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Abstract

The digital world operates through multimodal interactions, yet current LLM agents remain
constrained by approaches that convert visual, auditory, and system-level data into lossy
textual proxies. This approach introduces noise and limits the ability of agents to leverage
holistic context to make decisions in digital environments. Although recent advancements
in multimodal models like Flamingo and GPT-4 Vision demonstrate impressive capabilities
in vision-language tasks, their potential as agents capable of decision-making and task ex-
ecution based on multimodal inputs remains underexplored. In this survey we explore the
design, evaluation, and capabilities of multimodal LLM agents, with a focus on interactions
in software environments such as web browsers and operating system interfaces. We analyze
recent advancements in multimodal integration within agentic systems, investigate multi-
modal tool orchestration frameworks and explore interactive agents that integrate human
feedback to guide decision making. Our work seeks to highlight the potential of multimodal
agents in developing autonomous applications that navigate the digital world like humans.

1 Introduction

The digital world is inherently multimodal—combining text, images, audio, and system-level interactions.
Yet, current Large Language Model (LLM) agents predominantly operate in a text-first paradigm, trans-
lating non-textual modalities into lossy textual representations. As AI systems move toward real-world
deployment—especially in domains like software development, operating systems, and the web—agents must
be able to reason over and act within multimodal environments [1; 2; 3].

Recent advances in models like Flamingo [4] and GPT-4V [5] have demonstrated strong performance on
perception-based vision-language tasks. However, these systems are rarely designed or evaluated as au-
tonomous agents capable of navigating and manipulating digital environments end-to-end. Most existing
work focuses on perception, with limited attention to actionable interaction, tool use, or temporal reasoning
[6; 7; 8; 9].

For agents to be effective in digital ecosystems, they must integrate diverse modalities in a seamless, context-
aware way—mirroring how humans naturally combine language, vision, and interaction. For instance, soft-
ware engineering tasks require tight alignment between natural language and code [2; 10; 11], while operating
systems and web environments demand agents that can perceive screens and take actions like clicking and
typing [12; 13; 14; 15]. Advancing such capabilities will unlock robust human-AI collaboration across digital
platforms [16; 17; 18].
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This survey explores the development of multimodal LLM agents with a focus on digital domains—including
code editors, browsers, and operating systems. We examine how these agents are built, what capabilities
they possess, and how their performance is evaluated. Our goal is to surface the engineering challenges and
research opportunities involved in creating truly agentic systems—those that perceive, decide, plan, and act
effectively across diverse digital modalities [1; 3; 19].

2 Related Work

Recent advances in multimodal systems such as Flamingo [4] and GPT-4 Vision[5] have explored integrating
diverse inputs, such as text, images, and system-level data, to enable richer task understanding and execution.

Advancements in embodied agents have demonstrated significant progress in integrating multimodal capa-
bilities with real-world tasks. For instance, EMMA[6] focuses on visual-world alignment, enhancing how
agents perceive and interact with their environment. In software-related domains, tool-augmented systems
have shown particular promise. Toolformer[7] enables language models to autonomously invoke external
APIs, highlighting the potential for similar multimodal integrations. Similarly, Magentic-One[8] explores
multi-agent collaboration for software engineering tasks, where specialized agents work together to improve
debugging and development efficiency. Another promising direction uses human feedback to enhance multi-
modal systems. For example, MuLan[9], uses task decomposition and iterative loops to refine text-to-image
synthesis.

Research in Graphical User Interface (GUI) agents aims to interact with digital environments like humans do.
Auto-GUI[12] introduces a multimodal solution that directly interacts with the GUI using vision and language
inputs, bypassing the need for intermediate parsing or application-specific APIs. Windows Agent Arena
[13] introduces Navi, a multimodal agent that navigates complex tasks in the Windows OS. Web browser
agents such as WebVoyager[14] leverage multimodal models to navigate real-world websites through actions
like clicking and typing. Similarly, Browser Use[20] provides an open-source framework that dynamically
integrates AI agents with web browsers.

While prior surveys on multimodal agents[1] offer broad insights, they often overlook the challenges and
requirements of software environments. Our work aims to address this gap by focusing on multimodal
agents for software engineering.

3 Multi-modal Models

The landscape of artificial intelligence is undergoing a significant transformation, moving beyond systems
confined to single modalities like text or vision. While Large Language Models (LLMs) have demonstrated
remarkable proficiency in processing and generating text, their inherent inability to perceive or interact with
non-textual data limits their applicability in complex, real-world scenarios. Concurrently, specialized models
excel at tasks like image recognition or speech processing but often lack the broader reasoning and contextual
understanding capabilities of LLMs.

This limitation presents a critical software engineering challenge: designing systems that can holistically
understand and act upon the rich, multimodal information characteristic of human environments. The
integration of vision, audio, and language processing capabilities is an engineering necessity for building
more capable and versatile AI systems [1].

