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Classifying visual information is an apparently simple and effortless task in our everyday routine, but can
we automatically predict what we see from signals emitted by the brain?

While other researchers have already attempted to answer this question, we are the first to show that a
commercially available BCI could be effectively used for visual image classification in real-world scenar-
ios - when testing takes place at a completely different time than training data collection. The task is
difficult, as it requires relating the noisy and low-level EEG signals to complex and highly semantic vi-
sual categories. In this paper, we propose different learning approaches and show that simpler classifiers
such as Ridge Regression with Gabor filtering of the input EEG signal could be more effective than the
powerful Long Short Term Memory Networks and Convolutional Neural Networks in this case of limited
and noisy training data. We analyzed the importance of each electrode for the visual classification task
and noticed that the sensors with the highest accuracy were the ones that recorded brain activity from
regions known to be correlated more with higher level recognition and cognitive processes and less to
lower-level visual signal processing. The result is also in accordance with research in computer vision
with deep neural networks, which shows that semantic visual features are learned only at higher levels
of neural depth.

While EEG signals are weaker by themselves for the task of visual classification, we demonstrate that
they could be powerful when combined with deep visual features extracted from the image, improving
performance from 91% to over 97% in a multi-class recognition setting. Our tests show that EEG input
brings additional information that is not learned by artificial deep networks on the given image training
set. Thus, a commercially available BCI could be effectively used in conjunction with a deep learning
based vision system to form together a stronger visual recognition system that is suitable for real-world
applications.

© 2019 Published by Elsevier B.V.

1. Introduction

There are also a few studies that focus on the visual informa-
tion extracted from EEG, for example the approach for automatic

From responding physiologically to concrete and physical stim-
uli to elaborating opinions and viewing future actions and emo-
tions, the brain is responsible for all these amazing actions, which
means that there must be signs indicating their existence. For this
reason, the BCI potential has attracted the attention of many re-
searchers for a large set of applications [1]. A typical example
would be the use of BCI as a new type of controller [2,3]: to move
a wheelchair [4] or for “brain typing”[5].
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image annotation, using a CNN with an EEGNet architecture [6],
or the image reconstruction methods [7,8]. Other recent studies
[9,10], successfully use neural networks (CNN and Recurrent NN)
for EEG classification tasks and confirm their viability for this kind
of problems. The authors of another article [11], used Support Vec-
tor Machine (SVM), k-Nearest Neighbour (k-NN), Multi-Layer Per-
ceptron Artificial Neural Network (MLP-ANN) and Logistic Regres-
sion (LR) in their research work to extract the meaningful EEG sig-
nal patterns from a large volume of poor quality data having ar-
tifacts noises. For EEG decoding and visualization, deep learning
with convolutional neural networks has been used [12]. In this pa-
per, we also investigate a deep learning approach in combination
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with EEG input, using CNNs and LSTMs, for the task of image clas-
sification.

Previous works prove that EEG can be successfully used in sev-
eral applications and that it is possible to extract meaningful se-
mantic data using BCIL In this paper, we focus on the problem of
predicting from EEG data the visual classes seen by human sub-
jects and aim to answer the following questions:

1. Can we accurately predict visual classes from noninvasive EEG
signals alone? In literature some articles indicate that inva-
sive systems can be used for similar tasks [13,14]. However,
very few showed that the relatively weak EEG signals are rele-
vant for high-level visual classification. A set of recent papers
[7,15,16] achieved 83% on multi-class visual recognition from
EEG signals alone but in their case the training and testing sam-
ples were collected in the same continuous recording session.
In this paper we study the more realistic scenario when train-
ing and testing data are collected at completely different times.
This case is much more difficult, but we show ways in which
EEG data can be effectively used for image classification.

2. Is visual recognition based only on features extracted from the
brain areas traditionally related to vision or is it the result of a
more complex process that also involves other areas of the cor-
tex, responsible for higher level non-vision thought? Consistent
with previous research [15,17], our experiments suggest the in-
teresting case that vision might go well beyond simple appear-
ance based processing.

3. Can we improve image classification if we use information ex-
tracted from EEG signals in conjunction with standard classic
computer vision features? We show that EEG, even when they
are weaker than visual features extracted directly from the im-
ages, are in fact useful for prediction as complementary signal.
By capturing different kinds of information, not learned by deep
neural networks directly in the image domain, EEG brings ad-
ditional discrimination power that significantly boosts the clas-
sification accuracy.

There are many studies that attempt to decode EEG data using
brain-computer interfaces (BCI) for a multitude of tasks and appli-
cations. Only a very small fraction focus on vision [7,8,15,17-19],
out of which most pose the problem as a recognition task [17-19].
One closely relates to our work [15], by proposing a deep learn-
ing approach in order to predict the class of the image seen by a
human subject from the corresponding noninvasive EEG. We will
refer to this article as state-of-the-art.

More specifically, the authors address the problem of visual
classification using recurrent neural networks and achieve an av-
erage accuracy of about 83% on the test set [15]. They collected
data for each class, per subject, in a burst of 25 seconds, then used
the first 20 seconds for training, the next 2.5 seconds for valida-
tion and the last 2.5 seconds for testing. While authors of this ar-
ticle [15] obtained high accuracy, they trained and tested on data
taken in the same burst. As a consequence their approach suffers
from overfitting as shown in another study [20] and confirmed in
our experiments (Section 3.2, Table 5), as their model learns noisy
signals that are specific to that particular burst and are less related
to the actual semantic image class. We train and test on data taken
at different times of the day which is important when making pre-
dictions based on EEG signals for real world applications. We take
a different approach in data processing and use Gabor filtering in
order to remove the high frequency signal that is prone to over-
fitting when used in combination with powerful deep networks
(Section 3.2, Table 5). By our novel processing of the system com-
bined with our electrode signal selection mechanism (Section 3.1,
Fig. 4) we are able to achieve a competitive performance in the re-
alistic scenario when the test data is taken at a different time than
the train data.

