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Abstract
State-of-the-art techniques for enhancing robust-
ness of deep networks mostly rely on empirical
risk minimization. In this paper, we propose
a complementary approach aimed at enhancing
the “signal-to-noise ratio” at intermediate net-
work layers, loosely motivated by the classical
communication-theoretic model of signaling in a
noisy channel. We seek to learn neuronal weights
which are “matched” to the layer inputs by supple-
menting end-to-end costs with a tilted exponential
(TEXP) objective function which depends on the
activations at the layer outputs. We show that
TEXP learning can be interpreted as maximum
likelihood estimation of “matched filters” under
a Gaussian model for “data noise.” TEXP infer-
ence is accomplished by replacing batch norm by
a tilted softmax enforcing competition across neu-
rons, which can be interpreted as computation of
posterior probabilities for the signaling hypothe-
ses represented by each neuron. We show, by
experimentation on standard image datasets, that
TEXP learning and inference enhances robust-
ness against noise, other common corruptions and
mild adversarial perturbations, without requiring
data augmentation. Further gains in robustness
against this array of distortions can be obtained by
appropriately combining TEXP with adversarial
training.

1. Introduction
Standard training of deep neural networks through empirical
risk minimization is well known to lack robustness against
a variety of distortions, including noise, distribution shifts
(Hendrycks & Dietterich, 2018; Dodge & Karam, 2017),
and adversarial attacks (Szegedy et al., 2014; Goodfellow
et al., 2015; Carlini & Wagner, 2017). In order to improve
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model robustness, one of the most common solutions is
to perform data augmentation. For example, adversarial
training (Madry et al., 2018), which augments the training
data with generated adversarial examples (corresponding to
the current realization of the network parameters), is one of
the most effective adversarial defenses against adversarial
attacks. In addition, different types of data augmentation
have also been shown to effectively improve robustness
against natural corruptions (Cubuk et al., 2019; Hendrycks
et al., 2020; Qin et al., 2023).

In this paper, we propose and explore a strategy for enhanc-
ing robustness based on detection and estimation theoretic
concepts (motivated by their success in fields such as wire-
less communication systems), in a manner that is comple-
mentary to standard empirical risk minimization, with or
without data augmentation. In communication theory, the
receiver tries to match the incoming signal against a num-
ber of possible signal template, each corresponding to a
different message. For signaling in Gaussian noise, corre-
lating against these signal templates, often called matched
filters, maximizes the signal-to-noise ratio, and the posterior
probability of each possible transmitted signal is obtained
by feeding suitably scaled matched filter outputs to a soft-
max layer. Our proposed approach here is to apply these
ideas in enhancing “signal-to-noise ratio” at intermediate
layers of a neural network, so that the outputs are more
resilient to “data noise.” Unlike communication systems,
we do not have a known set of messages and correspond-
ing transmitted symbols. Rather, we seek to learn neuronal
weights at a given layer which are well matched to the set
of incoming input patterns, so that for each strong input, a
fraction of neurons fire strongly. We accomplish this here
by adding layer-wise costs based on tilted exponentials,
which we show in Section 3 can be interpreted as maximum
likelihood estimation of “matched filter” signal templates
under Gaussian noise. For inference, we replace batch norm
by a tilted softmax, again motivated by our interpretation
of neurons as providing competing signal templates. Our
framework allows us to vary the amount of “data noise” we
expect during training (smaller if we are training with clean
data) and during inference (bigger if we wish to be robust
against out of distribution noise). We term a layer designed
in this fashion as a tilted exponential (TEXP) layer.

We report here on promising preliminary results for CIFAR-
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10 (Krizhevsky et al., 2009) obtained by replacing the first
layer of a VGG-16 (Simonyan & Zisserman, 2014) network
by a TEXP layer. We obtain increased robustness against
noise, other common corruptions and mild adversarial per-
turbations without requiring data augmentation. Additional
performance gains are obtained by supplementing TEXP
adaptation with adversarial training.

