP kernel,
projection layer, and learnable token parameters, respectively. These are optimized by maximizing
the marginal log-likelihood:

L(Φ) = log p(y|X,Φ) = −1

2
{(y − µ1)⊤K−1

Φ (y − µ1) + log |KΦ|+ n log 2π}, (5)

Φ∗ = argmax
Φ
L(Φ), (6)

where KΦ denotes covariance matrix determined from the covariance kernel of the GP, X =
{x1,x2, ...,xn} and y = {y1, y2, ..., yn}.

3.3 PROXY TRAINING EVALUATION

Previous studies (Klein et al., 2017; Oliver & Wang, 2024) have shown that it is not always necessary
to train on the entire dataset at every optimization step because training performance on subset
datasets strongly correlates with that of full training. Building on these insights, we introduce a
proxy training evaluation strategy to reduce fine-tuning time cost. Specifically, instead of training
on the full dataset, we fine-tune the model on a randomly selected subset and measure performance
on this smaller training run as a proxy for the true performance. Despite its simplicity, this approach
exhibits strong correlation with the true performance, and we find that using only 10% of the data can
be sufficient. As a result, we reduce the overall time cost by up to 10x, enabling more optimization
iterations within the same computational budget. We further consider data selection strategies such
as Liu et al. (2024d), but we observe that our simple random subset achieves comparably high
correlation with full-data results relative to these strategies.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

LoRA hyperparameters and setup. We define the candidate pool of hyperparameters as shown in
Table 1. Specifically, we optimize five hyperparameters: rank (r), scaling factor (α), learning rate,
dropout rate, and batch size—resulting in a search space of more than 45,000 configurations. To
validate our proposed framework, we conduct experiments across multiple LoRA variants, including
rsLoRA (Kalajdzievski, 2023), DoRA (Liu et al., 2024a), and PiSSA (Meng et al., 2024).

Table 1: Hyperparameter search range. We set
the hyperparameter search ranges based on prior
work (Meng et al., 2024; Wang et al., 2024; In-
ouye et al., 2024; Diehl, 2024; Yan et al., 2025;
unsloth, 2025), resulting in a search space of over
45,000 configurations.

Hyperparameters Search Range Count
Rank (r) 1 ∼256 (2n) 9

Scaling Factor (α) r
2 ∼ 128r (2nr) 9

Batch Size 2 ∼256 (2n) 8
Learning Rate 1e-6 ∼ 5e-3 10
Dropout Rate 0.0 ∼ 0.3 (0.5× n) 7

Tasks. Following prior work (Meng et al.,
2024), we fine-tune models on the Meta-
MathQA dataset (Yu et al., 2023) and evaluate
performance on GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021), and re-
port Accuracy (%). To test generalization be-
yond mathematical reasoning, we extend ex-
periments to code generation, fine-tuning on
the CodeFeedback dataset (Zheng et al., 2024)
and evaluating on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), report-
ing Pass@1 which is the probability that the
first generated solution solves the task. Each
training dataset contains 100K samples, with a 10K subset used for proxy training evaluation.

Baselines. We benchmark our framework against several HPO methods: random search (Bergstra
& Bengio, 2012), Optuna (Akiba et al., 2019), standard BO (Oliver & Wang, 2024), latent BO
(LBO) (Li et al., 2021), and NOMAD (Tribes et al., 2024). Details are reported in Appendix B.

4.2 EXPERIMENTAL RESULTS

Hyperparameter optimization for LoRA variants and various models. Based on previous find-
ings that tasks and architectures demand distinct hyperparameters (Sengupta et al., 2024; He, 2024;
Mohammed & Kora, 2025), we evaluate our framework across diverse LoRA variants and mod-
els. Table 2 shows that adapting our HPO framework enables effective hyperparameter search for
each LoRA variant, consistently improving performance compared to the originally reported re-
sults. Surprisingly, our framework achieves up to 21.46% accuracy improvement, emphasizing the
importance of hyperparameter selection. These results suggest that there is significant room for im-
provement in existing LoRA variants through systematic hyperparameter search. Similarly, Table 3
demonstrates that our approach can identify appropriate model-specific hyperparameters. Across
different backbone Large Language Models (LLMs), adapting our framework consistently achieves
substantial improvements, highlighting its practical utility for fine-tuning newly introduced models.