We collected a novel image-EEG dataset by using an affordable,
industry-level BCI with 14 electrodes and images from six differ-
ent classes, including objects and different scenes. We collected the
training and test data in distinct sessions, separated by a few hours
at least. We wanted to better mimic the real-world conditions and
to eliminate all possible interference between the training and test
data sets. Instead of choosing from the EEG bands (Epsilon, Delta,
Theta, Alpha, Beta, Gamma or Lambda) the ones most relevant for
the experiments, we project the entire spectrum on the space of
Gabor wavelets, across a relatively large range of frequency bands.
As we show in experiments, this approach is efficient and robust
to overfitting (Section 3.2, Table 5).

Another related paper augments visual features extracted from
images with EEG signals [16]. The authors learn a joint encoding
of the visual and EEG information with a Siamese network. How-
ever, they used the same dataset as [15] - thus suffering from the
same limitation in terms of using training and testing data from
the same recording session. Different from their work, we show
that EEG data can be effectively used to boost visual recognition
even in the case when the training and testing sessions are dis-
tinct and relatively far apart in time (Section 2.3, Fig. 9).

Thus, the research problem we are facing is relatively new. The
main challenge, as seen in our ablation tests (Section 3.1, Fig. 4), is
that EEG signals are weak and generally noisy. They are the aggre-
gate result of firings from billions of neurons, each having specific
and often local tasks, over relatively large brain areas. On top of
that, the process of capturing qualitative data is made even more
difficult by the experimental setup, in which the subject is asked
to wear a noise-sensitive and often uncomfortable BCI device for
a relatively long amount of time, while remaining focused. Despite
the obvious difficulties and challenges posed by the problem, this
paper makes several contributions, at the intersection of computer
vision and brain computer interfaces:

« We propose an unprecedented approach to classify visual
classes from EEG data by capturing signals at different frequen-
cies with Gabor filters and obtain an average classification accu-
racy of 66.76% over all classes and subjects, and a peak accuracy
of 96% on specific classes.

We investigate the viability of using EEG data alongside state-
of-the-art deep neural networks and show a significant boost in
recognition from 91% to over 97%.

We investigate the relevance of each electrode input for classi-
fication and experimentally confirm that the most relevant EEG
signals come from brain areas that are involved in higher cog-
nitive reasoning, not from areas dedicated to early visual pro-
cessing (e.g. V1).

We acquired a novel dataset with over 4 hours of EEG record-
ing from 6 different subjects and 6 different visual classes, in-
cluding 3 object classes and different 3 outdoor scenes, with
distinct training and testing recording sessions, which we will
make publicly available.

2. Methods

Our work is motivated by the intuition that when a person is
visually understanding a picture, she or he is doing much more
than just pattern matching. An image is a glimpse into the human
mind. Given enough time to focus, an image will summon all the
memories and emotions which, combined, shape the semantic con-
cept behind the pixels. We investigate if we can extract descriptors
from EEG, which would allow us to accurately distinguish such dif-
ferent concepts that are triggered by visual input.

Starting from this idea, and to find answers to our initial ques-
tions (Question 1, 2 and 3), we designed a three-step architecture,
which we present in Fig. 1. First (in EEG recording), we collect EEG
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Fig. 1. System architecture. Bottom left: we record EEG signals from people looking at pictures, in distinct training and testing sessions, taken at different times in the day.
Top: we apply Gabor filters on the raw EEG data and use it to train an EEG-based classifier. Bottom right: for each picture we extract features from a state-of-the-art deep
convolutional net. Then we augment the visual features with the corresponding EEG features learned in the previous step and train a combined Visual-EEG classifier.

data from a group of volunteers. Then (in the prediction of visual
classes from EEG task), we apply Gabor filters on the raw data to
extract the preliminary descriptors, which we use to train a classi-
fier. In order to better demonstrate the power of EEG for real-world
recognition tasks (in the visual features augmentation task), we
combine them with visual features extracted with a state-of-the-
art CNN (trained from scratch on our images), and feed them to a
final classifier for a significant boost in recognition performance.

2.1. Data acquisition setup

To collect the EEG data, a total of six volunteers (4 males and 2
females) participated. All subjects were between 25-35 years old,
had similar cultural backgrounds and were all university gradu-
ates. We used a commercially available BCI, Emotiv EPOC+! with 14
electrodes and 2 reference nodes (CMS and DRL), an internal sam-
pling rate of 2048 downsampled to 128 samples per second (SPS)
and a resolution of 14 bits. The electrodes are placed in the Inter-
national 10-20 System [21] (Fig. 2) and are immobile, they have
fixed positions.

Although we are not applying any filters on the data received
from the headset (we apply Gabor filtering directly on the raw EEG
coming from the BCI), the Emotive EPOC BCI cap applies an inter-
nal processing to the data as follows: a strong double notch filter
at 50Hz and 60Hz removes interference from the electrical power
supply. The filter also affects frequencies down to about 45Hz, so
Emotiv specifies 43Hz as the upper usable frequency limit where
the spectral response is perfectly flat. The filters extend to about
66Hz, which is higher than the Nyquist cut-off frequency for 128Hz
sample frequency.

