
Under review as a conference paper at ICLR 2024

NEURAL OPTIMIZER EQUATION, DECAY FUNCTION,
AND LEARNING RATE SCHEDULE JOINT EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

A major contributor to the quality of a deep learning model is the selection of
the optimizer. We propose a new dual-joint search space in the realm of neural
optimizer search (NOS), along with an integrity check, to automate the process
of finding deep learning optimizers. Our dual-joint search space simultaneously
allows for the optimization of not only the update equation, but also internal decay
functions and learning rate schedules for optimizers. We search the space using
our proposed mutation-only, particle-based genetic algorithm able to be massively
parallelized for our domain-specific problem. We evaluate our candidate optimizers
on the CIFAR-10 dataset using a small ConvNet. To assess generalization, the
final optimizers were then transferred to large-scale image classification on CIFAR-
100 and TinyImageNet, while also being fine-tuned on Flowers102, Cars196, and
Caltech101 using EfficientNetV2Small. We found multiple optimizers, learning
rate schedules, and Adam variants that outperformed Adam, as well as other
standard deep learning optimizers, across the image classification tasks.

1 INTRODUCTION

Deep learning optimizers are built for solving optimization problems, where the goal is to find a set of
parameters that optimizes a loss function in an efficient amount of time. The optimization landscapes
of deep neural networks are vast and complex terrains with steep cliffs, saddle points, plateus, and
valleys (Goodfellow et al., 2016). Being able to efficiently and intelligently maneuver across these
landscapes is vital in order to achieve better performance and evaluation. The simplest way to update
the weights of a network is through batch Stochastic Gradient Descent (SGD). With the goal of
expediting convergence, adaptive methods have been created to efficiently scale the learning rate per
parameter, such as RMSProp, AdaGrad (Duchi et al., 2011), and Adam (Kingma & Ba, 2017). Since
the success of these adaptive methods, many researchers have explored other possible optimizers that
could increase convergence and performance (Dozat, 2016; Zaheer et al., 2018; Ma & Yarats, 2018;
Lucas et al., 2018; Chen et al., 2022a). Coupled with the optimizer is the learning rate schedule,
which also directly influences the quality of training (Xu et al., 2019; Smith & Topin, 2019; Gotmare
et al., 2018).

Since the success of AutoML (He et al., 2021) and neural architecture search (NAS) (Elsken et al.,
2019), automated methods have been applied to finding complete deep learning optimizers in the
hopes of finding an optimizer that could outperform SGD or Adam as a drop-in replacement (Bello
et al., 2017; Carvalho et al., 2022; Chen et al., 2022b). Searching for candidate optimizer functions
can be referred to as neural optimizer search (NOS). However, previous work in NOS has become
outdated in the sense that their proposed search spaces were created with few operations and argument
types. We utilize current deep learning optimizer research to update these deficiencies.

We perform NOS by evolving optimizers on a small ConvNet evaluated on the CIFAR-10 (Krizhevsky
& Hinton, 2009) dataset, transferring the final optimizers to CIFAR-100 and TinyImageNet (Le &
Yang, 2015), and also fine-tuning EfficientNetV2Small (EffNetV2Small) (Tan & Le, 2021) using
their published ImageNet1K weights on Flowers102 (Nilsback & Zisserman, 2008), Cars196 (Krause
et al., 2013), and Caltech101 (Fei-Fei et al., 2004). Our summarized contributions are: (1) we propose
a new dual-joint search space for NOS, allowing for greater exploration of possible optimizers, and
the simultaneous exploration of internal decay functions and learning rate schedules; (2) we propose
a simple integrity check able to eliminate degenerate optimizers from wasting valuable computational

1

Under review as a conference paper at ICLR 2024

time; (3) we propose a problem-specific, mutation-only genetic algorithm able to be massively
parallelized; and (4) we discover and present a set of new deep learning optimizers, learning rate
schedules, and Adam variants that are capable of surpassing Adam as drop-in replacements across
multiple image recognition tasks.

2 RELATED WORK

NOS is a relatively new and sparsely explored subdomain of AutoML and NAS (Bello et al., 2017;
Carvalho et al., 2022; Chen et al., 2022b). Chen et al. (2022b) evolved deep learning optimizers for
image classification by utilizing a program-based search space. Carvalho et al. (2022) evolved deep
learning optimizers using a grammar-based representation with very few operations and arguments.
Finally, Bello et al. (2017) learned deep learning optimizers by maximizing the reward of an recurrent
neural network (RNN) controller through reinforcement learning. Our work heavily stems from the
success of Bello et al. (2017), which utilized a grammar-based representation containing unary and
binary operations. Not only did Bello et al. (2017) learn the weight update equation for optimizers,
but also allowed the controller to decay operands from a set of four possible decay schedules. We
greatly expand on this in our proposed search space. Previous work in NOS utilized search spaces
containing very simple and primitive operations. Although Bello et al. (2017) used a much larger
search space than others (Carvalho et al., 2022; Chen et al., 2022b), and simultaneously allowed to
decay operands, the search space has become outdated with regards to current deep learning optimizer
research.