2. Related Work
Disparity between the data observed during training and test-
ing phases is a common phenomenon, highlighting the sig-
nificance of robustness in generalizing to out-of-distribution
(OOD) samples. To address this challenge, various method-
ologies such as in (Schneider et al., 2020; Calian et al.,
2021; Kireev et al., 2022) have been proposed for com-
bating common corruptions, with many employing OOD
data augmentations (Zhang et al., 2017; Cubuk et al., 2019;
Hendrycks et al., 2020). Among the state-of-the-art methods
is AugMix by (Hendrycks et al., 2020), which enriches the
training images by incorporating a composition of randomly
sampled augmentations, to generate a diverse set of aug-
mented images. A consistency loss function supplements
the training, which enables smoother network responses.
Consistency regularizers have shown to be promising in
several other works as well (Tack et al., 2022; Huang et al.,
2022).

A complementary set of works demonstrate that adversarial
training leads to better robustness against some corruptions.
Gilmer et al. (2019) show connections between robustness
to adversarial perturbations and distributions shifts, in par-
ticular, due to Gaussian noise. Their findings indicate that in
order to enhance an alternate concept of adversarial robust-
ness, it is necessary to reduce error rate under high levels of
additive noise. Towards making this connection more con-
crete, Yi et al. (2021) measure shifts between distributions
using the Wasserstein distance and analytically prove that
an adversarially trained model generalizes well on OOD
data. Furthermore, they show that using pre-trained robust
models and fine-tuning leads to better generalization on
OOD downstream tasks. However, finding techniques that
work well for various different kinds of OOD corruptions,
particularly without heavy data augmentation, remains chal-
lenging. Yin et al. (2019) find that adversarial training and
Gaussian noise augmentation improve robustness against
certain corruptions like other types of noise and blurs while
degrading the performance under low frequency corruptions
like fog and contrast. They argue that a diverse set of aug-
mentations may be required to combat such trade-offs. Our
TEXP method shows promise in achieving broad spectrum
robustness without data augmentations.

Our approach of adding layer-wise costs is motivated by
recent work (Cekic et al., 2022), which argues that targeting

sparse, strong activations at intermediate network layers can
increase robustness. Cekic et al. (2022) accomplish this by
using Hebbian/anti-Hebbian (HaH) training at the interme-
diate layers, in which neurons which are more active for an
input are promoted towards the input (“fire together, wire
together”), while neurons which are less active are demoted
away from the input, and by using divisive normalization
(enabling smaller outputs to be attenuated by larger out-
puts) instead of batch norm for inference. In contrast to
the neuroscientific motivation in HaH (Cekic et al., 2022),
our TEXP training and inference approach is derived from
communication-theoretic foundations. While our approach
also biases in favor of larger activations, our framework
leads to smoother objective functions, and our best schemes
substantially outperform the benchmarks in (Cekic et al.,
2022).

Prior work on tilted exponentials demonstrates that apply-
ing TEXP costs to empirical risk minimization objective
function can provide fairness and robustness benefits in a
multitude of machine learning problems (Li et al., 2021;
2023). In fact, exponential tilting is well-known in statis-
tics for rejection sampling, rare-event simulation, saddle-
point approximation (Butler, 2007), and importance sam-
pling (Siegmund, 1976). It is also at the heart of Chernoff
bounds (Dembo & Zeitouni, 2009), as well as analyzing
atypical events in information theory (Beirami et al., 2018).
Exponential tilting has also appeared as a smoothing method
to maximum in optimization literature (Kort & Bertsekas,
1972; Pee & Royset, 2011; Liu & Theodorou, 2019).

To the best of our knowledge, this is the first work to show
the benefits of TEXP costs at intermediate layers of a neural
network. Unlike prior work on exponential tilting, which
is motivated by connections to large deviations, our pro-
posal of layer-wise TEXP costs is motivated by maximum
likelihood estimation of signal templates.

3. Learning Signal Templates via TEXP
We provide here a communication-theoretic motivation for
training and inference in a TEXP layer, and then describe
how to incorporate these insights into a neural network
architecture in the next section.

