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Classifying visual information is an apparently simple and effortless task in our everyday routine, but can 

we automatically predict what we see from signals emitted by the brain? 

While other researchers have already attempted to answer this question, we are the first to show that a 

commercially available BCI could be effectively used for visual image classification in real-world scenar- 

ios – when testing takes place at a completely different time than training data collection. The task is 

difficult, as it requires relating the noisy and low-level EEG signals to complex and highly semantic vi- 

sual categories. In this paper, we propose different learning approaches and show that simpler classifiers 

such as Ridge Regression with Gabor filtering of the input EEG signal could be more effective than the 

powerful Long Short Term Memory Networks and Convolutional Neural Networks in this case of limited 

and noisy training data. We analyzed the importance of each electrode for the visual classification task 

and noticed that the sensors with the highest accuracy were the ones that recorded brain activity from 

regions known to be correlated more with higher level recognition and cognitive processes and less to 

lower-level visual signal processing. The result is also in accordance with research in computer vision 

with deep neural networks, which shows that semantic visual features are learned only at higher levels 

of neural depth. 

While EEG signals are weaker by themselves for the task of visual classification, we demonstrate that 

they could be powerful when combined with deep visual features extracted from the image, improving 

performance from 91% to over 97% in a multi-class recognition setting. Our tests show that EEG input 

brings additional information that is not learned by artificial deep networks on the given image training 

set. Thus, a commercially available BCI could be effectively used in conjunction with a deep learning 

based vision system to form together a stronger visual recognition system that is suitable for real-world 

applications. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

From responding physiologically to concrete and physical stim-

li to elaborating opinions and viewing future actions and emo-

ions, the brain is responsible for all these amazing actions, which

eans that there must be signs indicating their existence. For this

eason, the BCI potential has attracted the attention of many re-

earchers for a large set of applications [1] . A typical example

ould be the use of BCI as a new type of controller [2,3] : to move

 wheelchair [4] or for “brain typing”[5] . 
∗ Corresponding authors. 
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There are also a few studies that focus on the visual informa-

ion extracted from EEG, for example the approach for automatic

mage annotation, using a CNN with an EEGNet architecture [6] ,

r the image reconstruction methods [7,8] . Other recent studies

9,10] , successfully use neural networks (CNN and Recurrent NN)

or EEG classification tasks and confirm their viability for this kind

f problems. The authors of another article [11] , used Support Vec-

or Machine (SVM), k-Nearest Neighbour (k-NN), Multi-Layer Per-

eptron Artificial Neural Network (MLP-ANN) and Logistic Regres-

ion (LR) in their research work to extract the meaningful EEG sig-

al patterns from a large volume of poor quality data having ar-

ifacts noises. For EEG decoding and visualization, deep learning

ith convolutional neural networks has been used [12] . In this pa-

er, we also investigate a deep learning approach in combination
eading into the mind’s eye: Boosting automatic visual recognition 
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with EEG input, using CNNs and LSTMs, for the task of image clas-

sification. 

Previous works prove that EEG can be successfully used in sev-

eral applications and that it is possible to extract meaningful se-

mantic data using BCI. In this paper, we focus on the problem of

predicting from EEG data the visual classes seen by human sub-

jects and aim to answer the following questions: 

1. Can we accurately predict visual classes from noninvasive EEG

signals alone? In literature some articles indicate that inva-

sive systems can be used for similar tasks [13,14] . However,

very few showed that the relatively weak EEG signals are rele-

vant for high-level visual classification. A set of recent papers

[7,15,16] achieved 83% on multi-class visual recognition from

EEG signals alone but in their case the training and testing sam-

ples were collected in the same continuous recording session.

In this paper we study the more realistic scenario when train-

ing and testing data are collected at completely different times.

This case is much more difficult, but we show ways in which

EEG data can be effectively used for image classification. 

2. Is visual recognition based only on features extracted from the

brain areas traditionally related to vision or is it the result of a

more complex process that also involves other areas of the cor-

tex, responsible for higher level non-vision thought? Consistent

with previous research [15,17] , our experiments suggest the in-

teresting case that vision might go well beyond simple appear-

ance based processing. 

3. Can we improve image classification if we use information ex-

tracted from EEG signals in conjunction with standard classic

computer vision features? We show that EEG, even when they

are weaker than visual features extracted directly from the im-

ages, are in fact useful for prediction as complementary signal.

By capturing different kinds of information, not learned by deep

neural networks directly in the image domain, EEG brings ad-

ditional discrimination power that significantly boosts the clas-

sification accuracy. 

There are many studies that attempt to decode EEG data using

brain-computer interfaces (BCI) for a multitude of tasks and appli-

cations. Only a very small fraction focus on vision [7,8,15,17–19] ,

out of which most pose the problem as a recognition task [17–19] .

One closely relates to our work [15] , by proposing a deep learn-

ing approach in order to predict the class of the image seen by a

human subject from the corresponding noninvasive EEG. We will

refer to this article as state-of-the-art. 

More specifically, the authors address the problem of visual

classification using recurrent neural networks and achieve an av-

erage accuracy of about 83% on the test set [15] . They collected

data for each class, per subject, in a burst of 25 seconds, then used

the first 20 seconds for training, the next 2.5 seconds for valida-

tion and the last 2.5 seconds for testing. While authors of this ar-

ticle [15] obtained high accuracy, they trained and tested on data

taken in the same burst. As a consequence their approach suffers

from overfitting as shown in another study [20] and confirmed in

our experiments ( Section 3.2, Table 5 ), as their model learns noisy

signals that are specific to that particular burst and are less related

to the actual semantic image class. We train and test on data taken

at different times of the day which is important when making pre-

dictions based on EEG signals for real world applications. We take

a different approach in data processing and use Gabor filtering in

order to remove the high frequency signal that is prone to over-

fitting when used in combination with powerful deep networks

( Section 3.2, Table 5 ). By our novel processing of the system com-

bined with our electrode signal selection mechanism ( Section 3.1,

Fig. 4 ) we are able to achieve a competitive performance in the re-

alistic scenario when the test data is taken at a different time than

the train data. 
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R

with EEG signals, Neurocomputing, https://doi.org/10.1016/j.neucom.20
We collected a novel image-EEG dataset by using an affordable,

ndustry-level BCI with 14 electrodes and images from six differ-

nt classes, including objects and different scenes. We collected the

raining and test data in distinct sessions, separated by a few hours

t least. We wanted to better mimic the real-world conditions and

o eliminate all possible interference between the training and test

ata sets. Instead of choosing from the EEG bands (Epsilon, Delta,

heta, Alpha, Beta, Gamma or Lambda) the ones most relevant for

he experiments, we project the entire spectrum on the space of

abor wavelets, across a relatively large range of frequency bands.

s we show in experiments, this approach is efficient and robust

o overfitting ( Section 3.2, Table 5 ). 

