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ABSTRACT

We introduce provenance networks, a novel class of neural models designed to
provide end-to-end, training-data-driven explainability. Unlike conventional post-
hoc methods, provenance networks learn to link each prediction directly to its
supporting training examples as part of the model’s normal operation, embedding
interpretability into the architecture itself. Conceptually, the model operates sim-
ilarly to a learned KNN, where each output is justified by concrete exemplars
weighted by relevance in the feature space. This approach facilitates systematic
investigations of the trade-off between memorization and generalization, enables
verification of whether a given input was included in the training set, aids in the
detection of mislabeled or anomalous data points, enhances resilience to input
perturbations, and supports the identification of similar inputs contributing to the
generation of a new data point. By jointly optimizing the primary task and the ex-
plainability objective, provenance networks offer insights into model behavior that
traditional deep networks cannot provide. While the model introduces additional
computational cost and currently scales to moderately sized datasets, it provides a
complementary approach to existing explainability techniques. In particular, it ad-
dresses critical challenges in modern deep learning, including model opaqueness,
hallucination, and the assignment of credit to data contributors, thereby improving
transparency, robustness, and trustworthiness in neural models.

1 INTRODUCTION

Deep learning has made remarkable progress in recent years, leading to a diverse ecosystem of neu-
ral network architectures tailored to specific problem domains (LeCun et al., 2015). Despite this
diversity, the vast majority of neural networks share a common design principle: raw input data
is transformed through a sequence of nonlinear mappings into an embedding or latent represen-
tation. This representation is typically compact, smooth, and task-aligned, making it suitable for
downstream tasks. However, in the process of mapping input to such latent spaces, models often
lose explicit references to individual training samples. As a result, most networks cannot directly
identify which training examples are responsible for shaping a given decision at the test time.

Figure 1: Provenance network schematic.

In this paper, we introduce “Prove-
nance Networks”, a new class of neu-
ral networks (NNs) designed to ex-
plicitly trace back predictions to the
training data that supports them. At
the core of our approach is a neu-
ral mechanism that maps any input
data point not only to a semantic em-
bedding, but also to an index in the
training set. A simplified schematic
is shown in Figure 1. From a shared
backbone, one branch handles the primary task, while the other predicts the index of the input sam-
ple and is trained jointly during optimization. At inference time, the system retrieves the training
sample most likely to have contributed to the prediction. As we will show later, provenance can
be trained either as a single dedicated branch or integrated into any existing architecture, enabling
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tracking as a standalone task or as an auxiliary component within broader systems for classification,
detection, segmentation, or generative modeling.

Our approach combines the interpretability and case-based reasoning of k-Nearest Neighbors
(KNNs) with the scalability and representational power of neural networks. This hybrid design en-
ables neighbor-based transparency while supporting efficient end-to-end learning, inference on raw
high-dimensional data, and strong generalization. In effect, it allows NNs to implement KNN-like
behavior in a fully differentiable, end-to-end manner.

Here, we study the fundamental properties of provenance networks, explore multiple design choices,
evaluate their utility across diverse tasks, and analyze their scalability and limitations. Our results
demonstrate that provenance networks have broad applicability and significant potential for address-
ing key challenges in modern AI systems—particularly mitigating hallucinations and enabling fair
credit attribution to content creators. Although our experiments focus on the visual domain, the pro-
posed approach is readily applicable to other modalities, including large language models (LLMs).

2 RELATED WORK

Since their inception, the black-box nature of neural networks has posed a significant challenge,
prompting the development of numerous methods to illuminate their internal workings (Zhang et al.,
2021; Lipton, 2018; Linardatos et al., 2020). Existing methods for training data provenance, such as
influence functions (Koh & Liang, 2017b) and data Shapley values (Ghorbani & Zou, 2019), provide
mathematically rigorous measures of individual sample influence but are computationally expensive
and impractical for large-scale datasets. Leave-one-out retraining offers exact influence estimates
but is infeasible due to the need for retraining many models (Hammoudeh et al., 2023).

Alternative explainability approaches, including “perturbation-based methods” like LIME (Ribeiro
et al., 2016), “game-theoretic methods” such as SHAP (Lundberg & Lee, 2017), and “saliency-
based methods” such as vanilla gradients (Simonyan et al., 2014), Integrated Gradients (Sundarara-
jan et al., 2017), SmoothGrad (Smilkov et al., 2017), and GradCAM (Selvaraju et al., 2017), offer
feature-level insights into model decision-making. Beyond these, work on “feature visualization and
circuits analysis” (Olah et al., 2017; 2020; Zhou et al., 2016) has provided deeper conceptual tools
for understanding how neurons, layers, and subnetworks interact, highlighting the compositional
structure of representations in neural networks. While these methods highlight which input features
or internal mechanisms most influence a prediction, they cannot attribute predictions to specific
training samples, limiting their utility for provenance and intellectual property protection.

Current neural information retrieval systems (Mitra & Craswell, 2018; Snell et al., 2017) are used
for large-scale classification and retrieval, enabling sample identification. However, these systems
face scalability and semantic limitations, and they do not offer a unified framework for controlling
memorization and generalization. Provenance Networks address these shortcomings by integrating
classification, training data attribution, and robustness within a single model.

Some neural architectures use memory to boost task performance rather than interpretability. Mem-
ory networks store and retrieve information for tasks like question answering (Weston et al., 2014;
Sukhbaatar et al., 2015), while matching networks enable few-shot learning by classifying new ex-
amples based on similarity to a small labeled support set (Vinyals et al., 2016; Xu et al., 2018).
Provenance Networks differ fundamentally from memory-augmented models and prototype net-
works in both purpose and mechanism. Memory-augmented models (e.g. Neural Turing Ma-
chines Graves et al. (2014)) store and retrieve learned latent memories, which are optimized for
task performance rather than interpretability. Prototype networks, similarly, operate on learned class
prototypes—compressed centroids that summarize a class rather than referencing specific training
points. In contrast, Provenance Networks explicitly retrieve and weight actual training examples,
enabling decisions to be grounded in identifiable data instances. This exemplar-level attribution
provides transparent, data-driven explanations that neither memory-augmented nor prototype-based
architectures can offer.

Interpretability of LLMs has advanced through sparse autoencoders for disentangling latent features
(Lieberum et al., 2024) and the broader agenda of mechanistic interpretability (Nanda et al., 2023),
while complementary strategies like retrieval-augmented generation (RAG) improve transparency
by grounding outputs in external evidence (Lewis et al., 2020).
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Building on matching networks and a concept anecdotally noted by Lloyd Watts (link), we expand
these ideas through systematic analysis, examining design choices, large-scale dataset strategies,
and a range of use cases.

3 PROVENANCE NETWORKS

We illustrate the core concepts using multi-class prediction, although they are not limited to this
specific task. For a detailed view of the model architectures, please see Appx. 7.1 and 7.2.

3.1 I: SINGLE BRANCH NETWORK

Here, essentially each datapoint is mapped to its index (Appx. Fig 10). Inputs may be presented in
random order during training, but their indices remain constant. To ease training on large datasets,
an input is not always mapped to its own index but is occasionally mapped to a different index from
the same class (Appx. Fig. 11). Let i denote the true training index of an input sample x, and let Iy
denote the set of indices belonging to the same class y, excluding i. The target index t for training
is sampled according to the mixing parameter α as

t ∼
{
i, with probability 1− α (memorization)
Uniform(Iy \ {i}), with probability α (generalization)

. (1)

The network outputs logits p over all training indices, and the cross-entropy loss is then

L = − log p̂t,

where p̂t is the predicted probability of the target index t after softmax. This formulation interpolates
between pure memorization (α = 0) and pure semantic generalization (α = 1), with intermediate
values controlling the trade-off. This defines a spectrum of model behaviors:

• α = 0: pure/rote memorization (e.g. index accuracy ≈ 99%)

• α = 1: pure generalization (e.g. semantic accuracy ≈ 100%)

• 0 < α < 1 (e.g. α = 0.3): balanced behavior (index accuracy ≈ 60%, semantic accuracy
≈ 97%)

When α = 1, the setup effectively reduces to standard classification, with the number of output
neurons matching the number of classes. In this case, individual sample identities are lost. Label
mixing is applied only during training of the single-branch network, not the two-branch networks.

3.2 II: TWO BRANCH NETWORK

We consider two variants of this architecture. In the first variant, called class-independent, the main
branch predicts the class label y ∈ {1, . . . , C} and a secondary branch (index branch) predicts an
index z ∈ {1, . . . ,K} in dataset. Let ŷc denote the predicted probability for class c and ẑk denote
the predicted probability for index k. Both branches are trained jointly using cross-entropy loss:
Lclass = − log ŷ and Lindex = − log ẑz . The total loss is a weighted sum of the two branches,

Ltotal = λclassLclass + λindexLindex (2)

where λclass and λindex control the relative importance of the class and index predictions. We set
λclass = λindex = 1 in the experiments.

In the second variant, called class-conditional, the main branch again predicts the class label y ∈
{1, . . . , C}, but the secondary branch predicts an index within the predicted class rather than among
all K training samples. Concretely, for a sample belonging to class y, the index is defined as

z ∈ {1, . . . ,Ky},

where Ky is the number of training samples in class y. This class-conditional formulation makes
index prediction easier, particularly for large datasets where K ≫ Ky .

