

000 001 002 003 004 005 PROVENANCE NETWORKS: END-TO-END EXEMPLAR- 006 BASED EXPLAINABILITY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031 We introduce *provenance networks*, a novel class of neural models designed to
032 provide end-to-end, training-data-driven explainability. Unlike conventional post-
033 hoc methods, provenance networks learn to link each prediction directly to its
034 supporting training examples as part of the model’s normal operation, embedding
035 interpretability into the architecture itself. Conceptually, the model operates sim-
036 ilarly to a learned KNN, where each output is justified by concrete exemplars
037 weighted by relevance in the feature space. This approach facilitates systematic
038 investigations of the trade-off between memorization and generalization, enables
039 verification of whether a given input was included in the training set, aids in the
040 detection of mislabeled or anomalous data points, enhances resilience to input
041 perturbations, and supports the identification of similar inputs contributing to the
042 generation of a new data point. By jointly optimizing the primary task and the ex-
043 plainability objective, provenance networks offer insights into model behavior that
044 traditional deep networks cannot provide. While the model introduces additional
045 computational cost and currently scales to moderately sized datasets, it provides a
046 complementary approach to existing explainability techniques. In particular, it ad-
047 dresses critical challenges in modern deep learning, including model opaqueness,
048 hallucination, and the assignment of credit to data contributors, thereby improving
049 transparency, robustness, and trustworthiness in neural models.
050

1 INTRODUCTION

051 Deep learning has made remarkable progress in recent years, leading to a diverse ecosystem of neu-
052 ral network architectures tailored to specific problem domains (LeCun et al., 2015). Despite this
053 diversity, the vast majority of neural networks share a common design principle: raw input data
054 is transformed through a sequence of nonlinear mappings into an embedding or latent repres-
055 entation. This representation is typically compact, smooth, and task-aligned, making it suitable for
056 downstream tasks. However, in the process of mapping input to such latent spaces, models often
057 lose explicit references to individual training samples. As a result, most networks cannot directly
058 identify which training examples are responsible for shaping a given decision at the test time.
059

060 In this paper, we introduce “Prove-
061 nance Networks”, a new class of neu-
062 ral networks (NNs) designed to ex-
063 plicitly trace back predictions to the
064 training data that supports them. At
065 the core of our approach is a neu-
066 ral mechanism that maps any input
067 data point not only to a semantic em-
068 bedding, but also to an index in the
069 training set. A simplified schematic
070 is shown in Figure 1. From a shared
071 backbone, one branch handles the primary task, while the other predicts the index of the input sam-
072 ple and is trained jointly during optimization. At inference time, the system retrieves the training
073 sample most likely to have contributed to the prediction. As we will show later, provenance can
074 be trained either as a single dedicated branch or integrated into any existing architecture, enabling
075

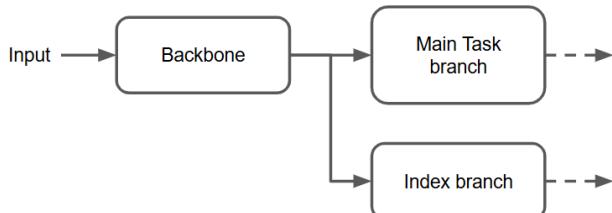


Figure 1: Provenance network schematic.

054 tracking as a standalone task or as an auxiliary component within broader systems for classification,
 055 detection, segmentation, or generative modeling.
 056

057 Our approach combines the interpretability and case-based reasoning of k-Nearest Neighbors
 058 (KNNs) with the scalability and representational power of neural networks. This hybrid design en-
 059 ables neighbor-based transparency while supporting efficient end-to-end learning, inference on raw
 060 high-dimensional data, and strong generalization. In effect, it allows NNs to implement KNN-like
 061 behavior in a fully differentiable, end-to-end manner.
 062

063 Here, we study the fundamental properties of provenance networks, explore multiple design choices,
 064 evaluate their utility across diverse tasks, and analyze their scalability and limitations. Our results
 065 demonstrate that provenance networks have broad applicability and significant potential for address-
 066 ing key challenges in modern AI systems—particularly mitigating hallucinations and enabling fair
 067 credit attribution to content creators. Although our experiments focus on the visual domain, the pro-
 068 posed approach is readily applicable to other modalities, including large language models (LLMs).
 069

070 2 RELATED WORK

071 Since their inception, the black-box nature of neural networks has posed a significant challenge,
 072 prompting the development of numerous methods to illuminate their internal workings (Zhang et al.,
 073 2021; Lipton, 2018; Linardatos et al., 2020). Existing methods for training data provenance, such as
 074 influence functions (Koh & Liang, 2017b) and data Shapley values (Ghorbani & Zou, 2019), provide
 075 mathematically rigorous measures of individual sample influence but are computationally expensive
 076 and impractical for large-scale datasets. Leave-one-out retraining offers exact influence estimates
 077 but is infeasible due to the need for retraining many models (Hammoudeh et al., 2023).
 078

079 Alternative explainability approaches, including “perturbation-based methods” like LIME (Ribeiro
 080 et al., 2016), “game-theoretic methods” such as SHAP (Lundberg & Lee, 2017), and “saliency-
 081 based methods” such as vanilla gradients (Simonyan et al., 2014), Integrated Gradients (Sundarara-
 082 jan et al., 2017), SmoothGrad (Smilkov et al., 2017), and GradCAM (Selvaraju et al., 2017), offer
 083 feature-level insights into model decision-making. Beyond these, work on “feature visualization and
 084 circuits analysis” (Olah et al., 2017; 2020; Zhou et al., 2016) has provided deeper conceptual tools
 085 for understanding how neurons, layers, and subnetworks interact, highlighting the compositional
 086 structure of representations in neural networks. While these methods highlight which input features
 087 or internal mechanisms most influence a prediction, they cannot attribute predictions to specific
 088 training samples, limiting their utility for provenance and intellectual property protection.
 089

090 Current neural information retrieval systems (Mitra & Craswell, 2018; Snell et al., 2017) are used
 091 for large-scale classification and retrieval, enabling sample identification. However, these systems
 092 face scalability and semantic limitations, and they do not offer a unified framework for controlling
 093 memorization and generalization. Provenance Networks address these shortcomings by integrating
 094 classification, training data attribution, and robustness within a single model.
 095

096 **Some neural architectures use memory to boost task performance rather than interpretability.** Mem-
 097 ory networks store and retrieve information for tasks like question answering (Weston et al., 2014;
 098 Sukhbaatar et al., 2015), while matching networks enable few-shot learning by classifying new ex-
 099 amples based on similarity to a small labeled support set (Vinyals et al., 2016; Xu et al., 2018).
 100 Provenance Networks differ fundamentally from memory-augmented models and prototype net-
 101 works in both purpose and mechanism. Memory-augmented models (*e.g.* Neural Turing Ma-
 102 chines Graves et al. (2014)) store and retrieve learned latent memories, which are optimized for
 103 task performance rather than interpretability. Prototype networks, similarly, operate on learned class
 104 prototypes—compressed centroids that summarize a class rather than referencing specific training
 105 points. In contrast, Provenance Networks explicitly retrieve and weight actual training examples,
 106 enabling decisions to be grounded in identifiable data instances. This exemplar-level attribution
 107 provides transparent, data-driven explanations that neither memory-augmented nor prototype-based
 108 architectures can offer.
 109

110 Interpretability of LLMs has advanced through sparse autoencoders for disentangling latent features
 111 (Lieberum et al., 2024) and the broader agenda of mechanistic interpretability (Nanda et al., 2023),
 112 while complementary strategies like retrieval-augmented generation (RAG) improve transparency
 113 by grounding outputs in external evidence (Lewis et al., 2020).
 114

108 Building on matching networks and a concept anecdotally noted by Lloyd Watts (link), we expand
 109 these ideas through systematic analysis, examining design choices, large-scale dataset strategies,
 110 and a range of use cases.
 111

112 3 PROVENANCE NETWORKS

114 We illustrate the core concepts using multi-class prediction, although they are not limited to this
 115 specific task. For a detailed view of the model architectures, please see Appx. 7.1 and 7.2.
 116

117 3.1 I: SINGLE BRANCH NETWORK

119 Here, essentially each datapoint is mapped to its index (Appx. Fig 10). Inputs may be presented in
 120 random order during training, but their indices remain constant. To ease training on large datasets,
 121 an input is not always mapped to its own index but is occasionally mapped to a different index from
 122 the same class (Appx. Fig. 11). Let i denote the true training index of an input sample x , and let \mathcal{I}_y
 123 denote the set of indices belonging to the same class y , excluding i . The target index t for training
 124 is sampled according to the mixing parameter α as
 125

$$126 t \sim \begin{cases} i, & \text{with probability } 1 - \alpha \text{ (memorization)} \\ \text{Uniform}(\mathcal{I}_y \setminus \{i\}), & \text{with probability } \alpha \text{ (generalization)} \end{cases}. \quad (1)$$

128 The network outputs logits \mathbf{p} over all training indices, and the cross-entropy loss is then
 129

$$130 \mathcal{L} = -\log \hat{p}_t,$$

131 where \hat{p}_t is the predicted probability of the target index t after softmax. This formulation interpolates
 132 between pure memorization ($\alpha = 0$) and pure semantic generalization ($\alpha = 1$), with intermediate
 133 values controlling the trade-off. This defines a spectrum of model behaviors:
 134

- 135 • $\alpha = 0$: pure/rote memorization (e.g. index accuracy $\approx 99\%$)
- 136 • $\alpha = 1$: pure generalization (e.g. semantic accuracy $\approx 100\%$)
- 137 • $0 < \alpha < 1$ (e.g. $\alpha = 0.3$): balanced behavior (index accuracy $\approx 60\%$, semantic accuracy
 138 $\approx 97\%$)

140 When $\alpha = 1$, the setup effectively reduces to standard classification, with the number of output
 141 neurons matching the number of classes. In this case, individual sample identities are lost. Label
 142 mixing is applied only during training of the single-branch network, not the two-branch networks.
 143

144 3.2 II: TWO BRANCH NETWORK

146 We consider two variants of this architecture. In the first variant, called *class-independent*, the main
 147 branch predicts the class label $y \in \{1, \dots, C\}$ and a secondary branch (index branch) predicts an
 148 index $z \in \{1, \dots, K\}$ in dataset. Let \hat{y}_c denote the predicted probability for class c and \hat{z}_k denote
 149 the predicted probability for index k . Both branches are trained jointly using cross-entropy loss:
 150 $\mathcal{L}_{\text{class}} = -\log \hat{y}$ and $\mathcal{L}_{\text{index}} = -\log \hat{z}_z$. The total loss is a weighted sum of the two branches,
 151

$$152 \mathcal{L}_{\text{total}} = \lambda_{\text{class}} \mathcal{L}_{\text{class}} + \lambda_{\text{index}} \mathcal{L}_{\text{index}} \quad (2)$$

153 where λ_{class} and λ_{index} control the relative importance of the class and index predictions. We set
 154 $\lambda_{\text{class}} = \lambda_{\text{index}} = 1$ in the experiments.
 155

156 In the second variant, called *class-conditional*, the main branch again predicts the class label $y \in$
 157 $\{1, \dots, C\}$, but the secondary branch predicts an index *within the predicted class* rather than among
 158 all K training samples. Concretely, for a sample belonging to class y , the index is defined as

$$159 z \in \{1, \dots, K_y\},$$

160 where K_y is the number of training samples in class y . This class-conditional formulation makes
 161 index prediction easier, particularly for large datasets where $K \gg K_y$.

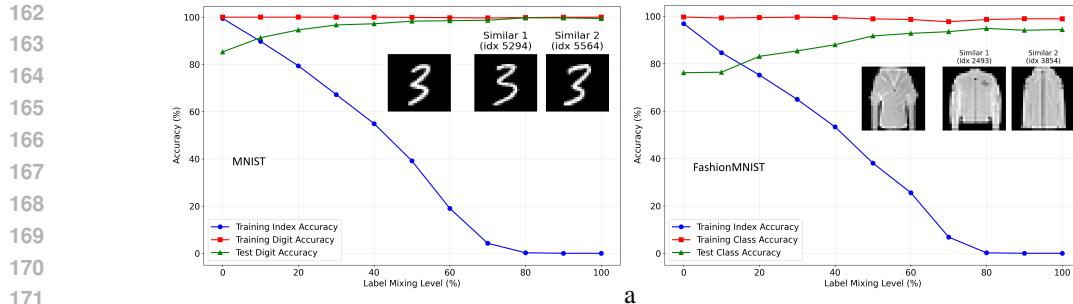


Figure 2: Trade-off between generalization and memorization in the single-branch network, with test samples overlaid alongside their two most similar training examples.

Let \hat{y}_c denote the predicted probability for class c , and let $\hat{z}_{k|y}$ denote the predicted probability for index k conditional on class y . The corresponding cross-entropy losses are

$$\mathcal{L}_{\text{class}} = -\log \hat{y}_y, \quad \mathcal{L}_{\text{index}} = -\log \hat{z}_{z|y}.$$

The overall objective is again a weighted combination of the two. At inference time, the model first predicts the class label via the main branch, then uses this class to restrict the index prediction branch to only the indices belonging to that class.

The index branch contains as many neurons as the maximum number of training samples across classes. Alternatively, separate heads can be used per class, in which case the number of neurons in each head matches the number of training samples within that class (*i.e.* no parameter sharing).

If the primary task is not classification, the network must be adjusted to provide a conditioning signal. For instance, in semantic segmentation or image generation, additional outputs can be introduced to predict both the image-level class label (*e.g.* street scene) and the sample index.

4 NETWORK ANALYSIS

4.1 MEMORIZATION VS. GENERALIZATION TRADE-OFF

Figure 2 shows the results of training the single-branch network on the MNIST (LeCun et al., 1998) and FashionMNIST (Xiao et al., 2017) datasets as the index mixing ratio varies from 0 to 100%. The reported metrics are index prediction accuracy on the training set and class prediction accuracy, derived from the retrieved index, on both training and test sets.

At low levels of label mixing α , the network tends to memorize individual samples, which reduces its ability to generalize—evident from the lower test set accuracy. As α increases, memorization decreases and generalization improves. At 100% label mixing, the network completely loses its memorization capacity. This trade-off highlights how one can tune the mixing ratio to balance memorization against generalization for a specific task. A similar trend is observed on FashionMNIST, though in this case memorization has an even stronger negative impact on classification accuracy.

4.2 VISUALIZATION OF LEARNED REPRESENTATIONS

We analyze representations learned in the 2048D last embedding layer of the index branch. Figure 3 (top left) shows t-SNE visualizations where misattributed samples (94 out of 10K) lie near cluster boundaries—these samples are visually ambiguous, resembling multiple digit classes. The top-5 retrieved training samples confirm the network organizes data by visual similarity rather than ground truth labels. The bottom row demonstrates instance-level structure: k-means clustering reveals distinct writing styles within digit 6 and dress styles within FashionMNIST, showing the embedding captures fine-grained intra-class variation beyond simple class separation.

4.3 SCALABILITY ANALYSIS

To address the fundamental scalability limitation of provenance networks, we investigate whether the system can operate effectively when trained on only a strategically selected subset of training

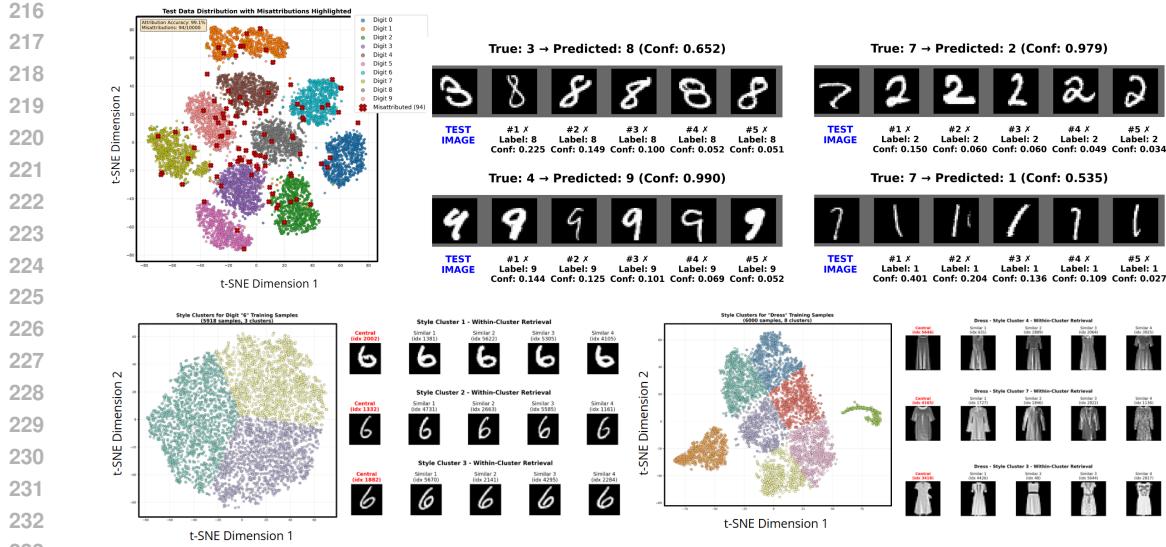


Figure 3: Top (left): t-SNE visualization of the penultimate layer in the index branch of a two-branch class-conditional network. Top (right): Misattributed test samples alongside their five nearest training samples in the index branch. Bottom: t-SNE visualization of k-means clusters from the same layer, with corresponding training samples for digits 6 (left) and FashionMNIST dresses (right).

data. We train both the main and index branches of class-conditional network on identical subsets, selected through stratified sampling to maintain class proportions. Results are shown in Table 1.

Remarkably, training both branches on just 30% of the MNIST data (17,995 samples) achieves 98.87% test accuracy on the main branch—matching the performance of models trained on the full 60K data—while reducing the parameters of the index head by 70%. The index branch attains a Top-5 class matching accuracy of 95.49%, indicating that the network effectively retrieves semantically relevant training examples even when the majority of the data is excluded. On FashionMNIST, training with 50% of the data (30K samples) produces 90.86% accuracy and 89.71% Top-5 accuracy via the index branch, demonstrating consistent performance across datasets. Index prediction accuracy is already high with the full training set (98.16%; Table 2) and reaches 100% using only 50% of the data on MNIST. This suggests that selecting a representative subset can preserve class prediction accuracy while rapidly improving index prediction, enabling the approach to scale.