Another related paper augments visual features extracted from

mages with EEG signals [16] . The authors learn a joint encoding

f the visual and EEG information with a Siamese network. How-

ver, they used the same dataset as [15] - thus suffering from the

ame limitation in terms of using training and testing data from

he same recording session. Different from their work, we show

hat EEG data can be effectively used to boost visual recognition

ven in the case when the training and testing sessions are dis-

inct and relatively far apart in time ( Section 2.3, Fig. 9 ). 

Thus, the research problem we are facing is relatively new. The

ain challenge, as seen in our ablation tests ( Section 3.1, Fig. 4 ), is

hat EEG signals are weak and generally noisy. They are the aggre-

ate result of firings from billions of neurons, each having specific

nd often local tasks, over relatively large brain areas. On top of

hat, the process of capturing qualitative data is made even more

ifficult by the experimental setup, in which the subject is asked

o wear a noise-sensitive and often uncomfortable BCI device for

 relatively long amount of time, while remaining focused. Despite

he obvious difficulties and challenges posed by the problem, this

aper makes several contributions, at the intersection of computer

ision and brain computer interfaces: 

• We propose an unprecedented approach to classify visual

classes from EEG data by capturing signals at different frequen-

cies with Gabor filters and obtain an average classification accu-

racy of 66.76% over all classes and subjects, and a peak accuracy

of 96% on specific classes. 

• We investigate the viability of using EEG data alongside state-

of-the-art deep neural networks and show a significant boost in

recognition from 91% to over 97%. 

• We investigate the relevance of each electrode input for classi-

fication and experimentally confirm that the most relevant EEG

signals come from brain areas that are involved in higher cog-

nitive reasoning, not from areas dedicated to early visual pro-

cessing (e.g. V1). 

• We acquired a novel dataset with over 4 hours of EEG record-

ing from 6 different subjects and 6 different visual classes, in-

cluding 3 object classes and different 3 outdoor scenes, with

distinct training and testing recording sessions, which we will

make publicly available. 

. Methods 

Our work is motivated by the intuition that when a person is

isually understanding a picture, she or he is doing much more

han just pattern matching. An image is a glimpse into the human

ind. Given enough time to focus, an image will summon all the

emories and emotions which, combined, shape the semantic con-

ept behind the pixels. We investigate if we can extract descriptors

rom EEG, which would allow us to accurately distinguish such dif-

erent concepts that are triggered by visual input. 

Starting from this idea, and to find answers to our initial ques-

ions (Question 1, 2 and 3), we designed a three-step architecture,

hich we present in Fig. 1 . First (in EEG recording), we collect EEG
eading into the mind’s eye: Boosting automatic visual recognition 

19.12.076 

https://doi.org/10.1016/j.neucom.2019.12.076


N. Cudlenco, N. Popescu and M. Leordeanu / Neurocomputing xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 9, 2020;9:47 ] 

Fig. 1. System architecture. Bottom left: we record EEG signals from people looking at pictures, in distinct training and testing sessions, taken at different times in the day. 

Top: we apply Gabor filters on the raw EEG data and use it to train an EEG-based classifier. Bottom right: for each picture we extract features from a state-of-the-art deep 

convolutional net. Then we augment the visual features with the corresponding EEG features learned in the previous step and train a combined Visual-EEG classifier. 
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Fig. 2. Emotiv EPOC - electrode placement on scalp. CMS and DRL are the reference 

electrodes. The locations correspond to the International 10–20 System [21] . 
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ata from a group of volunteers. Then (in the prediction of visual

lasses from EEG task), we apply Gabor filters on the raw data to

xtract the preliminary descriptors, which we use to train a classi-

er. In order to better demonstrate the power of EEG for real-world

ecognition tasks (in the visual features augmentation task), we

ombine them with visual features extracted with a state-of-the-

rt CNN (trained from scratch on our images), and feed them to a

nal classifier for a significant boost in recognition performance. 

.1. Data acquisition setup 

To collect the EEG data, a total of six volunteers (4 males and 2

emales) participated. All subjects were between 25–35 years old,

ad similar cultural backgrounds and were all university gradu-

tes. We used a commercially available BCI, Emotiv EPOC+ 1 with 14

lectrodes and 2 reference nodes (CMS and DRL), an internal sam-

ling rate of 2048 downsampled to 128 samples per second (SPS)

nd a resolution of 14 bits. The electrodes are placed in the Inter-

ational 10–20 System [21] ( Fig. 2 ) and are immobile, they have

xed positions. 

Although we are not applying any filters on the data received

rom the headset (we apply Gabor filtering directly on the raw EEG

oming from the BCI), the Emotive EPOC BCI cap applies an inter-

al processing to the data as follows: a strong double notch filter

t 50Hz and 60Hz removes interference from the electrical power

upply. The filter also affects frequencies down to about 45Hz, so

motiv specifies 43Hz as the upper usable frequency limit where

he spectral response is perfectly flat. The filters extend to about

6Hz, which is higher than the Nyquist cut-off frequency for 128Hz

ample frequency. 