A classical model in communication theory is to model the
received signal as one of M possible transmitted signals,
corrupted by white Gaussian noise. Our TEXP model arises
from fitting this model to the input x to a neural model.

Modeling x as the observation in an M -ary hy-
pothesis testing problem, under hypothesis {Hi}i∈[M ],
([M ] := {1, . . . ,M}), we have

Hi : x = si + n (1)

where {si}i∈[M ] are the possible signals, and n is white
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Gaussian noise with variance σ2 per dimension. While such
a model is not expected to be accurate for the layer input in
a neural model, fitting it to data provides an approach for
learning neural weights such that, for each input, it is likely
that there is a subset of neurons well matched to it. The
parameter σ2 may be viewed as “data noise,” acknowledging
that the input x may not fit any of the templates we learn.

TEXP Training. We wish to learn the signal templates
θ = {si}i∈[M ] from data, for a given TEXP layer. The
likelihood function conditioned on θ and Hi is given by

Lθ(x|Hi) = exp

(
1

σ2
(⟨x, si⟩ − ||si||2/2)

)
, (2)

for i ∈ [M ]. This likelihood function is the Radon-Nikodym
derivative of the conditional distribution of Hi with respect
to that of a “noise only” dummy hypothesis x = n.
Assuming that all signal templates have equal energy, we
can drop the ||si||2/2 terms from (2) to obtain the simplified
expression, for all i ∈ [M ] :

Lθ(x|Hi) = exp

(
1

σ2
⟨x, si⟩

)
. (3)

Averaging over these conditional likelihoods (3), the likeli-
hood of x is now obtained as a sum of tilted exponentials:

Lθ(x) =
1

M

M∑
i=1

exp

(
1

σ2
⟨x, si⟩

)
=

1

M

M∑
i=1

exp (tai) ,

(4)
where t = 1

σ2 > 0 is the tilt parameter and ai = ⟨x, si⟩
is the activation for the ith neuron. The corresponding log
likelihood is the tilted exponential objective function:

Tθ(x) = logLθ(x) = log
1

M

M∑
i=1

exp (tai) . (5)

Maximization of the objective function (5), added across
training data points, over θ provides a maximum likelihood
estimate of the signal templates.

The gradient of this objective function is given by

∇θTθ = t

M∑
i=1

etai∑M
j=1 e

taj

∇θai = t

M∑
i=1

Softmaxi(ta)∇θai,

(6)
where a = {ai}i∈[M ] and Softmaxi(·) is the ith index of
the softmax output. Since larger activations are weighted
more via the tilted softmax, gradient ascent corresponds to
increasing larger activations further: since the signal tem-
plates are normalized, this requires aligning the templates
yielding larger activations more closely with the input.

Additional competition among the signal templates seeking
to fit an input can be created by imposing a balance con-
straint in which the mean of the signal templates is set to

zero. That is, we replace si by si − s̄, for i ∈ [M ], where
s̄ = (1/M)

∑M
i=1 si. Analogous to (5), this corresponds to

the balanced tilted exponential objective function

T bal
θ (x) = log

1

M

M∑
i=1

exp (t(ai − ā)) ,

where ā = (1/M)
∑M

i=1 ai is the mean activation of all
neurons. The corresponding gradient is given by

∇θT
bal
θ = t

M∑
i=1

(Softmaxi(ta)− 1/M)∇θai. (7)

Now, in addition to trying to make large activations larger,
we wish to make small activations (i.e., such that tilted
softmax is smaller than 1/M ) smaller.

TEXP Inference. Once we have estimates of the signal
templates {si}, inference based on a data point x consists
of computing the posterior probability of each hypothesis.
For hypothesis Hi, this posterior probability is given by

pi(x) =
Lθ(x|Hi)P (Hi)∑M

j=1 Lθ(x|Hj)P (Hj)
=

exp
(

1
σ2 ⟨x, si⟩

)∑M
j=1 exp

(
1
σ2 ⟨x, sj⟩

) .
(8)

Setting t = 1
σ2 , the M -dimensional output corresponding

to x is obtained via the softmax as, for i ∈ [M ] :

pi(x) = Softmaxi(ta). (9)

The value of σ2 used during inference using (8) may be
different from that for training as in (5). In particular, we
may use a smaller value of σ2 (higher t) during training,
where we might be learning from clean data, or from data
that we have perturbed in a controlled manner. On the other
hand, during inference, we may use a higher value of σ2

(lower t) in order to accommodate data noise due to a variety
of distortions that were not present during training. Note
that TEXP inference (8) is unaffected by whether or not the
signal templates are balanced, since balancing corresponds
to subtracting the same constant from each activation.