These results suggest a practical deployment strategy: rather than indexing all training samples, provenance networks can focus on representative exemplars or high-value samples (e.g. near decision boundaries, diverse prototypes, or verified clean data). While this compromise means some training samples become unretrievable, it enables substantial parameter reduction while maintaining both classification performance and retrieval capability. This transforms provenance networks from theoretically interesting but impractical to deployable at substantially larger scales. Extended results and detailed analysis are provided in Appx. 7.5.

Table 1: Class prediction accuracy using a two branch class-conditional network on training data subsets.

Subset	MNIST Samples	Main Branch	Index Branch			FashionMNIST Samples	Main Branch	Index Branch				
			Top-1	Top-5	Top-10			Top-1	Top-5	Top-10		
10%	5,996	98.27	68.32	92.57	96.56	6,000	86.66	59.13	87.20	93.62		
30%	17,995	98.87	79.72	95.49	97.75	18,000	89.99	60.11	89.26	94.93		
50%	29,997	98.98	69.94	92.05	96.04	30,000	90.86	66.88	89.71	94.77		
70%	41,995	99.19	76.86	95.16	97.76	42,000	91.36	67.39	91.26	95.79		
90%	53,994	99.26	83.26	96.53	98.41	54,000	92.19	64.86	90.48	95.26		

4.4 EFFECT OF MODEL SIZE AND LAYER SHARING

To study how model size impacts generalization vs. memorization in provenance networks, we evaluate two class-conditional models, Small and XLarge, differing in channel dimensions (Small with 4M parameters; XLarge with 80M parameters), and vary the number of shared parameters between

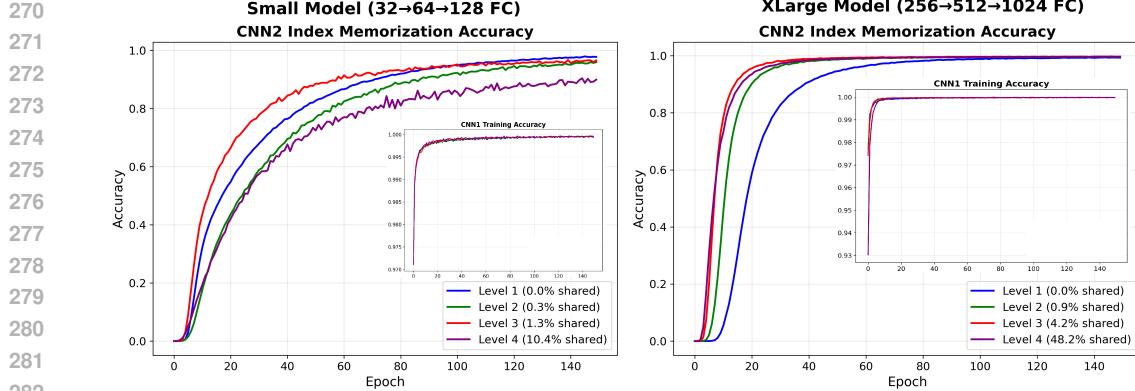


Figure 4: Accuracy per epoch for the index branch and class branch (insets) of Small (left) and XLarge (right) models. Each curve represents a different level of parameter sharing (on MNIST). See also Appx. 7.6.

the branches across 4 levels: Level I (1st conv layer only), Level II (1st two conv layers), Level III (all 3 conv layers), and Level IV (all conv layers plus the first FC layer). Each model was trained for 150 epochs on MNIST. As shown in Figure 4, the larger model converges faster and achieves higher accuracy in both branches, suggesting that greater capacity benefits provenance networks. Increased layer sharing further improves the larger model but can hurt the smaller one—likely due to competition for limited representational capacity between classification and memorization tasks. Larger models have sufficient capacity to accommodate both objectives. See Appx. 7.6.

5 APPLICATIONS

5.1 IMAGE AND OBJECT CLASSIFICATION

Table 2 summarizes class and index prediction accuracy on four coarse-grained datasets (MNIST, FashionMNIST, CIFAR-10/100 (Krizhevsky & Hinton, 2009)) and one fine-grained dataset (Stanford Dogs by Khosla et al. (2011)). We compare two-branch networks against single-branch networks trained under two levels of label mixing. See Appx. 7.4 for dataset stats.

We did not heavily optimize the networks for accuracy (*e.g.* through data augmentation). Nevertheless, the class-conditional network achieves strong performance in both classification and index prediction, demonstrating that it can both classify and explain. In contrast, the class-independent network performs poorly on index prediction for the CIFAR datasets, primarily due to the large number of neurons required for 60K training samples. Its relatively strong index prediction on MNIST and FashionMNIST can be attributed to the lower complexity of these datasets. Importantly, this shows that the network still provides meaningful explanations in many cases, with higher explainability for CIFAR-10 than CIFAR-100. Similar conclusion applies to dog classification [[cosine similarity]]

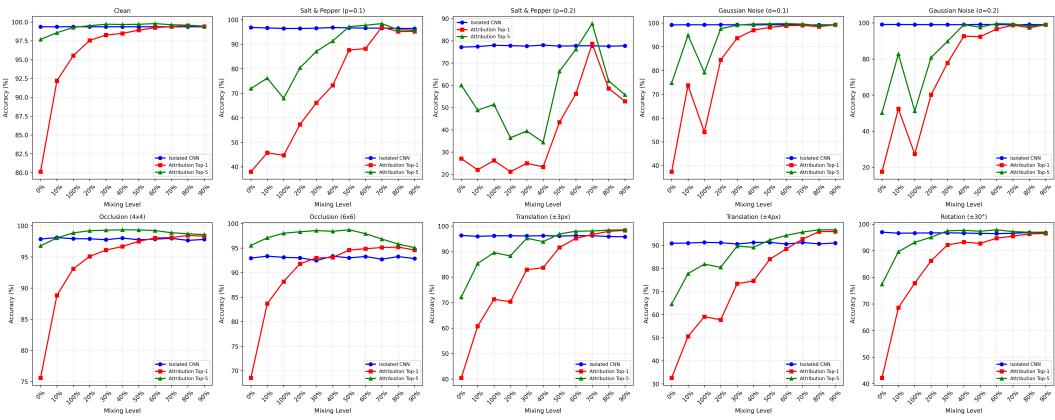
Single-branch network results show that models with stronger memorization (100%) explain better but classify worse than those with weaker memorization (50%), as illustrated in Figure 2. In single-branch networks, effective classification requires a compromise, whereas two-branch networks make it possible to achieve both—though at the cost of larger models and greater computational demands.

Comparison with Other Explainability Methods: We compared our approach against influence functions, a practical approximation of Shapley-style analysis (Koh & Liang, 2017a). Rather than retraining a classifier for each leave-one-out scenario to quantify a sample’s impact, influence functions estimate this effect efficiently through approximations. The label of the nearest or most influential training sample (using Cosine similarity) is assigned to the test point, and accuracy is averaged over the entire test set. However, this method becomes computationally prohibitive and slow on large datasets, as they require Hessian–vector products and often suffer from numerical instability in deep networks (Basu et al., 2020; Feldman, 2020). Consequently, traditional influence estimation is expensive and frequently unreliable. Following prior work (Yeh et al., 2018; Pruthi et al., 2020), we approximate influence using nearest neighbors in the last-layer (or all-layer) representation space. Implementation details and analysis are provided in Appx. 7.12.

324
 325
 326
 327
 328
 329
 330
 331
Table 2: Classification and index prediction accuracy across 4 settings: two-branch (class-conditional), two-branch (class-independent), and single-branch networks with two levels of memorization. Idx Acc denotes index prediction accuracy on the training set. A memorization level of 100% corresponds to a label mixing parameter of $\alpha = 0$. For the single-branch network, class prediction (Cls Acc) is derived either from the class of the most active neuron (Top-1) or from the majority class among the five most active neurons (Top-5). The network first predicts indices, and the labels associated with those indices are then used for classification. In the class-conditional setting, indices vary only within each class, whereas in the class-independent setting, they span the entire dataset. The last two columns show comparison with influence functions approach.

	Two-Branch Net Class Conditional		Two-Branch Net Class Independent		Single-Branch Net 100 % Memorization		Single-Branch Net 50 % Memorization		Influence Functions	
	Cls Acc	Idx Acc	Cls Acc	Idx Acc	Cls Acc Top-1/5	Idx Acc	Cls Acc Top-1/5	Idx Acc	All Layers	
									Idx Acc	Last Layer
MNIST	99.08	98.16	99.41	99.41	84.6/98	100	98.8/99.7	49.6	87.25	99.36
FMNIST	96.01	98.68	92.65	98.63	76.6/94.7	99.8	90.3/96.4	48	76.36	92.08
CIFAR-10	83.16	99.41	75.73	89.86	30.3/68.3	99.7	65.1/86.4	47.3	49.46	77.97
CIFAR-100	37.14	99.2	38.20	40.28	8.0/20.5	94	17.0/37.4	32.7	26.24	37.10
Stanford Dogs	82.58	46.1	65.54	84.45	8.4/17.8	99.5	9.3/22.6	47.9	-	-

340
 341 As indicated in the final two columns of Table 2, this baseline achieves strong results but still falls
 342 short of the performance obtained by the index head in our two-branch networks.



357
 358 **Figure 5: Comparison of the single-branch index-prediction network with varying levels of label mixing**
 359 **against an isolated CNN.** Plots show Top-1 and Top-5 accuracy under 9 distortion types plus a baseline without
 360 distortion. The variation in the isolated CNN (blue curves) across different index-mixing levels arises from the
 361 use of different test sets at each level. Intermediate levels of memorization improve robustness: for distortions
 362 like occlusion and blur, partial label mixing (20–30%) yields higher accuracy than the isolated CNN. Perfor-
 363 mance over remaining 5 distortions is shown in Appx. 7.8.

363 5.2 ROBUSTNESS TO IMAGE DISTORTIONS

365 We examine whether retrieving similar examples can improve robustness in prediction. To this end,
 366 we compare a single-branch index-prediction network with varying levels of label mixing (similar
 367 to label smoothing) against a standard CNN trained independently (referred to as isolated CNN in
 368 the plots). While the index-prediction network infers indices, the isolated CNN directly predicts
 369 class labels. Performance is evaluated under 14 conditions covering 8 distortion types—salt-and-
 370 pepper noise, Gaussian noise, occlusion, translation, rotation, scaling, Gaussian blur, and motion
 371 blur—along with a 15th baseline condition without distortion. Results on MNIST are presented in
 372 Figure 5, with additional results on FashionMNIST provided in Appx. 7.8.

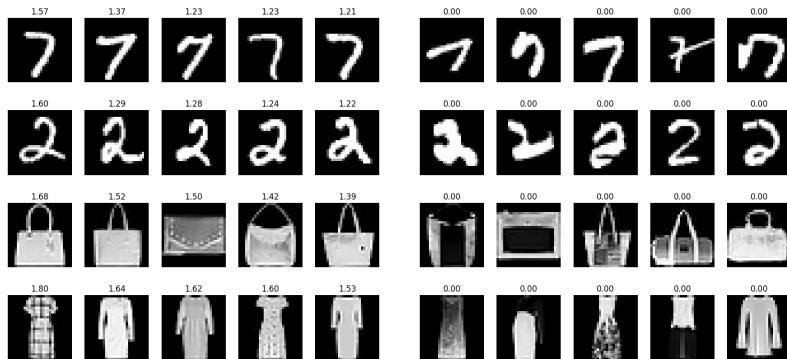
373 As observed earlier, increasing the level of mixing (hence reducing memorization) generally im-
 374 proves classification accuracy. Interestingly, for certain distortions—such as occlusion, translation,
 375 Gaussian, and motion blur—intermediate levels of index mixing yield higher accuracy than the iso-
 376 lated CNN, as indicated by points where the red curve (Top-1 acc) crosses above the blue line (again
 377 Top-1 accuracy). This suggests that some degree of memorization (around 20–30%, corresponding
 to label mixing above 70–80%) can enhance robustness. A possible explanation is that, under cer-

378 tain distortions (*e.g.* occlusion), the index-prediction network can still retrieve appropriate training
 379 samples, whereas a purely classification-based network (isolated CNN) loses this information.
 380

382 5.3 DATASET DEBUGGING

384 Another application of provenance networks is identifying potentially mislabeled data, outliers, and
 385 anomalies by detecting inconsistent or unlikely provenance traces. We apply the two-branch class-
 386 conditional network to MNIST and FashionMNIST to detect intra-class anomalies. After training,
 387 we compute the entropy of the index-branch output across roughly 6K neurons. For each class, we
 388 identify the five training samples with the lowest and highest entropies, shown in Figure 6 for both
 389 datasets. Normal samples typically exhibit high entropy, while anomalous or unusual samples show
 390 low entropy. This occurs because typical samples activate only a few neurons, whereas atypical
 391 samples activate many, making entropy a useful measure for spotting potential outliers. While a
 392 standard classification network might also detect anomalies, our approach is complementary, as it
 393 leverages instance-level variations captured in the index branch, as illustrated in Figure 3.
 394

395 Figure 6: Representative (left) and
 396 anomalous (right) training samples ranked by
 397 index-branch entropy for the two-branch
 398 class-conditional network. Low entropy
 399 indicates sparse neuron activation. Top rows:
 400 MNIST; bottom rows:
 401 FashionMNIST. See
 402 also Appx. 7.9.
 403

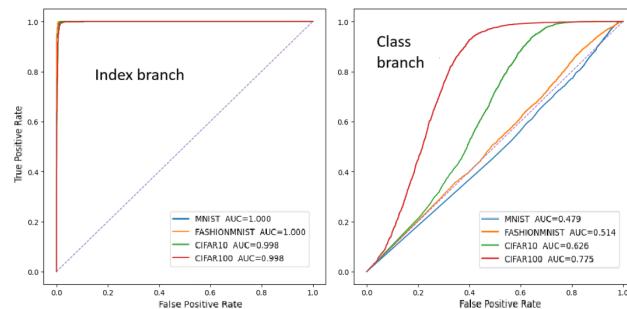


407 5.4 MEMBERSHIP INFERENCE

409 The objective in this experiment is to determine whether a given input belongs to the training set. We
 410 trained the class-conditional two-branch network over four datasets for 40 epochs, during which the
 411 index prediction accuracy (top-1 and top-5) reached near-perfect levels across all datasets (*i.e.* over-
 412 fitted to training indices while maintaining high classification accuracy in the main branch).
 413

414 To evaluate membership inference, we randomly sampled 5K instances from the training set and 5K
 415 from the test set of each dataset. We then computed ROC curves based on the maximum softmax
 416 confidence scores from both the class branch and the index branch. As expected, training samples
 417 (members) exhibited significantly higher confidence compared to test samples (non-members).
 418

419 The results across four datasets are
 420 presented in Fig. 7. Using the in-
 421 dex branch, the AUC was con-
 422 sistently close to perfect. As in pre-
 423 vious section, this is because a mem-
 424 orized sample typically activates only
 425 one (or a very small subset of) neu-
 426 ron(s), whereas a non-member tends
 427 to activate multiple neurons, result-
 428 ing in lower confidence. In con-
 429 trast, when using the class branch,
 430 the smaller number of output neu-
 431 rons reduces separability based on
 432 confidence scores, leading to lower
 433 AUC values. Similar trends are ob-
 434 served using entropy (Appx. 7.7).
 435



436 Figure 7: Left: Membership inference results based on the
 437 distribution of maximum confidence from the index branch of a class-
 438 conditional two-branch network. Right: Corresponding results us-
 439 ing the class branch. See also Appx. 7.7.
 440

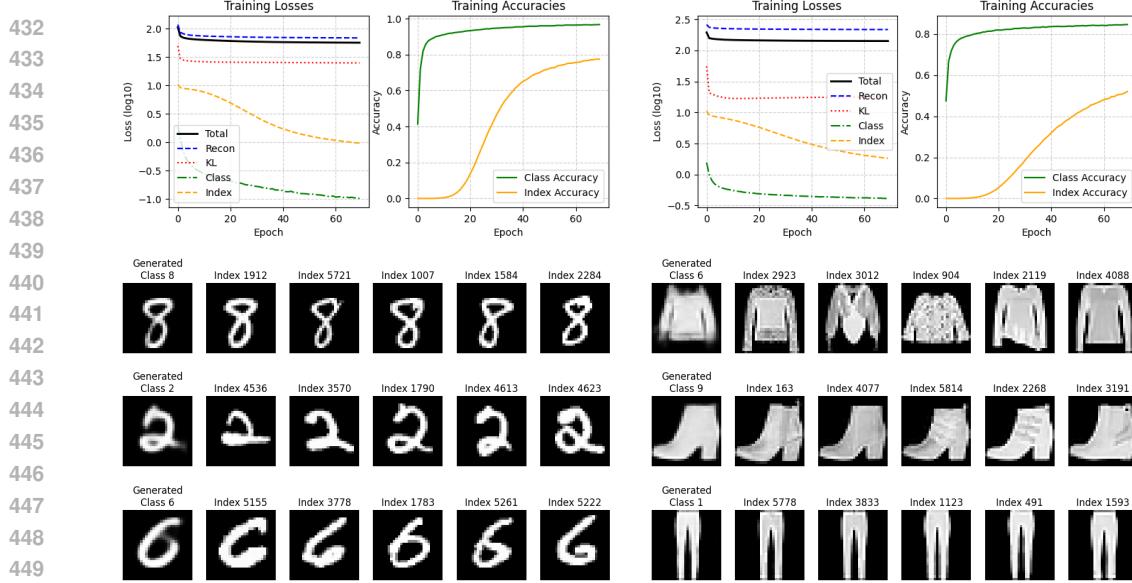


Figure 8: Digit Generation with VAE. The top row displays the training losses and accuracies per epoch, while the bottom row presents generated samples alongside the top-5 predictions from the index prediction network. The left column corresponds to MNIST, and the right column to FashionMNIST (latent_dim=128). We used a simple three-layer U-Net (Ronneberger et al., 2015) as encoder-decoder, with a class head of 10 neurons and 10 index heads each with the numbers of samples in a class (max 6K). See Appx. 7.10 for more details.