We chose this relatively inexpensive and therefore easily avail-
able equipment, because it has a good quality signal and for that
reason it is widely used by the research community. Its fixed elec-
trodes cover relatively uniform the human head and are positioned

1 Emotiv - brain computer interface technology: http://emotiv.com.

Fig. 2. Emotiv EPOC - electrode placement on scalp. CMS and DRL are the reference
electrodes. The locations correspond to the International 10-20 System [21].

according to the International 10-20 System [21] at specific regions
of the brain, some of them being placed near the visual cortex and
the recognition cortex (01, 02, P7, P8), others near regions related
to other functions. The fact that we do not carefully hand pick the
exact positions of the electrodes, makes our results more general
and robust to their location. Carefully choosing the electrodes’ lo-
cation might improve performance, but also increase the chance of
overfitting. Moreover, the fact that the electrodes cover the entire
scalp and are not limited to regions that are known to be dedi-
cated to visual processing (V1) enables us to draw the conclusion
that signals from regions that are dedicated to higher level func-
tions could be more relevant for semantic visual recognition than
V1.

We obtained an Objects and Scenes EEG dataset, composed of
six classes of objects and outdoor scenes: flowers (1), airplanes (2),
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cars (3), park (4), seaside (5) and old town (6). The pictures are
either selected from ImageNet (cars, airplanes) or were taken by
the authors (the rest of classes).

In our experimental setup, the images of a given class are first
divided into two groups, one per training or testing session, as
follows: 40 images are dedicated for training and 20 for testing. In
a given training or testing session the images shown to a subject
are grouped per class. Thus, we present the images to subjects in
phases, one phase for each of the 6 classes. For example, during
the training phase, we start by displaying all training images of
the first class on after the other, at a rate of 7 seconds given
per image, without pause. Then we move to show the training
images of the second class and so on, until all training images of
all classes are seen by a given subject. Between classes there is a
short pause of around 1 minute. Thus, after showing the images
for one class, we wait for a minute and then start showing the
images of the next class. Please note that the same protocol is
used for both training and testing.

Between the training and testing sessions the subjects take a
long break, in the order of hours, during which they take off the
BCI device and are encouraged to relax and do other activities. This
long break ensures there is no bias between the data collected in
the training and testing sessions. It is important to note the signif-
icant amount of time passing between the training and the testing
acquisition for a given class, with data acquired for other classes in
between. In this way we attempted to reduce the noise that could
relate the training and testing signals, noise that is not related to
the actual image class and could wrongly improve recognition per-
formance (by testing on the training set, in essence).

The chosen order of the classes, which is kept the same for all
subjects is the following: 1. Flowers, 2. Airplanes, 3. Cars, 4. Park,
5. Seaside, 6. Old town. Please note that the dataset is quite diffi-
cult for the task chosen. The images belonging to a given class vary
substantially, in terms of scale, shape, appearance, viewpoint, back-
ground scene and number of instances. Thus there is a great varia-
tion between the set of images used for training and that used for
testing. For a given class we present the images in a preselected,
fixed order (chosen randomly at the beginning of the experiments).
Thus, all classes and images were presented in the same order for
training and testing for all classes and all participants.

During the acquisition process, the images of a given class are
shown in sequence, with 7 seconds display time per image. There-
fore, for each image class we record 280 seconds for training and
140 seconds for testing. In the pre-processing phase we discard
the first 10 seconds to account for the initial setup noise (i.e. the
subject finds a comfortable position and focuses on the images);
therefore, we use for training the samples from 10 to 280 seconds
from the train batch and for test - from 10 to 140 seconds from
the test batch. A small subset of the images from the dataset can
be viewed in the bottom left side of the Fig. 1.

The signal recorded so far is expected to be noisy, because
of the subject’s muscles’ electrical activity (blinks and other
small/micro movements), loud accidental sounds (i.e. outside traf-
fic, ambulance siren), interference from electronic devices or other
external factors. To reduce noise we discard the outliers from the
resulting EEG. We discarded a sample if on any of the 14 channels
it exceeded the channels mean value by a factor of three standard
deviations. Three standard deviations were calculated on a subject
level, separately for each class. After discarding the outliers from
the training data remains an average of 81.77% samples as we show
in Table 1. In the end we smooth the data with a small Gaussian
filter.

We chose this experiment scenario starting from the idea that
an image might trigger, apart from visual processing, other brain
activities not necessarily related to vision, like emotions and mem-
ories. Our goal is to let the users achieve this target state of mind

Table 1

The percentage (%) of remaining training data for each of the six subjects (S1 - S6)
after removing the outliers. In average, across subjects, remains a total of 81.77%
samples used for training.

S1 S2 S3 S4 S5 S6

82.51 82.25 80.09 83.05 80.79 81.92

during training for each class, then, during a long break to let
them completely relax and empty their minds so that in the testing
phase they would start focusing again to reach the same context
of thinking like the one in training. We also consider that this sce-
nario is more suitable for potential applications where we have to
train the system once and have test data taken later from a differ-
ent recording session. For example, in the case of human-machine
interaction, the system can first be trained on various concepts,
then a BCI could be used to record data continuously, to classify
it real-time using our system and perform specific tasks (i.e. send
a command to the coffee machine when the user is thinking about
coffee).

2.2. Prediction of visual classes from EEG

We first investigate the idea of predicting image classes from
EEG input alone. More specifically, we study whether a low-
dimensional but discriminating image class representation is possi-
ble, from EEG extracted when the person is looking at the respec-
tive picture. Could such a representation be effective for classifica-
tion?

In existing studies (Ex [22].), the signal is first band passed and
only the frequencies of interest (Epsilon, Delta, Theta, Alpha, Beta,
Gamma or Lambda) are kept, while all the other data is discarded.
Instead, we take an original approach and apply Gabor filters on
the raw signal. Each 1D Gabor filter, at a specific scale, could be
seen as a band-specific filter. Then, we let the automatic learning
process decide the relevance of each filter response.