3
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a
Figure 2: Trade-off between generalization and memorization in the single-branch network, with
test samples overlaid alongside their two most similar training examples.

Let ŷc denote the predicted probability for class c, and let ẑk|y denote the predicted probability for
index k conditional on class y. The corresponding cross-entropy losses are

Lclass = − log ŷy, Lindex = − log ẑz|y.

The overall objective is again a weighted combination of the two. At inference time, the model
first predicts the class label via the main branch, then uses this class to restrict the index prediction
branch to only the indices belonging to that class.

The index branch contains as many neurons as the maximum number of training samples across
classes. Alternatively, separate heads can be used per class, in which case the number of neurons in
each head matches the number of training samples within that class (i.e. no parameter sharing).

If the primary task is not classification, the network must be adjusted to provide a conditioning
signal. For instance, in semantic segmentation or image generation, additional outputs can be intro-
duced to predict both the image-level class label (e.g. street scene) and the sample index.

4 NETWORK ANALYSIS
4.1 MEMORIZATION VS. GENERALIZATION TRADE-OFF

Figure 2 shows the results of training the single-branch network on the MNIST (LeCun et al., 1998)
and FashionMNIST (Xiao et al., 2017) datasets as the index mixing ratio varies from 0 to 100%.
The reported metrics are index prediction accuracy on the training set and class prediction accuracy,
derived from the retrieved index, on both training and test sets.

At low levels of label mixing α, the network tends to memorize individual samples, which reduces
its ability to generalize—evident from the lower test set accuracy. As α increases, memorization
decreases and generalization improves. At 100% label mixing, the network completely loses its
memorization capacity. This trade-off highlights how one can tune the mixing ratio to balance mem-
orization against generalization for a specific task. A similar trend is observed on FashionMNIST,
though in this case memorization has an even stronger negative impact on classification accuracy.

4.2 VISUALIZATION OF LEARNED REPRESENTATIONS

We analyze representations learned in the 2048D last embedding layer of the index branch. Figure 3
(top left) shows t-SNE visualizations where misattributed samples (94 out of 10K) lie near cluster
boundaries—these samples are visually ambiguous, resembling multiple digit classes. The top-5 re-
trieved training samples confirm the network organizes data by visual similarity rather than ground
truth labels. The bottom row demonstrates instance-level structure: k-means clustering reveals dis-
tinct writing styles within digit 6 and dress styles within FashionMNIST, showing the embedding
captures fine-grained intra-class variation beyond simple class separation.

4.3 SCALABILITY ANALYSIS

To address the fundamental scalability limitation of provenance networks, we investigate whether
the system can operate effectively when trained on only a strategically selected subset of training

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Top (left): t-SNE visualization of the penultimate layer in the index branch of a two-
branch class-conditional network. Top (right): Misattributed test samples alongside their five nearest
training samples in the index branch. Bottom: t-SNE visualization of k-means clusters from the same
layer, with corresponding training samples for digits 6 (left) and FashionMNIST dresses (right).

data. We train both the main and index branches of class-conditional network on identical subsets,
selected through stratified sampling to maintain class proportions. Results are shown in Table 1.

Remarkably, training both branches on just 30% of the MNIST data (17,995 samples) achieves
98.87% test accuracy on the main branch—matching the performance of models trained on the full
60K data—while reducing the parameters of the index head by 70%. The index branch attains a
Top-5 class matching accuracy of 95.49%, indicating that the network effectively retrieves semanti-
cally relevant training examples even when the majority of the data is excluded. On FashionMNIST,
training with 50% of the data (30K samples) produces 90.86% accuracy and 89.71% Top-5 accu-
racy via the index branch, demonstrating consistent performance across datasets. Index prediction
accuracy is already high with the full training set (98.16%; Table 2) and reaches 100% using only
50% of the data on MNIST. This suggests that selecting a representative subset can preserve class
prediction accuracy while rapidly improving index prediction, enabling the approach to scale.

These results suggest a practical deployment strategy: rather than indexing all training samples,
provenance networks can focus on representative exemplars or high-value samples (e.g. near deci-
sion boundaries, diverse prototypes, or verified clean data). While this compromise means some
training samples become unretrievable, it enables substantial parameter reduction while maintaining
both classification performance and retrieval capability. This transforms provenance networks from
theoretically interesting but impractical to deployable at substantially larger scales. Extended results
and detailed analysis are provided in Appx. 7.5.

Table 1: Class prediction accuracy using a two branch class-conditional network on training data subsets.

Subset MNIST Main Branch Index Branch FashionMNIST Main Branch Index Branch

Samples Top-1 Top-5 Top-10 Samples Top-1 Top-5 Top-10

10% 5,996 98.27 68.32 92.57 96.56 6,000 86.66 59.13 87.20 93.62
30% 17,995 98.87 79.72 95.49 97.75 18,000 89.99 60.11 89.26 94.93
50% 29,997 98.98 69.94 92.05 96.04 30,000 90.86 66.88 89.71 94.77
70% 41,995 99.19 76.86 95.16 97.76 42,000 91.36 67.39 91.26 95.79
90% 53,994 99.26 83.26 96.53 98.41 54,000 92.19 64.86 90.48 95.26

4.4 EFFECT OF MODEL SIZE AND LAYER SHARING

To study how model size impacts generalization vs. memorization in provenance networks, we eval-
uate two class-conditional models, Small and XLarge, differing in channel dimensions (Small with
4M parameters; XLarge with 80M parameters), and vary the number of shared parameters between

5
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Figure 4: Accuracy per epoch for the index branch and class branch (insets) of Small (left) and XLarge (right)
models. Each curve represents a different level of parameter sharing (on MNIST). See also Appx. 7.6.

the branches across 4 levels: Level I (1st conv layer only), Level II (1st two conv layers), Level III
(all 3 conv layers), and Level IV (all conv layers plus the first FC layer). Each model was trained
for 150 epochs on MNIST. As shown in Figure 4, the larger model converges faster and achieves
higher accuracy in both branches, suggesting that greater capacity benefits provenance networks.
Increased layer sharing further improves the larger model but can hurt the smaller one—likely due
to competition for limited representational capacity between classification and memorization tasks.
Larger models have sufficient capacity to accommodate both objectives. See Appx. 7.6.

5 APPLICATIONS

5.1 IMAGE AND OBJECT CLASSIFICATION

Table 2 summarizes class and index prediction accuracy on four coarse-grained datasets (MNIST,
FashionMNIST, CIFAR-10/100 (Krizhevsky & Hinton, 2009)) and one fine-grained dataset (Stan-
ford Dogs by Khosla et al. (2011)). We compare two-branch networks against single-branch net-
works trained under two levels of label mixing. See Appx. 7.4 for dataset stats.

We did not heavily optimize the networks for accuracy (e.g. through data augmentation). Never-
theless, the class-conditional network achieves strong performance in both classification and index
prediction, demonstrating that it can both classify and explain. In contrast, the class-independent net-
work performs poorly on index prediction for the CIFAR datasets, primarily due to the large number
of neurons required for 60K training samples. Its relatively strong index prediction on MNIST and
FashionMNIST can be attributed to the lower complexity of these datasets. Importantly, this shows
that the network still provides meaningful explanations in many cases, with higher explainability for
CIFAR-10 than CIFAR-100. Similar conclusion applies to dog classification [[cosine similarity]]

Single-branch network results show that models with stronger memorization (100%) explain better
but classify worse than those with weaker memorization (50%), as illustrated in Figure 2. In single-
branch networks, effective classification requires a compromise, whereas two-branch networks make
it possible to achieve both—though at the cost of larger models and greater computational demands.

Comparison with Other Explainability Methods: We compared our approach against influence
functions, a practical approximation of Shapley-style analysis (Koh & Liang, 2017a). Rather than
retraining a classifier for each leave-one-out scenario to quantify a sample’s impact, influence func-
tions estimate this effect efficiently through approximations. The label of the nearest or most influ-
ential training sample (using Cosine similarity) is assigned to the test point, and accuracy is averaged
over the entire test set. However, this method becomes computationally prohibitive and slow on large
datasets, as they require Hessian–vector products and often suffer from numerical instability in deep
networks (Basu et al., 2020; Feldman, 2020). Consequently, traditional influence estimation is ex-
pensive and frequently unreliable. Following prior work (Yeh et al., 2018; Pruthi et al., 2020), we
approximate influence using nearest neighbors in the last-layer (or all-layer) representation space.
Implementation details and analysis are provided in Appx. 7.12.

6
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Table 2: Classification and index prediction accuracy across 4 settings: two-branch (class-conditional), two-
branch (class-independent), and single-branch networks with two levels of memorization. Idx Acc denotes
index prediction accuracy on the training set. A memorization level of 100% corresponds to a label mixing
parameter of α = 0. For the single-branch network, class prediction (Cls Acc) is derived either from the class
of the most active neuron (Top-1) or from the majority class among the five most active neurons (Top-5). The
network first predicts indices, and the labels associated with those indices are then used for classification. In
the class-conditional setting, indices vary only within each class, whereas in the class-independent setting, they
span the entire dataset. The last two columns show comparison with influence functions approach.