We chose this relatively inexpensive and therefore easily avail-

ble equipment, because it has a good quality signal and for that

eason it is widely used by the research community. Its fixed elec-

rodes cover relatively uniform the human head and are positioned
1 Emotiv - brain computer interface technology: http://emotiv.com . 
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ccording to the International 10–20 System [21] at specific regions

f the brain, some of them being placed near the visual cortex and

he recognition cortex (O1, O2, P7, P8), others near regions related

o other functions. The fact that we do not carefully hand pick the

xact positions of the electrodes, makes our results more general

nd robust to their location. Carefully choosing the electrodes’ lo-

ation might improve performance, but also increase the chance of

verfitting. Moreover, the fact that the electrodes cover the entire

calp and are not limited to regions that are known to be dedi-

ated to visual processing (V1) enables us to draw the conclusion

hat signals from regions that are dedicated to higher level func-

ions could be more relevant for semantic visual recognition than

1. 

We obtained an Objects and Scenes EEG dataset, composed of

ix classes of objects and outdoor scenes: flowers (1), airplanes (2),
eading into the mind’s eye: Boosting automatic visual recognition 
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Table 1 

The percentage (%) of remaining training data for each of the six subjects (S1 - S6) 

after removing the outliers. In average, across subjects, remains a total of 81.77% 

samples used for training. 

S1 S2 S3 S4 S5 S6 

82.51 82.25 80.09 83.05 80.79 81.92 
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cars (3), park (4), seaside (5) and old town (6). The pictures are

either selected from ImageNet (cars, airplanes) or were taken by

the authors (the rest of classes). 

In our experimental setup, the images of a given class are first

divided into two groups, one per training or testing session, as

follows: 40 images are dedicated for training and 20 for testing. In

a given training or testing session the images shown to a subject

are grouped per class. Thus, we present the images to subjects in

phases, one phase for each of the 6 classes. For example, during

the training phase, we start by displaying all training images of

the first class on after the other, at a rate of 7 seconds given

per image, without pause. Then we move to show the training

images of the second class and so on, until all training images of

all classes are seen by a given subject. Between classes there is a

short pause of around 1 minute. Thus, after showing the images

for one class, we wait for a minute and then start showing the

images of the next class. Please note that the same protocol is

used for both training and testing. 

Between the training and testing sessions the subjects take a

long break, in the order of hours, during which they take off the

BCI device and are encouraged to relax and do other activities. This

long break ensures there is no bias between the data collected in

the training and testing sessions. It is important to note the signif-

icant amount of time passing between the training and the testing

acquisition for a given class, with data acquired for other classes in

between. In this way we attempted to reduce the noise that could

relate the training and testing signals, noise that is not related to

the actual image class and could wrongly improve recognition per-

formance (by testing on the training set, in essence). 

The chosen order of the classes, which is kept the same for all

subjects is the following: 1. Flowers, 2. Airplanes, 3. Cars, 4. Park,

5. Seaside, 6. Old town. Please note that the dataset is quite diffi-

cult for the task chosen. The images belonging to a given class vary

substantially, in terms of scale, shape, appearance, viewpoint, back-

ground scene and number of instances. Thus there is a great varia-

tion between the set of images used for training and that used for

testing. For a given class we present the images in a preselected,

fixed order (chosen randomly at the beginning of the experiments).

Thus, all classes and images were presented in the same order for

training and testing for all classes and all participants. 

During the acquisition process, the images of a given class are

shown in sequence, with 7 seconds display time per image. There-

fore, for each image class we record 280 seconds for training and

140 seconds for testing. In the pre-processing phase we discard

the first 10 seconds to account for the initial setup noise (i.e. the

subject finds a comfortable position and focuses on the images);

therefore, we use for training the samples from 10 to 280 seconds

from the train batch and for test – from 10 to 140 seconds from

the test batch. A small subset of the images from the dataset can

be viewed in the bottom left side of the Fig. 1 . 

The signal recorded so far is expected to be noisy, because

of the subject’s muscles’ electrical activity (blinks and other

small/micro movements), loud accidental sounds (i.e. outside traf-

fic, ambulance siren), interference from electronic devices or other

external factors. To reduce noise we discard the outliers from the

resulting EEG. We discarded a sample if on any of the 14 channels

it exceeded the channels mean value by a factor of three standard

deviations. Three standard deviations were calculated on a subject

level, separately for each class. After discarding the outliers from

the training data remains an average of 81.77% samples as we show

in Table 1 . In the end we smooth the data with a small Gaussian

filter. 

We chose this experiment scenario starting from the idea that

an image might trigger, apart from visual processing, other brain

activities not necessarily related to vision, like emotions and mem-

ories. Our goal is to let the users achieve this target state of mind
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R

with EEG signals, Neurocomputing, https://doi.org/10.1016/j.neucom.20
uring training for each class, then, during a long break to let

hem completely relax and empty their minds so that in the testing

hase they would start focusing again to reach the same context

f thinking like the one in training. We also consider that this sce-

ario is more suitable for potential applications where we have to

rain the system once and have test data taken later from a differ-

nt recording session. For example, in the case of human-machine

nteraction, the system can first be trained on various concepts,

hen a BCI could be used to record data continuously, to classify

t real-time using our system and perform specific tasks (i.e. send

 command to the coffee machine when the user is thinking about

offee). 

.2. Prediction of visual classes from EEG 

We first investigate the idea of predicting image classes from

EG input alone. More specifically, we study whether a low-

imensional but discriminating image class representation is possi-

le, from EEG extracted when the person is looking at the respec-

ive picture. Could such a representation be effective for classifica-

ion? 

In existing studies (Ex [22] .), the signal is first band passed and

nly the frequencies of interest (Epsilon, Delta, Theta, Alpha, Beta,

amma or Lambda) are kept, while all the other data is discarded.

nstead, we take an original approach and apply Gabor filters on

he raw signal. Each 1D Gabor filter, at a specific scale, could be

een as a band-specific filter. Then, we let the automatic learning

rocess decide the relevance of each filter response. 