The motivation for developing such integrated systems stems directly from the requirements of numerous
practical applications. Current AI systems often fall short, operating primarily in unimodal silos or requiring
complex, brittle pipelines to connect different modalities. The emergence of Multimodal Large Language
Models (MLLMs) offers a promising architectural paradigm to address this gap. These systems aim to
leverage the powerful reasoning and language capabilities of LLMs as a central processing core, augmented
with specialized encoders for visual and auditory perception [2; 21].

A key evolution in this domain, and the central focus of this survey, is the shift from purely perceptual
multimodal models towards agentic MLLMs.
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While early multimodal research successfully developed models like CLIP or DALL-E for image-text tasks,
and Whisper for speech recognition, these often perform specific, predefined tasks [5]. The engineering
frontier lies in creating systems that not only understand multimodal inputs but can autonomously reason,
plan, and execute tasks based on this understanding.

Models like DeepMind’s Flamingo [4], which demonstrated few-shot learning on vision-language tasks by
integrating visual features into a frozen LLM, and OpenAI’s GPT-4 with Vision (GPT-4V) [5], which accepts
image inputs for complex problem-solving, represent significant milestones in MLLM development. However,
engineering these models to function as autonomous agents – systems capable of making decisions and taking
actions across multimodal streams – requires tackling specific architectural and integration challenges [3].

This survey focuses on the software engineering aspects of building these agentic MLLMs, specifically those
integrating LLMs with vision and/or audio capabilities. We examine the core system design choices, including
architectural patterns for modality fusion – how visual and auditory information is technically integrated
with the language model’s processing flow. Key fusion techniques range from early fusion strategies, where
multimodal inputs are tokenized and concatenated at the input layer (as seen in models like Kosmos-1
or LLaVA), enabling the LLM to process modalities uniformly, to intermediate fusion, where dedicated
cross-attention layers or adapter modules allow deeper interaction between modality features and the LLM’s
hidden states (exemplified by Flamingo [4]).

We also consider late fusion or modular approaches, where an LLM acts as an orchestrator, invoking special-
ized unimodal models or tools as needed—demonstrated by systems like HuggingGPT and Visual ChatGPT
[8]. Understanding the trade-offs between these architectural choices—simplicity versus integration depth,
monolithic design versus modularity—is crucial for engineering effective multimodal agents.

The practical implications of successfully engineering agentic MLLMs are vast. These systems are enabling
a new generation of applications where AI can interact more naturally and effectively within multimodal
contexts.

In vision-language domains, this includes advanced image captioning that incorporates commonsense rea-
soning, sophisticated Visual Question Answering (VQA) systems capable of complex dialogue about visual
content, and interactive multimodal assistants that can understand and even manipulate images based on
user instructions [14; 15]. Extending these capabilities to video analysis allows for automated summarization,
activity recognition, and dialogue grounded in temporal visual events.

Similarly, integrating robust audio processing, particularly speech recognition like that provided by Whisper,
forms the backbone of intelligent voice assistants that combine listening comprehension with the conversa-
tional prowess of LLMs, leading to richer human-computer interaction.

Perhaps the most compelling applications lie in embodied AI and complex decision-making environments.
Systems like Google’s PaLM-E demonstrate the potential of using MLLMs to interpret sensor data (vision,
state) and generate robotic action plans, bridging the gap between high-level language instructions and
low-level physical execution. This represents a significant software engineering feat, integrating perception,
reasoning, and control within a single, albeit large, model architecture [16].

Similar principles apply to developing intelligent agents for autonomous driving, virtual environments (e.g.,
game-playing agents like Gato), and digital assistants capable of navigating complex graphical user interfaces
[22; 17]. Specialized domains like healthcare also stand to benefit, with MLLMs potentially assisting clinicians
by analyzing medical images in conjunction with textual patient data, although the engineering demands for
safety, reliability, and accuracy in such critical applications are paramount.

Despite the rapid progress, significant software engineering challenges remain in building and deploying
robust agentic MLLMs. Integrating multiple large models introduces considerable system complexity and
computational cost.

Scalability is a major concern, particularly regarding the handling of long-context inputs like extended videos
or large documents containing numerous images, which often exceeds the processing limits of current archi-
tectures. Ensuring robust and reliable reasoning across modalities is another hurdle; models can still struggle
with complex multi-step instructions, exhibit hallucinations, or fail to properly handle ambiguity in percep-
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tual input [18]. Addressing these issues requires innovations in model architecture, training data curation
(including mitigating inherited biases), and evaluation methodologies suitable for complex, interactive tasks
[23].