This approach of using Gabor filters is inspired from computer
vision [23] and neuroscience [24]. They are powerful for capturing
signal information at different frequencies and time scales - these
could be correlated with different cognitive processes and modes
of thinking. Gabor filtering also preserves temporal locality which
could be important for considering the temporal ordering of hu-
man thought. There are also some specific studies in which it is
observed that biological receptive fields resemble Gabor filters in
the neurological response of cells from the visual cortex [25-27].

Gabor filters are expressed mathematically as a Gaussian mod-
ulated by a complex sinusoid. In image processing the two di-
mensional Gabor filter is used with different frequencies and ori-
entations. In our case we used one-dimensional (1D) Gabor fil-
ters with 9 different frequencies - and apply them on each 1D
channel. We compute the 1D Gabor descriptors in the follow-
ing way: the Gabor filter is composed of a real and imaginary
part, also known as the even signal, noted here as Es and the
odd signal, noted as Os. Es = exp(—x2/(202)) cos((2mx)/L); Os =
exp(—x2/(202)) sin((2mx)/A), where o is equal to the value of the
wavelength and is the standard deviation of the Gaussian envelope,
A is the wavelength of the sinusoidal factor. The Gabor descriptor

is the amplitude As = /Es2 + 0s2. We used 9 wavelength values:
A =4x1.6% where k = 0, 1,..., 8. The resulting preliminary fea-
tures have a size of n x 127, where n is the number of samples
and 127 is the number of dimensions obtained by applying Gabor
filters with 9 frequencies on each of the 14 channels (plus 1 for
bias, in the case of ridge regression).

In the top part of Fig. 1 we present an overview of the archi-
tecture we use for classification. The raw EEG data is first collected
and processed with the setup explained in Section 2.1, then the
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Fig. 3. The classification models proposed. a) we use Ridge regression (RR) then apply temporal smoothing on the results and threshold them to identify the final classes; b)
the CNN architecture - we apply Batch Normalization then have two groups of 2D Convolutional layers with Max Pooling and three groups of Fully Connected with Dropout
layers in the end; c) the stacked LSTM architecture - we apply Batch Normalization then have one or two LSTM layers with a Fully Connected layer at the end; d) the
two-step architecture used for visual features augmentation. First we train from scratch the Inception-v3 [28] network on our images and extract for each image its visual
features. Then, we train end-to-end the whole network with the visual features concatenated with their according EEG features as input, fed into a Fully Connected layer
with ReLu activation. In the final Fully Connected layer we use a softmax activation function. The Inception-v3 architecture image adapted from https://cloud.google.com/

tpu/docs/inception-v3-advanced.

preliminary features are extracted with the technique described
above and given as input to a classifier. We experimented with
multiple classification models:

« Ridge regression. (Fig. 3a) A classic and often very efficient ma-
chine learning approach using a simple linear classifier. Ridge
Regression [29,30] finds the best approximate solution to X =
y that minimizes a penalized sum of squares: RSS + || LS| |§. By
adding a small penalizing factor A to the diagonal of matrix
XX-1, the potential instability of the least squares estimator
is fixed. The approximated solution is B = (X"X + AI)~1XTy. To
take advantage of the sample’s high correlation in time, we ap-
ply temporal smoothing on the results of Ridge regression with
Gaussian filter. In the end, we compute for each class a thresh-
old which maximizes the accuracy at Equal Error Rate (EER).
EER is achieved when the Sensitivity (true positive rate) and
Specificity (true negative rate) are close to being equal.

CNN (Fig. 3b) A deep learning approach using convolutional
neural networks (CNN). First we create batches of samples
recorded each second with a size of (nFeatures, 128) (i.e. 128
is the number of SPS; dimension 1, nFeatures is 126 padded
with 2, for symmetry). The data is normalized with Batch Nor-
malization, then we have two groups (n times) of two Conv2D
followed by MaxPooling and in the end three FC with the ReLu
activation function followed by Dropout layers (m times). In the
end, we have a final FC layer with the number of neurons equal
to the number of classes.

LSTM (Fig. 3c) We employ the usage of LSTM layers to better
capture the temporal correlation in data. The data is ran first
through a BatchNormalization layer. We experimented with one
LSTM layer and with two stacked LSTM layers. The input data
here is a matrix with all the EEG samples corresponding to an
image. The size is 896 x 128: 896 is the number of secs for
an image (7) multiplied with the sampling rate (128) and the
number of features (126 + padded?2).

All deep learning architectures were trained using Stochastic
Gradient Descent until an early stopping condition was met. For

the one-vs-all approach the dataset becomes unbalanced (small
number of positive samples vs high number of negative samples).
In this case we train with a penalized loss, inversely proportional
to the number of instances in a class. Because of the high class im-
balance and low predicting power of the EEG signal, we threshold
the output from the last FC layer to maximize the accuracy at EER
(Equal Error Rate). For the multi-class case the evaluation is done
using the categorical accuracy.

Due to the high variance in data among participants for our ex-
periments we chose to train different classifiers for each subject,
similar to other work [15-18]. Training a more generic classifier on
the data from all the subjects is a problem we plan to address in
our future work.

2.3. Visual features augmentation

To further explore a potential application for brain-computer
interfaces (BCI), we test the potential of using the EEG features
in conjunction with visual features learned with deep neural nets
(CNNs). The general architecture we used can be seen in the
bottom-right part of Fig. 1.