This approach of using Gabor filters is inspired from computer

ision [23] and neuroscience [24] . They are powerful for capturing

ignal information at different frequencies and time scales - these

ould be correlated with different cognitive processes and modes

f thinking. Gabor filtering also preserves temporal locality which

ould be important for considering the temporal ordering of hu-

an thought. There are also some specific studies in which it is

bserved that biological receptive fields resemble Gabor filters in

he neurological response of cells from the visual cortex [25–27] . 

Gabor filters are expressed mathematically as a Gaussian mod-

lated by a complex sinusoid. In image processing the two di-

ensional Gabor filter is used with different frequencies and ori-

ntations. In our case we used one-dimensional (1D) Gabor fil-

ers with 9 different frequencies - and apply them on each 1D

hannel. We compute the 1D Gabor descriptors in the follow-

ng way: the Gabor filter is composed of a real and imaginary

art, also known as the even signal, noted here as Es and the

dd signal, noted as Os . Es = exp (−x 2 / (2 σ 2 )) cos ((2 πx ) /λ) ; Os =
xp (−x 2 / (2 σ 2 )) sin ((2 πx ) /λ) , where σ is equal to the value of the

avelength and is the standard deviation of the Gaussian envelope,

is the wavelength of the sinusoidal factor. The Gabor descriptor

s the amplitude As = 

√ 

Es 2 + Os 2 . We used 9 wavelength values:

= 4 × 1 . 6 k , where k = 0, 1,..., 8. The resulting preliminary fea-

ures have a size of n × 127, where n is the number of samples

nd 127 is the number of dimensions obtained by applying Gabor

lters with 9 frequencies on each of the 14 channels (plus 1 for

ias, in the case of ridge regression). 

In the top part of Fig. 1 we present an overview of the archi-

ecture we use for classification. The raw EEG data is first collected

nd processed with the setup explained in Section 2.1 , then the
eading into the mind’s eye: Boosting automatic visual recognition 
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Fig. 3. The classification models proposed. a) we use Ridge regression (RR) then apply temporal smoothing on the results and threshold them to identify the final classes; b) 

the CNN architecture - we apply Batch Normalization then have two groups of 2D Convolutional layers with Max Pooling and three groups of Fully Connected with Dropout 

layers in the end; c) the stacked LSTM architecture - we apply Batch Normalization then have one or two LSTM layers with a Fully Connected layer at the end; d) the 

two-step architecture used for visual features augmentation. First we train from scratch the Inception-v3 [28] network on our images and extract for each image its visual 

features. Then, we train end-to-end the whole network with the visual features concatenated with their according EEG features as input, fed into a Fully Connected layer 

with ReLu activation. In the final Fully Connected layer we use a softmax activation function. The Inception-v3 architecture image adapted from https://cloud.google.com/ 

tpu/docs/inception- v3- advanced . 
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reliminary features are extracted with the technique described

bove and given as input to a classifier. We experimented with

ultiple classification models: 

• Ridge regression. ( Fig. 3a ) A classic and often very efficient ma-

chine learning approach using a simple linear classifier. Ridge

Regression [29,30] finds the best approximate solution to Xβ =
y that minimizes a penalized sum of squares: RSS + || λIβ|| 2 

2 
. By

adding a small penalizing factor λ to the diagonal of matrix

X X −1 , the potential instability of the least squares estimator

is fixed. The approximated solution is ˆ β = (X T X + λI) −1 X T y . To

take advantage of the sample’s high correlation in time, we ap-

ply temporal smoothing on the results of Ridge regression with

Gaussian filter. In the end, we compute for each class a thresh-

old which maximizes the accuracy at Equal Error Rate (EER).

EER is achieved when the Sensitivity (true positive rate) and

Specificity (true negative rate) are close to being equal. 

• CNN ( Fig. 3b ) A deep learning approach using convolutional

neural networks (CNN). First we create batches of samples

recorded each second with a size of ( nFeatures , 128) (i.e. 128

is the number of SPS; dimension 1, nFeatures is 126 padded

with 2, for symmetry). The data is normalized with Batch Nor-

malization, then we have two groups ( n times) of two Conv2D

followed by MaxPooling and in the end three FC with the ReLu

activation function followed by Dropout layers (m times). In the

end, we have a final FC layer with the number of neurons equal

to the number of classes. 

• LSTM ( Fig. 3c ) We employ the usage of LSTM layers to better

capture the temporal correlation in data. The data is ran first

through a BatchNormalization layer. We experimented with one

LSTM layer and with two stacked LSTM layers. The input data

here is a matrix with all the EEG samples corresponding to an

image. The size is 896 × 128: 896 is the number of secs for

an image (7) multiplied with the sampling rate (128) and the

number of features (126 + pad d ed 2) . 

All deep learning architectures were trained using Stochastic

radient Descent until an early stopping condition was met. For
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R

with EEG signals, Neurocomputing, https://doi.org/10.1016/j.neucom.20
he one-vs-all approach the dataset becomes unbalanced (small

umber of positive samples vs high number of negative samples).

n this case we train with a penalized loss, inversely proportional

o the number of instances in a class. Because of the high class im-

alance and low predicting power of the EEG signal, we threshold

he output from the last FC layer to maximize the accuracy at EER

Equal Error Rate). For the multi-class case the evaluation is done

sing the categorical accuracy. 

Due to the high variance in data among participants for our ex-

eriments we chose to train different classifiers for each subject,

imilar to other work [15–18] . Training a more generic classifier on

he data from all the subjects is a problem we plan to address in

ur future work. 

.3. Visual features augmentation 

To further explore a potential application for brain-computer

nterfaces (BCI), we test the potential of using the EEG features

n conjunction with visual features learned with deep neural nets

CNNs). The general architecture we used can be seen in the

ottom-right part of Fig. 1 . 

We chose a state-of-the-art CNN called Inception-v3 [28] to ex-

ract the visual features. The inception networks introduced a new

olution to the problem of having large size variation of salient

arts in an image. Rather than just stacking convolution opera-

ions, a new inception module was introduced, which performs

lters with different sizes on the same level. Thus, the networks

ecome wider instead of deeper. For dimensionality reduction the

nception module contains convolutions of 1x1. The initial Incep-

ion network, GoogLeNet [31] , also had two auxiliary classifiers to

revent the problem of vanishing gradients. 