4. TEXP as a Neural Network Layer
We now translate these ideas to layer-wise training in a CNN.
Our approach is to modify the standard convolution layers of
a baseline CNN by replacing conventional ReLU and batch
normalization layers by a tilted softmax layer, analogous to
computing posterior probabilities in TEXP inference. Each
TEXP layer also contributes its own TEXP objective to the
training cost, supplementing a standard end-to-end cost.

Similarly to (Cekic et al., 2022), we implicitly normalize the
convolution filter weights to unit ℓ2 norm, in order to enforce
fair competition across the signal templates represented
by each filter. Given a filter wk at a TEXP layer with K
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Figure 1. The illustration of a TEXP layer.

convolution filters, and a patch of input x(l) at the spatial
location l, the corresponding output of the k-th filter at
location l is computed as a tensor inner product as follows

yk(l) =
⟨x(l),wk⟩
||wk||2

. (10)

For example, for CIFAR-10 images fed to a VGG-16 model,
the first convolution block consists of K = 64 filters, each a
3×3 kernel with stride and padding of 1. Thus, we have L =
32× 32 = 1024 spatial locations and corresponding input
patches, where l ∈ [L] in (10). Let us index the convolution
layer outputs, across all filters and spacial locations, by
yi, i ∈ [M ]. For this example, we apply TEXP with M =
32× 32× 64.

Post the convolution, we pass the convolution outputs
through a Tilted Softmax (TS) to obtain:

pi = Softmaxi(tinfy),

where y = {yi, i = 1, 2, . . . ,M}, tinf is the tilt parameter
and M is total number of scalar outputs of the TS layer
across all filters and spatial locations. We reindex the post
softmax outputs pi by filter k and spatial location l as pk(l),
and use these notations interchangeably.

Further, borrowing another idea from (Cekic et al., 2022), a
filter-specific adaptive thresholding is performed to obtain
the TEXP layer outputs:

ok(l) =

{
pk(l) if pk(l) ≥ τk
0 otherwise

(11)

where outputs at all locations, arising due to filter k, are
subjected to the filter-specific threshold τk. The thresholds
are set such that for every image, the thresholding block
permits only a certain fraction of the activations, while
nullifying the rest. For instance, we set τk adaptively such
that 20% of the outputs are activated for each image, and
each filter.

TEXP objective. Each TEXP layer l is associated with
its own TEXP objective Tl which is combined with the

end-to-end discriminative training cost as follows:

J = Je2e −
∑
l∈T

αlTl, (12)

where Je2e is the end-to-end cost function (taken to be a
standard discriminative cost in our evaluations here), T
indexes the set of TEXP layers, Tl is the TEXP objective for
layer l ∈ T and αl > 0 are hyperparameters that determine
the relative importance of the TEXP objective compared to
the end-to-end cost.

Dropping the subscript l for simplicity of exposition, the
TEXP objective for a given layer in T is given by

T =
1

t
log

(
1

M

M∑
i=1

exp(tai)

)
(13)

and that for the balanced TEXP objective is given by

Tbal =
1

t
log

(
1

M

M∑
i=1

exp(t(ai − ā))

)

where ai = ReLU(yi) are the convolution outputs across
all filters and spatial locations in the layer l, passed through
a ReLU function, M denotes the number of such scalar
outputs, t denotes the tilt parameter for the tilted objective,
and ā = (1/M)

∑M
i=1 ai denotes the mean of all the post-

ReLU activations in the layer. Note that the tinf in the
tilted softmax inference is smaller than the tilt t used during
training in (13). All TEXP layers could potentially have
different tilts in the layer objective and softmax, and layer
weights αl.