We chose a state-of-the-art CNN called Inception-v3 [28] to ex-
tract the visual features. The inception networks introduced a new
solution to the problem of having large size variation of salient
parts in an image. Rather than just stacking convolution opera-
tions, a new inception module was introduced, which performs
filters with different sizes on the same level. Thus, the networks
become wider instead of deeper. For dimensionality reduction the
inception module contains convolutions of 1x1. The initial Incep-
tion network, GoogLeNet [31], also had two auxiliary classifiers to
prevent the problem of vanishing gradients.

Inception-v2 [28] introduced smart factorization (i.e. 5X5 con-
volutions factorized into two 3x3) and wider filter banks, to reduce
the loss of information. In Inception-v3, the authors use 7x7 factor-
ized convolutions, Batch Normalization in the auxiliary classifiers,
RMSProp as optimizer and label smoothing. The architecture uses
three types of inception modules, as can be seen in Figs. 5, 6 and
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7 in the original paper [28]. For simplicity, we will refer to them
in this article as type A (Fig. 5), B (Fig. 6) and C (Fig. 7).

An onverview of the Inception-v3 architecture can be seen in
Fig. 3d. From left to right, in order, there are three conv layers fol-
lowed by MaxPool, then two more convolutions followed by Max-
Pool. Then we have three inception model A modules, a grid size
reduction bloc, four inception model B modules followed by a grid
size reduction block and also connected to an auxiliary classifier.
After the last grid size reduction block there are two more incep-
tion model C modules, followed by a GlobalAveragePooling layer,
Dropout and the final FullyConnected layer with softmax. The de-
tails for the grid size reduction block can be found in Figs. 9 and
10 in the original paper [28].

To mimic the conditions when limited data is available for
training, we took the Inception-v3 [28] architecture and trained it
from scratch on the images used to record EEG training data in
our dataset. Thus all EEG-based classifiers and the visual image-
based network are trained on data from the exact same set of im-
ages. In order to minimize overfitting, the images used for training
the Inception-v3 net were also augmented by rotating with a range
of 40 degrees, flipping horizontally, zooming with 20%, shifting on
the width and height with 20% and applying a shear distortion of
20%. Then, for each image, we extracted the visual features vector
from the GlobalAveragePooling layer in the model. Next, we take
the EEG data for each image and extract the features from the last
LSTM layer in the two-stacked-LSTM architecture (Fig. 3c). Finally,
we concatenate the EEG features with the visual features, as shown
in Fig. 3d. Then, this joint feature vector is used as input for a sim-
ple network with two stacked Fully Connected layers. This model
is trained with the joint features for all the images in the training
set and tested in the same manner on the images from the test set.

Just as in the previous experiments, we train and test a differ-
ent classifier, in turn, for each subject. Therefore, a joint feature
for an image is composed of the visual features from the Inception
net and its corresponding EEG feature taken from one specific sub-
ject. Note that the visual features automatically extracted with the
Inception module are the same across all subjects - since that is
an automated, reproducible process. The EEG signals, however, are
taken in turn for each subject and image. We did not concatenate
the EEG features from all subjects at once because each brain is ex-
pected to process data in its own unique way, specific to each indi-
vidual, based on experience, genetic factors and many other traits
that make each individual unique. Therefore, we do not expect a
classifier trained on the EEG signals from one person to perform
equally well on a different person.

3. Results

In this Section we perform an in-depth experimental analysis
in order to find answers to our initial questions presented in the
Introduction (Question 1, 2 and 3). We first start with an ablation
study that aims to identify which electrodes (which capture sig-
nals from specific areas of the brain) are more relevant for visual
classification. We continue with an analysis of the performances
of different classifiers in the classification task. Next we present a
case study for test and training data collected without the pause
and a performance analysis when using EEG in conjunction with
visual information.

3.1. Ablation study: Selecting relevant signal

To establish if the EEG signals actually contain information
about the visual classes we first looked at the accuracy obtained
for each pair of channels using Ridge Regression in a one-vs-all
manner. A pair of channels contains two electrodes placed sym-
metrically on the scalp. We sorted the channel pairs by accuracy

(when using only their input for training and classification) in de-
scending order. Then, starting from the pair with the highest ac-
curacy, we created groups® by successively adding pairs (of next
highest accuracy) until all the channels were used. This is an effi-
cient Greedy approach for studying the effect of different channels
and their corresponding brain areas on visual recognition.

It is interesting to note (Fig. 4, Table 2) that even though most
of the individual channel pairs have a smaller predictive power by
themselves (min. 59.25%, max. 66.21%), the pair with the highest
accuracy is very close to the one obtained when using all elec-
trodes together (66.76% with Ridge Regression).

By adding more pairs successively, we achieve a peak of 69.39%
(average accuracy on all subjects), after adding the electrodes P7
and P8, placed on the somatosensory association area, responsible
for texture, weight and object recognition. The accuracy slightly
decreases when adding the channels from the temporal lobe (as-
sociation area) and frontal lobe (motor functions). In the end, the
channels O1 and O2 contribute with some information from the
visual area and increase the accuracy.

A surprising result here is the actual order of the channels’ rel-
evance. We know from neuroscience research that for each cogni-
tive function or function of the human body there is a correspond-
ing brain activity, which in general can be localized to a specific
brain area [32]. While in general there is no single limited area
dedicated to a single function, it is also accepted that specific re-
gions are correlated with specific functions, such as higher level
thinking or visual processing [32] - and the electrodes, placed on
different places on the scalp are expected to capture such corre-
lations. We correlated the physical location of the electrodes on
the scalp (Fig. 2) with the brain areas from which they would col-
lect most of the information (Fig. 5). In Table 2, we present the
pairs of electrodes sorted descending by their accuracy with their
corresponding brain areas (and their indexes from Fig. 5) and the
functions of those brain areas.