Two-Branch Net Two-Branch Net Single-Branch Net Single-Branch Net Influence
Class Conditional Class Independent 100% Memorization 50% Memorization Functions

Cls Acc Idx Acc Cls Acc Idx Acc Cls Acc Idx Acc Cls Acc Idx Acc All Last
Top-1/5 Top-1/5 Layers Layer

MNIST 99.08 98.16 99.41 99.41 84.6/98 100 98.8/99.7 49.6 87.25 99.36
FMNIST 96.01 98.68 92.65 98.63 76.6/94.7 99.8 90.3/96.4 48 76.36 92.08
CIFAR-10 83.16 99.41 75.73 89.86 30.3/68.3 99.7 65.1/86.4 47.3 49.46 77.97
CIFAR-100 37.14 99.2 38.20 40.28 8.0/20.5 94 17.0/37.4 32.7 26.24 37.10

Stanford Dogs 82.58 46.1 65.54 84.45 8.4/17.8 99.5 9.3/22.6 47.9 -

As indicated in the final two columns of Table 2, this baseline achieves strong results but still falls
short of the performance obtained by the index head in our two-branch networks.

Figure 5: Comparison of the single-branch index-prediction network with varying levels of label mixing
against an isolated CNN. Plots show Top-1 and Top-5 accuracy under 9 distortion types plus a baseline without
distortion. The variation in the isolated CNN (blue curves) across different index-mixing levels arises from the
use of different test sets at each level. Intermediate levels of memorization improve robustness: for distortions
like occlusion and blur, partial label mixing (20–30%) yields higher accuracy than the isolated CNN. Perfor-
mance over remaining 5 distortions is shown in Appx. 7.8.

5.2 ROBUSTNESS TO IMAGE DISTORTIONS

We examine whether retrieving similar examples can improve robustness in prediction. To this end,
we compare a single-branch index-prediction network with varying levels of label mixing (similar
to label smoothing) against a standard CNN trained independently (referred to as isolated CNN in
the plots). While the index-prediction network infers indices, the isolated CNN directly predicts
class labels. Performance is evaluated under 14 conditions covering 8 distortion types—salt-and-
pepper noise, Gaussian noise, occlusion, translation, rotation, scaling, Gaussian blur, and motion
blur—along with a 15th baseline condition without distortion. Results on MNIST are presented in
Figure 5, with additional results on FashionMNIST provided in Appx. 7.8.

As observed earlier, increasing the level of mixing (hence reducing memorization) generally im-
proves classification accuracy. Interestingly, for certain distortions—such as occlusion, translation,
Gaussian, and motion blur—intermediate levels of index mixing yield higher accuracy than the iso-
lated CNN, as indicated by points where the red curve (Top-1 acc) crosses above the blue line (again
Top-1 accuracy). This suggests that some degree of memorization (around 20–30%, corresponding
to label mixing above 70–80%) can enhance robustness. A possible explanation is that, under cer-
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tain distortions (e.g. occlusion), the index-prediction network can still retrieve appropriate training
samples, whereas a purely classification-based network (isolated CNN) loses this information.

5.3 DATASET DEBUGGING

Another application of provenance networks is identifying potentially mislabeled data, outliers, and
anomalies by detecting inconsistent or unlikely provenance traces. We apply the two-branch class-
conditional network to MNIST and FashionMNIST to detect intra-class anomalies. After training,
we compute the entropy of the index-branch output across roughly 6K neurons. For each class, we
identify the five training samples with the lowest and highest entropies, shown in Figure 6 for both
datasets. Normal samples typically exhibit high entropy, while anomalous or unusual samples show
low entropy. This occurs because typical samples activate only a few neurons, whereas atypical
samples activate many, making entropy a useful measure for spotting potential outliers. While a
standard classification network might also detect anomalies, our approach is complementary, as it
leverages instance-level variations captured in the index branch, as illustrated in Figure 3.

Figure 6: Repre-
sentative (left) and
anomalous (right) train-
ing samples ranked by
index-branch entropy
for the two-branch
class-conditional net-
work. Low entropy
indicates sparse neuron
activation. Top rows:
MNIST; bottom rows:
FashionMNIST. See
also Appx. 7.9.

5.4 MEMBERSHIP INFERENCE

The objective in this experiment is to determine whether a given input belongs to the training set. We
trained the class-conditional two-branch network over four datasets for 40 epochs, during which the
index prediction accuracy (top-1 and top-5) reached near-perfect levels across all datasets (i.e. over-
fitted to training indices while maintaining high classification accuracy in the main branch).

To evaluate membership inference, we randomly sampled 5K instances from the training set and 5K
from the test set of each dataset. We then computed ROC curves based on the maximum softmax
confidence scores from both the class branch and the index branch. As expected, training samples
(members) exhibited significantly higher confidence compared to test samples (non-members).

Figure 7: Left: Membership inference results based on the distri-
bution of maximum confidence from the index branch of a class-
conditional two-branch network. Right: Corresponding results us-
ing the class branch. See also Appx. 7.7.

The results across four datasets are
presented in Fig. 7. Using the in-
dex branch, the AUC was consis-
tently close to perfect. As in previ-
ous section, this is because a memo-
rized sample typically activates only
one (or a very small subset of) neu-
ron(s), whereas a non-member tends
to activate multiple neurons, result-
ing in lower confidence. In con-
trast, when using the class branch,
the smaller number of output neurons
reduces separability based on confi-
dence scores, leading to lower AUC
values. Similar trends are observed
using entropy (Appx. 7.7).
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Figure 8: Digit Generation with VAE. The top row displays the training losses and accuracies per epoch, while
the bottom row presents generated samples alongside the top-5 predictions from the index prediction network.
The left column corresponds to MNIST, and the right column to FashionMNIST (latent dim=128). We used a
simple three-layer U-Net (Ronneberger et al., 2015) as encoder–decoder, with a class head of 10 neurons and
10 index heads each with the numbers of samples in a class (max 6K). See Appx. 7.10 for more details.

Figure 9: Face generation results over the LFW dataset.

5.5 IMAGE GENERATION

The model is a Variational Autoencoder (VAE) (Kingma & Welling, 2014) with two auxiliary super-
vised heads. The encoder maps input xi to a latent distribution (µ, σ), from which a latent vector z is
sampled. The decoder reconstructs the image from z. On an intermediate decoder feature, two clas-
sification branches are applied: a class branch predicting yi and an index branch predicting ki, the
sample index within the class. The index branch has one head per class (10 for MNIST). Parameters
are not shared across these heads. It is possible to use one index head as in previous experiments.
Training minimizes a weighted combination of generative and discriminative objectives:

Ltotal = λgen
(
Lrecon + LKL

)
+ λcls

(
Lclass + Lindex

)
, (3)

where Lrecon is the binary cross-entropy reconstruction loss, LKL is the KL divergence regu-
larizing the latent space, Lclass and Lindex are cross-entropy losses for class and index predic-
tions, and λgen, λcls are weighting factors that balance the generative and discriminative objectives
(λgen = 0.6, λcls = 0.4). This formulation allows the network to simultaneously generate realistic
samples while maintaining the ability to classify and retrieve specific training examples. The model
is trained with the Adam optimizer (learning rate 10−3) in mini-batches for 70 epochs, minimizing
Ltotal. Accuracy is tracked for both class and index predictions.
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Figure 8 shows loss curves, class and index prediction accuracies for MNIST and FashionMNIST,
along with the five closest training samples retrieved by the index branch, demonstrating that the
generated samples closely resemble their corresponding training examples.

To evaluate the model on a larger and more complex dataset, we use the LFW face dataset (Huang
et al., 2008) containing 13,233 images of 5,749 individuals. We filter to include only persons with up
to 25 images, resulting in approximately 10,000-12,000 training images across 4,000-5,000 classes.
Each person (class) has a dedicated index prediction head sized to their number of training images.
We train the model using a 3-layer fully-connected encoder-decoder architecture with a 100D latent
space for 150 epochs (λgen = 0.6, λcls = 0.4). Accuracy plots in Figure 9 indicate that the model
attains high performance on both class and index prediction. Even without extensive hyperparameter
tuning, additional loss terms (e.g. perceptual loss (Johnson et al., 2016)), or exhaustive optimization,
the generated faces exhibit reasonable fidelity, and resemble the retrieved training samples. We
found a positive correlation between generation quality and index-prediction confidence, with higher
confidence linked to more realistic outputs (more details in Appx. 7.10).

6 DISCUSSION AND CONCLUSION

Provenance networks are orthogonal to existing explainability literature. They learn a representa-
tion that not only separates classes but also distinguishes individual samples, leading to a better-
organized latent space and providing transparency into model decisions.

Provenance networks are relevant to a variety of fields, from intellectual property protection and
security to critical applications like healthcare. They enable the tracking of training data, which can
help verify copyright, detect attacks like data poisoning, identify outliers, and ensure the reliability of
AI systems. In medical imaging, such provenance could assist in identifying dataset biases—such as
models relying on spurious hospital-specific artifacts rather than clinical features—though rigorous
validation would be required before clinical deployment (e.g. by examining similar cases to the
input). This transparency is also crucial for regulatory compliance, providing the traceable decisions
and data lineage needed to audit AI systems. They also benefit research by providing insight into
model behaviors such as hallucination in LLMs and can even be adapted to create faster k-nearest
neighbors (KNN) algorithms (Cunningham & Delany, 2021; Zhang et al., 2017).