5. Experimental Evaluation
The primary focus in our experiments is on the CIFAR-10
standard and corruption datasets with the VGG-16 model as
the baseline architecture, where we show significant gains
in robustness from tuning a single TEXP layer. We also
show gains in robustness from applying TEXP to 6 layers
of ResNet; we have not fine-tuned hyperparameters here,
and provide these results only to illustrate the applicability
of our approach to a variety of architectures and to multiple
layers.

Baselines. We obtain two baseline VGG-16 models (with
implicit weight normalization), one with standard training,
which is not expected to be robust, and one with PGD-
based adversarial training (Madry et al., 2018) with ℓ∞
perturbations of budget ϵ = 2/255, which is expected to be
robust against a number of other perturbations as well (Yi
et al., 2021). The HaH model in (Cekic et al., 2022) is used
as another baseline for robustness which, like our approach,
supplements training with layer-wise costs (the model they
report on modifies 6 layers).
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Model Clean Noise Avg/Min/Max Avg/Min/Max Autoattack ℓ2 Autoattack ℓ∞
σ = 0.1 corruptions severity level: 5 adv, ϵ = 0.25 adv, ϵ = 2/255

VGG-16 Std 92.5 24.8 72.7/47.6/90.6 55.2/22.3/87.4 13.6 10.3
VGG-16 Adv 88.3 80.0 79.6/52.8/86.1 70.9/20.4/85.0 72.1 72.2

HaH 87.4 61.7 76.6/58.5/86.2 67.2/46.3/83.2 25.8 19.9
TEXP-1 88.3 68.4 79.6/69.7/88.1 71.8/48.3/87.7 39.4 27.6

TEXP-1 Adv 87.3 82.7 82.9/74.8/86.4 78.2/49.1/84.7 70.8 65.8
TEXP-1 BAL Adv 89.0 81.1 84.1/78.6/88.2 79.2/56.9/86.2 75.1 70.7

Table 1. Enhanced robustness to corruptions under VGG-16 based TEXP models on CIFAR-10 clean and corruptions datasets

Corruptions → Noise Weather Blur Digital

Models ↓ Gauss. Shot Speck. Imp. Snow Frost Fog Brig. Spat. Defoc. Gauss. Glass Motion Zoom Cont. Elas. Pixel. JPEG Satur.

VGG-16 Std 24.6 32.9 39.9 22.1 73.9 61.8 64.7 87.4 68.1 49.6 39.3 48.0 60.7 61.0 22.3 75.6 56.3 77.7 82.2
VGG-16 Adv 80.1 81.1 79.7 62.6 75.1 74.1 32.5 77.9 78.0 72.2 67.8 77.1 69.6 75.9 20.4 79.0 83.0 85.0 76.8

HaH 61.7 61.7 59.2 46.3 73.8 72.3 62.8 83.2 76.7 64.3 58.4 53.2 65.1 68.9 76.0 74.0 60.5 79.3 79.6
TEXP-1 68.4 70.8 68.7 48.3 75.8 77.0 61.0 84.6 73.5 69.0 63.8 64.2 66.9 72.8 87.7 74.5 74.8 81.6 80.4

TEXP-1 Adv 82.7 82.7 81.9 73.9 76.6 81.5 49.1 81.2 80.4 76.9 74.4 77.7 75.3 79.2 84.0 79.3 83.9 84.7 81.1
TEXP-1 BAL Adv 81.2 81.5 80.8 69.9 80.1 83.0 56.9 84.2 82.6 77.0 74.2 77.8 76.4 79.7 86.2 81.3 83.7 85.4 83.0

Table 2. Robustness to common corruptions of the highest severity level in the CIFAR-10-C dataset