Table 2: Results of applying our framework to LoRA variants. We set the hyperparameter
configurations suggested by each work, where they were dedicatedly tuned (Kalajdzievski, 2023;
Liu et al., 2024a; Meng et al., 2024; Wang et al., 2024). Using our method, we observe consistent
performance improvements across all variants.

Strategy Ours Accuracy (%) Pass@1

GSM8K MATH HumanEval MBPP

LoRA (Hu et al., 2022) ✗ 41.47 5.24 16.31 35.47
✓ 62.93 (+21.46) 12.88 (+7.64) 30.49 (+14.18) 42.59 (+7.12)

rsLoRA (Kalajdzievski, 2023) ✗ 41.16 5.46 16.46 35.72
✓ 58.15 (+16.99) 10.76 (+5.3) 29.87 (+13.41) 42.06 (+6.34)

DoRA (Liu et al., 2024a) ✗ 40.11 5.36 17.07 36.51
✓ 57.01 (+16.9) 10.78 (+5.42) 30.58 (+13.51) 42.33 (+5.82)

PiSSA (Meng et al., 2024) ✗ 52.46 7.34 22.56 40.48
✓ 60.88 (+8.42) 12.06 (+4.72) 31.71 (+9.15) 41.53 (+1.05)
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Table 3: Results of applying our framework across diverse models. We compare against the hy-
perparameter settings suggested by PiSSA (Meng et al., 2024), where they were dedicatedly tuned.
The experiments demonstrate that our method is effective across a wide range of models.

Model Ours Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B (Touvron et al., 2023) ✗ 41.47 5.24 16.31 35.47
✓ 62.93 (+21.46) 12.88 (+7.64) 30.49 (+14.18) 42.59 (+7.12)

Mistral-7B-v0.1 (Jiang et al., 2023) ✗ 69.90 19.96 45.73 61.90
✓ 74.07 (+4.17) 23.46 (+3.5) 54.27 (+8.54) 65.08 (+3.18)

Gemma-7B (Team et al., 2024) ✗ 75.51 29.44 49.39 63.23
✓ 78.77 (+3.26) 30.24 (+0.8) 53.05 (+3.66) 67.46 (+4.23)

Table 4: Comparison against existing HPO
methods. Our method outperforms existing HPO
approaches under the same optimization budget.

Search Method Accuracy (%) Pass@1

GSM8K MATH HumanEval MBPP

Random 59.14 10.51 23.17 36.77
Optuna (TPE) 37.38 4.74 27.44 38.62

BO 57.32 11.42 20.12 35.19
LBO 59.51 11.88 26.83 37.83

Ours 62.93 12.88 30.49 42.59

Table 5: Comparison against existing LoRA
HPO method. We compare our approach
with Tribes et al. (2024), which applies the NO-
MAD algorithm specifically for LoRA hyperpa-
rameter tuning. Our method is both more time-
efficient and more effective, achieving superior
performance by a significant margin. Note that
H denotes hours.

Method Time GSM8K MATH HumanEval MBPP

Tribes et al. (2024) 180 H 52.16 9.12 24.39 37.30
Ours 24 H 62.93 12.88 30.49 42.59

Overall, our framework can be applied as a plug-and-play module that adapts to the LoRA variants
and models, giving consistent gains without manual hyperparameter tuning.

We further analyze the hyperparameter combinations discovered in our experiments. As shown in
Tables A1 and A2, smaller batch sizes are often preferred, consistent with prior findings (Marek
et al., 2025). In addition, applying dropout often leads to better performance. Interestingly, we
sometimes observe strong performance when the scaling factor (α) is 16 or even 32 times larger
than the rank. This observation has not been reported in prior studies, where α was set to twice
the rank according to existing guidelines (Diehl, 2024; unsloth, 2025), or determined based on a
rank or fixed α (Kalajdzievski, 2023; Sun et al., 2024; Liu et al., 2025). This suggest that there may
exist settings beyond the commonly chosen rank and α values that can further improve performance,
thereby hinting at the possibility of proposing a new guideline.