Inception-v2 [28] introduced smart factorization (i.e. 5x5 con-

olutions factorized into two 3x3) and wider filter banks, to reduce

he loss of information. In Inception-v3, the authors use 7x7 factor-

zed convolutions, Batch Normalization in the auxiliary classifiers,

MSProp as optimizer and label smoothing. The architecture uses

hree types of inception modules, as can be seen in Figs. 5, 6 and
eading into the mind’s eye: Boosting automatic visual recognition 
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Group5: Pair1;2;3;4;5;6. 
7 in the original paper [28] . For simplicity, we will refer to them

in this article as type A (Fig. 5), B (Fig. 6) and C (Fig. 7). 

An onverview of the Inception-v3 architecture can be seen in

Fig. 3d . From left to right, in order, there are three conv layers fol-

lowed by MaxPool, then two more convolutions followed by Max-

Pool. Then we have three inception model A modules, a grid size

reduction bloc, four inception model B modules followed by a grid

size reduction block and also connected to an auxiliary classifier.

After the last grid size reduction block there are two more incep-

tion model C modules, followed by a GlobalAveragePooling layer,

Dropout and the final FullyConnected layer with softmax. The de-

tails for the grid size reduction block can be found in Figs. 9 and

10 in the original paper [28] . 

To mimic the conditions when limited data is available for

training, we took the Inception-v3 [28] architecture and trained it

from scratch on the images used to record EEG training data in

our dataset. Thus all EEG-based classifiers and the visual image-

based network are trained on data from the exact same set of im-

ages. In order to minimize overfitting, the images used for training

the Inception-v3 net were also augmented by rotating with a range

of 40 degrees, flipping horizontally, zooming with 20%, shifting on

the width and height with 20% and applying a shear distortion of

20%. Then, for each image, we extracted the visual features vector

from the GlobalAveragePooling layer in the model. Next, we take

the EEG data for each image and extract the features from the last

LSTM layer in the two-stacked-LSTM architecture ( Fig. 3c ). Finally,

we concatenate the EEG features with the visual features, as shown

in Fig. 3d . Then, this joint feature vector is used as input for a sim-

ple network with two stacked Fully Connected layers. This model

is trained with the joint features for all the images in the training

set and tested in the same manner on the images from the test set.

Just as in the previous experiments, we train and test a differ-

ent classifier, in turn, for each subject. Therefore, a joint feature

for an image is composed of the visual features from the Inception

net and its corresponding EEG feature taken from one specific sub-

ject. Note that the visual features automatically extracted with the

Inception module are the same across all subjects - since that is

an automated, reproducible process. The EEG signals, however, are

taken in turn for each subject and image. We did not concatenate

the EEG features from all subjects at once because each brain is ex-

pected to process data in its own unique way, specific to each indi-

vidual, based on experience, genetic factors and many other traits

that make each individual unique. Therefore, we do not expect a

classifier trained on the EEG signals from one person to perform

equally well on a different person. 

3. Results 

In this Section we perform an in-depth experimental analysis

in order to find answers to our initial questions presented in the

Introduction (Question 1, 2 and 3). We first start with an ablation

study that aims to identify which electrodes (which capture sig-

nals from specific areas of the brain) are more relevant for visual

classification. We continue with an analysis of the performances

of different classifiers in the classification task. Next we present a

case study for test and training data collected without the pause

and a performance analysis when using EEG in conjunction with

visual information. 

3.1. Ablation study: Selecting relevant signal 

To establish if the EEG signals actually contain information

about the visual classes we first looked at the accuracy obtained

for each pair of channels using Ridge Regression in a one-vs-all

manner. A pair of channels contains two electrodes placed sym-

metrically on the scalp. We sorted the channel pairs by accuracy
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R

with EEG signals, Neurocomputing, https://doi.org/10.1016/j.neucom.20
when using only their input for training and classification) in de-

cending order. Then, starting from the pair with the highest ac-

uracy, we created groups 2 by successively adding pairs (of next

ighest accuracy) until all the channels were used. This is an effi-

ient Greedy approach for studying the effect of different channels

nd their corresponding brain areas on visual recognition. 

It is interesting to note ( Fig. 4, Table 2 ) that even though most

f the individual channel pairs have a smaller predictive power by

hemselves (min. 59.25%, max. 66.21%), the pair with the highest

ccuracy is very close to the one obtained when using all elec-

rodes together (66.76% with Ridge Regression). 

By adding more pairs successively, we achieve a peak of 69.39%

average accuracy on all subjects), after adding the electrodes P7

nd P8, placed on the somatosensory association area, responsible

or texture, weight and object recognition. The accuracy slightly

ecreases when adding the channels from the temporal lobe (as-

ociation area) and frontal lobe (motor functions). In the end, the

hannels O1 and O2 contribute with some information from the

isual area and increase the accuracy. 

A surprising result here is the actual order of the channels’ rel-

vance. We know from neuroscience research that for each cogni-

ive function or function of the human body there is a correspond-

ng brain activity, which in general can be localized to a specific

rain area [32] . While in general there is no single limited area

edicated to a single function, it is also accepted that specific re-

ions are correlated with specific functions, such as higher level

hinking or visual processing [32] - and the electrodes, placed on

ifferent places on the scalp are expected to capture such corre-

ations. We correlated the physical location of the electrodes on

he scalp ( Fig. 2 ) with the brain areas from which they would col-

ect most of the information ( Fig. 5 ). In Table 2 , we present the

airs of electrodes sorted descending by their accuracy with their

orresponding brain areas (and their indexes from Fig. 5 ) and the

unctions of those brain areas. 