Our TEXP models. We modify only the first layer of the
VGG-16 to a TEXP layer. The hyperparameters are set as
follows: training tilt t = 1, inference tilt tinf = 0.1, layer
weight α = 0.0001. We utilize the TEXP objective (13) for
training. The parameters were chosen based on a coarse
grid search for tilts and layer weight. Note that the tilt
in the training objective is larger than that in the softmax
layer. We also report on promising results combining TEXP
with adversarial training, with ℓ∞ perturbations of budget
ϵ = 2/255, using both the standard and balanced TEXP
objectives (termed TEXP-1 Adv and TEXP-1 BAL Adv
respectively). For simplicity, all hyperparameters for TEXP
across our three models are set to those for the basic TEXP
model (better performance may be obtained by further fine-
tuning). As we shall see, the balanced TEXP objective
combined with adversarial training provides the best results,
but we note that it also requires more careful optimization:
setting large layer weight α in the initial stages of training
may degrade performance, since filters are initialized ran-
domly and a strong demotion of weak mismatches may not
be desirable at an early stage.

Training. The end-to-end discriminative cost is taken to
be the cross-entropy loss. We employ the ADAM opti-
mizer (Kingma & Ba, 2014) with a multi-step learning rate,
beginning with 0.001, and decreasing by a factor of 10 at
epochs 60 and 80. We train all models for 100 epochs.

Evaluation metrics. We evaluate over 19 different com-
mon corruptions on the CIFAR-10-C (Hendrycks & Diet-
terich, 2018) dataset. We report the average, minimum
and maximum over all the corruptions, for both the entire
dataset comprising of 5 different severity levels, and also
on specifically the corruptions of the highest severity. We

also separately report on the corrupted data formed by the
addition of Gaussian noise with standard deviation σ = 0.1,
since the motivation for our approach spans from estima-
tion under Gaussian noise. In addition, we find that our
approach provides robustness to mild adversarial perturba-
tions (ϵ = 0.25 for ℓ2 and ϵ = 2/255 for ℓ∞ respectively).
In this adversarial evaluation, we use AutoAttack (Croce
& Hein, 2020), suggested by RobustBench (Croce et al.,
2020), which is parameter-free and consists of a suite of
different attacks (in particular, we employ the APGD-CE
and APGD-T attacks).
Improvement in robustness against corruptions. Ta-
ble 1 lists the test accuracies of the benchmark and TEXP
models under different data distortions. TEXP-1 (a sin-
gle TEXP layer, no data augmentation) provides gains in
robustness to noise and other out-of-distribution (OOD) cor-
ruptions (both at the highest severity level and all levels)
in comparison to standard VGG and HaH models. In com-
parison with adversarial training alone, TEXP-1 provides
better OOD robustness against the worst corruption (i.e.,
the minimum accuracy among all corruptions). Compared
to baseline VGG, TEXP-1 improves robustness to noise
from 24.8% to 68.4%, OOD robustness averaged over all
different types of corruptions from 55.2% to 71.8% for the
highest severity level. It also provided increased robustness
to mild adversarial perturbations.

TEXP (both the standard and balanced objectives) combined
with adversarial training provides even more powerful en-
hancements in OOD robustness, outperforming both the
HaH and the adversarial training benchmarks, both in terms
of average over all kinds of corruptions and the minimum
or worst-case among the different corruptions. Compared
to adversarial training alone, the TEXP-1 BAL Adv im-
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Model Clean Noise Avg/Min/Max Avg/Min/Max Autoattack ℓ2 Autoattack ℓ∞
σ = 0.1 corruptions severity level: 5 adv, ϵ = 0.25 adv, ϵ = 2/255

ResNet-20 Std 90.0 21.5 66.8/38.8/87.6 49.5/21/83.9 0.6 0.2
ResNet-20 Adv 85.7 72.7 76.7/49.8/83.7 67.8/21.5/83 69.8 69.5

TEXP-6 ResNet-20 85.7 69.1 77.7/69.4/83.9 70.4/53.3/81.3 34.7 21.6
TEXP-6 ResNet-20 Adv 84.0 76.2 78.7/69.2/82.7 73.4/43.2/81.3 67.2 62.1

Table 3. Enhanced robustness to common corruptions under ResNet-20 based TEXP models on CIFAR-10 clean and corruptions datasets

proved OOD robustness from 79.6% to 84.1% (min accu-
racy from 52.8% to 78.6%) for all levels and from 70.9% to
79.2% (min accuracy from 20.4% to 56.9%) for the highest
severity. It also provides comparable adversarial robustness
against mild adversarial attacks.