Comparison with various HPO methods. We evaluate the effectiveness of our framework, against
widely adopted baselines for HPO. Table 4 summarizes the results of applying each method under
the same optimization budget. The results demonstrate that our approach identifies more suitable
hyperparameters within a constrained budget. Notably, our method discovers better configurations
than other BO-based methods, indicating that leveraging LLMs to provide domain knowledge about
the search space can improve both search efficiency and effectiveness. We also compare our frame-
work with Tribes et al. (2024), a dedicated approach for LoRA HPO that employs validation loss
with the NOMAD algorithm for hyperparameter estimation. As shown in Table 5, our method finds
more appropriate configurations in a shorter time. These experiments support that the combination
of LLM and BO leads to improvement in both accuracy and efficiency.

Table 6: Ablation results. We validate each of
our proposed components and find that all con-
tribute effectively to LoRA HPO.

Projection
Layer

Domain-aware
Prompting

Learnable
Token GSM8K MATH

✗ ✗ ✗ 47.76 8.72
✓ ✗ ✗ 53.98 9.16
✓ ✓ ✗ 61.41 12.46
✓ ✓ ✓ 62.93 12.88

Ablation studies. We conduct a series of exper-
iments to evaluate the effect of each proposed
component. Our framework incorporates domain
knowledge into the optimization process through
three components: domain-aware prompting for
explicit knowledge injection, and a projection
layer with a learnable token for implicitly encod-
ing domain knowledge. As shown in Table 6,
adding each component consistently helps BO to
discover better-performing hyperparameter set-
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Figure 1: Qualitative analysis of embedding space evolution using our components. We illus-
trate how the embedding space evolves with our proposed components: (a) shows the embedding
space from a frozen LLM ϕ; (b) shows the space when a projection layer P (·; θ) is added to the
frozen LLM; and (c) shows the space when both the projection layer and the learnable token ψ are
employed. The trajectories in each figure indicate optimization paths across steps, shown in arrow
sequence. These results suggest that incorporating the projection layer and learnable token produces
a smoother, more structured embedding space suited for BO, thereby enabling efficient optimization.

tings, demonstrating the effectiveness of our framework. Notably, domain-aware prompting plays
a crucial role in performance improvement, emphasizing the importance of explicitly injecting do-
main knowledge at the prompt level. We further analyze the differences in the optimization process
introduced by each component. Without any components, BO tends to keep the learning rate nearly
fixed, resulting in insufficient exploration of the search space. In contrast, BO with all components
explores broadly across the hyperparameter candidate pool. These findings show that our framework
enables effective exploration of diverse hyperparameters even with a small number of iterations, al-
lowing BO to operate over a much broader search space.

Qualitative analysis of the effect of our framework. We visualize the embedding z of hyperpa-
rameter configurations to illustrate the effect of adding each component of our framework, as shown
in Fig. 1. The figure compares three settings: (a) frozen LLM embeddings, (b) embeddings after ap-
plying the projection layer, and (c) embeddings with both the projection layer and a learnable token.
With frozen LLM embeddings, high- and low-performing hyperparameters configurations remain
entangled, leading to an unstable search process. This results indicates that the embedding space
does not effectively separate hyperparameter combinations and may hinder the balance between
exploration and exploitation. Introducing a projection layer begins to separate the embeddings, re-
vealing clearer structures that distinguish the performance levels. When we additionally incorporate
a learnable token, the embeddings exhibit directional organization aligned with performance, en-
abling more reliable surrogate fitting and a better-organized space overall. Furthermore, we analyze
the trajectories of the BO process across different settings and find that optimization using only a
frozen LLM proceeds without a clear direction. In contrast, when components for embedding cali-
bration are included, the BO process consistently moves toward the high-performing region. These
observations suggest that calibration with a projection layer and a learnable token makes the BO
landscape more discriminative and smooth compared to using fixed embeddings, thereby improving
search efficiency and final performance.