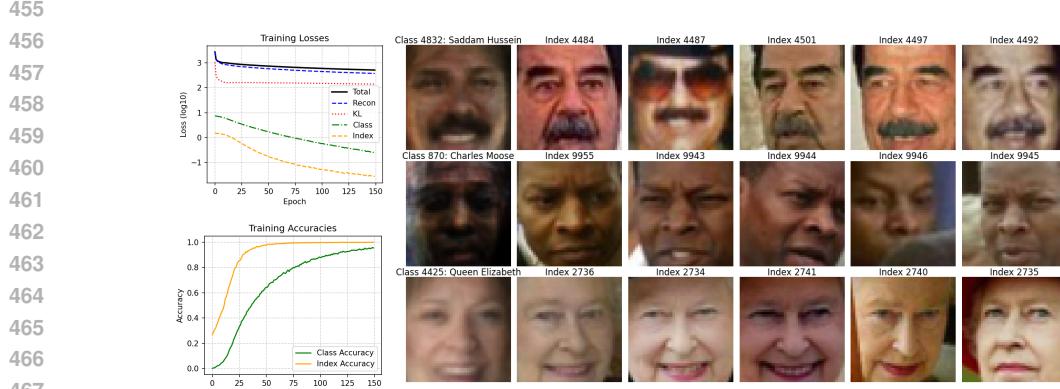


Figure 9: Face generation results over the LFW dataset.

5.5 IMAGE GENERATION

The model is a Variational Autoencoder (VAE) (Kingma & Welling, 2014) with two auxiliary supervised heads. The encoder maps input x_i to a latent distribution (μ, σ) , from which a latent vector z is sampled. The decoder reconstructs the image from z . On an intermediate decoder feature, two classification branches are applied: a class branch predicting y_i and an index branch predicting k_i , the sample index within the class. The index branch has one head per class (10 for MNIST). Parameters are not shared across these heads. It is possible to use one index head as in previous experiments. Training minimizes a weighted combination of generative and discriminative objectives:

$$\mathcal{L}_{\text{total}} = \lambda_{\text{gen}} (\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{KL}}) + \lambda_{\text{cls}} (\mathcal{L}_{\text{class}} + \mathcal{L}_{\text{index}}), \quad (3)$$

where $\mathcal{L}_{\text{recon}}$ is the binary cross-entropy reconstruction loss, \mathcal{L}_{KL} is the KL divergence regularizing the latent space, $\mathcal{L}_{\text{class}}$ and $\mathcal{L}_{\text{index}}$ are cross-entropy losses for class and index predictions, and $\lambda_{\text{gen}}, \lambda_{\text{cls}}$ are weighting factors that balance the generative and discriminative objectives ($\lambda_{\text{gen}} = 0.6, \lambda_{\text{cls}} = 0.4$). This formulation allows the network to simultaneously generate realistic samples while maintaining the ability to classify and retrieve specific training examples. The model is trained with the Adam optimizer (learning rate 10^{-3}) in mini-batches for 70 epochs, minimizing $\mathcal{L}_{\text{total}}$. Accuracy is tracked for both class and index predictions.

486
487
488
489
Figure 8 shows loss curves, class and index prediction accuracies for MNIST and FashionMNIST,
490 along with the five closest training samples retrieved by the index branch, demonstrating that the
491 generated samples closely resemble their corresponding training examples.
492

493 To evaluate the model on a larger and more complex dataset, we use the LFW face dataset (Huang
494 et al., 2008) containing 13,233 images of 5,749 individuals. We filter to include only persons with up
495 to 25 images, resulting in approximately 10,000-12,000 training images across 4,000-5,000 classes.
496 Each person (class) has a dedicated index prediction head sized to their number of training images.
497 We train the model using a 3-layer fully-connected encoder-decoder architecture with a 100D latent
498 space for 150 epochs ($\lambda_{\text{gen}} = 0.6$, $\lambda_{\text{cls}} = 0.4$). Accuracy plots in Figure 9 indicate that the model
499 attains high performance on both class and index prediction. Even without extensive hyperparameter
500 tuning, additional loss terms (e.g. perceptual loss (Johnson et al., 2016)), or exhaustive optimization,
501 the generated faces exhibit reasonable fidelity, and resemble the retrieved training samples. **We
502 found a positive correlation between generation quality and index-prediction confidence, with higher
503 confidence linked to more realistic outputs (more details in Appx. 7.10).**

501 6 DISCUSSION AND CONCLUSION

502 Provenance networks are orthogonal to existing explainability literature. They learn a representation
503 that not only separates classes but also distinguishes individual samples, leading to a better-
504 organized latent space and providing transparency into model decisions.

505 Provenance networks are relevant to a variety of fields, from intellectual property protection and
506 security to critical applications like healthcare. They enable the tracking of training data, which can
507 help verify copyright, detect attacks like data poisoning, identify outliers, and ensure the reliability of
508 AI systems. In medical imaging, such provenance could assist in identifying dataset biases—such as
509 models relying on spurious hospital-specific artifacts rather than clinical features—though rigorous
510 validation would be required before clinical deployment (e.g. by examining similar cases to the
511 input). This transparency is also crucial for regulatory compliance, providing the traceable decisions
512 and data lineage needed to audit AI systems. They also benefit research by providing insight into
513 model behaviors such as hallucination in LLMs and can even be adapted to create faster k-nearest
514 neighbors (KNN) algorithms (Cunningham & Delany, 2021; Zhang et al., 2017).

515 A key limitation is scalability. As training data grows, index head accuracy drops. This can be mit-
516 igated using carefully selected subsets, naturally clustered data, or metadata in unlabeled scenarios,
517 as we showed. The index head also adds computational cost and may impact main-task perfor-
518 mance, complicating multi-objective optimization. In the future, we plan to apply our approach to
519 address the hallucination problem in LLMs, to mitigate adversarial vulnerability of neural networks,
520 commercial advertising, and to boost the explainability of other computer vision tasks such as im-
521 age segmentation and object detection. We will also explore methods to improve the scalability of
522 our approach to larger datasets. **Scalability is a common challenge with KNN-like approaches. For
523 instance, influence functions suffer from high computational costs due to approximating or inverting
524 the Hessian matrix, which becomes impractical as datasets and models grow.**

525 A central strength of our method is that it is not limited to explainability; this broader utility distin-
526 guishes it from approaches focused only on interpretation. Notably, the index branch also supports
527 applications like dataset reconstruction, with encouraging results that we plan to report in future
528 work.

530 REFERENCES

531
532 Samyadeep Basu, Phillip Pope, and Soheil Feizi. On the causality and stability of influence func-
533 tions. *arXiv preprint arXiv:2009.00329*, 2020.

534
535 Padraig Cunningham and Sarah Jane Delany. K-nearest neighbour classifiers-a tutorial. *ACM com-*
536 *puting surveys (CSUR)*, 54(6):1–25, 2021.

537
538 Vitaly Feldman. What neural networks memorize and why: Discovering the long tail via influence
539 estimation. *arXiv preprint arXiv:2008.03703*, 2020.

540 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
 541 In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pp. 2242–
 542 2251, 2019.

543

544 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. *arXiv preprint*
 545 *arXiv:1410.5401*, 2014.

546

547 Zayd Hammoudeh, Anant Mangalik, Han Zhang, Zhiwei Steven Yang, Shengjia Zhao, and
 548 Chelsea Finn. Training data influence analysis and estimation: A survey. *arXiv preprint*
 549 *arXiv:2212.04612*, 2023.

550

551 Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
 552 A database forstudying face recognition in unconstrained environments. In *Workshop on faces*
 553 *in'Real-Life'Images: detection, alignment, and recognition*, 2008.

554

555 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 556 super-resolution. In *European Conference on Computer Vision (ECCV)*, pp. 694–711. Springer,
 557 2016. doi: 10.1007/978-3-319-46475-6_43.

558

559 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for
 560 fine-grained image categorization: Stanford dogs. In *Proceedings of the IEEE Conference on*
 561 *Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 2–1. IEEE, 2011.

562

563 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *Proceedings of the 2nd*
 564 *International Conference on Learning Representations (ICLR)*, 2014.

565

566 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 567 *Proceedings of the 34th International Conference on Machine Learning*, pp. 1885–1894, 2017a.

568

569 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 570 *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pp. 1885–1894,
 571 2017b.

572

573 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
 574 report, University of Toronto, 2009.

575

576 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 577 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

578

579 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444,
 580 2015. doi: 10.1038/nature14539.

581

582 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 583 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 584 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural*
 585 *Information Processing Systems*, 33:9459–9474, 2020.

586

587 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 588 Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 589 autoencoders everywhere all at once on gemma 2. In *Proceedings of the ICML 2024 Workshop*
 590 *on Mechanistic Interpretability*, 2024.

591

592 Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable ai: A review of
 593 machine learning interpretability methods. *Entropy*, 23(1):18, 2020.

594

595 Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
 596 pretability is both important and slippery. *Queue*, 16(3):31–57, 2018.

597

598 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In *Advances*
 599 *in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

600

601 Bhaskar Mitra and Nick Craswell. An introduction to neural information retrieval. *Foundations and*
 602 *Trends in Information Retrieval*, 13(1):1–126, 2018.

594 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 595 for grokking via mechanistic interpretability. In *Proceedings of the 41st International Conference*
 596 *on Machine Learning (ICML)*, 2023.

597

598 Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. *Distill*,
 599 2(1):e7, 2017. doi: 10.23915/distill.00007. URL <https://distill.pub/2017/feature-visualization>.

600

601 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 602 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.

603

604 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 605 influence by tracing gradient descent. In *Advances in Neural Information Processing Systems*, pp.
 606 19920–19930, 2020.

607

608 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?” explaining the
 609 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference*
 610 *on Knowledge Discovery and Data Mining*, pp. 1135–1144, 2016.

611

612 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 613 image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.

614

615 Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh,
 616 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization.
 617 In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 618–626, 2017.

618

619 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 620 Visualising image classification models and saliency maps. In *Proceedings of the International Conference on Learning Representations (ICLR) Workshop*, 2014.

621

622 Daniel Smilkov, Boris Hallen, and Fernanda Viégas. Smoothgrad: removing noise by adding noise.
 623 In *ICML Workshop on Visualization for Deep Learning*, 2017.

624

625 Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

626

627 Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
 628 In *Advances in Neural Information Processing Systems (NeurIPS)*, 2015.

629

630 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pp. 3319–3328. PMLR, 2017.

631

632 Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan Wierstra. Matching networks for one shot learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.

633

634 Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In *Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS)*, 2014.

635

636 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

637

638 Jun Xu, Xiangnan He, and Hang Li. Deep learning for matching in search and recommendation.
 639 *Foundations and Trends in Information Retrieval*, 13(1):1–126, 2018.

640

641 Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep Ravikumar. Representer point selection for explaining deep neural networks. In *Advances in Neural Information Processing Systems*, pp. 9291–9301, 2018.

642

643 Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Ruili Wang. Efficient knn classification
 644 with different numbers of nearest neighbors. *IEEE transactions on neural networks and learning systems*, 29(5):1774–1785, 2017.

648 Yu Zhang, Peter Tišo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
649 *IEEE transactions on emerging topics in computational intelligence*, 5(5):726–742, 2021.
650

651 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
652 features for discriminative localization. In *Proceedings of the IEEE conference on computer*
653 *vision and pattern recognition*, pp. 2921–2929, 2016.

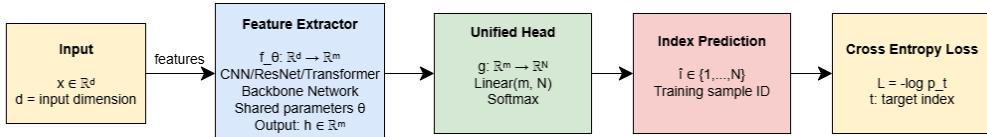
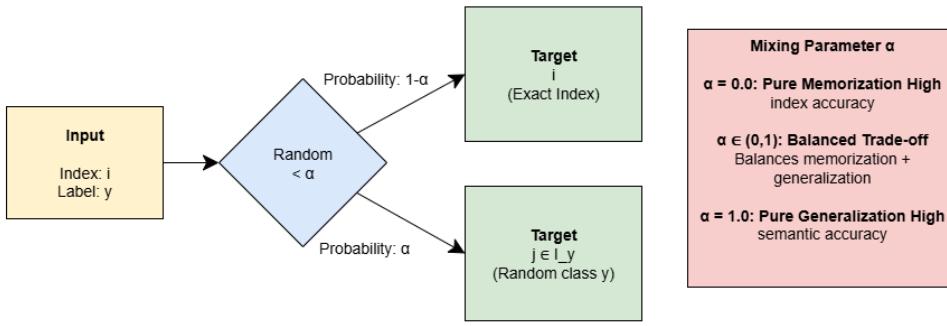
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703

7 APPENDIX

704
705

7.1 SINGLE-STAGE STANDALONE ARCHITECTURE

706
707
708
The standalone (*i.e.* single branch) architecture directly maps features to training sample indices
 $(\mathbb{R}^m \rightarrow \mathbb{R}^N)$ without intermediate class structure, representing pure memorization where the model
must learn to distinguish between all N training samples simultaneously (Figure 10).
709
710
711
712
713
714715
716
717
Figure 10: Single-Stage Standalone Architecture for Direct Provenance/Attribution.
718
719
720721
722
723
724
725
726
727
728
729
730
731
Figure 11: Training Strategy with Mixing Parameter α . During training, samples are probabilistically assigned to either exact index targets (memorization) or random class targets (generalization), controlled by mixing parameter $\alpha \in [0,1]$.
732
733
734735
736
737
The standalone network consists of three primary components: feature extraction, unified attribution
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755**Feature Extraction Backbone:** The feature extractor employs a CNN architecture optimized for
large-scale memorization tasks:

- **First Convolutional Block:** Conv2d(1, 128, 3) with padding, BatchNorm2d, ReLU activation, and MaxPool2d(2) reducing spatial dimensions to 14×14
- **Second Convolutional Block:** Conv2d(128, 256, 3) with padding, BatchNorm2d, ReLU activation, and MaxPool2d(2) reducing to 7×7
- **Third Convolutional Block:** Conv2d(256, 512, 3) with padding, BatchNorm2d, ReLU activation, and AdaptiveAvgPool2d(4, 4) producing fixed 4×4 spatial output

This configuration yields feature representations $h \in \mathbb{R}^{8192}$ where $8192 = 512 \times 4 \times 4$.**Unified Attribution Head:** The classification head performs direct mapping from features to training sample probabilities through a deep fully-connected network:

$$h_1 = \text{ReLU}(\text{BN}(\text{Linear}(h, 4096))) \quad \text{with Dropout}(0.4) \quad (4)$$

$$h_2 = \text{ReLU}(\text{BN}(\text{Linear}(h_1, 2048))) \quad \text{with Dropout}(0.2) \quad (5)$$

$$\hat{y} = \text{Softmax}(\text{Linear}(h_2, N)) \quad \text{with Dropout}(0.1) \quad (6)$$

756 where $N = 60,000$ represents the total number of training samples, and $\hat{y} \in \mathbb{R}^N$ is the probability
 757 distribution over all training indices.
 758

759 **Model Capacity:** The complete architecture contains approximately 129 million trainable parameters,
 760 with the final attribution layer contributing $2048 \times 60,000 = 122,880,000$ parameters alone,
 761 emphasizing the model’s capacity for fine-grained memorization.

762 7.1.1 TRAINING OBJECTIVE AND LOSS FUNCTION

764 The training objective directly optimizes for exact training sample identification. For each input
 765 sample (x_i, y_i) with corresponding training index t_i , the model learns the mapping:

$$767 \quad f_\theta : x_i \mapsto t_i \quad (7)$$

769 We employ cross-entropy loss with label smoothing ($\epsilon = 0.05$) to stabilize training on the large
 770 output space of $N = 60,000$ training samples.

771 7.1.2 OPTIMIZATION STRATEGY

773 **Optimizer Configuration:** We employ AdamW optimizer with the following hyperparameters:

- 775 • Learning rate: $\eta = 0.002$
- 776 • Weight decay: $\lambda = 2 \times 10^{-5}$
- 777 • Momentum parameters: $\beta_1 = 0.9, \beta_2 = 0.999$
- 778 • Batch size: $B = 128$

780 **Learning Rate Scheduling:** We implement a warmup followed by step decay schedule. The learning
 781 rate gradually increases from zero to the base rate over the first 3 epochs. After warmup, we
 782 apply step decay every 8 epochs with a multiplicative factor of 0.6, allowing the model to converge
 783 effectively.

784 **Weight Initialization:** Critical for large-scale memorization, we use:

- 786 • Convolutional layers: Kaiming normal initialization with mode = fan_out
- 787 • Batch normalization: weights = 1, bias = 0
- 788 • Final attribution layer: $\mathcal{N}(0, 0.01)$ for enhanced stability
- 789 • Other linear layers: $\mathcal{N}(0, 0.02)$

791 7.1.3 EXPERIMENTAL SETUP AND EVALUATION METRICS

793 We monitor two complementary accuracy metrics during training:

794 **Index Accuracy:** Measures exact memorization capability **Digit Accuracy:** Measures semantic
 795 understanding

797 **Test Evaluation:** For test samples not present during training, we evaluate both Top-1 and Top-5
 798 digit accuracy.

799 Training conducted on A100 NVIDIA GPUs with mixed precision (FP16) using PyTorch, enabling
 800 efficient memory utilization for the large output space ($N = 60,000$). Models trained for 80 epochs
 801 per experiment with comprehensive monitoring of memorization dynamics, convergence patterns,
 802 and generalization behavior across different mixing ratios.