A key limitation is scalability. As training data grows, index head accuracy drops. This can be mit-
igated using carefully selected subsets, naturally clustered data, or metadata in unlabeled scenarios,
as we showed. The index head also adds computational cost and may impact main-task perfor-
mance, complicating multi-objective optimization. In the future, we plan to apply our approach to
address the hallucination problem in LLMs, to mitigate adversarial vulnerability of neural networks,
commercial advertising, and to boost the explainability of other computer vision tasks such as im-
age segmentation and object detection. We will also explore methods to improve the scalability of
our approach to larger datasets. Scalability is a common challenge with KNN-like approaches. For
instance, influence functions suffer from high computational costs due to approximating or inverting
the Hessian matrix, which becomes impractical as datasets and models grow.

A central strength of our method is that it is not limited to explainability; this broader utility distin-
guishes it from approaches focused only on interpretation. Notably, the index branch also supports
applications like dataset reconstruction, with encouraging results that we plan to report in future
work.
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7 APPENDIX

7.1 SINGLE-STAGE STANDALONE ARCHITECTURE

The standalone (i.e. single branch) architecture directly maps features to training sample indices
(Rm → RN ) without intermediate class structure, representing pure memorization where the model
must learn to distinguish between all N training samples simultaneously (Figure 10).

Figure 10: Single-Stage Standalone Architecture for Direct Provenance/Attribution.

Figure 11: Training Strategy with Mixing Parameter α. During training, samples are probabilisti-
cally assigned to either exact index targets (memorization) or random class targets (generalization),
controlled by mixing parameter α ∈ [0,1].

The standalone network consists of three primary components: feature extraction, unified attribution
head, and direct index prediction, as illustrated in Figure 10.

Feature Extraction Backbone: The feature extractor employs a CNN architecture optimized for
large-scale memorization tasks:

• First Convolutional Block: Conv2d(1, 128, 3) with padding, BatchNorm2d, ReLU acti-
vation, and MaxPool2d(2) reducing spatial dimensions to 14× 14

• Second Convolutional Block: Conv2d(128, 256, 3) with padding, BatchNorm2d, ReLU
activation, and MaxPool2d(2) reducing to 7× 7

• Third Convolutional Block: Conv2d(256, 512, 3) with padding, BatchNorm2d, ReLU
activation, and AdaptiveAvgPool2d(4, 4) producing fixed 4× 4 spatial output

This configuration yields feature representations h ∈ R8192 where 8192 = 512× 4× 4.

Unified Attribution Head: The classification head performs direct mapping from features to train-
ing sample probabilities through a deep fully-connected network:

h1 = ReLU(BN(Linear(h, 4096))) with Dropout(0.4) (4)
h2 = ReLU(BN(Linear(h1, 2048))) with Dropout(0.2) (5)
ŷ = Softmax(Linear(h2, N)) with Dropout(0.1) (6)
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where N = 60,000 represents the total number of training samples, and ŷ ∈ RN is the probability
distribution over all training indices.

Model Capacity: The complete architecture contains approximately 129 million trainable param-
eters, with the final attribution layer contributing 2048 × 60,000 = 122,880,000 parameters alone,
emphasizing the model’s capacity for fine-grained memorization.

7.1.1 TRAINING OBJECTIVE AND LOSS FUNCTION

The training objective directly optimizes for exact training sample identification. For each input
sample (xi, yi) with corresponding training index ti, the model learns the mapping:

fθ : xi 7→ ti (7)

We employ cross-entropy loss with label smoothing (ϵ = 0.05) to stabilize training on the large
output space of N = 60,000 training samples.

7.1.2 OPTIMIZATION STRATEGY

Optimizer Configuration: We employ AdamW optimizer with the following hyperparameters:

• Learning rate: η = 0.002

• Weight decay: λ = 2× 10−5

• Momentum parameters: β1 = 0.9, β2 = 0.999

• Batch size: B = 128

Learning Rate Scheduling: We implement a warmup followed by step decay schedule. The learn-
ing rate gradually increases from zero to the base rate over the first 3 epochs. After warmup, we
apply step decay every 8 epochs with a multiplicative factor of 0.6, allowing the model to converge
effectively.

Weight Initialization: Critical for large-scale memorization, we use:

• Convolutional layers: Kaiming normal initialization with mode = fan out
• Batch normalization: weights = 1, bias = 0
• Final attribution layer: N (0, 0.01) for enhanced stability
• Other linear layers: N (0, 0.02)

7.1.3 EXPERIMENTAL SETUP AND EVALUATION METRICS

We monitor two complementary accuracy metrics during training:

Index Accuracy: Measures exact memorization capability Digit Accuracy: Measures semantic
understanding

Test Evaluation: For test samples not present during training, we evaluate both Top-1 and Top-5
digit accuracy.

Training conducted on A100 NVIDIA GPUs with mixed precision (FP16) using PyTorch, enabling
efficient memory utilization for the large output space (N = 60,000). Models trained for 80 epochs
per experiment with comprehensive monitoring of memorization dynamics, convergence patterns,
and generalization behavior across different mixing ratios.

Memorization Experiments: We conduct comparative analysis between:

• 100% Memorization (α = 0.0): Pure index-level learning
• 50% Memorization (α = 0.5): Balanced memorization-generalization

This experimental design enables systematic investigation of the memorization-generalization trade-
off in neural attribution networks and provides insights into the model’s capacity for fine-grained
training sample identification versus semantic feature learning.
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7.2 TWO-STAGE PROVENANCE NETWORK

The two-stage provenance network addresses the computational challenges of large-scale attribution
by decomposing the problem into hierarchical stages: digit classification followed by instance-level
attribution within the predicted class. This approach significantly reduces parameter complexity
while enabling conditional attribution based on semantic class structure.

Figure 12: Two-Stage Provenance Network with Optional Class Conditional Dependence. The
shared backbone extracts features, which feed into both the task branch (digit classification) and
index branch (training sample attribution). When conditional dependence is enabled, the index
branch receives concatenated features and one-hot encoded class predictions, allowing instance-
level attribution within the predicted class. When disabled, the index branch operates on features
alone, performing attribution across all training samples without class-specific guidance

7.2.1 ARCHITECTURE OVERVIEW

The two-stage architecture consists of a shared feature extraction backbone feeding into two spe-
cialized branches: the task branch for digit classification and the index branch for training sample
attribution, as illustrated in Figure 12. The key innovation lies in the conditional dependence mech-
anism that allows the index branch to leverage class predictions for more focused attribution.

Shared Feature Backbone: The feature extraction employs a lightweight CNN architecture:

• First Block: Conv2d(1, 64, 3) with padding, BatchNorm2d, ReLU, MaxPool2d(2)→ 14×
14× 64

• Second Block: Conv2d(64, 128, 3) with padding, BatchNorm2d, ReLU, MaxPool2d(2)
→ 7× 7× 128

• Third Block: Conv2d(128, 256, 3) with padding, BatchNorm2d, ReLU,
AdaptiveAvgPool2d(4, 4) → 4× 4× 256

The shared backbone produces feature representations h ∈ R4096 where 4096 = 256 × 4 × 4,
which are then projected to h′ ∈ R2048 through a feature projection layer with BatchNorm and
Dropout(0.3).

Task Branch (Stage 1): The digit classification branch performs standard 10-class classification:

htask = ReLU(BN(Linear(h′, 512))) with Dropout(0.2) (8)
ŷdigit = Softmax(Linear(htask, 10)) (9)

where ŷdigit ∈ R10 represents the digit class probability distribution.

Index Branch (Stage 2): The instance attribution branch operates conditionally based on the pre-
dicted digit class. The branch architecture depends on whether conditional dependence is enabled:
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Without Conditional Dependence:
hidx = ReLU(BN(Linear(h′, 2048))) with Dropout(0.2) (10)

h′
idx = ReLU(BN(Linear(hidx, 1024))) with Dropout(0.1) (11)

ŷidx = Softmax(Linear(h′
idx,M)) (12)

where M is the maximum number of samples per class across all digit classes.

With Conditional Dependence:
hconcat = Concat(h′,OneHot(argmax(ŷdigit))) (13)
hidx = ReLU(BN(Linear(hconcat, 2048))) with Dropout(0.2) (14)

h′
idx = ReLU(BN(Linear(hidx, 1024))) with Dropout(0.1) (15)

ŷidx = Softmax(Linear(h′
idx,M)) (16)

The concatenated input hconcat ∈ R2058 combines the projected features (2048) with the one-hot
encoded predicted digit class (10), enabling class-conditioned attribution.

Model Capacity: The two-stage architecture contains approximately 8.7 million parameters, repre-
senting a 93.3% reduction compared to the standalone 60K-output model. The parameter distribu-
tion includes shared backbone (1.2M), task branch (0.3M), and index branch (7.2M) parameters.

7.2.2 TRAINING OBJECTIVE AND MULTI-TASK LOSS

The training objective combines digit classification and instance attribution through a weighted
multi-task loss function:

Ltotal = α · Ltask + β · Lidx (17)

where α = 0.3 and β = 0.7 balance the contribution of each task.

Task Branch Loss: Standard cross-entropy for digit classification
Index Branch Loss: Cross-entropy with label smoothing (ϵ = 0.05) for instance attribution:

7.2.3 CLASS-CONDITIONED ATTRIBUTION MECHANISM

Index Mapping Strategy: The two-stage approach requires bidirectional mapping between global
training indices and class-local indices:

global to local : {0, 1, ..., N − 1} → {0, 1, ..., 9} × {0, 1, ...,Mc − 1} (18)
local to global : {0, 1, ..., 9} × {0, 1, ...,Mc − 1} → {0, 1, ..., N − 1} (19)

where Mc is the number of samples in digit class c, and M = maxc Mc.