Table 7: Correlation between the performance
trained on a subset and on the full dataset.
Proxy training evaluation shows comparable cor-
relation to full dataset accuracy, at both random
sampling and TSDS (Liu et al., 2024d).

Sampling Method MATH
Reasoning

Code
Generation

Random (1%) 0.7031 0.7429
Random (5%) 0.8360 0.9282
Random (10%) 0.8713 0.9427
TSDS (10%) by Test dataset 0.8754 0.9290
TSDS (10%) by Train dataset 0.8649 0.9278

Validation of proxy training evaluation. To
reduce the time cost of fine-tuning during
HPO, we introduce proxy training evaluation
in Sec. 3.3. Using the proposed proxy train-
ing evaluation, we estimate the performance by
training on a subset of the dataset, treating it
as a proxy for full-data performance. To fur-
ther investigate this, we examine the Pearson
correlation between the training performance of
subset datasets at various sampling ratios and
that of the full dataset. Additionally, we com-
pare with the existing data sampling method,
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Table 8: Performance differences across model sizes. We apply the hyperparameters discovered
for each model size of Qwen2.5 to fine-tune all model sizes. “Model” denotes the model being
fine-tuned, while “Settings” indicate the size of the model from which the hyperparameters were
obtained. The results show that variations in model size do not significantly affect the discovery of
effective hyperparameter settings.

Model Settings Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

Qwen2.5-3B (Qwen et al., 2025)
3B 79.53 43.18 70.12 77.78
7B 78.54 42.40 68.29 75.13

14B 78.47 42.94 67.07 77.25

Qwen2.5-7B (Qwen et al., 2025)
3B 84.08 48.90 81.09 78.84
7B 83.93 48.08 79.88 78.57

14B 83.09 48.58 81.71 78.31

Qwen2.5-14B (Qwen et al., 2025)
3B 87.41 51.68 82.32 82.80
7B 86.81 50.62 79.88 81.22

14B 87.34 51.50 81.71 82.01

TSDS (Liu et al., 2024d), setting the target distribution to the test dataset or to the training dataset.
Table 7 demonstrates that proxy training evaluation with a randomly selected 10% subset provides
a sufficiently accurate approximation of full dataset performance. These results indicate that our
proxy training evaluation serves as an effective and reliable indicator of model performance on the
full dataset. Moreover, the correlation obtained from the 10% random subset is comparable to that
of TSDS (Liu et al., 2024d) and even achieves the highest correlation in the code generation task.
Based on these findings, we adopt 10% random sampling to construct the subset dataset.

Effect of model size on LoRA HPO. We investigate the effect of model size on finding suitable
LoRA hyperparameters. Specifically, we apply our framework to Qwen2.5 models with 3B, 7B, and
14B parameters, identifying the best hyperparameters for each model size. We then use these con-
figurations to fine-tune models across all sizes. As shown in Table 8, hyperparameter configurations
discovered on one model size generally remain effective for other sizes. These results suggest that
variations in model size do not significantly affect the discovery of effective hyperparameter settings.
In contrast, we find differences between architecture: compared to LLaMA2, Qwen2.5 models tend
to prefer smaller ranks and larger batch sizes (see Tables A1 and A2). Moreover, as shown in Ta-
ble A8, when we cross-apply the configurations found with the Qwen2.5 model to LLaMA2 model
and vice versa, we observe substantially larger performance degradation than when each config-
uration is used within the same model series. These observations indicate that hyperparameters
are influenced more by model architecture than scale, which is consistent with findings from prior
work (Yan et al., 2025). Since the configurations are largely transferable across scales within the
same model series, this implies that tuning costs can be reduced by applying configurations found
on smaller models to larger ones, rather than running the framework directly on larger models.