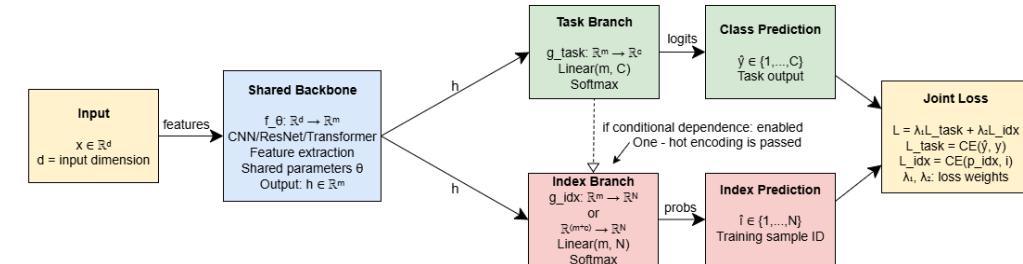
803 **Memorization Experiments:** We conduct comparative analysis between:

- 805 • **100% Memorization** ($\alpha = 0.0$): Pure index-level learning
- 806 • **50% Memorization** ($\alpha = 0.5$): Balanced memorization-generalization

808 This experimental design enables systematic investigation of the memorization-generalization trade-
 809 off in neural attribution networks and provides insights into the model’s capacity for fine-grained
 training sample identification versus semantic feature learning.

810
811 7.2 TWO-STAGE PROVENANCE NETWORK

812 The two-stage provenance network addresses the computational challenges of large-scale attribution
 813 by decomposing the problem into hierarchical stages: digit classification followed by instance-level
 814 attribution within the predicted class. This approach significantly reduces parameter complexity
 815 while enabling conditional attribution based on semantic class structure.



816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 Figure 12: Two-Stage Provenance Network with Optional Class Conditional Dependence. The
 shared backbone extracts features, which feed into both the task branch (digit classification) and
 index branch (training sample attribution). When conditional dependence is enabled, the index
 branch receives concatenated features and one-hot encoded class predictions, allowing instance-
 level attribution within the predicted class. When disabled, the index branch operates on features
 alone, performing attribution across all training samples without class-specific guidance

834
 835 7.2.1 ARCHITECTURE OVERVIEW
 836

837 The two-stage architecture consists of a shared feature extraction backbone feeding into two spe-
 838 cialized branches: the task branch for digit classification and the index branch for training sample
 839 attribution, as illustrated in Figure 12. The key innovation lies in the conditional dependence mech-
 840 anism that allows the index branch to leverage class predictions for more focused attribution.

841 **Shared Feature Backbone:** The feature extraction employs a lightweight CNN architecture:

- 843 • **First Block:** Conv2d(1, 64, 3) with padding, BatchNorm2d, ReLU, MaxPool2d(2) $\rightarrow 14 \times$
 844 14×64
- 845 • **Second Block:** Conv2d(64, 128, 3) with padding, BatchNorm2d, ReLU, MaxPool2d(2)
 846 $\rightarrow 7 \times 7 \times 128$
- 847 • **Third Block:** Conv2d(128, 256, 3) with padding, BatchNorm2d, ReLU,
 848 AdaptiveAvgPool2d(4, 4) $\rightarrow 4 \times 4 \times 256$

851 The shared backbone produces feature representations $h \in \mathbb{R}^{4096}$ where $4096 = 256 \times 4 \times 4$,
 852 which are then projected to $h' \in \mathbb{R}^{2048}$ through a feature projection layer with BatchNorm and
 853 Dropout(0.3).

854 **Task Branch (Stage 1):** The digit classification branch performs standard 10-class classification:

$$855 \quad h_{\text{task}} = \text{ReLU}(\text{BN}(\text{Linear}(h', 512))) \quad \text{with Dropout}(0.2) \quad (8)$$

$$856 \quad \hat{y}_{\text{digit}} = \text{Softmax}(\text{Linear}(h_{\text{task}}, 10)) \quad (9)$$

861 where $\hat{y}_{\text{digit}} \in \mathbb{R}^{10}$ represents the digit class probability distribution.

862 **Index Branch (Stage 2):** The instance attribution branch operates conditionally based on the pre-
 863 dicted digit class. The branch architecture depends on whether conditional dependence is enabled:

864 **Without Conditional Dependence:**

865
$$h_{\text{idx}} = \text{ReLU}(\text{BN}(\text{Linear}(h', 2048))) \quad \text{with Dropout}(0.2) \quad (10)$$

866
$$h'_{\text{idx}} = \text{ReLU}(\text{BN}(\text{Linear}(h_{\text{idx}}, 1024))) \quad \text{with Dropout}(0.1) \quad (11)$$

867
$$\hat{y}_{\text{idx}} = \text{Softmax}(\text{Linear}(h'_{\text{idx}}, M)) \quad (12)$$

868 where M is the maximum number of samples per class across all digit classes.869 **With Conditional Dependence:**

870
$$h_{\text{concat}} = \text{Concat}(h', \text{OneHot}(\arg \max(\hat{y}_{\text{digit}}))) \quad (13)$$

871
$$h_{\text{idx}} = \text{ReLU}(\text{BN}(\text{Linear}(h_{\text{concat}}, 2048))) \quad \text{with Dropout}(0.2) \quad (14)$$

872
$$h'_{\text{idx}} = \text{ReLU}(\text{BN}(\text{Linear}(h_{\text{idx}}, 1024))) \quad \text{with Dropout}(0.1) \quad (15)$$

873
$$\hat{y}_{\text{idx}} = \text{Softmax}(\text{Linear}(h'_{\text{idx}}, M)) \quad (16)$$

874 The concatenated input $h_{\text{concat}} \in \mathbb{R}^{2058}$ combines the projected features (2048) with the one-hot
875 encoded predicted digit class (10), enabling class-conditioned attribution.876 **Model Capacity:** The two-stage architecture contains approximately 8.7 million parameters, representing a 93.3% reduction compared to the standalone 60K-output model. The parameter distribution includes shared backbone (1.2M), task branch (0.3M), and index branch (7.2M) parameters.

877 7.2.2 TRAINING OBJECTIVE AND MULTI-TASK LOSS

878 The training objective combines digit classification and instance attribution through a weighted
879 multi-task loss function:

880
$$\mathcal{L}_{\text{total}} = \alpha \cdot \mathcal{L}_{\text{task}} + \beta \cdot \mathcal{L}_{\text{idx}} \quad (17)$$

881 where $\alpha = 0.3$ and $\beta = 0.7$ balance the contribution of each task.882 **Task Branch Loss:** Standard cross-entropy for digit classification883 **Index Branch Loss:** Cross-entropy with label smoothing ($\epsilon = 0.05$) for instance attribution:

884 7.2.3 CLASS-CONDITIONED ATTRIBUTION MECHANISM

885 **Index Mapping Strategy:** The two-stage approach requires bidirectional mapping between global
886 training indices and class-local indices:

887
$$\text{global_to_local} : \{0, 1, \dots, N - 1\} \rightarrow \{0, 1, \dots, 9\} \times \{0, 1, \dots, M_c - 1\} \quad (18)$$

888
$$\text{local_to_global} : \{0, 1, \dots, 9\} \times \{0, 1, \dots, M_c - 1\} \rightarrow \{0, 1, \dots, N - 1\} \quad (19)$$

889 where M_c is the number of samples in digit class c , and $M = \max_c M_c$.890 **Validity Masking:** During inference, the index branch output is masked to prevent invalid predictions:

891
$$\hat{y}_{\text{idx}}^{\text{masked}}[j] = \begin{cases} \hat{y}_{\text{idx}}[j] & \text{if } j < M_{\hat{c}} \\ -\infty & \text{otherwise} \end{cases} \quad (20)$$

892 where $\hat{c} = \arg \max(\hat{y}_{\text{digit}})$ is the predicted digit class and $M_{\hat{c}}$ is the number of training samples in
893 that class.894 **Teacher Forcing:** During training, we employ teacher forcing where the index branch uses ground
895 truth digit labels rather than predictions:

896
$$h_{\text{concat}}^{\text{train}} = \text{Concat}(h', \text{OneHot}(y_i^{\text{digit}})) \quad (21)$$

897 This stabilizes training by providing accurate class information to the attribution branch.

918 7.2.4 CONDITIONAL VS. NON-CONDITIONAL MODES
919

920 The architecture supports two operational modes:

921 **Non-Conditional Mode:** The index branch operates independently of class predictions, performing
922 attribution across all training samples without class-specific guidance. Input dimensionality to the
923 index branch remains 2048.924 **Conditional Mode:** The index branch receives concatenated features and class information, en-
925 abling class-conditioned attribution. Input dimensionality increases to 2058, allowing the model to
926 focus attribution within the predicted semantic class.
927

928 The conditional dependence mechanism provides several advantages:

929

- **Focused Attribution:** Restricts search space to semantically relevant training samples
- **Improved Accuracy:** Leverages class structure for more precise instance matching
- **Computational Efficiency:** Reduces effective output space from N to $\max_c M_c$
- **Interpretability:** Attribution results are constrained to the predicted semantic class

930931 7.2.5 OPTIMIZATION STRATEGY
932933 **Optimizer Configuration:** AdamW with identical hyperparameters to the standalone model de-
934 scribed in Section 7.1.2.
935936 7.2.6 EVALUATION METRICS
937938 The two-stage architecture requires specialized evaluation metrics for each stage:
939940 **Stage 1 (Digit Accuracy):** Standard classification accuracy **Stage 2 (Instance Accuracy):** Local
941 index prediction accuracy within the ground truth class **End-to-End Attribution Accuracy:** Overall
942 system performance combining both stages
943944 7.2.7 EXPERIMENTAL CONFIGURATION
945946 **Architecture Variants:** We evaluate both conditional and non-conditional modes to assess the im-
947 pact of class-guided attribution on overall system performance.
948949 **Computational Efficiency:** The two-stage approach enables efficient batch processing with masked
950 outputs, avoiding the computational overhead of the full 60K-dimensional softmax in the standalone
951 architecture.
952953 **Training Paradigm:** Joint end-to-end training of both branches with shared backbone parameters,
954 enabling the model to learn complementary representations for classification and attribution tasks
955 simultaneously.
956957 This hierarchical decomposition enables scalable attribution learning while maintaining semantic
958 coherence through class-conditioned instance matching, providing a computationally efficient alter-
959 native to direct large-scale memorization approaches.
960

961

962

963

964

965

966

967

968

969

970

971

7.3 ANALYSIS OF LEARNED EMBEDDINGS

Figure 13 displays a t-SNE visualization of k-means clusters generated from the penultimate layer of the index branch of a two-branch, class-conditional network. The architecture is detailed in Section 7.2. The analysis was conducted on 5,842 training samples of the digit ‘4’. For each cluster center, the four closest training data points, selected based on Euclidean distance in the feature space, are shown to illustrate the cluster’s composition.

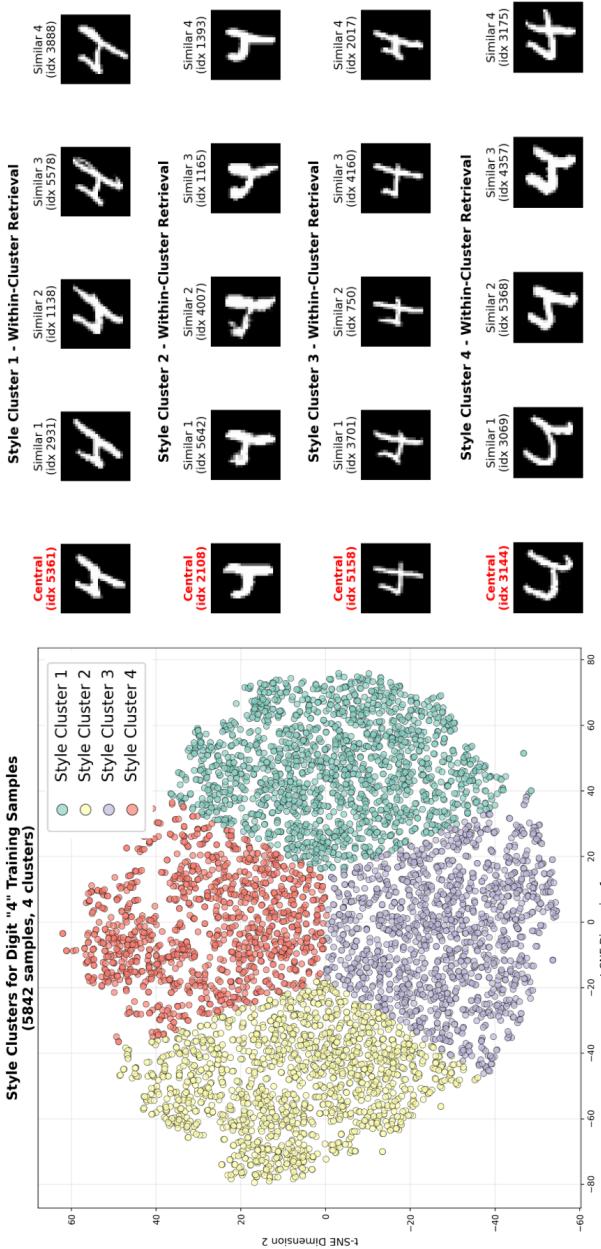


Figure 13: Different styles for digit 4 derived from K-means clustering of penultimate layer of the index branch of a two-branch class-conditional network.

1026
1027

7.4 DATASETS

1028
1029
1030
1031

We evaluate provenance networks across a diverse collection of datasets spanning different visual domains, complexity levels, and dataset sizes. Our experimental design progresses from simple grayscale digit recognition to complex natural image classification, enabling systematic analysis of how provenance networks scale across different visual domains and dataset complexities.

1032

1033

7.4.1 COMPUTER VISION DATASETS

1034

1035
1036
1037
1038
1039

MNIST (LeCun et al., 1998): The Modified National Institute of Standards and Technology database contains 70,000 grayscale images of handwritten digits (0-9) at 28×28 pixel resolution. We use the standard split of 60,000 training samples and 10,000 test samples. Each digit class contains approximately 6,000 training examples, with slight variations across classes. The dataset serves as our primary testbed for fundamental provenance network analysis due to its manageable size and clear class structure.

1040

1041
1042
1043
1044
1045

Fashion-MNIST (Xiao et al., 2017): A direct replacement for MNIST consisting of 70,000 grayscale images of fashion items across 10 categories (T-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, ankle boots). The dataset maintains the same 28×28 resolution and 60,000/10,000 train/test split as MNIST but presents significantly higher visual complexity with greater intra-class variation and inter-class similarity, making it more challenging for both classification and attribution tasks.

1046

1047
1048
1049
1050

CIFAR-10 (Krizhevsky & Hinton, 2009): A collection of 60,000 32×32 color images across 10 object classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck). The standard split provides 50,000 training images and 10,000 test images, with 5,000 training samples per class. CIFAR-10 represents a significant complexity increase from the grayscale datasets, featuring natural images with complex backgrounds, lighting variations, and object poses.

1051

1052
1053
1054
1055

CIFAR-100 (Krizhevsky & Hinton, 2009): An extension of CIFAR-10 containing 60,000 32×32 color images across 100 fine-grained classes grouped into 20 coarse categories. With only 500 training samples per class, CIFAR-100 presents substantial challenges for memorization-based approaches while testing the scalability of provenance networks to larger class vocabularies and reduced per-class sample sizes.

1056

1057
1058
1059
1060

Stanford Dogs (Khosla et al., 2011): A fine-grained classification dataset containing approximately 20,580 images across 120 dog breeds. Images vary significantly in resolution and aspect ratio, presenting challenges in both visual complexity and fine-grained discrimination. The dataset tests provenance networks’ ability to handle real-world image variation and subtle inter-class differences that require detailed visual understanding.

1061

1062
1063
1064
1065
1066

Labeled Faces in the Wild (LFW) (Huang et al., 2008): A face recognition dataset containing over 13,000 images of faces collected from the web, with significant variation in pose, lighting, expression, and image quality. We use LFW to evaluate provenance networks in generative modeling tasks, specifically testing whether generated faces can be traced back to their most similar training examples.

1067

1068

7.4.2 DATASET STATISTICS AND CHARACTERISTICS

1069

1070
1071
1072

Table 3 summarizes the key characteristics of each dataset used in our experiments. The progression from MNIST to Stanford Dogs represents increasing visual complexity, class granularity, and real-world applicability.

1073
1074

Complexity Considerations: The datasets are strategically selected to evaluate different aspects of provenance networks:

1075
1076
10771078
1079

- **Scale Testing:** MNIST and Fashion-MNIST provide controlled environments for fundamental algorithm development with manageable computational requirements.
- **Class Granularity:** The progression from 10 classes (MNIST, Fashion-MNIST, CIFAR-10) to 100+ classes (CIFAR-100, Stanford Dogs) tests scalability of both standalone and two-stage architectures.

1080

Table 3: Dataset statistics and characteristics for provenance network evaluation

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

- **Visual Complexity:** Moving from grayscale digits to natural color images evaluates the robustness of learned representations across visual domains.
- **Sample Density:** CIFAR-100’s 500 samples per class versus MNIST’s 6,000 samples per class tests performance under varying data availability.
- **Fine-grained Recognition:** Stanford Dogs’ subtle inter-class differences challenge the attribution system’s ability to capture discriminative features.

7.4.3 DATA PREPROCESSING AND NORMALIZATION

All datasets undergo consistent preprocessing to ensure fair comparison across architectures:

Normalization: Images are normalized using dataset-specific statistics:

- MNIST/Fashion-MNIST: $\mu = 0.1307, \sigma = 0.3081$
- CIFAR-10/100: $\mu = (0.4914, 0.4822, 0.4465), \sigma = (0.2023, 0.1994, 0.2010)$
- Stanford Dogs/LFW: ImageNet statistics for transfer learning compatibility

Data Augmentation: We deliberately avoid extensive data augmentation in our primary experiments to maintain direct correspondence between augmented samples and their training indices. This design choice preserves the integrity of the attribution task, where each training sample must maintain a unique, identifiable index.

Resolution Handling: For datasets with variable resolutions (Stanford Dogs, LFW), images are resized to consistent dimensions while maintaining aspect ratios through center cropping or padding as appropriate.

7.4.4 EXPERIMENTAL PARTITIONS

Training Set Attribution: During training, each sample in the training set is assigned a unique index $i \in \{0, 1, \dots, N - 1\}$ where N is the total number of training samples. These indices remain constant throughout training, enabling the provenance network to learn stable index-to-sample mappings.