Furthermore, engineering these systems for real-world deployment necessitates tackling issues of latency,
robustness to noisy or missing data, and safety. Ensuring that multimodal agents behave predictably, are
resilient to adversarial manipulations across modalities, and align with human values is a critical ongoing
research and engineering effort. The development of standardized benchmarks and evaluation protocols
specifically designed for agentic multimodal tasks is also essential for measuring progress and ensuring re-
producibility [24; 25].

Looking ahead, future software engineering efforts will likely focus on developing more sophisticated frame-
works for multimodal reasoning and planning, potentially integrating symbolic methods or explicit memory
modules. Designing more efficient and adaptive modality fusion mechanisms, extending systems to incorpo-
rate a wider range of sensors (e.g., tactile, 3D), and enabling continual learning in interactive settings are
key research directions. Enhancing human-agent collaboration through better multimodal communication
and explanation capabilities will also be crucial. This survey aims to provide a structured overview of the
current state-of-the-art from a software engineering perspective, detailing the architectures, applications,
and inherent challenges, thereby outlining the path towards more capable, reliable, and versatile multimodal
AI agents.

4 Applications of Multi-modal LLM Agents

4.1 Software Agents

Large Language Models (LLMs) have shown strong capabilities in generating, editing, and reasoning about
source code, especially when trained on massive code corpora alongside natural language [2]. Over the past
couple of years, starting with Github Copilot [26], LLMs have shown rapid development in code generation
quality. Major foundation model providers have pushed the frontier further with models like OpenAI’s Codex
[27] and o3 [28], which exhibit strong reasoning and multi-step coding abilities. Anthropic’s latest Claude 3.7
Sonnet [29] introduces state-of-the-art performance on programming benchmarks like HumanEval and SWE-
Bench, combining high reasoning depth with real-time code execution and debugging support. Similarly,
Google DeepMind’s Gemini 2.5 [30] extends its capabilities with long-context understanding and robust
function synthesis, making it competitive on tasks like CodeContests and Natural2Code.

To extend the capabilities of LLM code-generation agents, recent research has moved beyond standalone
LLMs toward agentic frameworks that equip LLMs with planning[31], tool use[7], and iterative decision-
making abilities[32]. CodeCoT [10] leverages CoT to break down the given requirements into steps that
are described in natural language and then convert them to code. ToolCoder [33] integrates the agent with
online search and local documentation search tools that provide helpful information for both public and
private APIs, alleviating the hallucination of LLMs.

However, real-world software engineering tasks often go beyond single-shot code synthesis. They require
interpreting error messages, navigating large codebases, invoking tools like version control or test runners,
and responding to user feedback. These tasks are inherently multimodal, involving a combination of natural
language, code, execution traces, file structures, and sometimes even UI-level interactions. MMCode [11]
addresses this gap by introducing a benchmark designed to evaluate the capabilities of large multimodal
models in code generation tasks that require understanding both text and images. SWE-bench Multimodal
[34] extends the original SWE-bench benchmark to assess the ability of AI systems to handle software
engineering tasks that involve visual components.

Recently, multiagent systems have made significant progress in solving complex problems in software de-
velopment by emulating development roles [35; 36]. Lin et al. [37] introduce a code generation framework
inspired by established software engineering practices. This work leverages multiple LLM agents to emulate
various software process models, namely LCGWaterfall, LCGTDD, and LCGScrum. [38] simplifies develop-
ment of multi-agents for software development via a unified platform. This platform orchestrates multiple
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AI agents, each specializing in distinct phases of the software development lifecycle, including requirements
elicitation, architectural design, code generation, testing, and deployment.

VisionCoder [39] develops a multi-agent framework designed for automated software generation in the domain
of image processing. It decomposes the software development lifecycle into a hierarchical structure-spanning
project, module, and function levels-and assigns distinct roles to individual LLM-powered agents. These
agents collaborate to iteratively plan, write, and refine code, enabling the system to handle complex, modular
programming tasks more coherently.

Another notable system is CodeR [40], which targets the complex task of resolving GitHub issues using a
structured multi-agent framework. CodeR models the resolution process as a predefined task graph, where
each subtask-such as reproducing bugs, localizing faults, and verifying fixes-is handled by a specialized agent.
These agents include roles like Manager, Reproducer, Fault Localizer, Editor, and Verifier, mimicking the
collaborative workflows seen in real-world software teams. The task graph ensures that agent actions are
sequenced and interdependent, promoting coherence and reducing common multi-agent pitfalls like uncoor-
dinated execution or context loss. Though CodeR primarily operates on textual and code-based inputs, its
architecture draws conceptual inspiration from multimodal LLM systems and is designed to be extensible to
richer input modalities. Evaluated on the SWE-bench lite benchmark, CodeR achieved a 28.33% resolution
rate with a single submission per issue, outperforming prior systems like SWE-agent and AutoCodeR.