By analyzing the correlation between channels and brain func-
tions, we can see that the pair with the highest accuracy is the
one placed on the area related to the face. The exact placement
of the electrode corresponds to the lower part of the cortical mo-
tor homunculus, related to the facial muscles [33]. This could be
due to specific eye movement patterns (saccades) related to spe-
cific classes. It could also be related to the firing of mirror neu-
rons, when the subjects focus on the images and project them-
selves into the specific story related to the image class, exhibiting
motor intentions and facial expressions [34]. More importantly, the
signals from area 4 (Brocca’'s area) are related to speech - which
could suggest an internal verbalization of the classes name. Note
that each class, either being scene related (park, old town, seaside)
or object related (flower, car, airplane) could trigger specific inten-
tions, determining different facial expressions, eye movements, ac-
tions or spoken language. Note that the poorer performance of Pair
6 (also related to the motor areas 3 and 12) could be due to the
lacking of information from area 4 (speech-related Brocca’s area).

The second and third place are the channels located on the
higher mental functions area. This suggests that visual perception
is a complex process which involves, apart from processing the vi-
sual signal, higher brain functions. Only on the fourth place we
see the electrodes related to visual object recognition and pattern
detection. However, as seen in Fig. 4, they contribute with impor-
tant information for peak accuracy. It is interesting to see experi-
mentally the connection between semantic visual recognition and
different cognitive functions, not all dedicated to direct visual pro-
cessing. Also note that the ordering of the channel pairs impor-

2 Groupl:Pairl;2 Group2:Pair1;2;3 Group3:Pair1;2;3;4 Group4: Pairl;2;3;4;5
Group5: Pair1;2;3;4;5;6.
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Fig. 4. Accuracy variation with different subsets of electrodes used for ridge regression training and classification. Pairs avg - the average accuracy when using only one pair
of channels as input EEG signal; Group1-52 - classification using groups of pairs, the pairs in a group are added successively, in decreasing order of their individual accuracy.
The electrodes in a pair are presented in Table 2. The accuracy increases when the electrodes placed on the visual cortex are added (Group2 to Group3; Group5 to ALL). The
group that generalizes best (Group 3) includes electrodes from areas performing high-level reasoning and visual recognition.

Table 2
Pairs of channels, their accuracy when used alone for training and their correspond-
ing brain areas. The brain area indexes are the ones from Fig. 5.

Channels Acc (%) Brain areas and functions

Pair1: FC5;FC6 66.21 Frontal-central lobe (3,4,12)

3. Motor function area

« Initiation of voluntary muscles
4. Broca’s area

« Muscles of speech

12. Motor function area:

« Face, tongue, larynges muscles
« Eye movement and orientation

Frontal lobe (13)

Prefrontal lobe (13)

13. Higher mental functions

« Concentration; Creativity

« Planning; Judgment

- Emotional expression

« Inhibition

Parietal lobe (9,10,11)

9. Sensory area

- Sensations from muscle and skin
10. Somatosensory association area
- Evaluation of weight, texture, etc.
for object recognition

11. Wernicke’s area

- Written and spoken language
comprehension

Pair2: F7;F8 64.14
Pair3: AF3;AF4 63.02

Pair4: P7;P8 62.94

Pair5: T7;T8 61.69 Temporal lobe (2)

2. Association area

« Short-term memory

« Equilibrium

- Emotion

Frontal lobe (3,12)

3. Motor function area
Initiation of voluntary muscles
12. Motor function area:

« Face, tongue, larynges muscles
- Eye movement and orientation

Pair6: F3;F4 59.66

Pair7: 01;02 59.25 Occipital area(1)

1. Visual area

- Sight

- Image perception
- Image recognition

tance is stable across all subjects, which further validates the above
observations.

It is important to note here that while we do not directly mea-
sure specific brain functions and areas, it is well known that dif-
ferent regions tend to correlate with different functions [32] as
shown in our Fig. 5. Therefore, we draw our conclusions based on
the noninvasive signal readings from electrodes that are placed in
proximity of specific brain regions. We observe not only that sig-
nals from higher level cognitive processes are more important for
visual recognition than signals from V1, but also that such pat-
terns of evidence is similar across different subjects. This facts sug-
gest that this is a more general observation about where seman-
tic visual recognition might take place in the brain. The idea that
visual recognition could involve deeper and more semantic pro-
cesses is both beautiful, somewhat surprising, but it also makes in-
tuitive sense: in order to understand what an object is, one should
also consider the role played by that object in the larger context
of a more complex scene in which several actors interplay. Then,
putting things in the right context should definitely involve higher-
level thinking.

Concluding remarks regarding our empirical observations. The
electrodes’ locations follow the International 10-20 standard [21].
They cover uniformly the head and are in the vicinity of certain
brain regions whose functioning is known to be correlated with
specific cognitive functions [32].

Thus, by observing how the signal from different groups of
electrodes influences recognition performance we could indirectly
infer, empirically, the involvement of different brain functions
to semantic visual recognition of objects and scenes in images
(Section 3.1).

By doing so, we observed (Fig. 4) a surprising fact: higher level
cognitive functions seem to be more relevant for semantic visual
recognition (at the category level) than the initial visual processing
that is known to take place in V1 area [32].

This finding makes perfect sense: higher level semantic visual
understanding at the level of object and scene classes should also
require the complex understanding of context, in which object
classes are also understood based on the roles they play in the
overall visual story. Putting objects in the right context is a higher
level cognitive ability, which is expected to require a more global
understanding of the scene, achieved by the collaboration of var-
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Fig. 5. Electrodes’ locations relative to brain areas. Adapted from Neuroanatomy - A Primer, by K. Sukel, 2011, http://www.dana.org/News/Details.aspx?id=43515.