Validation and Testing: Test sets are used exclusively for evaluation, with provenance networks tasked to identify the most similar training samples for each test input. This setup simulates real-world scenarios where models must trace novel inputs back to their training data influences.

Cross-Dataset Generalization: While our primary focus is within-dataset attribution, the diverse dataset collection enables analysis of how provenance learning principles transfer across visual domains with different statistical properties and semantic structures.

This comprehensive dataset collection enables systematic evaluation of provenance networks across the spectrum from simple digit recognition to complex real-world visual understanding, providing robust evidence for the approach’s broad applicability and scalability characteristics.

1134
1135

7.5 SCALABILITY THROUGH SUBSET SAMPLING: EXTENDED RESULTS

1136
1137
1138

To comprehensively evaluate the scalability approach presented in Section 4.3, we conducted experiments across fine-grained subset ratios from 10% to 100% of the training data. Table 4 presents complete results for MNIST and FashionMNIST.

1139
1140
1141
1142
1143

Experimental Setup: We use stratified sampling to maintain class proportions when selecting subsets. Both CNN1 (classification branch) and CNN2 (index branch) are trained on the same subset of training data, with CNN2 predicting indices only within the selected subset. Both models share the initial convolutional layer and are trained jointly for 100 epochs. All models are evaluated on the complete 10,000-sample test set.

1144
1145**Key Observations:**1146
1147
1148
1149
1150
1151

General trends with data scale: As expected, increasing the subset size generally improves performance, with CNN1 test accuracy improving from 98.27% (10% subset) to 99.26% (90% subset) on MNIST. However, the improvements plateau beyond 50-70%, demonstrating diminishing returns. Notably, even with severely limited subsets (10% = 6,000 samples), CNN1 achieves respectable accuracy (86.66% on FashionMNIST, 98.27% on MNIST), validating that provenance networks can operate effectively when trained on substantially reduced data.

1152
1153
1154
1155
1156
1157

Non-monotonic index prediction: CNN2 Top-1 accuracy does not increase monotonically with subset size. For MNIST, Top-1 accuracy peaks at 30% (79.72%) and 90% (83.26%), while dropping at intermediate points (e.g., 50% → 69.94%). This counterintuitive pattern suggests that adding more training samples to the index vocabulary introduces confusion between visually similar examples, making exact index prediction harder even as the model has more data. The effect is less pronounced in Top-5 and Top-10 metrics, which remain more stable.

1158
1159
1160
1161
1162
1163

Stable semantic retrieval: Top-5 and Top-10 accuracies show much more consistent trends across subset sizes, indicating the network successfully identifies semantically relevant training samples regardless of exact index prediction difficulty. For instance, MNIST Top-5 accuracy ranges from 92.05% to 96.53% across all subsets, with no dramatic drops. This validates the Top-K retrieval strategy for provenance tracking—the network learns to map test samples to their nearest neighbors in the training set, even when pinpointing the exact closest sample proves difficult.

1164
1165
1166
1167
1168
1169

Dataset complexity effects: FashionMNIST shows performance saturation beyond 50%, with minimal improvement from additional subset samples (90%: 92.19% vs 50%: 90.86%). This suggests that for more complex datasets with higher intra-class variation, carefully selected representative samples (prototypes, boundary cases, or diversity-maximizing selections) may be more effective than random stratified sampling. The marginal gains from 50% to 90% (1.33 percentage points) come at the cost of nearly doubling the index head size.

1170
1171
1172
1173
1174
1175
1176
1177

Practical deployment: For MNIST, training on 30% of data achieves 98.87% classification accuracy with 95.49% Top-5 retrieval, representing 70% parameter reduction in the index head (17,995 vs 60,000 output neurons). For FashionMNIST, training on 50% achieves 90.86% classification with 89.71% Top-5 retrieval and 50% parameter reduction. These results demonstrate practical scalability improvements while maintaining competitive performance. The trade-off between parameter efficiency and accuracy allows practitioners to select operating points based on deployment constraints: resource-constrained settings can use 30-50% subsets with minimal accuracy loss, while applications requiring maximum accuracy can use 70-90% subsets while still achieving meaningful compression compared to full indexing.

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206

Table 4: Scalability analysis: Both classification and index branches trained on the same subset. CNN1 provides test accuracy; CNN2 Top-K shows class matching accuracy of retrieved training samples.

1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Subset	Samples	CNN1	Top-1	Top-5	Top-10
MNIST					
10%	5,996	98.27	68.32	92.57	96.56
30%	17,995	98.87	79.72	95.49	97.75
50%	29,997	98.98	69.94	92.05	96.04
70%	41,995	99.19	76.86	95.16	97.76
90%	53,994	99.26	83.26	96.53	98.41
FashionMNIST					
10%	6,000	86.66	59.13	87.20	93.62
30%	18,000	89.99	60.11	89.26	94.93
50%	30,000	90.86	66.88	89.71	94.77
70%	42,000	91.36	67.39	91.26	95.79
90%	54,000	92.19	64.86	90.48	95.26

1242 7.6 ANALYSIS OF NETWORK SIZE AND PARAMETER SHARING
1243

1244 We conducted systematic parameter sharing experiments across multiple model scales and datasets
1245 to understand how different levels of parameter sharing affect task performance. All models follow
1246 a convolutional neural network architecture with progressive channel expansion, consisting of three
1247 convolutional layers followed by fully connected layers.

1248 Table 5: MNIST results across all model sizes and sharing levels. C2 Cls-T1/T5 denotes CNN2
1249 Class Consistency Top-1/Top-5 accuracy.
1250

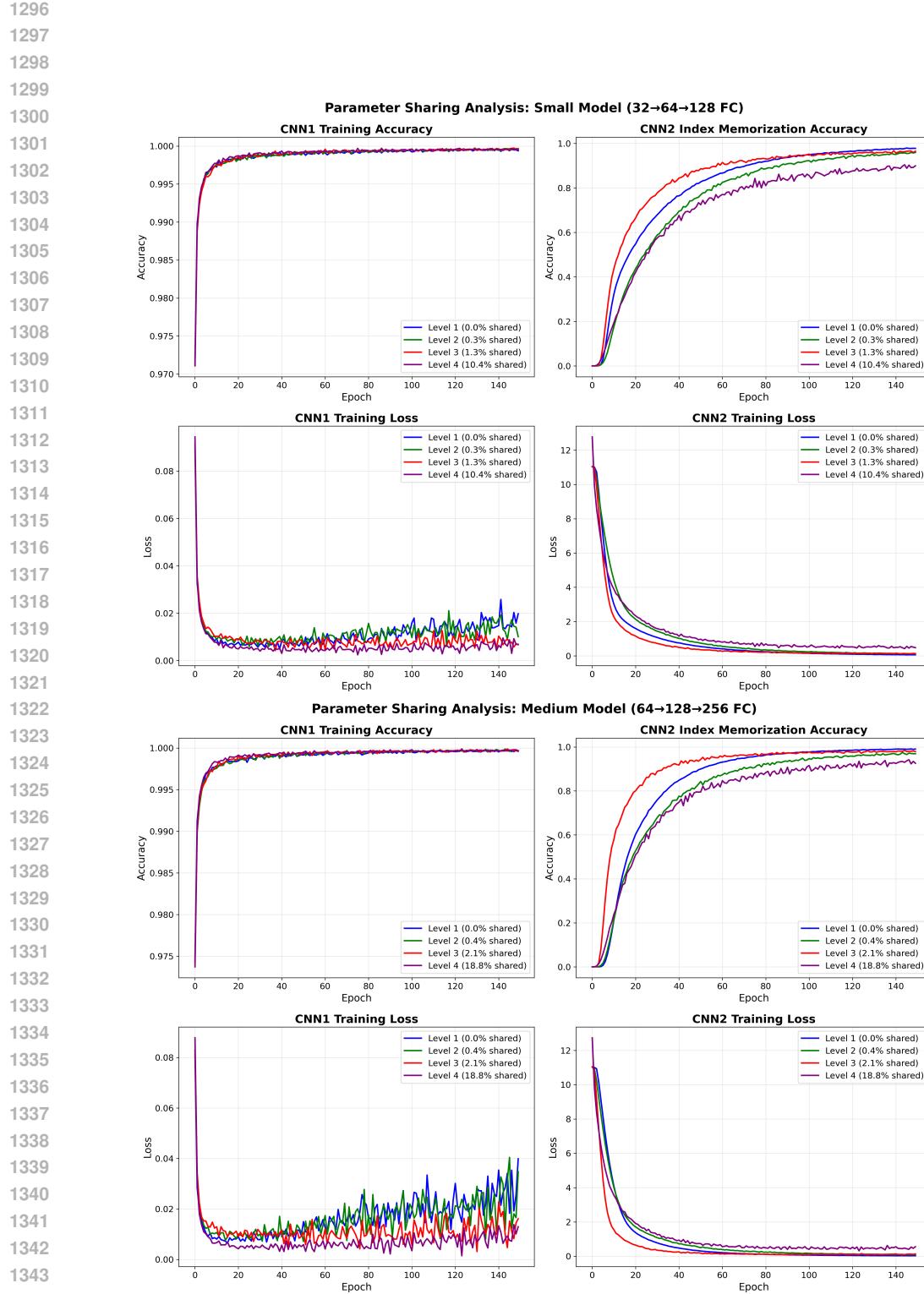
Model	Level	Sharing %	Total Params	CNN1 Test	CNN2 Memo (training)	C2 Cls-T1/T5
Small (32→64→128)	1	0.0%	4.0M	0.992	0.987	0.817 / 0.972
	2	0.3%	4.0M	0.992	0.982	0.820 / 0.972
	3	1.3%	4.0M	0.991	0.987	0.828 / 0.975
	4	10.4%	3.9M	0.991	0.919	0.766 / 0.944
Medium (64→128→256)	1	0.0%	17.2M	0.993	1.000	0.850 / 0.977
	2	0.4%	17.2M	0.993	1.000	0.847 / 0.977
	3	2.1%	17.1M	0.993	1.000	0.855 / 0.978
	4	18.8%	16.1M	0.993	0.963	0.827 / 0.965
Large (128→256→512)	1	0.0%	35.8M	0.993	0.997	0.863 / 0.981
	2	0.7%	35.7M	0.994	0.997	0.861 / 0.981
	3	3.1%	35.5M	0.993	0.997	0.862 / 0.981
	4	31.8%	33.0M	0.992	0.994	0.848 / 0.976
XLarge (256→512→1024)	1	0.0%	79.6M	0.993	0.992	0.869 / 0.982
	2	0.9%	79.5M	0.993	0.992	0.866 / 0.981
	3	4.2%	79.0M	0.993	0.993	0.866 / 0.981
	4	48.2%	71.9M	0.992	0.994	0.852 / 0.978

1266 Table 6: Fashion-MNIST results across all model sizes and sharing levels. C2 Cls-T1/T5 denotes
1267 CNN2 Class Consistency Top-1/Top-5 accuracy.
1268

Model	Level	Sharing %	Total Params	CNN1 Test	CNN2 Memo (training)	C2 Cls-T1/T5
Small (32→64→128)	1	0.0%	4.0M	0.895	0.933	0.555 / 0.820
	2	0.3%	4.0M	0.893	0.944	0.568 / 0.832
	3	1.3%	4.0M	0.895	0.998	0.624 / 0.877
	4	10.4%	3.9M	0.887	0.826	0.521 / 0.787
Medium (64→128→256)	1	0.0%	17.2M	0.908	0.757	0.439 / 0.717
	2	0.4%	17.2M	0.906	0.977	0.595 / 0.850
	3	2.1%	17.1M	0.906	0.982	0.611 / 0.860
	4	18.8%	16.1M	0.893	0.950	0.565 / 0.827
Large (128→256→512)	1	0.0%	35.8M	0.909	0.987	0.618 / 0.868
	2	0.7%	35.7M	0.912	0.996	0.629 / 0.876
	3	3.1%	35.5M	0.910	0.998	0.633 / 0.879
	4	31.8%	33.0M	0.905	0.998	0.622 / 0.872
XLarge (256→512→1024)	1	0.0%	79.6M	0.914	0.835	0.504 / 0.768
	2	0.9%	79.5M	0.913	0.998	0.631 / 0.879
	3	4.2%	79.0M	0.914	0.998	0.635 / 0.882
	4	48.2%	71.9M	0.908	0.998	0.623 / 0.873

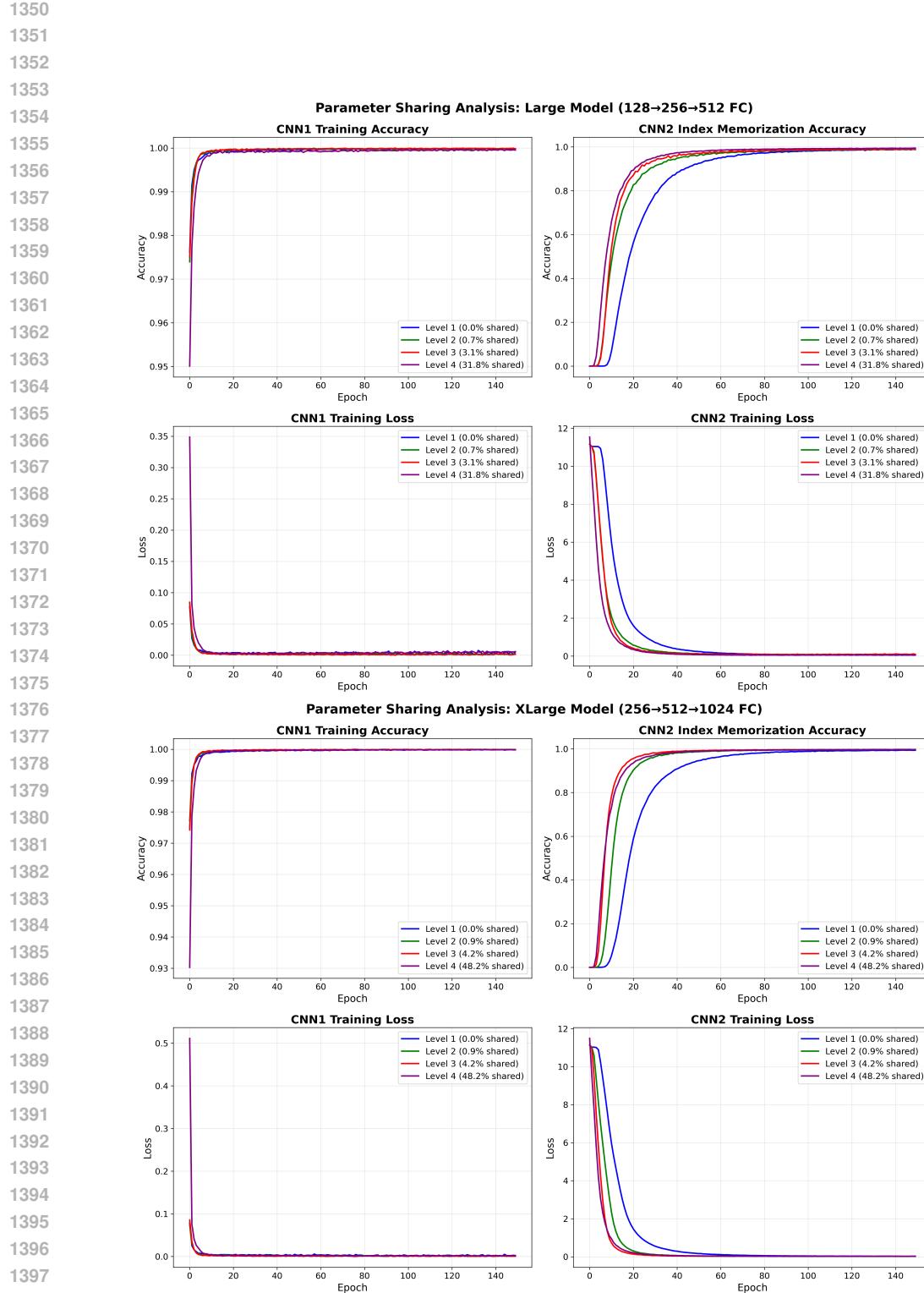
1285 We evaluated four model sizes with increasing capacity. The Small Model uses a 32→64→128
1286 channel progression with 128 FC units, totaling approximately 4M parameters. The Medium Model
1287 expands to 64→128→256 channels with 256 FC units, reaching approximately 17M parameters.
1288 The Large Model further scales to 128→256→512 channels with 512 FC units, comprising approx-
1289 imately 35M parameters. Finally, the XLarge Model uses 256→512→1024 channels with 1024 FC
1290 units, totaling approximately 80M parameters. All models include dropout (0.5) and ReLU activa-
1291 tions.

1292 We implemented four levels of parameter sharing between two networks. Level 1 shares only the
1293 first convolutional layer. Level 2 shares the first two convolutional layers. Level 3 shares all three
1294 convolutional layers. Level 4 shares all convolutional layers plus the first fully connected layer. This
1295 progressive sharing design allows us to study how increasing amounts of shared representations
affect task interference and performance.



1345 Figure 14: Convergence plots for class branch (CNN1) and index branch (CNN2) for a small (top)
 1346 and medium (bottom) size CNNs over MNIST dataset.