By analyzing the correlation between channels and brain func-

ions, we can see that the pair with the highest accuracy is the

ne placed on the area related to the face. The exact placement

f the electrode corresponds to the lower part of the cortical mo-

or homunculus, related to the facial muscles [33] . This could be

ue to specific eye movement patterns (saccades) related to spe-

ific classes. It could also be related to the firing of mirror neu-

ons, when the subjects focus on the images and project them-

elves into the specific story related to the image class, exhibiting

otor intentions and facial expressions [34] . More importantly, the

ignals from area 4 (Brocca’s area) are related to speech - which

ould suggest an internal verbalization of the classes name. Note

hat each class, either being scene related (park, old town, seaside)

r object related (flower, car, airplane) could trigger specific inten-

ions, determining different facial expressions, eye movements, ac-

ions or spoken language. Note that the poorer performance of Pair

 (also related to the motor areas 3 and 12) could be due to the

acking of information from area 4 (speech-related Brocca’s area). 

The second and third place are the channels located on the

igher mental functions area. This suggests that visual perception

s a complex process which involves, apart from processing the vi-

ual signal, higher brain functions. Only on the fourth place we

ee the electrodes related to visual object recognition and pattern

etection. However, as seen in Fig. 4 , they contribute with impor-

ant information for peak accuracy. It is interesting to see experi-

entally the connection between semantic visual recognition and

ifferent cognitive functions, not all dedicated to direct visual pro-

essing. Also note that the ordering of the channel pairs impor-
eading into the mind’s eye: Boosting automatic visual recognition 
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Fig. 4. Accuracy variation with different subsets of electrodes used for ridge regression training and classification. Pairs avg - the average accuracy when using only one pair 

of channels as input EEG signal; Group1-5 2 - classification using groups of pairs, the pairs in a group are added successively, in decreasing order of their individual accuracy. 

The electrodes in a pair are presented in Table 2 . The accuracy increases when the electrodes placed on the visual cortex are added (Group2 to Group3; Group5 to ALL). The 

group that generalizes best (Group 3) includes electrodes from areas performing high-level reasoning and visual recognition. 

Table 2 

Pairs of channels, their accuracy when used alone for training and their correspond- 

ing brain areas. The brain area indexes are the ones from Fig. 5 . 

Channels Acc (%) Brain areas and functions 

Pair1: FC5;FC6 66.21 Frontal-central lobe (3,4,12) 

3. Motor function area 

• Initiation of voluntary muscles 

4. Broca’s area 

• Muscles of speech 

12. Motor function area: 

• Face, tongue, larynges muscles 

• Eye movement and orientation 

Pair2: F7;F8 64.14 Frontal lobe (13) 

Pair3: AF3;AF4 63.02 Prefrontal lobe (13) 

13. Higher mental functions 

• Concentration; Creativity 

• Planning; Judgment 

• Emotional expression 

• Inhibition 

Pair4: P7;P8 62.94 Parietal lobe (9,10,11) 

9. Sensory area 

• Sensations from muscle and skin 

10. Somatosensory association area 

• Evaluation of weight, texture, etc. 

for object recognition 

11. Wernicke’s area 

• Written and spoken language 

comprehension 

Pair5: T7;T8 61.69 Temporal lobe (2) 

2. Association area 

• Short-term memory 

• Equilibrium 

• Emotion 

Pair6: F3;F4 59.66 Frontal lobe (3,12) 

3. Motor function area 

Initiation of voluntary muscles 

12. Motor function area: 

• Face, tongue, larynges muscles 

• Eye movement and orientation 

Pair7: O1;O2 59.25 Occipital area(1) 

1. Visual area 

• Sight 

• Image perception 

• Image recognition 
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ance is stable across all subjects, which further validates the above

bservations. 

It is important to note here that while we do not directly mea-

ure specific brain functions and areas, it is well known that dif-

erent regions tend to correlate with different functions [32] as

hown in our Fig. 5 . Therefore, we draw our conclusions based on

he noninvasive signal readings from electrodes that are placed in

roximity of specific brain regions. We observe not only that sig-

als from higher level cognitive processes are more important for

isual recognition than signals from V1, but also that such pat-

erns of evidence is similar across different subjects. This facts sug-

est that this is a more general observation about where seman-

ic visual recognition might take place in the brain. The idea that

isual recognition could involve deeper and more semantic pro-

esses is both beautiful, somewhat surprising, but it also makes in-

uitive sense: in order to understand what an object is, one should

lso consider the role played by that object in the larger context

f a more complex scene in which several actors interplay. Then,

utting things in the right context should definitely involve higher-

evel thinking. 

Concluding remarks regarding our empirical observations . The

lectrodes’ locations follow the International 10–20 standard [21] .

hey cover uniformly the head and are in the vicinity of certain

rain regions whose functioning is known to be correlated with

pecific cognitive functions [32] . 

Thus, by observing how the signal from different groups of

lectrodes influences recognition performance we could indirectly

nfer, empirically, the involvement of different brain functions

o semantic visual recognition of objects and scenes in images

 Section 3.1 ). 

By doing so, we observed ( Fig. 4 ) a surprising fact: higher level

ognitive functions seem to be more relevant for semantic visual

ecognition (at the category level) than the initial visual processing

hat is known to take place in V1 area [32] . 

This finding makes perfect sense: higher level semantic visual

nderstanding at the level of object and scene classes should also

equire the complex understanding of context, in which object

lasses are also understood based on the roles they play in the

verall visual story. Putting objects in the right context is a higher

evel cognitive ability, which is expected to require a more global

nderstanding of the scene, achieved by the collaboration of var-
eading into the mind’s eye: Boosting automatic visual recognition 
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Fig. 5. Electrodes’ locations relative to brain areas. Adapted from Neuroanatomy - A Primer, by K. Sukel, 2011, http://www.dana.org/News/Details.aspx?id=43515 . 

Table 3 

Average accuracy (%) per model at EER. The best results are obtained with Ridge 

Regression (RR). The LSTM architectures appear to be overfitting. All models are 

trained on all channels, except RR-G3 which is trained on Group3 and is added 

here for comparison. 