5 CONCLUSION

We propose a framework that combines Large Language Models (LLMs) with Bayesian optimiza-
tion (BO) for LoRA Hyperparameter Optimization (HPO). Domain knowledge about LoRA is ex-
plicitly injected into the BO process via domain-aware prompting, while a learnable token and a
projection layer transform LLM embeddings into a space better suited for optimization. To further
reduce cost, we employ empirically validated proxy training evaluation, which estimates fine-tuning
performance using a subset of the training data. As a result, our framework identifies appropri-
ate hyperparameter configurations from a large candidate pool with significantly reduced optimiza-
tion time. It functions as a plug-and-play module, achieving consistent performance improvements
across LoRA variants, model architectures, and model scales. Comparisons with existing HPO
methods validate its effectiveness both in terms of cost and performance. Beyond LoRA, we believe
this framework can serve as a practical baseline for broader HPO in diverse fine-tuning strategies.
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6 REPRODUCIBILITY STATEMENT

We provide comprehensive details of the experimental setup in the Appendix B, D, including
full specifications of the hyperparameters configuration searched, and training procedures, and the
prompt used for LLM feature extraction to ensure clarity and transparency. These materials are
intended to make it straightforward for others to replicate our experiments and verify the reported
results. In addition, we will make the complete codebase publicly available upon acceptance.
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APPENDIX

A OPTIMIZING ω, θ, ψ THROUGH MARGINAL LOG-LIKELIHOOD

This part is inspired by Wilson et al. (2016) and Ranković & Schwaller (2025), from which we
partially adopt several equations. We formulate marginal log-likelihood as follows:

L(Φ) = log p(y|X,Φ) = −1

2
{(y − µ1)⊤K−1

Φ (y − µ1) + log |KΦ|+ n log 2π}, (7)

where X = {x1,x2, ...,xn} and y = {y1, y2, ..., yn}.
To maximize marginal log-likelihood, gradient-based optimization is used to optimize kernel hy-
perparameter ω, weight of projection layer θ, and learnable token ψ. We define the parameter set
Φ = {ω, θ, ψ}. The gradient of the marginal log-likelihood can be computed by applying the chain
rule with respect to each parameter, resulting in the following decomposition:

∂L
∂ω

=
∂L
∂KΦ

∂KΦ

∂ω
,

∂L
∂θ

=
∂L
∂KΦ

∂KΦ

∂g(x; θ, ψ)

∂g(x; θ, ψ)

∂θ
,

∂L
∂ψ

=
∂L
∂KΦ

∂KΦ

∂g(x; θ, ψ)

∂g(x; θ, ψ)

∂ψ
,

(8)
∂L
∂KΦ

=
1

2
K−1

Φ (y − µ1)(y − µ1)⊤K−1
Φ − 1

2
K−1

Φ , (9)

where ∂KΦ

∂ω are the derivatives of the kernel with respect to the kernel hyperparameters, ∂KΦ

∂g(x;θ,ψ)

means the implicit derivatives of the kernel with respect to the g. ∂g(x;θ,ψ)
∂θ are the derivatives of

the projection layer parameters via backpropagation and ∂g(x;θ,ψ)
∂ψ are the derivatives of the learn-

able token parameters via backpropagation. Finally, we can compute the gradient of marginal log-
likelihood by applying the chain rule.

B DETAILS OF THE EXPERIMENTAL SETTING

Implementation details. Motivated by Ranković & Schwaller (2025), we use Qwen2-7B as the
LLM in our framework to extract embeddings for BO, applying last-token pooling. The embedding
dimension is set to 3584. We define the projection layer as follows:

P (x; θ) = ELU(Dropout(Wx+ b)). (10)

We also utilize Matérn-5/2 kernel and Expected Improvement (EI) as acquisition function based on
previous studies (Ranković et al., 2024; Ranković & Schwaller, 2025). The backbone LLM used
for experiments on LoRA variants is LLaMA2-7B. For cases where our method is not applied, we
follow the settings reported in prior work (Meng et al., 2024; Wang et al., 2024). We set the model’s
sequence length to 1024 and use a warmup ratio of 0.03 with a cosine learning rate scheduler. To
reduce computational cost, all models are trained for a single epoch.