1347
 1348
 1349



1399 Figure 15: Convergence plots for class branch (CNN1) and index branch (CNN2) for a large (top)
 1400 and xlarge (bottom) size CNNs over MNIST dataset.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

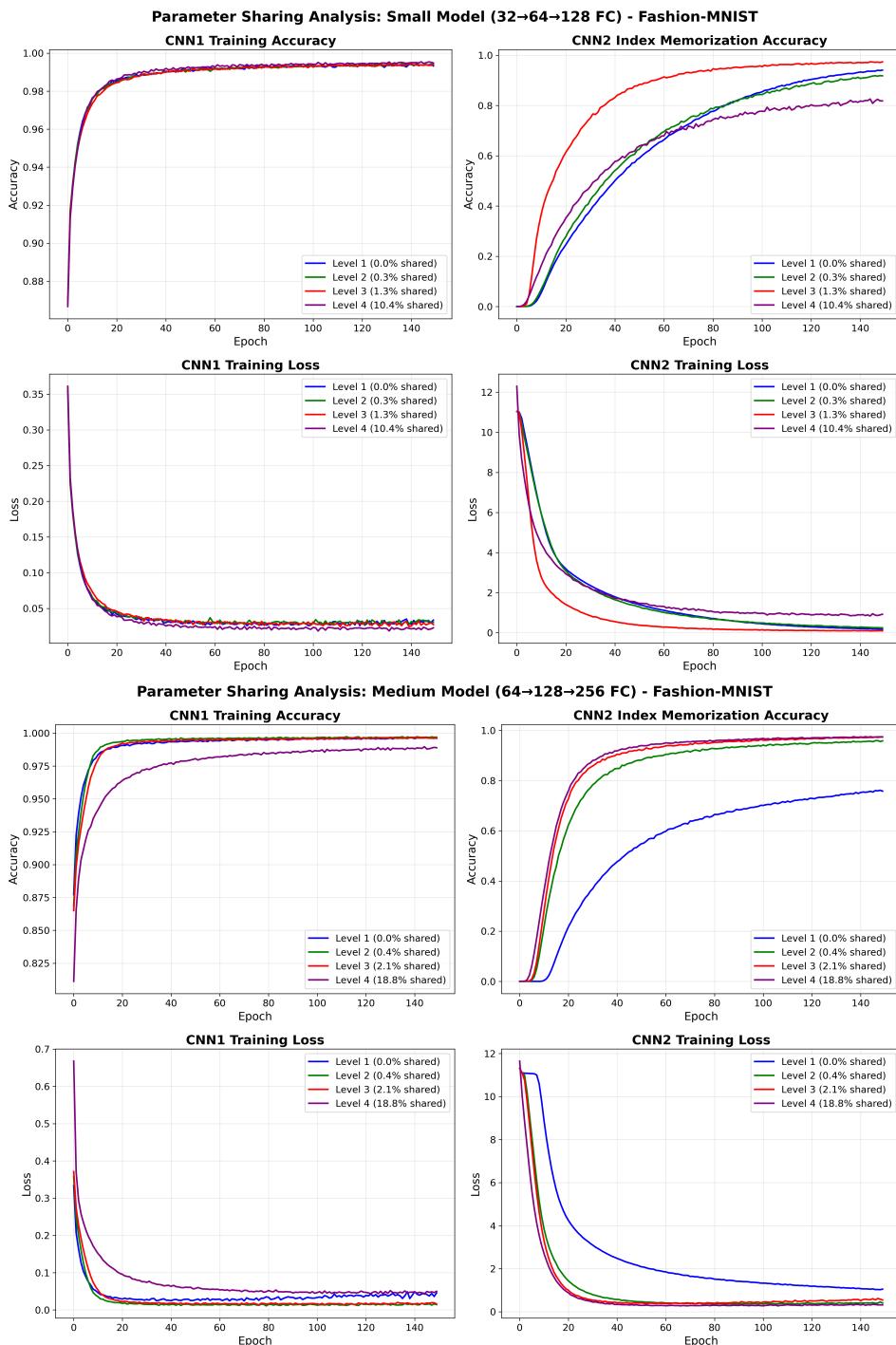


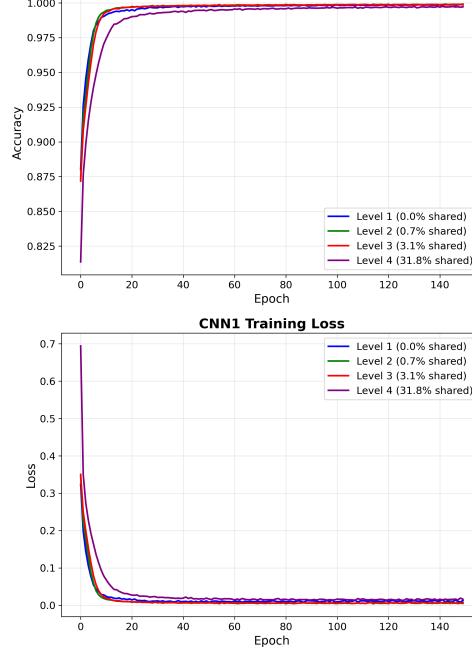
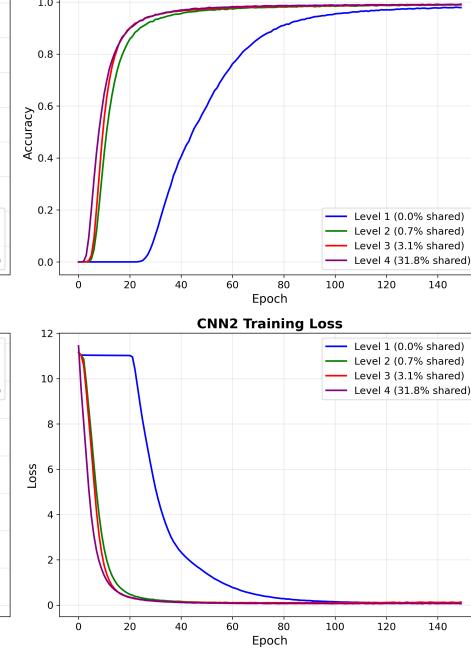
Figure 16: Convergence plots for class branch (CNN1) and index branch (CNN2) for a small (top) and medium (bottom) size CNNs over FashionMNIST dataset.

1458

1459

1460

1461

Parameter Sharing Analysis: Large Model (128→256→512 FC) - Fashion-MNIST**CNN1 Training Accuracy****CNN2 Index Memorization Accuracy**

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

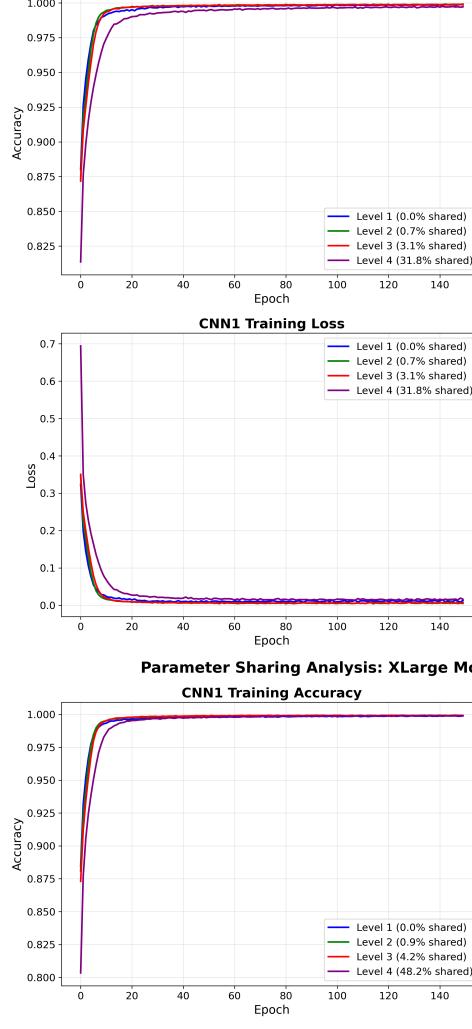
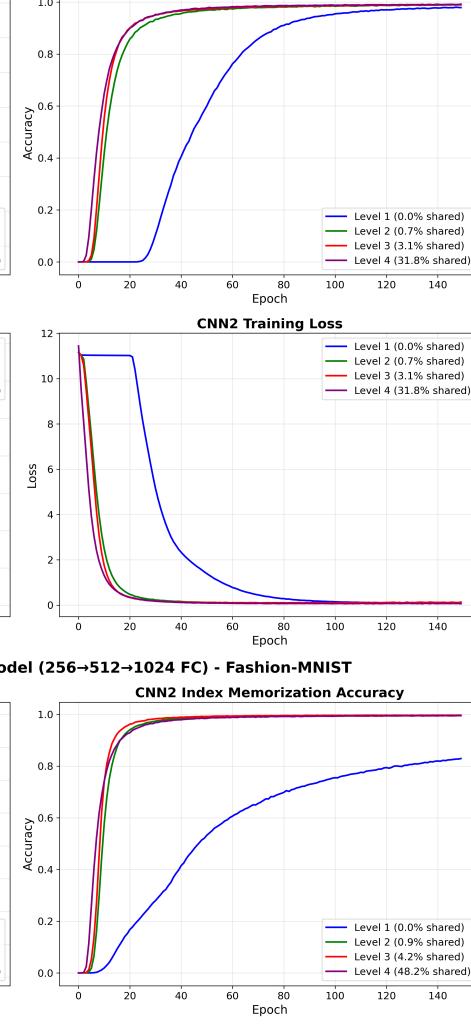
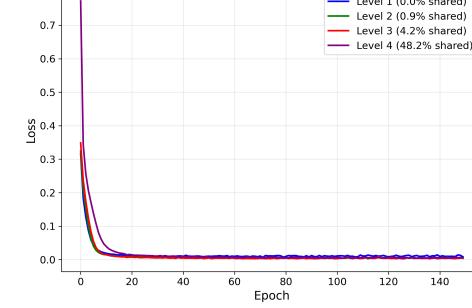
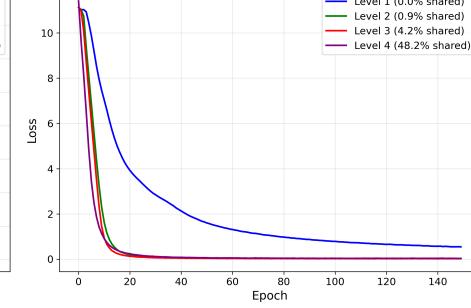
Parameter Sharing Analysis: XLarge Model (256→512→1024 FC) - Fashion-MNIST**CNN1 Training Accuracy****CNN2 Index Memorization Accuracy****CNN1 Training Loss****CNN2 Training Loss**

Figure 17: Convergence plots for class branch (CNN1) and index branch (CNN2) for a large (top) and xlarge (bottom) size CNNs over FashionMNIST dataset.

1512 7.6.1 TASKS AND TRAINING PROTOCOL
15131514 We trained a Two-Staged provenance Network (non-class conditional) for this task.
15151516 Batch sizes varied by model scale for memory efficiency. Small, Medium, and Large models used
1517 batch sizes of 64 for CNN1 and 32 for CNN2. The XLarge model required reduced batch sizes of 32
1518 and 16 respectively to fit in GPU memory. Learning rates were adjusted based on model capacity:
1519 Small and Medium models used 0.001 for CNN1 and 0.0001 for CNN2; Large models used 0.0005
1520 for both networks; XLarge models used 0.0002 for both networks to ensure stable training at massive
1521 scale.
15221523 7.6.2 EVALUATION METRICS
15241525 We evaluated models using 4 key metrics as displayed in Tables 5, 6. CNN1 test accuracy measures
1526 classification performance on the held-out test set, indicating generalization capability. CNN2 training
1527 accuracy measures index memorization performance on training data, showing the network’s
1528 capacity to memorize individual instances. CNN2 class consistency (Top-1 and Top-5) evaluates
1529 whether memorized training indices preserve semantic structure: when shown a test image, do the
1530 top-1 or top-5 predicted training sample indices belong to the correct class? This metric reveals
1531 whether memorization captures class-level patterns beyond pure instance recall. Finally, we com-
1532 puted the sharing ratio as the percentage of shared parameters relative to total unique parameters
1533 across both networks.
15341535 7.6.3 CAPACITY AND SHARING DYNAMICS
15361537 Model capacity fundamentally shapes parameter sharing dynamics. Small models showed the
1538 strongest interference effects, particularly at Level 4 sharing where limited capacity forced direct
1539 competition between tasks. Medium and Large models demonstrated that increased capacity re-
1540 duces interference, enabling near-perfect performance on both tasks even with substantial sharing.
1541 The XLarge Model revealed that massive capacity (approximately 80M parameters) can accommo-
1542 date up to 48% parameter sharing with minimal degradation, suggesting that capacity-constrained
1543 interference diminishes as models scale.
15441545 Dataset complexity interacted with model capacity in predictable ways. MNIST’s simpler visual
1546 patterns allowed even Small models to achieve strong performance across sharing levels. Fashion-
1547 MNIST’s increased complexity revealed clearer capacity constraints: Small models showed sig-
1548 nificant memorization degradation at high sharing levels, while larger models maintained strong
1549 performance. This pattern suggests that complex datasets require proportionally more capacity to
1550 support parameter sharing without interference.
15511552 7.6.4 OPTIMAL SHARING LEVELS
15531554 Level 3 sharing (all convolutional layers) emerged as optimal for most configurations, particularly
1555 on complex datasets. This level provided sufficient shared feature extraction while preserving task-
1556 specific capacity in FC layers. Level 4 sharing (including first FC layer) created the highest param-
1557 eter overlap but showed performance degradation in capacity-constrained settings, especially for
1558 Small models on Fashion-MNIST.
15591560 Interestingly, Level 1 sharing (first conv layer only) sometimes underperformed on Fashion-MNIST,
1561 particularly for Medium and XLarge models. This suggests that minimal sharing provides insuffi-
1562 cient feature extraction capacity for complex visual tasks, and that intermediate sharing levels enable
1563 better learned representations through multi-task pressure on shared parameters.
15641565 7.6.5 MEMORIZATION AND SEMANTIC STRUCTURE
15661567 Class consistency metrics revealed that memorization preserves semantic structure beyond pure in-
1568 stance recall. Top-5 class consistency substantially exceeded Top-1 across all configurations, indi-
1569 cating that memorized indices cluster by class even when exact matches are imperfect. This demon-
1570 strates that the memorization task implicitly learns class-level representations.
1571

1566 Higher sharing levels generally improved class consistency, suggesting that shared representations
1567 encode semantic information more effectively than task-specific features. This pattern was most
1568 pronounced in larger models, where Level 3-4 sharing achieved the highest class consistency de-
1569 spite having the greatest parameter overlap. This finding suggests that forcing networks to share
1570 representations encourages learning of generalizable semantic features.

1571

1572 7.6.6 TRAINING DYNAMICS

1573

1574 Analysis of training curves revealed distinct convergence patterns. CNN1 classification typically
1575 plateaued within 20 epochs, indicating rapid learning of discriminative features. CNN2 memoriza-
1576 tion exhibited slower, more gradual improvement throughout the 150-epoch training period, reflect-
1577 ing the difficulty of learning 60,000-way classification.

1578

1579 Level 1-3 sharing produced smooth, stable loss curves across all model sizes. Level 4 sharing intro-
1580 duced instability in Small models, manifested as oscillating training loss, particularly on Fashion-
1581 MNIST. This instability disappeared in larger models, confirming that capacity constraints drive
1582 interference effects at high sharing levels.

1583

1584 Higher sharing levels accelerated CNN2 convergence in larger models, suggesting that shared task-
1585 relevant features bootstrap memorization learning. This effect was absent in Small models, where
1586 capacity constraints prevented efficient feature sharing.

1587

1588 7.6.7 IMPLICATIONS

1589

1590 The results challenge the assumption that dramatically different tasks necessarily require separate
1591 parameters, showing instead that capacity and sharing level can be tuned to achieve strong multi-task
1592 performance.

1593

1594 The finding that Level 3 sharing (all conv layers) often outperforms minimal sharing suggests that
1595 multi-task learning pressure improves shared representations. This has practical implications for
1596 model design: deliberately sharing mid-level features may produce better representations than keep-
1597 ing networks entirely separate.

1598

1599 The class consistency results reveal that memorization tasks implicitly learn semantic structure, even
1600 when trained only on instance-level labels. This suggests that instance-level supervision may be a
1601 viable alternative to explicit class labels for learning discriminative representations, particularly in
1602 scenarios where class labels are expensive or ambiguous.

1603

1604 Finally, the scaling behavior demonstrates that interference effects diminish with capacity, but not
1605 uniformly. The non-monotonic relationship between sharing level and performance (with Level 1
1606 sometimes underperforming Levels 2-3) indicates that sharing dynamics are complex and capacity-
1607 dependent, warranting further investigation into optimal parameter sharing strategies across different
1608 scales and task combinations.

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620 7.7 MEMBERSHIP INFERENCE ANALYSIS SETUP
16211622 7.7.1 TRAINING CONFIGURATION
16231624 We adopt a controlled training setup for membership inference analysis. The key hyperparameters
1625 are summarized in Table 7.1626 Table 7: Training configuration for membership inference analysis.
1627

Setting	Value
Optimizer	AdamW ($lr = 2 \times 10^{-3}$, weight decay = 2×10^{-5} , betas = (0.9, 0.999))
Schedule	Warmup (3 epochs) + Step decay ($\gamma = 0.6$, step = 8 epochs)
Epochs	40
Batch size	128
Mixed precision	Enabled (AMP)
Loss weights	$\alpha = 0.3$ (digit), $\beta = 0.7$ (index)
Other	Seed = 42, 4 workers, 5000 MIA samples
Evaluation	Top- k provenance accuracy with $k \in \{1, 5\}$

1638 7.7.2 MODEL: TWO-STAGE CNN ATTRIBUTION
16391640 The proposed **Two-Stage CNN Attribution** model jointly predicts class labels and training indices.
1641 It consists of:1642

- **Shared feature extractor:** Three convolutional blocks with BatchNorm, ReLU, and pooling, followed by adaptive pooling to a 4×4 grid.
- **Projection layer:** Fully connected projection to a 2048-d representation (ReLU, BatchNorm, Dropout).
- **Digit head (class prediction):** A two-layer MLP mapping to the number of classes.
- **Instance head (index prediction):** Conditioned on both the projected features and the class label. During training, the ground-truth label is used; otherwise, the predicted label (argmax) is used. The label is encoded as a one-hot vector and concatenated with the feature representation.

1643 This design ensures that index attribution is conditioned on class identity, mimicking provenance
1644 behavior.
16451646 7.7.3 LOSS FUNCTIONS
1647

1648 We use two objectives:

1649

- **Digit loss:** Standard cross-entropy on class prediction.
- **Instance loss:** Cross-entropy on index prediction with label smoothing (0.05).

1650 The final training objective is a weighted sum:
1651

1652
$$\mathcal{L} = \alpha \mathcal{L}_{\text{digit}} + \beta \mathcal{L}_{\text{index}}.$$

1653 7.7.4 MEMBERSHIP INFERENCE PROTOCOL
16541655 For membership inference, we query the index prediction head with candidate samples. Models
1656 trained on provenance information tend to assign higher confidence to training members than to
1657 non-members. We quantify this effect on held-out data, using 5,000 candidate samples.1658 Distribution of max confidence scores and entropies over train/member and test/non-member data-
1659 point are shown next.