RR RR-G3 CNN LSTM-1 LSTM-2 

Avg acc. 66.76 69.39 57.08 58.52 60.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Average accuracy (%) at EER per subject. Ridge Regression results using all channels 

and only the channels from Group3 (G3). The subjects are sorted in descending 

order. With Bold , Italic and Bold italic , in that order, we have the top 3 values. 

Note the relatively stable ordering among subjects. 

Subj3 Subj1 Subj5 Subj2 Subj4 Subj6 

All 74.17 70.79 69.82 66.06 62.01 57.52 

G3 72.82 74.71 72.99 65.19 69.61 61.01 

a  

m

 

e  

s  

i  

d  

p  

r  

t  

i

 

c  

e  

b  

o  

t  

g  

n  
ious higher level cognitive processes. They might not be directly

involved in the processing of visual input at the lower levels. We

could expect however that such higher level cognitive modules

take, internally in the brain, inputs from V1 - a fact that cannot

be observed by our noninvasive and relatively superficial EEG cues.

The validity of our experimental observations is further strength-

ened by the fact that a similar pattern of electrodes’ relevance has

been observed across all subjects in our tests ( Fig. 4 ). 

3.2. Classification task: Comparisons of models and subjects 

We train a different classifier for each subject. The success of

this task should mainly depend on two factors: 1) the ability of the

classification models to capture and use the relevant information

from the EEG signals (when that exists) and 2) the subjects’ abil-

ity to focus and emit good quality EEG signals. Our experiments

show that there is a visible and relatively stable dependency of

accuracy on these factors. We experimented with different clas-

sification models, as explained in Section 2.2 , with a one-vs-all
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R
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pproach. We present in Table 3 the accuracy obtained for each

odel. 

We can see that Ridge Regression outperforms the other mod-

ls with 66.76% accuracy when trained using all the channels. The

tacked LSTM with 2 layers performs better than the CNN, be-

ng more suited for time series classification. However, since the

ataset is small and the signal noisy, the richer deep models are

rone to overfitting, which explains the superior performance of

idge regression. For the rest of the experiments (except Visual fea-

ures augmentation), we used Ridge Regression with Gabor filter-

ng, since it gives the best results. 

In Table 4 we ranked the subjects by their accuracy for the

ase when we use all electrodes for training and when using only

lectrodes from Group 3. There is a clear difference in accuracy

etween subjects. This indicates that the results depend not only

n the classification model but also on the subject who generated

he EEG. Therefore, we expect that a more trained subject, with a

reater ability to focus would generate a richer and better EEG sig-

al and would help the machine learning models learn and predict
eading into the mind’s eye: Boosting automatic visual recognition 
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Fig. 6. Accuracy (%) in time. The accuracy increas es when considering samples over large time spans. 

Table 5 

Comparison with the work of [15] - multiclass trained and tested on our dataset. 

CNN, LSTM-1 and LSTM-2 are our architectures. The accuracy of [15] drops signifi- 

cantly training on our data. 

Model Avg accuracy (%) 

Raw Gabors 

[15] 18.81 22 

RR 20.86 29.2 

CNN 21.11 26.5 

LSTM-1 21.63 25.67 

LSTM-2 19.81 22.83 
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ore accurately. Note that the top three when using all channels

re the same with the top three in the Group 3 case ( Table 4 ). The

esult strengthens the idea that Group 3 contains electrodes that

re generally relevant for this task, across different people, and can

e robustly used for improved classification. 

When training the Ridge Regression model we make a predic-

ion for each time sample. Since the signal is actually a time se-

ies, we average the outputs over temporal windows of different

izes, centered at the current point. We vary this averaging tem-

oral window (by increasing the corresponding samples taken into

ccount) from 0 to 60 seconds. As expected ( Fig. 6 ) we observe

hat by taking more samples into consideration, over larger time

pans, the accuracy increases consistently. 

When analyzing the results for each subject individually ( Fig. 7 ),

e see that the class flowers has the highest accuracy for five out

f six subjects, with a maximum at 96.35% for Subject 1. For Sub-

ect 3 the class with the highest accuracy was cars. The class flow-

rs was the first class in the sequence for which we recorded data.

he fact that it appears predominantly on the first place suggests

hat the subject’s fatigue also plays a factor when collecting EEG

ata. Even more so, the class old town, which was always last in

he data collection process, appears to have, for three subjects, the

owest accuracy - which further suggests the subject’s fatigue and

iminished ability to focus. Another observation is that the sub-

ects claimed to have a special affinity to the class with the high-

st accuracy. Subject 3 had an intense memory related to the class

ars and four of the other subjects (two males and two females)

eclared a particular affinity for flowers, being related to specific

owerful events. 

To further understand the difference between our work and the

ork in the state-of-the-art article [15] , we trained and tested the

odel in state-of-the-art on our Objects and Scenes dataset, pre-
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R
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rocessed and Gabor filtered, in our multiclass setting (predict the

orrect class out of six possible ones) and achieved the accuracy

f 22%. In Table 5 we also included the results of our architec-

ures in the same multiclasses setup. Ridge Regression remains the

est model, with an accuracy of 29.2%. The random accuracy here

s 1 / 6 = 16 . 66% . Note that on our data, Gabor filtering helps ev-

ry time, which again suggests that our data is less vulnerable to

oisy components that might depend on specific recording ses-

ions. Comparing the results using the model from state-of-the-art

nd the data obtained with the experiment setup in state-of-the-

rt [15] (83% accuracy) with the results using the same model but

ith data from our Objects and Scenes dataset (22%), we notice a

rastic drop in accuracy (a drop of 61% when applying Gabors and

round 64% when using the raw signal). The results indicate that

ur experimental scenario, when we essentially allow the “brain-

ache” to be erased by introducing a long break between training

nd testing, is more realistic and therefore more challenging. 

.3. Case study: Collecting training and test data separated vs 

ontinuous 

In this case study we explore the difference between collecting

est and training data in a continuous session versus collecting in

ifferent sessions, separated by a long break. 