Details on competing methods. We conduct our experiments on several HPO methods, random
search (Bergstra & Bengio, 2012), Optuna (Akiba et al., 2019), standard BO (Oliver & Wang, 2024),
latent BO (LBO) (Li et al., 2021), and NOMAD (Tribes et al., 2024). To ensure fairness, all meth-
ods are constrained to 30 optimization iterations. For each method, the top-1 result is obtained
by selecting the best hyperparameter configuration on the training subset. We use the BoTorch li-
brary (Balandat et al., 2020) for BO and LBO implementations, conducting hyperparameter search
with the same design space as ours. For both BO and LBO, each hyperparameter configuration is
represented as a 5-dimensional vector and fed into the baselines. For LBO, we adapt the feature
extractor proposed by Lee et al. (2025), which consists of two repeated blocks of linear and ReLU
layers with a hidden dimension of 64. For Optuna, we use the default TPE setting with categorical
hyperparameter candidates. For the method of Tribes et al. (2024), we run the NOMAD algorithm
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Table A1: Hyperparameters for math reasoning tasks. We present the hyperparameter configu-
ration used to train MetaMathQA for evaluating on the GSM8K and MATH datasets.

Models Strategy Ours Hyperparameter

Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

LLaMA2-7B

LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 8192 0.0 4 5e-06

rsLoRA ✗ 8 16 0.0 32 2e-05
✓ 128 1024 0.05 64 5e-05

DoRA ✗ 8 16 0.0 32 2e-05
✓ 16 16 0.3 16 5e-04

PiSSA ✗ 128 128 0.0 128 2e-05
✓ 256 4096 0.0 4 5e-06

LLaMA2-13B LoRA ✗ 8 16 0.0 32 2e-05
✓ 32 512 0.0 2 5e-05

Mistral-7B-v0.1 LoRA ✗ 128 128 0.0 128 2e-05
✓ 128 128 0.1 4 3e-05

Gemma-7B LoRA ✗ 128 128 0.0 128 2e-05
✓ 64 256 0.0 2 5e-06

Qwen2.5-3B LoRA ✓ 1 4 0.25 32 5e-05

Qwen2.5-7B LoRA ✓ 32 64 0.25 16 5e-05

Qwen2.5-14B LoRA ✓ 1 4 0.25 32 2e-05

Table A2: Hyperparameters for code generation tasks. We present the hyperparameter configu-
ration used to train CodeFeedback for evaluating on the HumanEval and MBPP datasets.

Models Strategy Ours Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

LLaMA2-7B

LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.0 4 5e-05

rsLoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.25 4 5e-05

DoRA ✗ 8 16 0.0 32 2e-05
✓ 128 256 0.15 2 3e-05

PiSSA ✗ 128 128 0.0 128 2e-05
✓ 32 1024 0.0 2 3e-05

LLaMA2-13B LoRA ✗ 8 16 0.0 32 2e-05
✓ 256 128 0.25 2 1e-04

Mistral-7B-v0.1 LoRA ✗ 128 128 0.0 128 2e-05
✓ 128 256 0.0 2 5e-06

Gemma-7B LoRA ✗ 128 128 0.0 128 2e-05
✓ 256 256 0.25 32 2e-05

Qwen2.5-3B LoRA ✓ 128 64 0.1 128 5e-06

Qwen2.5-7B LoRA ✓ 8 4 0.0 64 2e-05

Qwen2.5-14B LoRA ✓ 128 128 0.15 64 5e-06

by executing our LoRA tuning Python script. All experiments are conducted on two A100-80GB
GPUs.