1660

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

Figure 18: The left panel displays the distribution of maximum confidence scores, while the right panel shows the distribution of entropy, all from the **index branch** of a class-conditional two-branch network. Both distributions are plotted for 5K training samples (members) and 5K test samples (non-members). This data is used to generate the plot in Figure 7

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

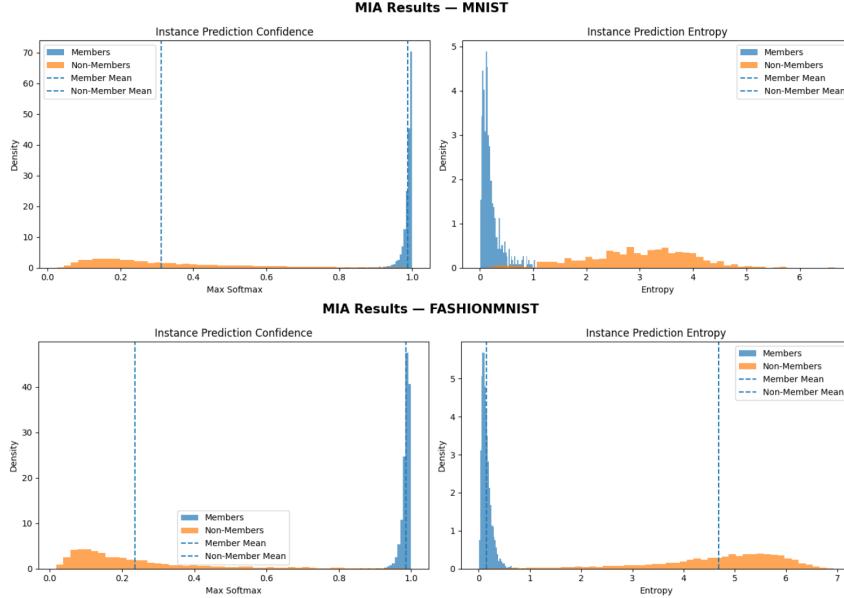
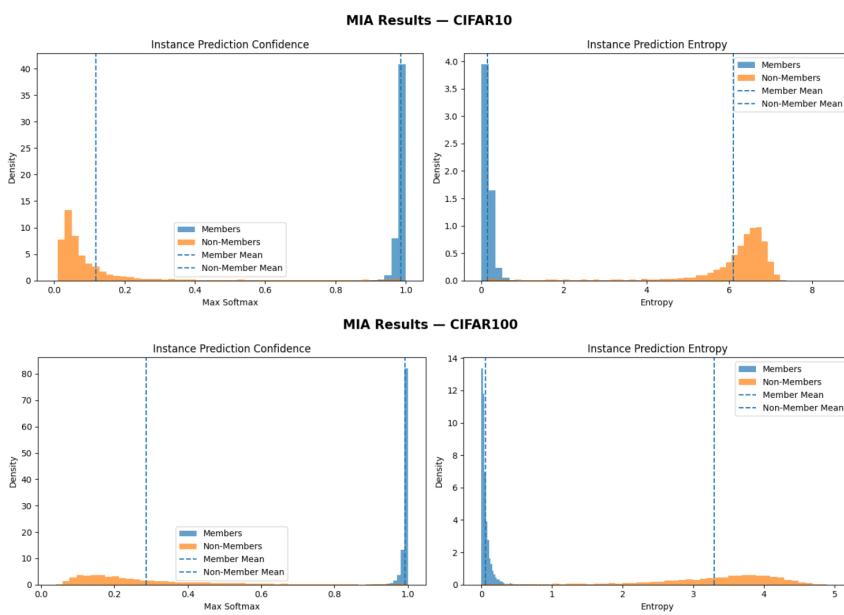


Figure 19: Same as above over CIFAR datasets.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

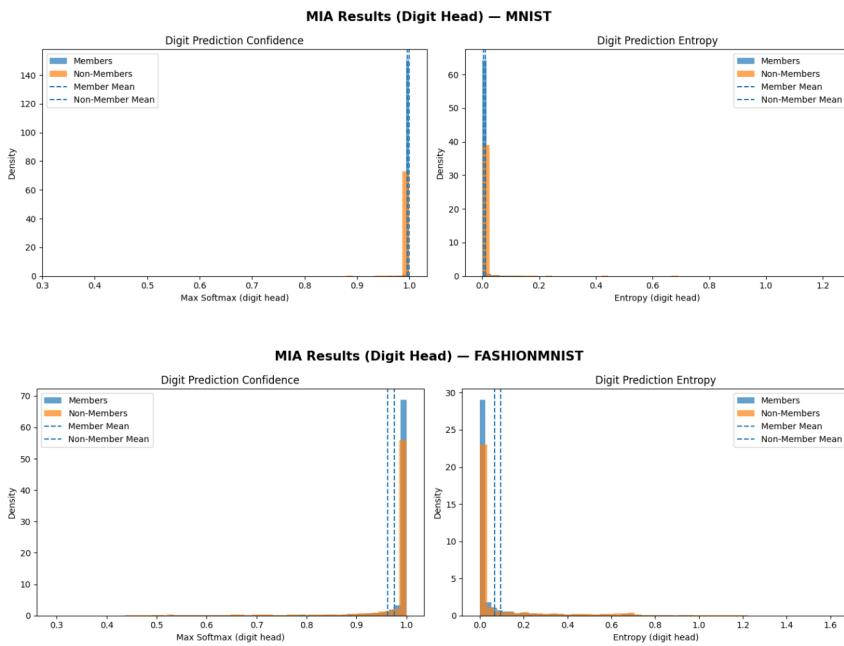


Figure 20: The left panel displays the distribution of maximum confidence scores, while the right panel shows the distribution of entropy, all from the **class branch** of a class-conditional two-branch network. Both distributions are plotted for 5K training samples (members) and 5K test samples (non-members).

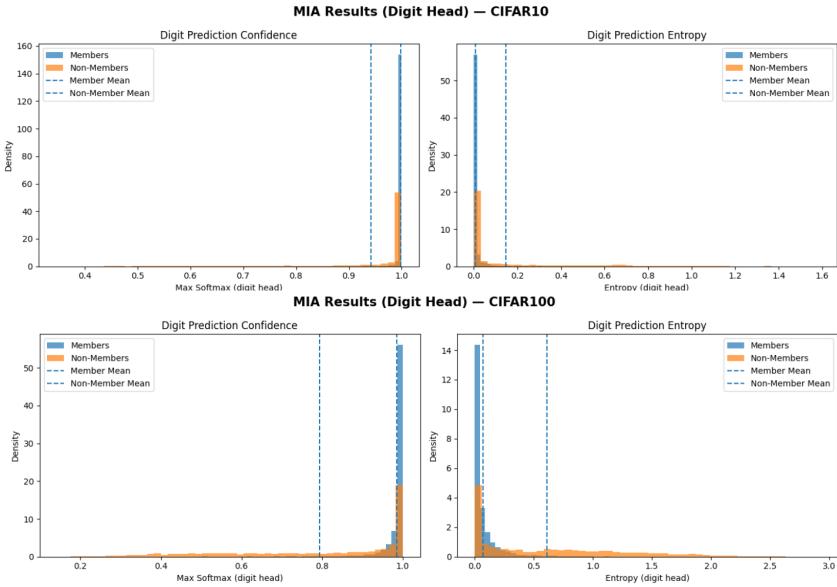
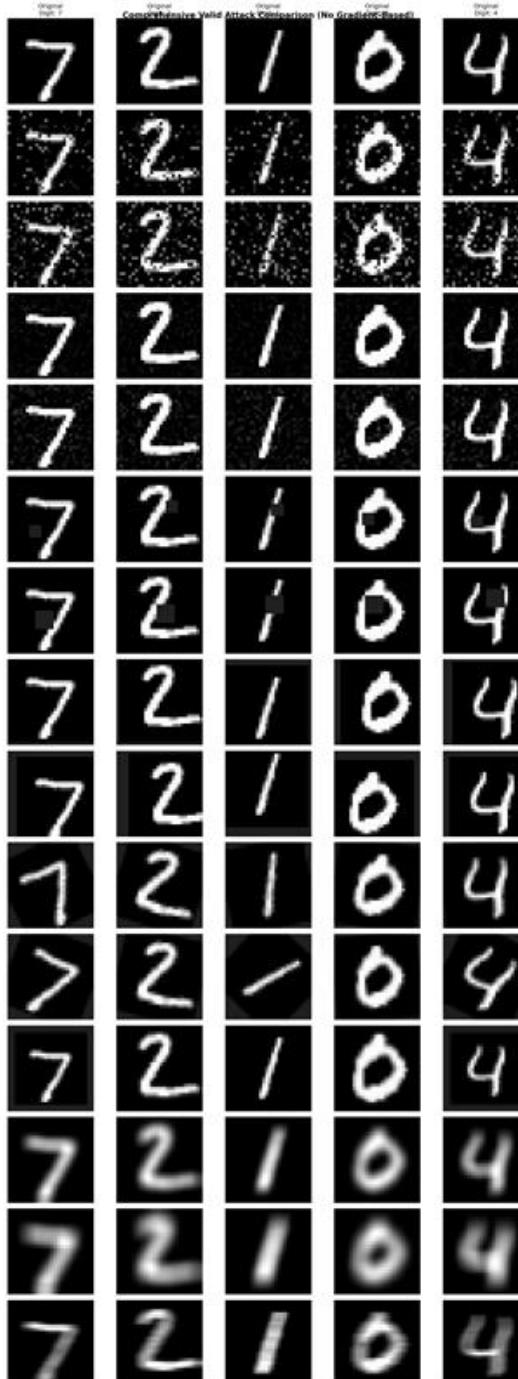


Figure 21: Same as above over CIFAR datasets.

1782 7.8 ROBUSTNESS ANALYSIS
17831784 We evaluate robustness under a diverse set of input distortions, shown in Figure 24 over four samples.
1785 Results over all 14 distortion types are shown in Figure 23.1831 Figure 22: Distortion types in order from top to bottom: no distortion, salt-and-pepper noise ($p=0.1$,
1832 $p=0.2$), Gaussian noise ($\sigma = 0.1, \sigma = 0.2$), occlusion ($4 \times 4, 6 \times 6$), translation ($\pm 3px, \pm 4px$),
1833 rotation ($\pm 30^\circ, \pm 40^\circ$), scaling (0.8-1.2x), Gaussian blur ($\sigma = 1, \sigma = 2$), and motion blur (5px).1834
1835

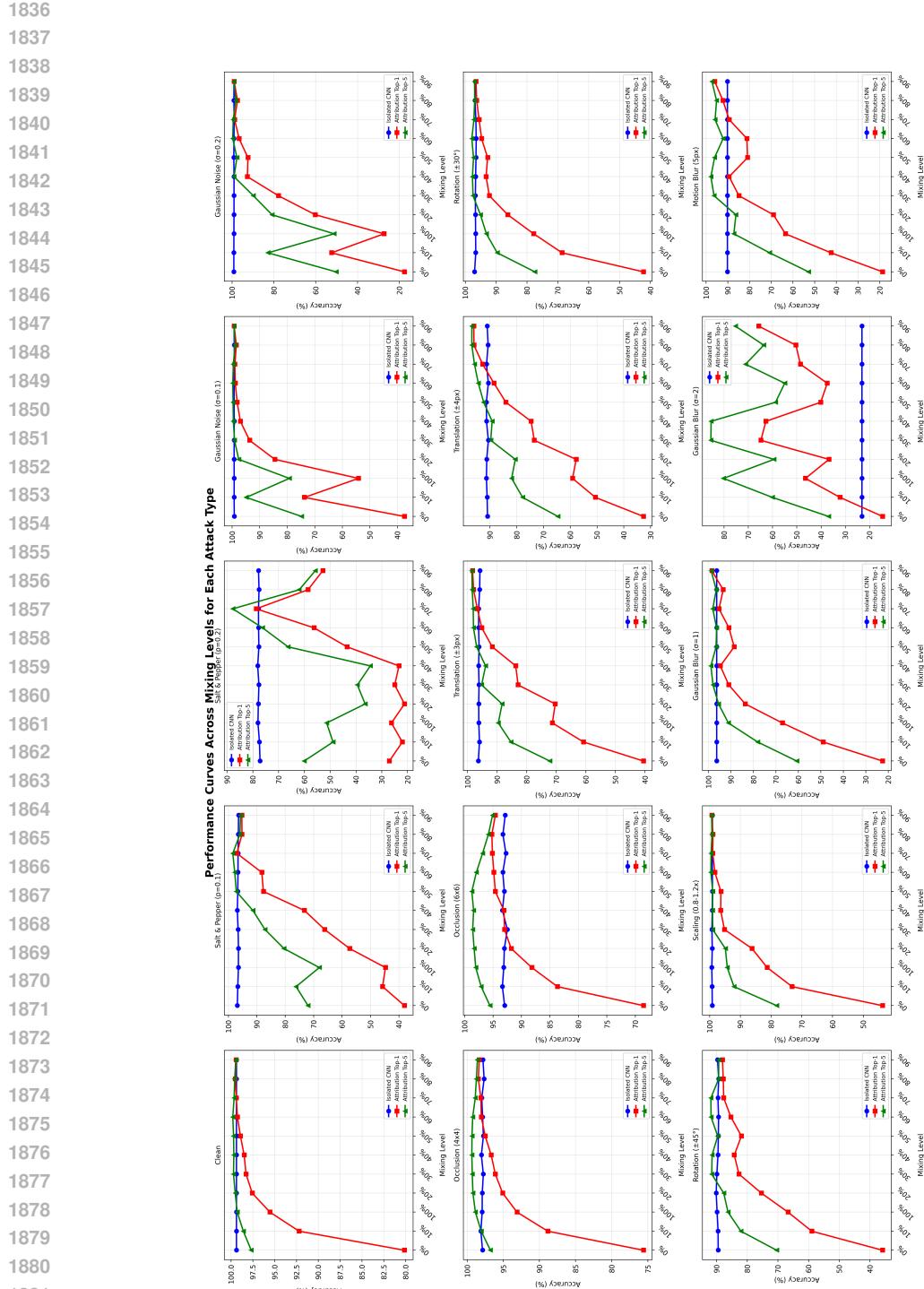


Figure 23: Comparison of the single-branch index-prediction network with varying levels of label mixing against an isolated CNN. Plots show Top-1 and Top-5 accuracy under 14 distortion types plus a baseline without distortion. The variation in the isolated CNN (blue curves) across different index-mixing levels arises from the use of different test sets at each level. Intermediate levels of memorization improve robustness: for distortions like occlusion and blur, partial label mixing (20–30%) yields higher accuracy than the isolated CNN.

1890

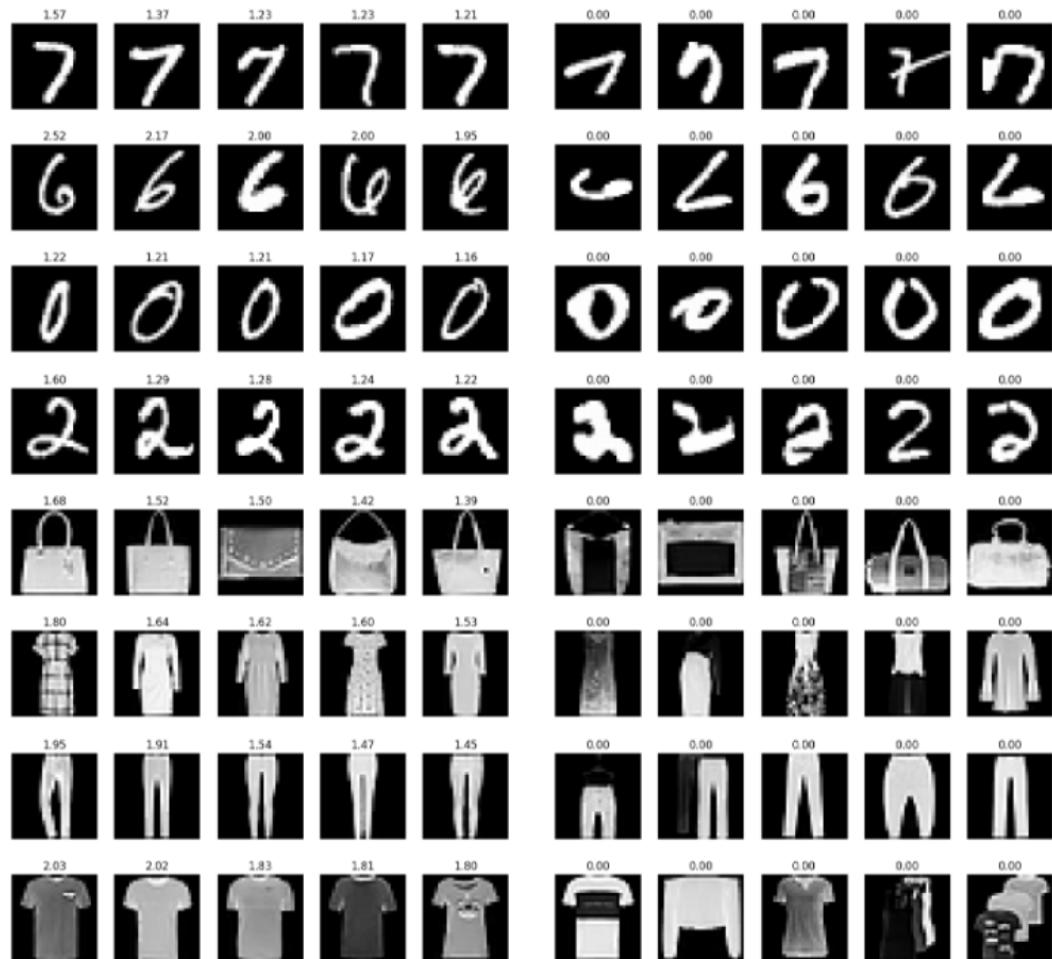
7.9 DATASET DEBUGGING

1891

1892

Figure 24 shows representative (left) and anomalous (right) training samples, ranked by the entropy of the index-branch output in the two-branch class-conditional network. Low entropy corresponds to sparse neuron activations. The top rows display MNIST samples, while the bottom rows show FashionMNIST samples.