Table 3

Average accuracy (%) per model at EER. The best results are obtained with Ridge
Regression (RR). The LSTM architectures appear to be overfitting. All models are
trained on all channels, except RR-G3 which is trained on Group3 and is added
here for comparison.

Table 4

Average accuracy (%) at EER per subject. Ridge Regression results using all channels
and only the channels from Group3 (G3). The subjects are sorted in descending
order. With Bold, Italic and Bold italic, in that order, we have the top 3 values.
Note the relatively stable ordering among subjects.

RR RR-G3 CNN LSTM-1 LSTM-2 Subj3 Subj1 Subj5 Subj2 Subj4 Subj6
Avg acc. 66.76 69.39 57.08 58.52 60.97 Al 74.17 70.79 69.82 66.06 62.01 57.52
G3 72.82 74.71 72.99 65.19 69.61 61.01

ious higher level cognitive processes. They might not be directly
involved in the processing of visual input at the lower levels. We
could expect however that such higher level cognitive modules
take, internally in the brain, inputs from V1 - a fact that cannot
be observed by our noninvasive and relatively superficial EEG cues.
The validity of our experimental observations is further strength-
ened by the fact that a similar pattern of electrodes’ relevance has
been observed across all subjects in our tests (Fig. 4).

3.2. Classification task: Comparisons of models and subjects

We train a different classifier for each subject. The success of
this task should mainly depend on two factors: 1) the ability of the
classification models to capture and use the relevant information
from the EEG signals (when that exists) and 2) the subjects’ abil-
ity to focus and emit good quality EEG signals. Our experiments
show that there is a visible and relatively stable dependency of
accuracy on these factors. We experimented with different clas-
sification models, as explained in Section 2.2, with a one-vs-all

approach. We present in Table 3 the accuracy obtained for each
model.

We can see that Ridge Regression outperforms the other mod-
els with 66.76% accuracy when trained using all the channels. The
stacked LSTM with 2 layers performs better than the CNN, be-
ing more suited for time series classification. However, since the
dataset is small and the signal noisy, the richer deep models are
prone to overfitting, which explains the superior performance of
ridge regression. For the rest of the experiments (except Visual fea-
tures augmentation), we used Ridge Regression with Gabor filter-
ing, since it gives the best results.

In Table 4 we ranked the subjects by their accuracy for the
case when we use all electrodes for training and when using only
electrodes from Group 3. There is a clear difference in accuracy
between subjects. This indicates that the results depend not only
on the classification model but also on the subject who generated
the EEG. Therefore, we expect that a more trained subject, with a
greater ability to focus would generate a richer and better EEG sig-
nal and would help the machine learning models learn and predict
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Fig. 6. Accuracy (%) in time. The accuracy increases when considering samples over large time spans.

Table 5

Comparison with the work of [15] - multiclass trained and tested on our dataset.
CNN, LSTM-1 and LSTM-2 are our architectures. The accuracy of [15] drops signifi-
cantly training on our data.

Model Avg accuracy (%)

Raw Gabors
[15] 18.81 22
RR 20.86 29.2
CNN 21.11 26.5
LSTM-1 21.63 25.67
LSTM-2 19.81 22.83

more accurately. Note that the top three when using all channels
are the same with the top three in the Group 3 case (Table 4). The
result strengthens the idea that Group 3 contains electrodes that
are generally relevant for this task, across different people, and can
be robustly used for improved classification.

When training the Ridge Regression model we make a predic-
tion for each time sample. Since the signal is actually a time se-
ries, we average the outputs over temporal windows of different
sizes, centered at the current point. We vary this averaging tem-
poral window (by increasing the corresponding samples taken into
account) from O to 60 seconds. As expected (Fig. 6) we observe
that by taking more samples into consideration, over larger time
spans, the accuracy increases consistently.

When analyzing the results for each subject individually (Fig. 7),
we see that the class flowers has the highest accuracy for five out
of six subjects, with a maximum at 96.35% for Subject 1. For Sub-
ject 3 the class with the highest accuracy was cars. The class flow-
ers was the first class in the sequence for which we recorded data.
The fact that it appears predominantly on the first place suggests
that the subject’s fatigue also plays a factor when collecting EEG
data. Even more so, the class old town, which was always last in
the data collection process, appears to have, for three subjects, the
lowest accuracy - which further suggests the subject’s fatigue and
diminished ability to focus. Another observation is that the sub-
jects claimed to have a special affinity to the class with the high-
est accuracy. Subject 3 had an intense memory related to the class
cars and four of the other subjects (two males and two females)
declared a particular affinity for flowers, being related to specific
powerful events.

To further understand the difference between our work and the
work in the state-of-the-art article [15], we trained and tested the
model in state-of-the-art on our Objects and Scenes dataset, pre-

processed and Gabor filtered, in our multiclass setting (predict the
correct class out of six possible ones) and achieved the accuracy
of 22%. In Table 5 we also included the results of our architec-
tures in the same multiclasses setup. Ridge Regression remains the
best model, with an accuracy of 29.2%. The random accuracy here
is 1/6 = 16.66%. Note that on our data, Gabor filtering helps ev-
ery time, which again suggests that our data is less vulnerable to
noisy components that might depend on specific recording ses-
sions. Comparing the results using the model from state-of-the-art
and the data obtained with the experiment setup in state-of-the-
art [15] (83% accuracy) with the results using the same model but
with data from our Objects and Scenes dataset (22%), we notice a
drastic drop in accuracy (a drop of 61% when applying Gabors and
around 64% when using the raw signal). The results indicate that
our experimental scenario, when we essentially allow the “brain-
cache” to be erased by introducing a long break between training
and testing, is more realistic and therefore more challenging.