Discovered hyperparameters for each experiment. The hyperparameters discovered after opti-
mization and used for training are reported in Tables A1 and A2. Tables A3 and A4 present the
details of the hyperparameters identified by the competing search methods, while Table A5 reports
those obtained during the ablation studies. Our experiments show that, when applied to diverse mod-
els and LoRA variants, our framework consistently discovers hyperparameter configurations with a
higher rank than the baselines. This suggests that our method effectively identifies hyperparameters
most appropriate for each model and each LoRA variant.
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Table A3: Discovered hyperparameters by competing methods for math reasoning tasks. We
present the hyperparameter configuration, obtained through the competing method, that is used to
train MetaMathQA for evaluating on the GSM8K and MATH datasets.

Search Method Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

Random 128 1024 0.1 16 5e-05
Optuna (TPE) 256 128 0.0 32 5e-04

BO 16 64 0.25 2 1e-04
LBO 128 4096 0.0 2 5e-06

Tribes et al. (2024) 8 256 0.1 4 1e-04

Table A4: Discovered hyperparameters by competing methods for code generation tasks. We
present the hyperparameter configuration, obtained through the competing method, that is used to
train CodeFeedback for evaluating on the HumanEval and MBPP datasets.

Search Method Hyperparameter
Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

Random 4 8 0.0 16 5e-05
Optuna (TPE) 256 128 0.2 16 1e-04

BO 16 8 0.15 2 5e-06
LBO 256 128 0.3 256 6e-04

Tribes et al. (2024) 4 64 0.0 4 3e-05

Table A5: Discovered hyperparameters in ablation studies. We present the hyperparameter con-
figuration during our ablation studies, used in Table 6.

Projection
Layer

Domain-aware
Prompting

Learnable
Token

Hyperparameter

Rank(r) Scaling Factor(α) Dropout Batch Size Learning Rate

✗ ✗ ✗ 64 32 0.25 2 4e-04
✓ ✗ ✗ 8 8 0.1 8 1e-04
✓ ✓ ✗ 128 256 0.1 32 3e-04
✓ ✓ ✓ 256 8192 0.0 4 5e-06

Table A6: Performance across different model sizes. Adapting our framework to different model
sizes consistently shows improvements, indicating its effectiveness.

Models Ours Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B ✗ 41.47 5.24 16.31 35.47
✓ 62.93 12.88 30.49 42.59

LLaMA2-13B ✗ 55.34 8.68 29.88 46.56
✓ 64.44 14.68 42.07 53.17

Table A7: Performance differences across model sizes. We apply the hyperparameters discovered
for each model size of LLaMA2 to fine-tune all model sizes. “Model” denotes the model being
fine-tuned, while “Settings” indicate the size of the model from which the hyperparameters were
obtained.

Model Settings Accuracy (%) Pass@1
GSM8K MATH HumanEval MBPP

LLaMA2-7B 7B 62.93 12.88 30.49 42.59
13B 60.12 10.74 34.15 44.97

LLaMA2-13B 7B 66.57 15.24 42.68 51.59
13B 64.44 14.68 42.07 53.17
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Table A8: Results of cross-applying hyperparameters across models. We observe performance
degradation when hyperparameters discovered for one model series are applied to another. This
indicates that our framework effectively searches for hyperparameters suited to each model.

Model Settings GSM8K MATH

LLaMA2-7B

LLaMA2-7B 62.93 12.88

Qwen2.5-3B 39.5 5.2
Qwen2.5-7B 32.68 4.7
Qwen2.5-14B 52.46 8.06

Qwen2.5-7B
Qwen2.5-7B 83.93 48.08

LLaMA2-7B 81.12 41.06
LLaMA2-13B 80.06 40.18

Table A9: Correlation between performance on a subset and the full dataset. The percentages
indicate the sampling ratios from the full dataset. For TSDS (Liu et al., 2024d), we report results
separately when the target distribution is matched to the test dataset or the training dataset. Pearson
correlation is used as the evaluation metric.

Sampling Method Math Reasoning Code Generation
GSM8K MATH HumanEval MBPP

Random (1%) 0.6879 0.4335 0.8052 0.5469
Random (5%) 0.8197 0.6483 0.8857 0.8879
Random (10%) 0.8566 0.6578 0.8652 0.9286

TSDS (10%) by Test dataset 0.8651 0.7117 0.8589 0.8209
TSDS (10%) by Train dataset 0.8529 0.6602 0.8624 0.9245

C ADDITIONAL RESULTS

We provide supplementary experiments and analyses in addition to the main results presented in the
main paper.