Validity Masking: During inference, the index branch output is masked to prevent invalid predic-
tions:

ŷmasked
idx [j] =

{
ŷidx[j] if j < Mĉ

−∞ otherwise
(20)

where ĉ = argmax(ŷdigit) is the predicted digit class and Mĉ is the number of training samples in
that class.

Teacher Forcing: During training, we employ teacher forcing where the index branch uses ground
truth digit labels rather than predictions:

htrain
concat = Concat(h′,OneHot(ydigit

i )) (21)

This stabilizes training by providing accurate class information to the attribution branch.
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7.2.4 CONDITIONAL VS. NON-CONDITIONAL MODES

The architecture supports two operational modes:

Non-Conditional Mode: The index branch operates independently of class predictions, performing
attribution across all training samples without class-specific guidance. Input dimensionality to the
index branch remains 2048.

Conditional Mode: The index branch receives concatenated features and class information, en-
abling class-conditioned attribution. Input dimensionality increases to 2058, allowing the model to
focus attribution within the predicted semantic class.

The conditional dependence mechanism provides several advantages:

• Focused Attribution: Restricts search space to semantically relevant training samples
• Improved Accuracy: Leverages class structure for more precise instance matching
• Computational Efficiency: Reduces effective output space from N to maxc Mc

• Interpretability: Attribution results are constrained to the predicted semantic class

7.2.5 OPTIMIZATION STRATEGY

Optimizer Configuration: AdamW with identical hyperparameters to the standalone model de-
scribed in Section 7.1.2.

7.2.6 EVALUATION METRICS

The two-stage architecture requires specialized evaluation metrics for each stage:

Stage 1 (Digit Accuracy): Standard classification accuracy Stage 2 (Instance Accuracy): Local
index prediction accuracy within the ground truth class End-to-End Attribution Accuracy: Overall
system performance combining both stages

7.2.7 EXPERIMENTAL CONFIGURATION

Architecture Variants: We evaluate both conditional and non-conditional modes to assess the im-
pact of class-guided attribution on overall system performance.

Computational Efficiency: The two-stage approach enables efficient batch processing with masked
outputs, avoiding the computational overhead of the full 60K-dimensional softmax in the standalone
architecture.

Training Paradigm: Joint end-to-end training of both branches with shared backbone parameters,
enabling the model to learn complementary representations for classification and attribution tasks
simultaneously.

This hierarchical decomposition enables scalable attribution learning while maintaining semantic
coherence through class-conditioned instance matching, providing a computationally efficient alter-
native to direct large-scale memorization approaches.
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7.3 ANALYSIS OF LEARNED EMBEDDINGS

Figure 13 displays a t-SNE visualization of k-means clusters generated from the penultimate layer
of the index branch of a two-branch, class-conditional network. The architecture is detailed in
Section 7.2. The analysis was conducted on 5,842 training samples of the digit ‘4’. For each cluster
center, the four closest training data points, selected based on Euclidean distance in the feature space,
are shown to illustrate the cluster’s composition.

Figure 13: Different styles for digit 4 derived from K-means clustering of penultimate layer of the
index branch of a two-branch class-conditional network.
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7.4 DATASETS

We evaluate provenance networks across a diverse collection of datasets spanning different visual
domains, complexity levels, and dataset sizes. Our experimental design progresses from simple
grayscale digit recognition to complex natural image classification, enabling systematic analysis of
how provenance networks scale across different visual domains and dataset complexities.

7.4.1 COMPUTER VISION DATASETS

MNIST (LeCun et al., 1998): The Modified National Institute of Standards and Technology
database contains 70,000 grayscale images of handwritten digits (0-9) at 28×28 pixel resolution.
We use the standard split of 60,000 training samples and 10,000 test samples. Each digit class
contains approximately 6,000 training examples, with slight variations across classes. The dataset
serves as our primary testbed for fundamental provenance network analysis due to its manageable
size and clear class structure.

Fashion-MNIST (Xiao et al., 2017): A direct replacement for MNIST consisting of 70,000
grayscale images of fashion items across 10 categories (T-shirts, trousers, pullovers, dresses, coats,
sandals, shirts, sneakers, bags, ankle boots). The dataset maintains the same 28×28 resolution and
60,000/10,000 train/test split as MNIST but presents significantly higher visual complexity with
greater intra-class variation and inter-class similarity, making it more challenging for both classifi-
cation and attribution tasks.

CIFAR-10 (Krizhevsky & Hinton, 2009): A collection of 60,000 32×32 color images across 10
object classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck). The standard
split provides 50,000 training images and 10,000 test images, with 5,000 training samples per class.
CIFAR-10 represents a significant complexity increase from the grayscale datasets, featuring natural
images with complex backgrounds, lighting variations, and object poses.

CIFAR-100 (Krizhevsky & Hinton, 2009): An extension of CIFAR-10 containing 60,000 32×32
color images across 100 fine-grained classes grouped into 20 coarse categories. With only 500
training samples per class, CIFAR-100 presents substantial challenges for memorization-based ap-
proaches while testing the scalability of provenance networks to larger class vocabularies and re-
duced per-class sample sizes.

Stanford Dogs (Khosla et al., 2011): A fine-grained classification dataset containing approximately
20,580 images across 120 dog breeds. Images vary significantly in resolution and aspect ratio,
presenting challenges in both visual complexity and fine-grained discrimination. The dataset tests
provenance networks’ ability to handle real-world image variation and subtle inter-class differences
that require detailed visual understanding.

Labeled Faces in the Wild (LFW) (Huang et al., 2008): A face recognition dataset containing
over 13,000 images of faces collected from the web, with significant variation in pose, lighting,
expression, and image quality. We use LFW to evaluate provenance networks in generative modeling
tasks, specifically testing whether generated faces can be traced back to their most similar training
examples.

7.4.2 DATASET STATISTICS AND CHARACTERISTICS

Table 3 summarizes the key characteristics of each dataset used in our experiments. The progression
from MNIST to Stanford Dogs represents increasing visual complexity, class granularity, and real-
world applicability.

Complexity Considerations: The datasets are strategically selected to evaluate different aspects of
provenance networks:

• Scale Testing: MNIST and Fashion-MNIST provide controlled environments for funda-
mental algorithm development with manageable computational requirements.

• Class Granularity: The progression from 10 classes (MNIST, Fashion-MNIST, CIFAR-
10) to 100+ classes (CIFAR-100, Stanford Dogs) tests scalability of both standalone and
two-stage architectures.
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Table 3: Dataset statistics and characteristics for provenance network evaluation

Dataset Classes Train Size Test Size Resolution Channels Complexity
MNIST 10 60,000 10,000 28×28 1 Simple
Fashion-MNIST 10 60,000 10,000 28×28 1 Moderate
CIFAR-10 10 50,000 10,000 32×32 3 Moderate
CIFAR-100 100 50,000 10,000 32×32 3 High
Stanford Dogs 120 12,000 8,580 Variable 3 High
LFW 5,749 13,000 Variable Variable 3 High

• Visual Complexity: Moving from grayscale digits to natural color images evaluates the
robustness of learned representations across visual domains.

• Sample Density: CIFAR-100’s 500 samples per class versus MNIST’s 6,000 samples per
class tests performance under varying data availability.

• Fine-grained Recognition: Stanford Dogs’ subtle inter-class differences challenge the
attribution system’s ability to capture discriminative features.

7.4.3 DATA PREPROCESSING AND NORMALIZATION

All datasets undergo consistent preprocessing to ensure fair comparison across architectures:

Normalization: Images are normalized using dataset-specific statistics:

• MNIST/Fashion-MNIST: µ = 0.1307, σ = 0.3081

• CIFAR-10/100: µ = (0.4914, 0.4822, 0.4465), σ = (0.2023, 0.1994, 0.2010)

• Stanford Dogs/LFW: ImageNet statistics for transfer learning compatibility

Data Augmentation: We deliberately avoid extensive data augmentation in our primary experi-
ments to maintain direct correspondence between augmented samples and their training indices.
This design choice preserves the integrity of the attribution task, where each training sample must
maintain a unique, identifiable index.

Resolution Handling: For datasets with variable resolutions (Stanford Dogs, LFW), images are
resized to consistent dimensions while maintaining aspect ratios through center cropping or padding
as appropriate.

7.4.4 EXPERIMENTAL PARTITIONS

Training Set Attribution: During training, each sample in the training set is assigned a unique
index i ∈ {0, 1, ..., N − 1} where N is the total number of training samples. These indices re-
main constant throughout training, enabling the provenance network to learn stable index-to-sample
mappings.

Validation and Testing: Test sets are used exclusively for evaluation, with provenance networks
tasked to identify the most similar training samples for each test input. This setup simulates real-
world scenarios where models must trace novel inputs back to their training data influences.

Cross-Dataset Generalization: While our primary focus is within-dataset attribution, the diverse
dataset collection enables analysis of how provenance learning principles transfer across visual do-
mains with different statistical properties and semantic structures.