4.2 Web Agents

Large language models (LLMs) are increasingly being used as autonomous web browsing agents, capable
of mimicking human actions like searching, clicking links, filling forms, and extracting information from
websites. This development promises to automate tasks ranging from open-domain question answering with
live information to complex online workflows. A seminal example is OpenAI’s WebGPT [41], which fine-
tuned GPT-3 to use a text-based browser for researching and answering questions. WebGPT’s agent could
issue commands such as “Search” or “Open link”, gather passages from the web, and compose an answer
with cited sources, greatly improving factual accuracy.

Many recent systems use a single LLM as an autonomous agent that plans and executes web interactions
step-by-step. AutoGPT [42] leverages GPT-4 to break high-level goals into actionable steps and execute
them via web browsing. For instance, AutoGPT can be instructed to “collect market research on product
X” and will autonomously search for information, navigate relevant sites, compile data, and even generate a
report. chaining together these web actions with minimal human intervention

Another line of work focuses on browser automation via direct control. BrowserGpt [20] use an LLM to
directly operate a web browser through a Chrome extension, issuing low-level commands (e.g. CLICK,
ENTER TEXT, NAVIGATE) based on the page content. In this approach, the agent perceives the live
DOM or visible page and behaves as a virtual user, which enables it to handle interactive tasks such as
form-filling or web transactions. These agents often integrate with automation frameworks (e.g. Selenium
or Playwright) and search APIs to carry out instructions.

To tackle complex web tasks, some recent frameworks adopt a multi-agent architecture, assigning different
responsibilities to different agent modules. Microsoft’s Magentic-One [8] exemplifies this design: it consists
of a lead Orchestrator agent that plans the high-level strategy and delegates subtasks to a team of specialist
agents. For web interactions, Magentic-One uses a WebSurfer agent specialized in browser-based tasks
(navigating websites, clicking and reading content), alongside other specialists like FileSurfer, Coder and
ComputerTerminal. Magentic-One has demonstrated strong results on benchmarks like WebArena and
AssistantBench, approaching state-of-the-art performance on diverse web task scenarios.

Magma [16] is a foundation model designed for vision-and-language agent tasks, bridging screen perception
with action. It extends a VL (vision-language) model by training on images of UIs and web pages annotated
with the locations of clickable or input elements using Set Of Marks. As a result, Magma can interpret a
webpage screenshot or GUI image and output a sequence of actions (e.g. move cursor to a button and click)
in a goal-driven manner. This yields state-of-the-art results on UI navigation tasks, outperforming prior
specialized models that lacked such broad visual-action grounding. By incorporating spatial reasoning and
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visual context, multimodal agents like Magma can handle websites that are heavy on graphics or dynamic
content, where pure text-based parsing falls short.

4.3 Operating System Agents

The design of agents that interact with graphical user interfaces (GUIs) has emerged as a powerful testbed
for multimodal large language models (MLLMs). These GUI agents aim to replicate human-like digital
behavior by perceiving screens, interpreting instructions, and interacting with applications across platforms
like web, desktop, and mobile. However, GUI environments pose unique challenges: sparse metadata,
platform heterogeneity, visually dense layouts, and the need for precise pixel-level control. Recent research
addresses these challenges from multiple perspectives, ranging from visual grounding to end-to-end agent
frameworks.

One notable direction is the development of vision-only agents that bypass traditional HTML or accessibility
(a11y) tree parsing. Early progress in this space is marked by SeeClick [17], which introduced a lightweight
yet effective vision-language agent capable of grounding GUI instructions purely from screenshots. By
pretraining on multimodal UI data and evaluating on the newly proposed ScreenSpot benchmark, SeeClick
demonstrated that robust GUI grounding can be achieved without structured input, outperforming larger
models like GPT-4V and CogAgent in both grounding accuracy and task execution across web, mobile, and
desktop platforms.

Building on this paradigm [43] introduces UGround, a universal GUI visual grounding model trained on
over 10 million elements from 1.3 million screenshots. Integrated into the SeeAct-V framework, UGround
enables agents to perceive purely through screenshots and perform pixel-level operations. Despite being
trained mostly on web data, it generalizes well to mobile and desktop tasks, outperforming prior models
like SeeClick [17] and CogAgent [44] on grounding benchmarks like ScreenSpot [45]. This modular pipeline-
separating planning (via MLLMs like GPT-4) and grounding (via UGround)-represents a strong case for
human-like, platform-agnostic GUI agents.

Complementing this vision-first approach, Auto-GUI [22] proposes a multimodal chain-of-action agent that
achieves high-accuracy GUI automation directly from screen pixels. By modeling user interaction as a chain
of actions-each grounded in screen context and past interaction-Auto-GUI avoids reliance on structured UI
inputs or domain-specific APIs. It sets a new state-of-the-art on the AITW benchmark [46], demonstrating
that agents can effectively plan and execute tasks by perceiving only what the user sees on screen.