1896



1928

Figure 24: Representative (left) and anomalous (right) training samples ranked by index-branch entropy for the two-branch class-conditional network. Low entropy indicates sparse neuron activation. Top rows: MNIST; bottom rows: FashionMNIST.

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944
1945

7.10 IMAGE GENERATION

1946
1947
1948
1949

Our model is a **Variational Autoencoder (VAE)** with an integrated classification module designed to jointly optimize for high-quality generative modeling and discriminative representation learning. The model has three main components: an **encoder**, a **latent reparameterization block**, and a **decoder with auxiliary heads**. Below, we describe each in detail.

1950
1951

7.10.1 ENCODER

1952
1953
1954

The encoder $f_\phi : \mathbb{R}^{1 \times 28 \times 28} \rightarrow \mathbb{R}^{2d}$ maps the input x to the parameters of a Gaussian distribution in a d -dimensional latent space (we use $d = 128$).

1955
1956

The encoder is implemented as a three-stage convolutional feature extractor followed by two parallel fully connected heads:

1957
1958
1959
1960
1961
1962
1963
1964

- **Conv Stage 1:** 3×3 convolution with 64 output channels, stride 2, and padding 1 → BatchNorm → ReLU. Reduces spatial resolution from 28×28 to 14×14 .
- **Conv Stage 2:** 3×3 convolution with 128 channels, stride 2, padding 1 → BatchNorm → ReLU. Further reduces resolution to 7×7 .
- **Conv Stage 3:** 3×3 convolution with 256 channels, stride 1, padding 1 → BatchNorm → ReLU. Maintains 7×7 spatial size while enriching representation depth.

1965
1966
1967

The resulting $256 \times 7 \times 7$ feature map is flattened into a vector of size 12544 and passed through two linear layers:

1968
1969
1970
1971
1972
1973
1974

$$\mu(x) = W_\mu h + b_\mu, \quad \log \sigma^2(x) = W_{\log \sigma} h + b_{\log \sigma}.$$

7.10.2 LATENT REPARAMETERIZATION

We use the reparameterization trick to sample $z \sim q_\phi(z|x)$:

$$z = \mu(x) + \sigma(x) \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I).$$

1975
1976
1977

This allows gradients to propagate through stochastic sampling during training, enabling end-to-end optimization of both encoder and decoder parameters.

1978
1979

7.11 DECODER

1980

The decoder $g_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^{1 \times 28 \times 28}$ reconstructs the input image from z .

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

- **Fully Connected Projection:** The latent code is mapped back to a $256 \times 7 \times 7$ tensor.
- **Deconv Stage 1:** 3×3 transposed convolution to 128 channels, stride 1 → BatchNorm → ReLU. (Resolution remains 7×7 .)
- **Feature Pooling for Prediction:** We perform global average pooling over this intermediate 128-channel feature map, yielding $h_{\text{cls}} \in \mathbb{R}^{128}$. This vector is used for auxiliary prediction heads:
 - **Class Head:** A linear layer producing logits for K classes (we use $K = 10$).
 - **Index Heads (optional):** A list of linear layers, each predicting a separate categorical factor.
- **Deconv Stage 2:** 3×3 transposed convolution to 64 channels, stride 2, padding 1, output padding 1 → BatchNorm → ReLU. (Upsamples to 14×14 .)
- **Deconv Stage 3:** 3×3 transposed convolution to 32 channels, stride 2, padding 1, output padding 1 → BatchNorm → ReLU. (Restores full 28×28 resolution.)
- **Output Layer:** 3×3 convolution producing a single channel, followed by a sigmoid nonlinearity to ensure pixel intensities lie in $[0, 1]$.

1998
1999

7.11.1 TRAINING SETUP

2000 We train the model on the **IndexedMNIST** dataset, which augments the standard MNIST digits with
2001 class indices for auxiliary prediction tasks. Input images are normalized to $[0, 1]$. We use a batch
2002 size of 128 for training and 64 for evaluation.

2003

2004

7.11.2 OPTIMIZATION

2005 The model parameters are optimized using the Adam optimizer with learning rate 10^{-3} for 70
2006 epochs. For each minibatch, we compute:
2007

- **Reconstruction loss:** Binary cross-entropy between input x and reconstruction \hat{x} .
- **KL divergence:** Regularizing the approximate posterior $q_\phi(z|x)$ toward the prior $p(z) = \mathcal{N}(0, I)$.
- **Classification loss:** Cross-entropy over the class logits.
- **Index loss (optional):** Cross-entropy over each auxiliary index head.

2008

2009

2010

2011

2012

2013

The total training objective is:

$$\mathcal{L} = \lambda_{\text{gen}} \left(\underbrace{\mathbb{E}_{q_\phi(z|x)}[-\log p_\theta(x|z)]}_{\text{Reconstruction Loss}} + \underbrace{D_{\text{KL}}(q_\phi(z|x) \parallel p(z))}_{\text{KL Regularization}} \right) + \lambda_{\text{cls}} \left(\underbrace{\mathcal{L}_{\text{CE}}(y, \hat{y})}_{\text{Classification Loss}} + \underbrace{\sum_k \mathcal{L}_{\text{CE}}(y_k, \hat{y}_k)}_{\text{Index Losses}} \right).$$

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

During training, we log the average total loss, its decomposition (reconstruction, KL, classification, index), and the classification and index prediction accuracies. This provides a clear picture of generative quality and discriminative performance over time.

2025 PyTorch implementations are provided next.

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

```

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066     class Encoder(nn.Module):
2067         def __init__(self, latent_dim=64):
2068             super().__init__()
2069             self.enc = nn.Sequential(
2070                 nn.Conv2d(1, 64, 3, stride=2, padding=1),
2071                 nn.BatchNorm2d(64),
2072                 nn.ReLU(),
2073                 nn.Conv2d(64, 128, 3, stride=2, padding=1),
2074                 nn.BatchNorm2d(128),
2075                 nn.ReLU(),
2076                 nn.Conv2d(128, 256, 3, stride=1, padding=1),
2077                 nn.BatchNorm2d(256),
2078                 nn.ReLU(),
2079             )
2080             self.fc_mu = nn.Linear(256*7*7, latent_dim)
2081             self.fc_logvar = nn.Linear(256*7*7, latent_dim)
2082
2083
2084         def forward(self, x):
2085             x = self.enc(x)
2086             x = x.view(x.size(0), -1)
2087             mu = self.fc_mu(x)
2088             logvar = self.fc_logvar(x)
2089             return mu, logvar
2090
2091
2092     Figure 25: Encoder of VAE on MNIST and FashionMNIST datasets
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

```

```

2106
2107
2108     class Decoder(nn.Module):
2109         def __init__(self, latent_dim=64):
2110             super().__init__()
2111             self.fc = nn.Linear(latent_dim, 256*7*7)
2112             self.up1 = nn.ConvTranspose2d(256, 128, 3, stride=1, padding=1)
2113             self.bn1 = nn.BatchNorm2d(128)
2114             self.up2 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
2115             self.bn2 = nn.BatchNorm2d(64)
2116             self.up3 = nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1)
2117             self.bn3 = nn.BatchNorm2d(32)
2118             self.outc = nn.Conv2d(32, 1, 3, padding=1)
2119
2120             self.pool = nn.AdaptiveAvgPool2d(1)
2121             self.class_head = nn.Linear(128, 10)
2122             self.index_heads = None
2123
2124         def forward(self, z):
2125             x = self.fc(z).view(-1, 256, 7, 7)
2126             x = F.relu(self.bn1(self.up1(x)))
2127             h_cls = self.pool(x).flatten(1)
2128             class_logits = self.class_head(h_cls)
2129             index_logits = None
2130             if self.index_heads is not None:
2131                 index_logits = [head(h_cls) for head in self.index_heads]
2132             x = F.relu(self.bn2(self.up2(x)))
2133             x = F.relu(self.bn3(self.up3(x)))
2134             recon = torch.sigmoid(self.outc(x))
2135             return recon, class_logits, index_logits

```

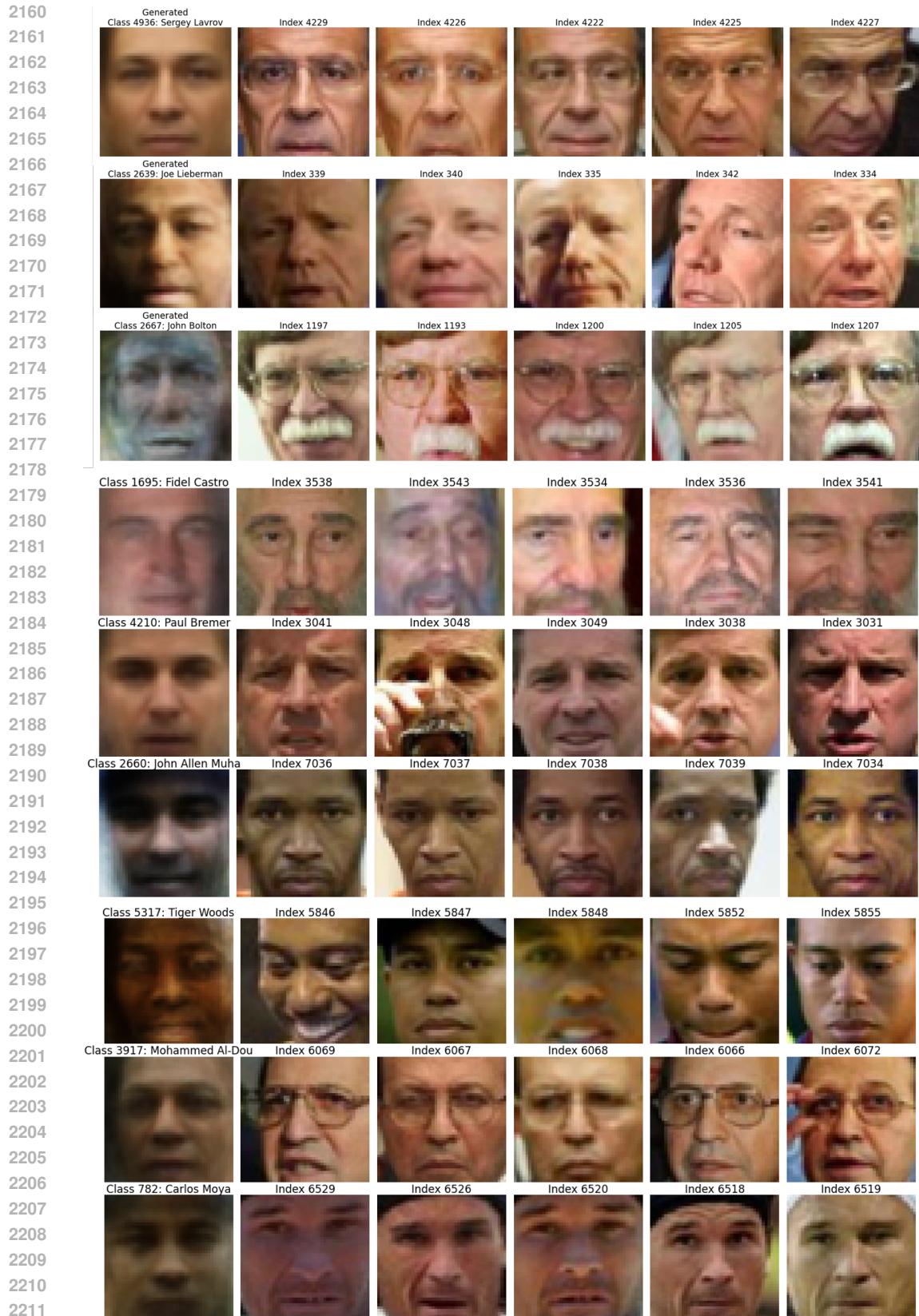
Figure 26: Decoder of VAE on MNIST and FashionMNIST datasets

```

2136
2137
2138
2139
2140
2141     class VAE(nn.Module):
2142         def __init__(self, latent_dim=64, class_sizes=None):
2143             super().__init__()
2144             self.encoder = Encoder(latent_dim)
2145             self.decoder = Decoder(latent_dim)
2146             if class_sizes is not None:
2147                 self.decoder.index_heads = nn.ModuleList([nn.Linear(128, sz) for sz in class_sizes])
2148             self.latent_dim = latent_dim
2149
2150         def reparameterize(self, mu, logvar):
2151             std = torch.exp(0.5*logvar)
2152             eps = torch.randn_like(std)
2153             return mu + eps*std
2154
2155         def forward(self, x):
2156             mu, logvar = self.encoder(x)
2157             z = self.reparameterize(mu, logvar)
2158             recon, class_logits, index_logits = self.decoder(z)
2159             return recon, mu, logvar, class_logits, index_logits

```

Figure 27: VAE Architecture on MNIST and FashionMNIST datasets



2213 Figure 28: Additional generated faces by VAE (left column) along with five most similar training
 faces derived from the class and index branches.

2214
2215 7.11.3 ANALYZING THE RELATIONSHIP BETWEEN GENERATED IMAGE REALISM AND THE
2216 INDEX-PREDICTION BRANCH CONFIDENCE2217 We assessed the relationship between generated image realism and the index-prediction branch con-
2218 fidence. Specifically, we split generated samples by confidence ($\text{conf} < 0.5$ vs $\text{conf} \geq 0.5$). To
2219 quantify the continuous association we report Spearman's rho between sample-level confidence and
2220 an individual-image quality proxy (Inception features distance to nearest training sample / recon-
2221 struction error). Across four runs, images from the high-confidence group had substantially lower
2222 FID than the low-confidence group:
22232224
2225

Threshold	N_{high}	N_{low}	$\text{FID}_{\text{high}} \text{ (95\% CI)}$	$\text{FID}_{\text{low}} \text{ (95\% CI)}$	Spearman ρ (p)
0.5	432	568	28.7 (25.6–31.8)	65.4 (61.1–69.9)	$-0.62 (< 10^{-6})$

2226 Results show a consistent negative association: higher-confidence samples have substantially lower
2227 FID and smaller feature-space distances.
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

7.12 INFLUENCE ESTIMATION VIA LAST-LAYER REPRESENTATIONS

Understanding which training examples are responsible for a model’s prediction has become a central problem in interpretability. Classical influence functions estimate the effect of removing a training point (x_i, y_i) on the loss at a test point x_t via a second-order Taylor approximation of the ERM objective (Koh & Liang, 2017b). However, computing influence scores requires Hessian–vector products and often suffers from numerical instability in deep networks (Basu et al., 2020; Feldman, 2020). This makes traditional influence estimation extremely expensive and frequently unreliable in practice.

In contrast, recent theoretical and empirical findings show that for deep networks with a linear final layer—which includes essentially all modern CNNs and transformers—**the influence of a training example can be well-approximated by nearest neighbors in the last-layer representation space** (Yeh et al., 2018; Pruthi et al., 2020). Let $f_\theta : \mathcal{X} \rightarrow \mathbb{R}^d$ denote the network embedding (all layers except the final classifier). The logit for class c is then

$$F_c(x) = w_c^\top f_\theta(x), \quad (22)$$

where $w_c \in \mathbb{R}^d$ are the classifier weights.

Influence as Representation Similarity. For a training example (x_i, y_i) define its embedding $z_i = f_\theta(x_i)$ and similarly $z_t = f_\theta(x_t)$ for a test example. Under mild regularity assumptions, the first-order approximation of the change in logits when replacing x_t with x_i in training yields an influence score proportional to the similarity of their representations:

$$I(i \rightarrow t) \propto \langle z_i, z_t \rangle. \quad (23)$$

Cosine similarity provides a numerically stable version:

$$S(i, t) = \frac{\langle z_i, z_t \rangle}{\|z_i\|_2 \|z_t\|_2}. \quad (24)$$

Thus, the **most influential training example** is simply the nearest neighbor of x_t in representation space:

$$i^* = \arg \max_{i \in \mathcal{I}} S(i, t). \quad (25)$$

Assigning the label of the most influential training point yields the influence-based prediction:

$$\hat{y}_t \equiv y_{i^*}, \quad (26)$$

Representer Theorem Connection. Yeh et al. (2018) show that for deep networks trained with weight decay, each prediction can be decomposed as a weighted sum of training example similarities:

$$F_c(x_t) = \sum_{i=1}^n \alpha_{i,c} \langle z_i, z_t \rangle, \quad (27)$$

where $\alpha_{i,c}$ depend on the classifier weights and loss. In many classification settings, the coefficients $\alpha_{i,c}$ are approximately uniform within a class, yielding a natural justification for nearest-neighbor influence estimation.

Practical Advantages. The last-layer influence approximation offers:

- **No gradients or Hessians:** only forward passes.
- **Low memory:** store d -dim embeddings, not full gradients.
- **Stability:** representation similarity is smooth and robust.
- **Faithfulness:** provably consistent with linear last layers.

Empirically, on MNIST and CIFAR-10, the influence-NN classifier achieves accuracy close to classical nearest neighbors in the learned embedding space, far exceeding gradient-based influence methods which often perform near chance level due to noise.

This approach therefore serves as an inexpensive and theoretically grounded proxy for influence functions, while avoiding the instability, memory cost, and high computational burden of gradient-based methods.

The code is available at [MASKED].

2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342

Algorithm 1 Influence-Based Prediction via Last-Layer Nearest Neighbors

2343 **Require:** Trained network f_θ , training set $\{x_i, y_i\}$, test input x_t

2344 1: Precompute embeddings $z_i = f_\theta(x_i)$ for all training points.

2345 2: Compute test embedding $z_t = f_\theta(x_t)$.

2346 3: Compute similarities $S(i, t)$ for all i :

2347

$$S(i, t) = \frac{\langle z_i, z_t \rangle}{\|z_i\|_2 \|z_t\|_2}.$$

2348

2349 4: Identify the most influential example:

2350

$$i^* = \arg \max_i S(i, t).$$

2351

2352 5: **return** predicted label $\hat{y}_t = y_{i^*}$.

2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375