We repeated the process of data collection with three of the

ubjects (1 male and 2 females), but this time in a different setup

the continuous setup). In this continuous setup, as opposed to the

riginal, separated setup (in which there is a significant amount of

ime passing between the training and test sessions), we collected

he training and test data continuously, without the long pause be-

ween the training and testing sessions. We employed the same

xperimental method as in Section 2.2 , using the Ridge Regression

odel. 

As expected, for the continuous data we obtained greater accu-

acy. We can see in Fig. 8 the results for each subject. The average

ccuracy is lower in the separated setup and is much higher in the

ontinuous setup. We even have an accuracy of 99.99% on the con-

inuous setup for Subject 6 and the class City. Many factors could

tand as grounds for these results. One of them is the fact that

he signal has less noise caused by the variation of the electrodes

osition on the scalp, because in this case the BCI device was not

aken off between training and testing. Another factor is the fact

hat in this scenario the subjects do not have to disrupt their state

f mind when proceeding to collect data for the test phase. 
eading into the mind’s eye: Boosting automatic visual recognition 
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Fig. 7. Best and worst class for each subject in time. Flowe rs is the predominant best class. 

Fig. 8. Continuous vs separated data. The red line represents the average accuracy (%). The accuracy is better when test data is collected immediately after training, with an 

outlier of 99.99% for Subject 6 on Old town. 
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When the subjects focus on a image, their brain infers con-

cepts correlated internally to an original set of life experiences, it

processes the input data and generates trains of thoughts, stories.

Apart from that it may process in parallel other thoughts and ac-

tivities, unrelated to the concept of interest. We did our best to

isolate the signal most relevant for the respective class, to increase

the signal to noise ratio by applying the methods discussed in the

data acquisition Section 2.1 . In this scenario, however, if we do not

disrupt the collection session then we could end up learning de-

scriptors specific to this continuous time-span, making the prob-

lem much easier but unrealistic. 

The conclusion here is that a crucial factor in achieving accurate

results with our method is the subject’s level of training to reach

exactly the same state of mind for a certain class. Another fact to

i  
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hink about is that when there is no time break between training

nd testing session, then the results could be biased since the sub-

ect’s brain activity is highly correlated in time. It is very likely that

hen there is no break between training and testing sessision, we

re in fact training on almost the same data as the one used for

esting, so we should expect a high level of overfitting. 

.4. Final setup: Boosting visual recognition with EEG 

Our final setup is to explore the possibility of enriching

he image-based features learned by a CNN with EEG data

 Section 2.3 ). To establish a baseline, we first tested using image-

ased CNN features only ( Fig. 9 ). Then, we used the augmented

mage+EEG features and tested for each subject. The EEG signals
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Fig. 9. Visual features augmented with EEG. With red is represented the baseline accuracy, when using only visual information. The other line represent the accuracy for 

when using visual features augmented with the EEG features from each subject. The average improvement is of 5.16%. 
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oost performance every time, with a significant overall improve-

ent of 5.16% in the 91 + % regime, on the multiclass recognition

cenario on our Objects and Scenes dataset. 

These results strongly suggest that noninvasive BCI could signif-

cantly improve automatic visual recognition, when used in combi-

ation with current computer vision and deep learning models. 

. Discussion and concluding remarks 

In this paper we tackled the problem of predicting visual

lasses using only the EEG signal recorded from humans while

hey’re looking at images. Despite the challenges regarding the

oisy and hard to collect EEG signal, we presented the following

ontributions: 

1. We proposed and evaluated different automatic models for pre-

dicting what humans see by using their EEG signals by them-

selves ( Table 3 ) or in combination with deep image-based fea-

tures ( Fig. 9 ). We showed that in the case of noisy EEG data and

limited training data, a simpler Ridge regression model com-

bined with Gabor filtering could be at least as effective as the

powerful LSTM or CNN models ( Table 3 ). We also conducted

an ablation study to determine the most relevant electrodes for

classification ( Fig. 4 ). 

2. We proposed the use of Gabor filters as a EEG processing tech-

nique, which makes possible the removal of noisy signals and

improving generalization power ( Table 5 ). 

3. We study the involvement of higher level cognitive areas in the

visual recognition process and show that visual recognition is

the result of the processing in several cortical areas, more rel-

evant being the ones that are involved in higher level cogni-

tive processes. Interestingly enough, the area that is involved in

early visual processing (V1) [32] seems to be less relevant - a

fact that confirms results from computer vision and deep learn-

ing, in which the high level semantic features are learned at the

deepest levels of processing ( Table 2, Fig. 5 ). 

4. We showed that prediction from EEG data alone is possible but

has moderate accuracy, and depends not only on the classifiers

but also on the human subjects themselves ( Table 4 ). Our ex-

periments also show that performance strongly depends on the

subjects’ ability to focus. When they can better project into the
Please cite this article as: N. Cudlenco, N. Popescu and M. Leordeanu, R
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“memory spaces” related to specific concepts the recognition

accuracy from EEG data alone can go above 95% ( Fig. 7 ). 

5. We show that while EEG signals are weaker than visual fea-

tures extracted directly from images, they contain complemen-

tary information which can be used to significantly boost the

performance of vision only approaches with deep neural nets.

This opens the door for many applications of EEG in the field

of visual recognition for human computer interaction ( Fig. 9 ). 

6. We propose a more realistic experimental setup for data col-

lection, when training and testing data is collected during en-

tirely different recording sessions, at different times of the day

and we show by comparing with previous work how this sce-

nario, though more challenging, eliminates the risks of hav-

ing in the EEG signal noise specific to the recording session

( Table 5 ). 

Our results guide our future research. Next, we aim to capture

etter quality EEG signals by studying the effect of subjects’ train-

ng and improvement of their ability to focus. Second, we will ex-

lore different territories for using EEG to boost automatic visual

ecognition and vision to language translation. Ultimately, we hope

hat our work will open doors towards better comprehending hu-

an “perception” in relation to “meaning” and the overall under-

tanding of the scene, in a multidisciplinary research. 
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