While both Auto-GUI and SeeAct-V advocate end-to-end visual agents, ASSISTGUI [47] highlights the im-
portance of modular, interpretable pipelines for long-horizon tasks in complex desktop applications (e.g.,
After Effects, Word). Its ACE framework (Actor-Critic Embodied agent) breaks down tasks using in-
structional videos and GUI metadata, combining planning, grounding, and feedback through subtasks and
milestones. The framework supports action validation and error recovery via visual critics, outperform-
ing prompting-only baselines by large margins on its 100-task benchmark. ASSISTGUI shows that even
with structured data (OCR, icon detection), desktop software remains a hard problem, motivating robust
perception-grounding loops.

Pushing further into realism, WindowsAgentArena [13] introduces a benchmark suite for agents operating
on live Windows OS environments, spanning productivity tools, browsers, system utilities, and coding IDEs.
The included agent Navi demonstrates how multi-modal LLMs can operate over OCR, icon captioning, and
UI Automation APIs to plan and execute full workflows using a custom computer API. The benchmark runs
in dockerized VMs with automated evaluators, allowing fast, scalable assessment of GUI agents in real-world
conditions. Importantly, Navi’s performance remains far below human levels-highlighting the current gap in
robust reasoning and grounding in highly dynamic environments.

OS-Copilot [48] proposes a modular, memory-augmented architecture for full-computer control. Its embodi-
ment, FRIDAY, acts as a self-improving agent that not only completes complex tasks across GUIs, terminals,
and filesystems, but also generates and refines tools on the fly via trial and error. Through a structured
memory model (declarative, procedural, and working memory), FRIDAY maintains context, stores reusable
behaviors, and self-critiques failed attempts.
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Several works have extended these ideas into the smartphone domain. AppAgent [49] presents a full-stack
multimodal agent that learns to operate any Android app by observing screenshots and UI metadata. It
leverages a simplified action space (taps, swipes, text input) and learns app functionality through autonomous
exploration or by watching human demonstrations. During deployment, the agent consults its learned docu-
mentation to plan actions, achieving strong results across 10 diverse apps. Notably, AppAgent outperforms
raw GPT-4 baselines significantly (84% success rate vs. 2–49%) and matches the effectiveness of manually
written UI guides.

In a similar direction, MM-Navigator [50] is a purely vision-based agent powered by GPT-4V. It operates
entirely through screenshots using a "Set-of-Mark" prompting strategy, where UI elements are tagged and
GPT-4V selects the next action by reasoning over the image and text. MM-Navigator achieves 91% accuracy
in intended action description and 75% accuracy in localized execution on iOS screens, and further surpasses
prior LLM baselines on the large-scale AITW Android dataset-all in zero-shot mode.

DroidBot-GPT [51] takes a lightweight route by pairing LLMs with existing UI testing tools like Droid-
Bot. It converts Android screen states into natural language descriptions and queries GPT-4 to choose the
next action. Despite being fully unsupervised and simple in design, it completes over 39% of tasks and
demonstrates solid generalization across app categories.

5 Evaluation Frameworks and Benchmarks

Evaluation plays a pivotal role in developing multimodal LLM agents, ensuring they can robustly handle the
diverse tasks encountered in software engineering, operating systems, and web environments. Benchmarks
provide structured challenges that drive progress and reveal weaknesses. Given the breadth of domains –
from writing and debugging code, to controlling OS-level tools, to interacting with web pages – a one-size-fits-
all evaluation is impractical. Instead, researchers have proposed specialized benchmarks targeting different
facets of an LLM agent’s capabilities. These range from coding challenges and OS automation tasks to vi-
sual question answering and multi-agent collaboration scenarios. Benchmarking multimodal LLM agents is
important not only for tracking performance improvements but also for understanding an agent’s limitations
before deployment in real-world settings. Recent work emphasizes that traditional NLP benchmarks are
insufficient for agents acting in complex environments, prompting a shift toward more realistic, task-oriented
evaluations. The following subsections survey three major categories of evaluation frameworks: Operating
System Agent Benchmarks, Multi-modal Agent Benchmarks, and Multi-Agent Collaboration Benchmarks.
For each, we outline their focus, compare representative benchmarks, and discuss how evaluation is con-
ducted.

5.1 Operating System Agent Benchmarks

Operating System Agent Benchmarks test an agent’s ability to fully navigate and control a simulated operat-
ing system environment. Unlike isolated task evaluations that assess simple function calls or API interactions,
these benchmarks present the agent with a dynamic, often unpredictable environment where it must interact
with GUI elements, manage files, operate multiple applications concurrently, and-even in some cases-handle
both desktop and mobile devices. Table 1 is a comparison of several prominent OS-level evaluation suites.