Validation on models of different sizes. Table A6 summarizes the validity of our framework under
model size variations in LLaMA2. Even when the model size increases from 7B to 13B, our method
successfully identifies appropriate hyperparameters, demonstrating the framework’s robustness to
changes in scale.

Cross-application of hyperparameters within the same model series. We apply the same pro-
cedure as in Table 8 to the LLaMA2 series, transferring hyperparameter settings discovered for one
model size to another. The results in Table A7 show that hyperparameter configurations can re-
main effective across different scales within the same series. This further suggests the possibility of
searching for hyperparameters on smaller models and transferring them to larger ones.

Cross-application of hyperparameters between different model series. To examine whether
hyperparameters identified in one model transfer to another, we conduct experiments applying con-
figurations discovered on Qwen2.5 to LLaMA-2, and vice versa, as shown in Table A8. Apply-
ing hyperparameters found on Qwen2.5 to LLaMA-2 leads to substantial performance degradation.
Similarly, applying those from LLaMA-2 to Qwen2.5 also degrades performance. These results
support the claim in Sec. 4.2 that preferred hyperparameter settings vary with model architecture.

Correlation between subset training and full training. Table A9 shows that correlation between
subset training and full training remains consistent across all benchmarks. Notably, randomly sam-
pling only 10% of the data still yields high correlation with full-dataset performance. This supports
the claim in Sec. 4.2 that random sampling is a reasonable and efficient choice, comparable to more
sophisticated data selection methods (Liu et al., 2024d). Thus, instead of tuning on the full dataset,
leveraging proxy training evaluation provides a reliable proxy for estimating model performance
during hyperparameter search.
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Table A10: Prompt templates with and without domain-aware prompting.

rank(r)={rank value}, Scaling factor(α)={alpha value}, Dropout
Rate={dropout value}, Batch Size={batchsize value}, Learning
Rate={lr value}

(a) Prompt templates without domain-aware prompting

* Rank (r): Controls adapter capacity by setting the low-rank
dimension, higher r increases expressivity (and memory/compute)
but raises overfitting risk. If you raise r, consider stronger
regularization or a lower learning rate.
* Scaling factor (α): Scales the LoRA update; the effective
update magnitude is **alpha / r**, so setting alpha ≈ r keeps
update strength stable. Larger alpha amplifies adaptation but can
destabilize training if LR is high.
* Dropout: Probability of dropping the adapter path to regularize
training; higher dropout curbs overfitting, especially with large r
or small datasets. With higher dropout you can often afford slightly
larger alpha or LR without instability.
* Batch size: Number of samples per optimizer step|larger batches
give smoother gradients and typically permit a proportionally larger
learning rate (linear-scaling rule) at the cost of more memory.
Small batches may need gradient accumulation or a reduced LR.
* Learning rate: Step size for adapter parameters|too high can
diverge (especially with large alpha/r), too low slows convergence.
Tune in conjunction with batch size and consider schedules (e.g.,
cosine) to balance speed and stability.
* rank(r): {rank value}
* Scaling factor(α): {alpha value}
* Dropout Rate: {dropout value}
* Batch Size: {batchsize value}
* Learning Rate: {lr value}

(b) Prompt templates with domain-aware prompting

D TEMPLATE FOR DOMAIN-AWARE PROMPTING

We provide an example of the template for domain-aware prompting in Table A10. This template
focuses on the roles and relationships of each hyperparameter and describes how training dynamics
change as their values vary, based on prior studies (Kalajdzievski, 2023; Sun et al., 2024; Diehl,
2024; Meng et al., 2024; unsloth, 2025; Liu et al., 2025). Compared to a template without domain-
aware prompting, this design captures rich domain knowledge about LoRA hyperparameters, signif-
icantly improving the effectiveness of the following Bayesian Optimization. The template can also
be modified by users if needed.
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