This comprehensive dataset collection enables systematic evaluation of provenance networks across
the spectrum from simple digit recognition to complex real-world visual understanding, providing
robust evidence for the approach’s broad applicability and scalability characteristics.
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7.5 SCALABILITY THROUGH SUBSET SAMPLING: EXTENDED RESULTS

To comprehensively evaluate the scalability approach presented in Section 4.3, we conducted exper-
iments across fine-grained subset ratios from 10% to 100% of the training data. Table 4 presents
complete results for MNIST and FashionMNIST.

Experimental Setup: We use stratified sampling to maintain class proportions when selecting sub-
sets. Both CNN1 (classification branch) and CNN2 (index branch) are trained on the same subset of
training data, with CNN2 predicting indices only within the selected subset. Both models share the
initial convolutional layer and are trained jointly for 100 epochs. All models are evaluated on the
complete 10,000-sample test set.

Key Observations:

General trends with data scale: As expected, increasing the subset size generally improves perfor-
mance, with CNN1 test accuracy improving from 98.27% (10% subset) to 99.26% (90% subset) on
MNIST. However, the improvements plateau beyond 50-70%, demonstrating diminishing returns.
Notably, even with severely limited subsets (10% = 6,000 samples), CNN1 achieves respectable ac-
curacy (86.66% on FashionMNIST, 98.27% on MNIST), validating that provenance networks can
operate effectively when trained on substantially reduced data.

Non-monotonic index prediction: CNN2 Top-1 accuracy does not increase monotonically with
subset size. For MNIST, Top-1 accuracy peaks at 30% (79.72%) and 90% (83.26%), while dropping
at intermediate points (e.g., 50% → 69.94%). This counterintuitive pattern suggests that adding
more training samples to the index vocabulary introduces confusion between visually similar ex-
amples, making exact index prediction harder even as the model has more data. The effect is less
pronounced in Top-5 and Top-10 metrics, which remain more stable.

Stable semantic retrieval: Top-5 and Top-10 accuracies show much more consistent trends across
subset sizes, indicating the network successfully identifies semantically relevant training samples
regardless of exact index prediction difficulty. For instance, MNIST Top-5 accuracy ranges from
92.05% to 96.53% across all subsets, with no dramatic drops. This validates the Top-K retrieval
strategy for provenance tracking—the network learns to map test samples to their nearest neighbors
in the training set, even when pinpointing the exact closest sample proves difficult.

Dataset complexity effects: FashionMNIST shows performance saturation beyond 50%, with min-
imal improvement from additional subset samples (90%: 92.19% vs 50%: 90.86%). This suggests
that for more complex datasets with higher intra-class variation, carefully selected representative
samples (prototypes, boundary cases, or diversity-maximizing selections) may be more effective
than random stratified sampling. The marginal gains from 50% to 90% (1.33 percentage points)
come at the cost of nearly doubling the index head size.

Practical deployment: For MNIST, training on 30% of data achieves 98.87% classification accu-
racy with 95.49% Top-5 retrieval, representing 70% parameter reduction in the index head (17,995
vs 60,000 output neurons). For FashionMNIST, training on 50% achieves 90.86% classification
with 89.71% Top-5 retrieval and 50% parameter reduction. These results demonstrate practical scal-
ability improvements while maintaining competitive performance. The trade-off between parameter
efficiency and accuracy allows practitioners to select operating points based on deployment con-
straints: resource-constrained settings can use 30-50% subsets with minimal accuracy loss, while
applications requiring maximum accuracy can use 70-90% subsets while still achieving meaningful
compression compared to full indexing.
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Table 4: Scalability analysis: Both classification and index branches trained on the same subset.
CNN1 provides test accuracy; CNN2 Top-K shows class matching accuracy of retrieved training
samples.

Subset Samples CNN1 Top-1 Top-5 Top-10
MNIST

10% 5,996 98.27 68.32 92.57 96.56
30% 17,995 98.87 79.72 95.49 97.75
50% 29,997 98.98 69.94 92.05 96.04
70% 41,995 99.19 76.86 95.16 97.76
90% 53,994 99.26 83.26 96.53 98.41

FashionMNIST
10% 6,000 86.66 59.13 87.20 93.62
30% 18,000 89.99 60.11 89.26 94.93
50% 30,000 90.86 66.88 89.71 94.77
70% 42,000 91.36 67.39 91.26 95.79
90% 54,000 92.19 64.86 90.48 95.26
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7.6 ANALYSIS OF NETWORK SIZE AND PARAMETER SHARING

We conducted systematic parameter sharing experiments across multiple model scales and datasets
to understand how different levels of parameter sharing affect task performance. All models follow
a convolutional neural network architecture with progressive channel expansion, consisting of three
convolutional layers followed by fully connected layers.

Table 5: MNIST results across all model sizes and sharing levels. C2 Cls-T1/T5 denotes CNN2
Class Consistency Top-1/Top-5 accuracy.

Model Level Sharing% Total Params CNN1 Test CNN2 Memo (training) C2 Cls-T1/T5

Small (32→64→128)

1 0.0% 4.0M 0.992 0.987 0.817 / 0.972
2 0.3% 4.0M 0.992 0.982 0.820 / 0.972
3 1.3% 4.0M 0.991 0.987 0.828 / 0.975
4 10.4% 3.9M 0.991 0.919 0.766 / 0.944

Medium (64→128→256)

1 0.0% 17.2M 0.993 1.000 0.850 / 0.977
2 0.4% 17.2M 0.993 1.000 0.847 / 0.977
3 2.1% 17.1M 0.993 1.000 0.855 / 0.978
4 18.8% 16.1M 0.993 0.963 0.827 / 0.965

Large (128→256→512)

1 0.0% 35.8M 0.993 0.997 0.863 / 0.981
2 0.7% 35.7M 0.994 0.997 0.861 / 0.981
3 3.1% 35.5M 0.993 0.997 0.862 / 0.981
4 31.8% 33.0M 0.992 0.994 0.848 / 0.976

XLarge (256→512→1024)

1 0.0% 79.6M 0.993 0.992 0.869 / 0.982
2 0.9% 79.5M 0.993 0.992 0.866 / 0.981
3 4.2% 79.0M 0.993 0.993 0.866 / 0.981
4 48.2% 71.9M 0.992 0.994 0.852 / 0.978

Table 6: Fashion-MNIST results across all model sizes and sharing levels. C2 Cls-T1/T5 denotes
CNN2 Class Consistency Top-1/Top-5 accuracy.

Model Level Sharing% Total Params CNN1 Test CNN2 Memo (training) C2 Cls-T1/T5

Small (32→64→128)

1 0.0% 4.0M 0.895 0.933 0.555 / 0.820
2 0.3% 4.0M 0.893 0.944 0.568 / 0.832
3 1.3% 4.0M 0.895 0.998 0.624 / 0.877
4 10.4% 3.9M 0.887 0.826 0.521 / 0.787

Medium (64→128→256)

1 0.0% 17.2M 0.908 0.757 0.439 / 0.717
2 0.4% 17.2M 0.906 0.977 0.595 / 0.850
3 2.1% 17.1M 0.906 0.982 0.611 / 0.860
4 18.8% 16.1M 0.893 0.950 0.565 / 0.827

Large (128→256→512)

1 0.0% 35.8M 0.909 0.987 0.618 / 0.868
2 0.7% 35.7M 0.912 0.996 0.629 / 0.876
3 3.1% 35.5M 0.910 0.998 0.633 / 0.879
4 31.8% 33.0M 0.905 0.998 0.622 / 0.872

XLarge (256→512→1024)

1 0.0% 79.6M 0.914 0.835 0.504 / 0.768
2 0.9% 79.5M 0.913 0.998 0.631 / 0.879
3 4.2% 79.0M 0.914 0.998 0.635 / 0.882
4 48.2% 71.9M 0.908 0.998 0.623 / 0.873

We evaluated four model sizes with increasing capacity. The Small Model uses a 32→64→128
channel progression with 128 FC units, totaling approximately 4M parameters. The Medium Model
expands to 64→128→256 channels with 256 FC units, reaching approximately 17M parameters.
The Large Model further scales to 128→256→512 channels with 512 FC units, comprising approx-
imately 35M parameters. Finally, the XLarge Model uses 256→512→1024 channels with 1024 FC
units, totaling approximately 80M parameters. All models include dropout (0.5) and ReLU activa-
tions.

We implemented four levels of parameter sharing between two networks. Level 1 shares only the
first convolutional layer. Level 2 shares the first two convolutional layers. Level 3 shares all three
convolutional layers. Level 4 shares all convolutional layers plus the first fully connected layer. This
progressive sharing design allows us to study how increasing amounts of shared representations
affect task interference and performance.
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Figure 14: Convergence plots for class branch (CNN1) and index branch (CNN2) for a small (top)
and medium (bottom) size CNNs over MNIST dataset.
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Figure 15: Convergence plots for class branch (CNN1) and index branch (CNN2) for a large (top)
and xlarge (bottom) size CNNs over MNIST dataset.
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Figure 16: Convergence plots for class branch (CNN1) and index branch (CNN2) for a small (top)
and medium (bottom) size CNNs over FashionMNIST dataset.
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Figure 17: Convergence plots for class branch (CNN1) and index branch (CNN2) for a large (top)
and xlarge (bottom) size CNNs over FashionMNIST dataset.
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7.6.1 TASKS AND TRAINING PROTOCOL

We trained a Two-Staged provenance Network (non-class conditional) for this task.