OS-level benchmarks typically evaluate success by checking if the agent achieved the task’s goal state within
the environment. Many use programmatic logs or scripts to verify outcomes – for example, OSWorld defines
a custom execution-check for each task (e.g. confirming a file was created or an email sent) to ensure reliable,
reproducible scoring. cite. Some environments provide reward signals at intermediate steps (AndroidWorld)
to facilitate learning and fine-grained evaluation cite. Common metrics include success rate, task completion
time, and sometimes efficiency (number of actions taken vs. an optimal baseline). Because agents operate
in an actual OS or high-fidelity simulator, these benchmarks emphasize robustness – minor UI changes or
unexpected dialogs can cause failures, so an agent’s adaptability is tested. Reproducibility is addressed
by standardized initial states (e.g. reset OS to a known state before each trial) and deterministic task
specifications. Overall, OS benchmarks stress an agent’s ability to perform real computer-based tasks end-
to-end, providing a strong measure of practical utility as an “AI assistant” on personal devices.
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Table 1: Comparison of Prominent OS-level Evaluation Suites
Benchmark Focus Area Unique Features
OsBench General OS control

tasks (desktop)
Subset of tasks from AgentBench’s [3] OS domain;
first standardized OS agent eval in a multi-domain
suite

Windows Agent
Arena (WAA)
[13]

Windows OS
automation

150+ tasks across 11 applications on Windows (e.g.
Office apps), enabling parallel, scalable evaluation
in a real OS

CRAB (Cross-
Environment
Agent
Benchmark) [24]

Cross-platform (PC +
mobile) tasks

First benchmark to support cross-device tasks
(desktop & Android simultaneously), with a
graph-based fine-grained evaluation method for
action sequences

OSWorld [19] Open-ended tasks in
real OS env

Multi-OS (Windows, Ubuntu, macOS) environment
with 369 tasks spanning web and desktop apps, file
I/O, and multi-app workflows. Uses
execution-based scripts for reliable evaluation of
each task’s outcome

AndroidWorld
[25]

Android mobile device
tasks

Live Android emulator environment with 116
programmatic tasks

5.2 Multi-modal Benchmarks

This category of benchmarks is designed to assess agents that must integrate and process diverse input and
output modalities, such as vision (e.g., images or GUI screenshots), language, and sometimes structured
data or code. In contrast to OS benchmarks, which focus on navigating and controlling complete operating
system environments, multimodal benchmarks evaluate an agent’s ability to seamlessly combine and reason
over visual and textual cues to accomplish specific tasks. Such tasks span activities like web browsing
(where an agent interprets screenshots alongside textual instructions), interacting with applications that
provide rich visual feedback, or resolving software engineering challenges that involve both code and graphical
information.

Multimodal benchmarks use a mix of automated and human-in-the-loop evaluation. For tasks with well-
defined end states, the environment can automatically judge success (e.g. WebArena [18] tasks might specify
a target page or content that the agent must reach ). Many web-based benchmarks use information-retrieval
style metrics – for instance, whether the agent eventually clicks the correct link or extracts the correct answer
from a page. Some tasks, especially those involving generated content like code patches in SWE-Bench [53],
require qualitative evaluation: using either human experts or additional LLMs to judge if the agent’s output
is correct. In SWE-Bench, an agent’s code fix can be validated by running test cases or comparing against
the ground truth patch. For visual tasks, evaluation often checks if a final GUI state matches expectations
(e.g. “button X became green”), sometimes via DOM/Screenshot comparison or specialized metrics. One
challenge in multimodal evaluation is measuring partial success: an agent might get some subtasks right
(navigating to the right page) but fail the final instruction. Benchmarks like MMInA [52] handle this
with fine-grained, hop-by-hop scoring, crediting the agent for each correct intermediate step in a multihop
task. Overall, these evaluations stress cross-modal consistency – the agent must align textual and visual
information to succeed. They reveal that current agents often excel in either language or vision individually,
but struggle when both are required simultaneously (e.g. correctly identifying a GUI element described in
text). Multimodal benchmarks thus provide a rigorous check on an agent’s integrated understanding of rich,
real-world scenarios. Table 2 is a comparison of several prominent Multimodal Agent evaluation suites.

5.3 Multi-Agent Collaboration Benchmarks

Beyond single-agent scenarios, a new class of benchmarks evaluates how multiple LLM agents collaborate
with each other (and with humans) to solve problems. These benchmarks simulate settings like teams of
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Table 2: Comparison of Prominent Multimodal Agent Evaluation Benchmarks
Benchmark Focus Area Unique Features
WebVoyager [14] Vision-enabled web

browsing
An end-to-end web agent that uses browser screen-
shots as context. The agent must interpret visual el-
ements (e.g., buttons, images) alongside textual cues
to navigate real websites.