3.3. Case study: Collecting training and test data separated vs
continuous

In this case study we explore the difference between collecting
test and training data in a continuous session versus collecting in
different sessions, separated by a long break.

We repeated the process of data collection with three of the
subjects (1 male and 2 females), but this time in a different setup
(the continuous setup). In this continuous setup, as opposed to the
original, separated setup (in which there is a significant amount of
time passing between the training and test sessions), we collected
the training and test data continuously, without the long pause be-
tween the training and testing sessions. We employed the same
experimental method as in Section 2.2, using the Ridge Regression
model.

As expected, for the continuous data we obtained greater accu-
racy. We can see in Fig. 8 the results for each subject. The average
accuracy is lower in the separated setup and is much higher in the
continuous setup. We even have an accuracy of 99.99% on the con-
tinuous setup for Subject 6 and the class City. Many factors could
stand as grounds for these results. One of them is the fact that
the signal has less noise caused by the variation of the electrodes
position on the scalp, because in this case the BCI device was not
taken off between training and testing. Another factor is the fact
that in this scenario the subjects do not have to disrupt their state
of mind when proceeding to collect data for the test phase.
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outlier of 99.99% for Subject 6 on Old town.

When the subjects focus on a image, their brain infers con-
cepts correlated internally to an original set of life experiences, it
processes the input data and generates trains of thoughts, stories.
Apart from that it may process in parallel other thoughts and ac-
tivities, unrelated to the concept of interest. We did our best to
isolate the signal most relevant for the respective class, to increase
the signal to noise ratio by applying the methods discussed in the
data acquisition Section 2.1. In this scenario, however, if we do not
disrupt the collection session then we could end up learning de-
scriptors specific to this continuous time-span, making the prob-
lem much easier but unrealistic.

The conclusion here is that a crucial factor in achieving accurate
results with our method is the subject’s level of training to reach
exactly the same state of mind for a certain class. Another fact to

think about is that when there is no time break between training
and testing session, then the results could be biased since the sub-
ject’s brain activity is highly correlated in time. It is very likely that
when there is no break between training and testing sessision, we
are in fact training on almost the same data as the one used for
testing, so we should expect a high level of overfitting.

3.4. Final setup: Boosting visual recognition with EEG

Our final setup is to explore the possibility of enriching
the image-based features learned by a CNN with EEG data
(Section 2.3). To establish a baseline, we first tested using image-
based CNN features only (Fig. 9). Then, we used the augmented
image+EEG features and tested for each subject. The EEG signals
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boost performance every time, with a significant overall improve-
ment of 5.16% in the 91+% regime, on the multiclass recognition
scenario on our Objects and Scenes dataset.

These results strongly suggest that noninvasive BCI could signif-
icantly improve automatic visual recognition, when used in combi-
nation with current computer vision and deep learning models.

4. Discussion and concluding remarks

In this paper we tackled the problem of predicting visual
classes using only the EEG signal recorded from humans while
they're looking at images. Despite the challenges regarding the
noisy and hard to collect EEG signal, we presented the following
contributions:

1. We proposed and evaluated different automatic models for pre-
dicting what humans see by using their EEG signals by them-
selves (Table 3) or in combination with deep image-based fea-
tures (Fig. 9). We showed that in the case of noisy EEG data and
limited training data, a simpler Ridge regression model com-
bined with Gabor filtering could be at least as effective as the
powerful LSTM or CNN models (Table 3). We also conducted
an ablation study to determine the most relevant electrodes for
classification (Fig. 4).

2. We proposed the use of Gabor filters as a EEG processing tech-
nique, which makes possible the removal of noisy signals and
improving generalization power (Table 5).

3. We study the involvement of higher level cognitive areas in the
visual recognition process and show that visual recognition is
the result of the processing in several cortical areas, more rel-
evant being the ones that are involved in higher level cogni-
tive processes. Interestingly enough, the area that is involved in
early visual processing (V1) [32] seems to be less relevant - a
fact that confirms results from computer vision and deep learn-
ing, in which the high level semantic features are learned at the
deepest levels of processing (Table 2, Fig. 5).

4. We showed that prediction from EEG data alone is possible but
has moderate accuracy, and depends not only on the classifiers
but also on the human subjects themselves (Table 4). Our ex-
periments also show that performance strongly depends on the
subjects’ ability to focus. When they can better project into the

“memory spaces” related to specific concepts the recognition
accuracy from EEG data alone can go above 95% (Fig. 7).

5. We show that while EEG signals are weaker than visual fea-
tures extracted directly from images, they contain complemen-
tary information which can be used to significantly boost the
performance of vision only approaches with deep neural nets.
This opens the door for many applications of EEG in the field
of visual recognition for human computer interaction (Fig. 9).

6. We propose a more realistic experimental setup for data col-
lection, when training and testing data is collected during en-
tirely different recording sessions, at different times of the day
and we show by comparing with previous work how this sce-
nario, though more challenging, eliminates the risks of hav-
ing in the EEG signal noise specific to the recording session
(Table 5).

Our results guide our future research. Next, we aim to capture
better quality EEG signals by studying the effect of subjects’ train-
ing and improvement of their ability to focus. Second, we will ex-
plore different territories for using EEG to boost automatic visual
recognition and vision to language translation. Ultimately, we hope
that our work will open doors towards better comprehending hu-
man “perception” in relation to “meaning” and the overall under-
standing of the scene, in a multidisciplinary research.
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