Batch sizes varied by model scale for memory efficiency. Small, Medium, and Large models used
batch sizes of 64 for CNN1 and 32 for CNN2. The XLarge model required reduced batch sizes of 32
and 16 respectively to fit in GPU memory. Learning rates were adjusted based on model capacity:
Small and Medium models used 0.001 for CNN1 and 0.0001 for CNN2; Large models used 0.0005
for both networks; XLarge models used 0.0002 for both networks to ensure stable training at massive
scale.

7.6.2 EVALUATION METRICS

We evaluated models using 4 key metrics as diplayed in Tables 5, 6. CNN1 test accuracy measures
classification performance on the held-out test set, indicating generalization capability. CNN2 train-
ing accuracy measures index memorization performance on training data, showing the network’s
capacity to memorize individual instances. CNN2 class consistency (Top-1 and Top-5) evaluates
whether memorized training indices preserve semantic structure: when shown a test image, do the
top-1 or top-5 predicted training sample indices belong to the correct class? This metric reveals
whether memorization captures class-level patterns beyond pure instance recall. Finally, we com-
puted the sharing ratio as the percentage of shared parameters relative to total unique parameters
across both networks.

7.6.3 CAPACITY AND SHARING DYNAMICS

Model capacity fundamentally shapes parameter sharing dynamics. Small models showed the
strongest interference effects, particularly at Level 4 sharing where limited capacity forced direct
competition between tasks. Medium and Large models demonstrated that increased capacity re-
duces interference, enabling near-perfect performance on both tasks even with substantial sharing.
The XLarge Model revealed that massive capacity (approximately 80M parameters) can accommo-
date up to 48% parameter sharing with minimal degradation, suggesting that capacity-constrained
interference diminishes as models scale.

Dataset complexity interacted with model capacity in predictable ways. MNIST’s simpler visual
patterns allowed even Small models to achieve strong performance across sharing levels. Fashion-
MNIST’s increased complexity revealed clearer capacity constraints: Small models showed sig-
nificant memorization degradation at high sharing levels, while larger models maintained strong
performance. This pattern suggests that complex datasets require proportionally more capacity to
support parameter sharing without interference.

7.6.4 OPTIMAL SHARING LEVELS

Level 3 sharing (all convolutional layers) emerged as optimal for most configurations, particularly
on complex datasets. This level provided sufficient shared feature extraction while preserving task-
specific capacity in FC layers. Level 4 sharing (including first FC layer) created the highest param-
eter overlap but showed performance degradation in capacity-constrained settings, especially for
Small models on Fashion-MNIST.

Interestingly, Level 1 sharing (first conv layer only) sometimes underperformed on Fashion-MNIST,
particularly for Medium and XLarge models. This suggests that minimal sharing provides insuffi-
cient feature extraction capacity for complex visual tasks, and that intermediate sharing levels enable
better learned representations through multi-task pressure on shared parameters.

7.6.5 MEMORIZATION AND SEMANTIC STRUCTURE

Class consistency metrics revealed that memorization preserves semantic structure beyond pure in-
stance recall. Top-5 class consistency substantially exceeded Top-1 across all configurations, indi-
cating that memorized indices cluster by class even when exact matches are imperfect. This demon-
strates that the memorization task implicitly learns class-level representations.
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Higher sharing levels generally improved class consistency, suggesting that shared representations
encode semantic information more effectively than task-specific features. This pattern was most
pronounced in larger models, where Level 3-4 sharing achieved the highest class consistency de-
spite having the greatest parameter overlap. This finding suggests that forcing networks to share
representations encourages learning of generalizable semantic features.

7.6.6 TRAINING DYNAMICS

Analysis of training curves revealed distinct convergence patterns. CNN1 classification typically
plateaued within 20 epochs, indicating rapid learning of discriminative features. CNN2 memoriza-
tion exhibited slower, more gradual improvement throughout the 150-epoch training period, reflect-
ing the difficulty of learning 60,000-way classification.

Level 1-3 sharing produced smooth, stable loss curves across all model sizes. Level 4 sharing intro-
duced instability in Small models, manifested as oscillating training loss, particularly on Fashion-
MNIST. This instability disappeared in larger models, confirming that capacity constraints drive
interference effects at high sharing levels.

Higher sharing levels accelerated CNN2 convergence in larger models, suggesting that shared task-
relevant features bootstrap memorization learning. This effect was absent in Small models, where
capacity constraints prevented efficient feature sharing.

7.6.7 IMPLICATIONS

The results challenge the assumption that dramatically different tasks necessarily require separate
parameters, showing instead that capacity and sharing level can be tuned to achieve strong multi-task
performance.

The finding that Level 3 sharing (all conv layers) often outperforms minimal sharing suggests that
multi-task learning pressure improves shared representations. This has practical implications for
model design: deliberately sharing mid-level features may produce better representations than keep-
ing networks entirely separate.

The class consistency results reveal that memorization tasks implicitly learn semantic structure, even
when trained only on instance-level labels. This suggests that instance-level supervision may be a
viable alternative to explicit class labels for learning discriminative representations, particularly in
scenarios where class labels are expensive or ambiguous.

Finally, the scaling behavior demonstrates that interference effects diminish with capacity, but not
uniformly. The non-monotonic relationship between sharing level and performance (with Level 1
sometimes underperforming Levels 2-3) indicates that sharing dynamics are complex and capacity-
dependent, warranting further investigation into optimal parameter sharing strategies across different
scales and task combinations.
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7.7 MEMBERSHIP INFERENCE ANALYSIS SETUP

7.7.1 TRAINING CONFIGURATION

We adopt a controlled training setup for membership inference analysis. The key hyperparameters
are summarized in Table 7.

Table 7: Training configuration for membership inference analysis.

Setting Value

Optimizer AdamW (lr = 2× 10−3, weight decay = 2× 10−5, betas = (0.9, 0.999))
Schedule Warmup (3 epochs) + Step decay (γ = 0.6, step = 8 epochs)
Epochs 40
Batch size 128
Mixed precision Enabled (AMP)
Loss weights α = 0.3 (digit), β = 0.7 (index)
Other Seed = 42, 4 workers, 5000 MIA samples
Evaluation Top-k provenance accuracy with k ∈ {1, 5}

7.7.2 MODEL: TWO-STAGE CNN ATTRIBUTION

The proposed Two-Stage CNN Attribution model jointly predicts class labels and training indices.
It consists of:

• Shared feature extractor: Three convolutional blocks with BatchNorm, ReLU, and pool-
ing, followed by adaptive pooling to a 4× 4 grid.

• Projection layer: Fully connected projection to a 2048-d representation (ReLU, Batch-
Norm, Dropout).

• Digit head (class prediction): A two-layer MLP mapping to the number of classes.
• Instance head (index prediction): Conditioned on both the projected features and the

class label. During training, the ground-truth label is used; otherwise, the predicted label
(argmax) is used. The label is encoded as a one-hot vector and concatenated with the
feature representation.

This design ensures that index attribution is conditioned on class identity, mimicking provenance
behavior.

7.7.3 LOSS FUNCTIONS

We use two objectives:

• Digit loss: Standard cross-entropy on class prediction.
• Instance loss: Cross-entropy on index prediction with label smoothing (0.05).

The final training objective is a weighted sum:

L = αLdigit + β Lindex.

7.7.4 MEMBERSHIP INFERENCE PROTOCOL

For membership inference, we query the index prediction head with candidate samples. Models
trained on provenance information tend to assign higher confidence to training members than to
non-members. We quantify this effect on held-out data, using 5,000 candidate samples.

Distribution of max confidence scores and entropies over train/member and test/non-member data-
point are shown next.
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Figure 18: The left panel displays the distribution of maximum confidence scores, while the right
panel shows the distribution of entropy, all from the index branch of a class-conditional two-branch
network. Both distributions are plotted for 5K training samples (members) and 5K test samples (non-
members). This data is used to generate the plot in Figure 7

.

Figure 19: Same as above over CIFAR datasets.
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Figure 20: The left panel displays the distribution of maximum confidence scores, while the right
panel shows the distribution of entropy, all from the class branch of a class-conditional two-branch
network. Both distributions are plotted for 5K training samples (members) and 5K test samples
(non-members).

Figure 21: Same as above over CIFAR datasets.
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7.8 ROBUSTNESS ANALYSIS

We evaluate robustness under a diverse set of input distortions, shown in Figure 24 over four samples.
Results over all 14 distortion types are shown in Figure 23.

Figure 22: Distortion types in order from top to bottom: no distortion, salt-and-pepper noise (p=0.1,
p=0.2), Gaussian noise (σ = 0.1, σ = 0.2), occlusion (4 × 4, 6 × 6), translation (± 3px, ± 4px),
rotation (±30◦,±40◦), scaling (0.8-1.2x), Gaussian blur (σ = 1, σ = 2), and motion blur (5px).
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Figure 23: Comparison of the single-branch index-prediction network with varying levels of label
mixing against an isolated CNN. Plots show Top-1 and Top-5 accuracy under 14 distortion types
plus a baseline without distortion. The variation in the isolated CNN (blue curves) across differ-
ent index-mixing levels arises from the use of different test sets at each level. Intermediate levels
of memorization improve robustness: for distortions like occlusion and blur, partial label mixing
(20–30%) yields higher accuracy than the isolated CNN.
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7.9 DATASET DEBUGGING

Figure 24 shows representative (left) and anomalous (right) training samples, ranked by the entropy
of the index-branch output in the two-branch class-conditional network. Low entropy corresponds
to sparse neuron activations. The top rows display MNIST samples, while the bottom rows show
FashionMNIST samples.