MMInA (Multi-
hop Multimodal
Internet Agents)
[52]

Multi-step internet
navigation (text +
images)

Challenges an agent with complex, compositional
web tasks built from approximately 3,000 recorded
interactions (“hops”) across multiple websites. It
tests sequential integration of visual and textual in-
formation.

VisualWebArena
[15]

Visually-grounded web
tasks

Provides over 900 tasks requiring the interpretation
of page images and layouts in realistic scenarios, such
as online shopping or data visualization.

SWE-Bench
(Text) [53]

Software engineering
bug-fixing (text-only)

Evaluates code reasoning from textual bug reports
and source code, without visual inputs.

SWE-Bench
(Multimodal) [34]

Software engineering
with UI context

Extends the text-only version by incorporating UI
screenshots, enabling the assessment of code patches
in response to both visual and textual bug reports.

WebLINX [54] Conversational web
navigation

Contains a large-scale dataset ( 100k multi-turn in-
teractions) where the agent uses dialogue-like in-
structions to navigate websites via text interfaces,
derived from expert demonstrations.

PixelHelp [55] Mobile UI how-to in-
structions (static)

Comprises 187 high-level Android tasks based on of-
ficial help guides, linking user queries with step-by-
step solutions and mapping language to mobile UI
actions.

OmniACT [56] Generalist desktop &
web tasks

Evaluates an agent’s ability to generate executable
commands that span both desktop and web environ-
ments, such as downloading data from a website and
visualizing it in a desktop application.

MiniWoB++ [57] Synthetic web UI tasks
(toy domain)

A controlled testbed featuring 100+ miniature web
tasks (e.g., simple forms or calculators) that assess
low-level command execution (clicks/keystrokes).

Mind2Web [58] Open-domain web
tasks

Comprises 300 tasks sourced from 136 popular web-
sites, challenging agents to generalize and interpret
natural language instructions across varied and un-
familiar layouts.
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agents working together or an AI assistant interacting with a human partner. They emphasize communi-
cation, coordination, and division of labor – aspects critical for autonomous agents operating in social or
organizational contexts. Table 3 is a comparison of prominent Multi-agent evaluation benchmarks.

Table 3: Multi-Agent Collaboration Benchmarks
Benchmark Focus Area Unique Features
COMMA [59] Multi-agent commu-

nication
Multimodal benchmark with 2+ agents collaborating
via natural language under asymmetric information.
Tasks test coordination and info-sharing in settings
where agents see different inputs. Evaluates agent–agent
and agent–human teamwork, revealing weaknesses in
peer-to-peer dialog and reasoning.

TheAgentCompany
[23]

Simulated workplace
tasks

Extensible benchmark simulating a software company.
Agents take on roles (e.g., coder, manager) and col-
laborate via messages to complete realistic tasks like
coding, support, and research. Tests coordination on
long-horizon projects involving web browsing, code exe-
cution, and information synthesis.

Collaborative benchmarks introduce subjective aspects to evaluation. A primary metric is task success –
did the agent team achieve the desired outcome (solving the puzzle, completing the project)? For many
tasks, success can be judged objectively (e.g. a final answer or product can be checked), but the process
of collaboration is also scrutinized. COMMA [59], for instance, evaluates whether agents’ communications
enable them to outperform a baseline; it was found that two GPT-4 based agents often failed to leverage
communication effectively. Thus, metrics like communication efficiency (how many dialogue turns, or how
much irrelevant chatter) and role-specific performance (did each agent fulfill its part) are used. In TheAgent-
Company’s [23] simulated workplace, evaluation involves scenario-specific tests – for example, if the task is
to fix a bug collaboratively, the final code is tested for correctness, and logs are analyzed to see if agents
correctly delegated subtasks. Human evaluation is sometimes incorporated to rate the coherence and help-
fulness of agent communications (especially in agent-human collaboration scenarios). A notable challenge is
ensuring that the collaboration is genuine – i.e. the benchmark should require information exchange. These
benchmarks often craft tasks such that no single agent has all the needed information or skills, forcing inter-
action. By analyzing transcripts and outcomes, researchers can identify failure modes like misunderstanding
between agents or dominance of one agent. In summary, multi-agent benchmarks extend evaluation to the
social intelligence of LLM agents, assessing how well they can engage in teamwork and communication to
solve problems together.

5.4 Limitations of Existing Benchmarks

Despite the significant progress enabled by new benchmark suites, several fundamental challenges remain
in evaluating multimodal LLM agents. These issues limit how well current benchmarks reflect real-world
complexities and the diverse range of tasks agents must handle in practice. The following are some of the
limitations of existing benchmarks.