Table 2 reports the robustness of the models to each of the 19
common corruptions separately for the highest severity level
of 5, and shows that TEXP models are superior in obtaining
robustness across the board. While vanilla adversarial train-
ing helps in robustness to noise, it deteriorates performance
against corruptions like contrast, fog and brightness (Yin
et al., 2019; Kireev et al., 2021; Machiraju et al., 2022). The
TEXP based models remedy this remarkably for contrast,
and alleviate this effect for fog and brightness.

Applicability to different architectures and deeper lay-
ers. We illustrate the broader applicability of TEXP via
the ResNet-20 (He et al., 2016) model. This comprises a
3× 3 convolution layer followed by 3 blocks, each contain-
ing 3 residual units. We modify the first 6 layers to TEXP
layers by replacing the batch norm and leaky ReLU by tilted
softmax and thresholding. The results, shown in Table 3,
demonstrate improved OOD robustness despite minimal
effort in hyperparameter tuning: the parameters used are
t = 5.0, tinf = 0.1, and α = 0.001 for all the 6 layers, in
both standard and adversarial TEXP models. We expect that
more fine-grained adjustments of tilts for individual layers
will further enhance performance, but these preliminary re-
sults do illustrate the potential gains from applying TEXP
to multiple layers.

6. Conclusion
We have presented promising preliminary results indicating
that the robustness of neural models can be enhanced by ar-
chitectural modifications inspired by communication theory,
supplementing end-to-end training with layer-wise TEXP
objective functions, and replacing ReLU and batch norm
by softmax and thresholding in the inference path. In order
to compare with the benchmarks on layer-wise training set
in (Cekic et al., 2022), we have focused on the VGG archi-
tecture with the CIFAR-10 dataset. We have demonstrated
that even a single TEXP layer significantly improves OOD
robustness against common corruptions without requiring
data augmentation. Adversarial training with small pertur-

bation budgets is also known to improve OOD robustness.
We show that TEXP performance (without augmentation)
against common corruptions is superior to that of adver-
sarial training, while TEXP appropriately combined with
adversarial training yields strong performance across the
board against common corruptions.

As a quick check on the applicability of TEXP to differ-
ent architectures and multiple layers, we also provide pre-
liminary results on ResNet which show gains in robust-
ness. We plan to build on these promising results in sev-
eral directions, including more extensive experimentation
for different datasets and architectures, development of
communication-theoretically motivated guidelines for tun-
ing of TEXP hyperparameters, and further exploration of
combining TEXP with adversarial training and other simple
augmentation techniques. Finally, while we have focused
here on broad spectrum robustness, showing performance
gains against common corruptions and mild adversarial at-
tacks, an interesting direction for future work is to adapt our
communication-theoretic approach for robustness against
strong adversarial attacks.

Broader Impact & Limitations
Traditionally, robustness has been improved through the ap-
plication of data augmentations and optimization of end-to-
end costs. Our approach takes a different route by focusing
on gaining more control over intermediate layer outputs and
aligns with the broader goal of making deep networks more
transparent. Furthermore, our method has the potential to
work well with other data augmentation techniques, thereby
expanding its applicability to various tasks.

A limitation of our current work is that we are yet to develop
concrete guidance on setting the tilt parameters, which is
useful to optimize the performance of our approach for dif-
ferent architectures. Furthermore, optimizing layer-wise
costs for very large dimensional data is computationally
intensive. We expect that future work will focus on max-
imizing the effectiveness of our approach across different
datasets and models, to ascertain the generalizability of
the TEXP approach. Nonetheless, our findings underscore
the value of layer-wise tilted exponentials in enhancing ro-
bustness to OOD corruptions, which is important in many
practical machine learning tasks where test samples in the
real-world are often different from the curated training data.
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