Figure 24: Representative (left) and anomalous (right) training samples ranked by index-branch en-
tropy for the two-branch class-conditional network. Low entropy indicates sparse neuron activation.
Top rows: MNIST; bottom rows: FashionMNIST.
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7.10 IMAGE GENERATION

Our model is a Variational Autoencoder (VAE) with an integrated classification module designed
to jointly optimize for high-quality generative modeling and discriminative representation learning.
The model has three main components: an encoder, a latent reparameterization block, and a
decoder with auxiliary heads. Below, we describe each in detail.

7.10.1 ENCODER

The encoder fϕ : R1×28×28 → R2d maps the input x to the parameters of a Gaussian distribution in
a d-dimensional latent space (we use d = 128).

The encoder is implemented as a three-stage convolutional feature extractor followed by two parallel
fully connected heads:

• Conv Stage 1: 3 × 3 convolution with 64 output channels, stride 2, and padding 1 →
BatchNorm → ReLU. Reduces spatial resolution from 28× 28 to 14× 14.

• Conv Stage 2: 3× 3 convolution with 128 channels, stride 2, padding 1→ BatchNorm →
ReLU. Further reduces resolution to 7× 7.

• Conv Stage 3: 3× 3 convolution with 256 channels, stride 1, padding 1→ BatchNorm →
ReLU. Maintains 7× 7 spatial size while enriching representation depth.

The resulting 256 × 7 × 7 feature map is flattened into a vector of size 12544 and passed through
two linear layers:

µ(x) = Wµh+ bµ, log σ2(x) = Wlog σh+ blog σ.

7.10.2 LATENT REPARAMETERIZATION

We use the reparameterization trick to sample z ∼ qϕ(z|x):

z = µ(x) + σ(x)⊙ ϵ, ϵ ∼ N (0, I).

This allows gradients to propagate through stochastic sampling during training, enabling end-to-end
optimization of both encoder and decoder parameters.

7.11 DECODER

The decoder gθ : Rd → R1×28×28 reconstructs the input image from z.

• Fully Connected Projection: The latent code is mapped back to a 256× 7× 7 tensor.

• Deconv Stage 1: 3× 3 transposed convolution to 128 channels, stride 1→ BatchNorm →
ReLU. (Resolution remains 7× 7.)

• Feature Pooling for Prediction: We perform global average pooling over this intermediate
128-channel feature map, yielding hcls ∈ R128. This vector is used for auxiliary prediction
heads:

– Class Head: A linear layer producing logits for K classes (we use K = 10).
– Index Heads (optional): A list of linear layers, each predicting a separate categorical

factor.

• Deconv Stage 2: 3 × 3 transposed convolution to 64 channels, stride 2, padding 1, output
padding 1→ BatchNorm → ReLU. (Upsamples to 14× 14.)

• Deconv Stage 3: 3 × 3 transposed convolution to 32 channels, stride 2, padding 1, output
padding 1→ BatchNorm → ReLU. (Restores full 28× 28 resolution.)

• Output Layer: 3 × 3 convolution producing a single channel, followed by a sigmoid
nonlinearity to ensure pixel intensities lie in [0, 1].
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7.11.1 TRAINING SETUP

We train the model on the IndexedMNIST dataset, which augments the standard MNIST digits with
class indices for auxiliary prediction tasks. Input images are normalized to [0, 1]. We use a batch
size of 128 for training and 64 for evaluation.

7.11.2 OPTIMIZATION

The model parameters are optimized using the Adam optimizer with learning rate 10−3 for 70
epochs. For each minibatch, we compute:

• Reconstruction loss: Binary cross-entropy between input x and reconstruction x̂.
• KL divergence: Regularizing the approximate posterior qϕ(z|x) toward the prior p(z) =
N (0, I).

• Classification loss: Cross-entropy over the class logits.
• Index loss (optional): Cross-entropy over each auxiliary index head.

The total training objective is:

L = λgen

(
Eqϕ(z|x)[− log pθ(x|z)]︸ ︷︷ ︸

Reconstruction Loss

+DKL(qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
KL Regularization

)
+λcls

(
LCE(y, ŷ)︸ ︷︷ ︸

Classification Loss

+
∑
k

LCE(yk, ŷk)︸ ︷︷ ︸
Index Losses

)
.

During training, we log the average total loss, its decomposition (reconstruction, KL, classifica-
tion, index), and the classification and index prediction accuracies. This provides a clear picture of
generative quality and discriminative performance over time.

PyTorch implementations are provided next.
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Figure 25: Encoder of VAE on MNIST and FashionMNIST datasets
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Figure 26: Decoder of VAE on MNIST and FashionMNIST datasets

Figure 27: VAE Architecture on MNIST and FashionMNIST datasets
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Figure 28: Additional generated faces by VAE (left column) along with five most similar training
faces derived from the class and index branches.
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7.11.3 ANALYZING THE RELATIONSHIP BETWEEN GENERATED IMAGE REALISM AND THE
INDEX-PREDICTION BRANCH CONFIDENCE

We assessed the relationship between generated image realism and the index-prediction branch con-
fidence. Specifically, we split generated samples by confidence (conf < 0.5 vs conf ≥ 0.5). To
quantify the continuous association we report Spearman’s rho between sample-level confidence and
an individual-image quality proxy (Inception features distance to nearest training sample / recon-
struction error). Across four runs, images from the high-confidence group had substantially lower
FID than the low-confidence group:

Threshold Nhigh Nlow FIDhigh (95% CI) FIDlow (95% CI) Spearman ρ (p)
0.5 432 568 28.7 (25.6–31.8) 65.4 (61.1–69.9) −0.62 (< 10−6)

Results show a consistent negative association: higher-confidence samples have substantially lower
FID and smaller feature-space distances.
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7.12 INFLUENCE ESTIMATION VIA LAST-LAYER REPRESENTATIONS

Understanding which training examples are responsible for a model’s prediction has become a cen-
tral problem in interpretability. Classical influence functions estimate the effect of removing a train-
ing point (xi, yi) on the loss at a test point xt via a second-order Taylor approximation of the ERM
objective (Koh & Liang, 2017b). However, computing influence scores requires Hessian–vector
products and often suffers from numerical instability in deep networks (Basu et al., 2020; Feldman,
2020). This makes traditional influence estimation extremely expensive and frequently unreliable in
practice.

In contrast, recent theoretical and empirical findings show that for deep networks with a linear final
layer—which includes essentially all modern CNNs and transformers—the influence of a training
example can be well-approximated by nearest neighbors in the last-layer representation space
(Yeh et al., 2018; Pruthi et al., 2020). Let fθ : X → Rd denote the network embedding (all layers
except the final classifier). The logit for class c is then

Fc(x) = w⊤
c fθ(x), (22)

where wc ∈ Rd are the classifier weights.

Influence as Representation Similarity. For a training example (xi, yi) define its embedding
zi = fθ(xi) and similarly zt = fθ(xt) for a test example. Under mild regularity assumptions, the
first-order approximation of the change in logits when replacing xt with xi in training yields an
influence score proportional to the similarity of their representations:

I(i → t) ∝ ⟨zi, zt⟩. (23)
Cosine similarity provides a numerically stable version:

S(i, t) =
⟨zi, zt⟩

∥zi∥2 ∥zt∥2
. (24)

Thus, the most influential training example is simply the nearest neighbor of xt in representation
space:

i∗ = arg max
i∈Dtrain

S(i, t). (25)

Assigning the label of the most influential training point yields the influence-based prediction:
ŷt = yi∗ . (26)

Representer Theorem Connection. Yeh et al. (2018) show that for deep networks trained with
weight decay, each prediction can be decomposed as a weighted sum of training example similari-
ties:

Fc(xt) =

n∑
i=1

αi,c⟨zi, zt⟩, (27)

where αi,c depend on the classifier weights and loss. In many classification settings, the coefficients
αi,c are approximately uniform within a class, yielding a natural justification for nearest-neighbor
influence estimation.

Practical Advantages. The last-layer influence approximation offers:

• No gradients or Hessians: only forward passes.
• Low memory: store d-dim embeddings, not full gradients.
• Stability: representation similarity is smooth and robust.
• Faithfulness: provably consistent with linear last layers.

Empirically, on MNIST and CIFAR-10, the influence-NN classifier achieves accuracy close to clas-
sical nearest neighbors in the learned embedding space, far exceeding gradient-based influence
methods which often perform near chance level due to noise.

This approach therefore serves as an inexpensive and theoretically grounded proxy for influence
functions, while avoiding the instability, memory cost, and high computational burden of gradient-
based methods.

The code is available at [MASKED].
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Algorithm 1 Influence-Based Prediction via Last-Layer Nearest Neighbors

Require: Trained network fθ, training set {xi, yi}, test input xt

1: Precompute embeddings zi = fθ(xi) for all training points.
2: Compute test embedding zt = fθ(xt).
3: Compute similarities S(i, t) for all i:

S(i, t) =
⟨zi, zt⟩

∥zi∥2∥zt∥2
.

4: Identify the most influential example:

i∗ = argmax
i

S(i, t).

5: return predicted label ŷt = yi∗ .
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