• Evaluation Gaming and Overfitting: Models can sometimes exploit the structure of benchmarks in
unintended ways. There is concern that an agent might detect when it is in a scripted evaluation versus a
real deployment and behave differently (e.g. using hidden cues). For instance, if all tasks in a benchmark
have a similar template, a model might “learn the test” rather than truly generalize. Designing evaluations
that the agent cannot easily recognize (or game) is an open problem, as is detecting when a model is
cheating an eval by using subtle cues.

• Lack of Realism: Many benchmarks simplify environments or have deterministic setups, which can
diverge from messy real-world conditions. Some interactive benchmarks still rely on predefined action
sequences as the success criterion [58], if an agent solves a task in an alternate valid way, it may be
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unfairly marked wrong. Real users often face dynamic and unpredictable scenarios (random pop-ups,
network delays, etc.) that static benchmarks don’t capture. Moreover, tasks in research benchmarks
may not cover the full diversity of real user goals. This gap in realism means an agent that scores
high on a benchmark might still struggle on the true task in the wild. Efforts like OSWorld [19] and
AndroidWorld [25] have started addressing this by using real applications and realistic initial states, but
many benchmarks remain narrow or synthetic.

• Limited Multimodal Coverage: While a number of benchmarks highlight text+vision tasks, the mul-
timodal spectrum is much broader. Current evaluations rarely incorporate modalities such as audio (voice
commands, sound cues) or haptic/physical interactions. Even within vision-and-language, benchmarks
tend to focus on either GUI screenshots or web images; few require understanding visual media (e.g.
interpreting a chart image and an instruction, as a human might). Also, most benchmarks treat modal-
ities in a fixed way – e.g. an image accompanying a text query. In realistic settings, an agent might
need to dynamically decide when to use vision (e.g. whether to “look” at a screen or not) and handle
continuous video or mixed-modality streams. Expanding benchmarks to cover more modalities and their
combinations is needed to truly test general-purpose agency.

• Measuring Autonomy and Long-Term Behavior: Present evaluations mostly consist of one-off
episodes or tasks with a clear end. They struggle to assess an agent’s long-term autonomy – can it
operate robustly over hours or days, maintaining coherence towards an open-ended goal? For example,
an agent might do well in a contained task but would it eventually get stuck or behave unpredictably
if left running continuously? Current benchmarks rarely test an agent’s ability to learn from experience
during evaluation. Agents are typically reset between tasks, so we don’t measure if they improve or adapt.
This limits how well we can evaluate properties like online learning, persistence of memory, or the ability
to recover from mistakes – all crucial for true autonomy.

5.5 Future Directions in Benchmark Design

In pursuit of more realistic and comprehensive evaluations, researchers are exploring new ways to measure
long-horizon performance, autonomy, and social interaction. By introducing persistent memory, real-world
constraints, and collaborative settings, future benchmarks can more accurately reflect the conditions under
which these agents will be deployed.

• Persistent Memory and Lifelong Evaluation: New benchmarks should test an agent’s ability to re-
member and utilize knowledge over extended periods and across sessions. For example, an evaluation could
span multiple related tasks (simulating a day’s worth of assistant duties), where the agent’s performance
on later tasks benefits from information learned in earlier ones. This would encourage the development
of agents with persistent memory and the ability to accumulate experience. Measuring memory retention
and the consistency of agent behavior over time will be key – does the agent recall a user’s preferences
from a prior interaction, or lessons from a previous mistake? Such persistent evaluations would move
beyond episodic one-shot tests towards lifelong learning assessment.

• Social Interaction and Collaboration Trials: Building on multi-agent benchmarks, future evalua-
tions may involve more realistic social settings – e.g. an agent working with a human team on a project, or
multiple agents with simulated personalities collaborating (or even competing). This could include bench-
marks for negotiation skills, teaching/learning from other agents, or adherence to human conversational
norms in long-running interactions. Social intelligence metrics (like user satisfaction, trust calibration,
conflict resolution success) could complement task-success metrics. By testing nuanced interaction scenar-
ios, we can drive the development of agents that are not only task-savvy but also adept at understanding
and responding to humans and other agents in complex social environments.

• Real-World Deployment Challenges: Perhaps the ultimate benchmark is deploying agents in real
(or extremely high-fidelity) environments and measuring their performance on truly consequential tasks.
Future benchmarks might arrange controlled real-world trials – for instance, an agent managing an actual
web store for a few hours, or controlling smart home devices over days. Success criteria would extend
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to robustness and safety: not just accomplishing goals, but doing so without undesired side-effects (no
crashing the system or violating user intent). There is growing interest in the evaluation of “consequen-
tial tasks” – those with real economic or safety impact – to understand where current agents fail. While
challenging, such deployment-centric benchmarks would provide the clearest picture of an agent’s readi-
ness for practical use. They could also reveal issues (like error recovery, scalability under load, security
vulnerabilities) that lab environments cannot easily simulate.
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