Since the emergence of SGD, Momentum, Nesterov Momentum (Nesterov, 1983), RMSProp, Ada-
Grad (Duchi et al., 2011), and Adam (Kingma & Ba, 2017), many other deep learning optimizers
have been created (Nesterov, 1983; Dozat, 2016; Zaheer et al., 2018; Ma & Yarats, 2018; Lucas et al.,
2018; Chen et al., 2022a). The formulation and innovation of these new deep learning optimizers
can be used for the advancement of a newer and more powerful search space for NOS. For specifics,
Appendix A lists the most recent optimizers that have influenced our proposed search space the most.

Instead of using a grammar-based representation for our optimizers, we choose to utilize a compu-
tational graph representation based off the NASNet search space (Zoph et al., 2018). The NASNet
search space contains free-floating nodes in a computational graph for cell-like architectures. Each
node receives an input argument connection, performs an operation, and outputs the final value to
be used by subsequent nodes. We choose to utilize this type of representation as it limits bloating, a
common occurrence in tree-based grammars (Luke & Panait, 2006), and allows for easy redundancy
within the graph as each node can reuse previous nodes, whereas tree-based grammars cannot.

Although reinforcement learning applied to RNN controllers has been successfully used in previous
AutoML deep learning problems (Bello et al., 2017; Zoph et al., 2018; Zoph & Le, 2016), we choose
to use its antithesis of evolutionary algorithms to search the search space, which also has had great
success in similar scenarios (Real et al., 2019; Chen et al., 2022b; Liu et al., 2020; 2021a).

3 METHODOLOGY

3.1 SEARCH SPACE

Our proposed search space is composed of two integral parts, one for the weight update equation and
another for decay functions (which includes learning rate schedules). We also expand upon Bello
et al. (2017) by allowing for the inclusion of momentum-type weight updates. Each optimizer took
the form of either no momentum, momentum, or Nesterov momentum, listed in Table 1, where i is
the ith time-step, α is the learning rate, U is the weight update equation that is searched for by our
evolutionary algorithm applied to our proposed search space, βi is the momentum coefficient (cycled
between 0.85 and 0.95 during training), and zi is an intermediate state saved variable.

3.1.1 OPTIMIZER

The weight update equation for each optimizer is represented by a derivative of the NASNet search
space containing three components: (1) operands, which are analogous to leaf or terminal nodes for
tree-based grammars; (2) hidden state nodes, which are free-floating nodes able to use any operand or

2

Under review as a conference paper at ICLR 2024

NO MOMENTUM MOMENTUM NESTEROV

zi+1 = βi ∗ zi − α ∗ U zi+1 = βi ∗ zi − α ∗ U
wi+1 = wi − α ∗ U wi+1 = wi + zi+1 wi+1 = wi + βi ∗ zi+1 − α ∗ U

Table 1: Optimizer update equations of the form no momentum, momentum, or Nesterov momentum.

output from any previous hidden state node; and (3) a designated output node, defined to be the final
operation before outputting the weight update equation value. Each node either performs a unary or
binary operation on its received inputs. The final output value is built by mapping all connections that
reach the output node. Because there exists a probability that a particular node does not connect to the
output node, it is regarded as inactive, while nodes that reach the output node, either through direct
connection or by a subsequent node connecting to the output node, are regarded as active. Active and
inactive nodes allow for the size of the weight update equation to grow and shrink during evolution,
not forcing each optimizer to use all the nodes in the graph.

Our 20 proposed operands are listed in Table 2a, where v̂, ŝ, λ̂ are the running exponential moving
averages of g, g2, and g3, with β1 = 0.9, β2 = 0.99, and β3 = 0.999. Unlike Bello et al. (2017), we
do not bias our optimizers towards Adam or RMSProp by incorporating them as operands. Our 23
proposed scalar unary operations are listed in Table 2b, where drop(x, p) drops the entries of x with
probability p, and norm(x) scales the tensor x by the L2 norm. Our 10 proposed binary operations
are listed in Table 3a, where clip(x1,±|x2|) clips x1 to the range −|x2| to |x2|. In addition to simple
scalar type unary operators, we also propose unary operators that perform state-holding operations.
Specifically, each state-holding unary operator maintains a state variable zi that is updated at each
time-step. The 3 proposed state saving unary operators are shown in Table 3b.

(a) The proposed set of operands.

OPERANDS

g g2

g3 v̂

ŝ λ̂
sign(g) sign(v̂)
1 2
10−6w 10−5w
10−4w 10−3w
0.3g + 0.7v̂ 0.05g2 + 0.95ŝ

0.01g3 + 0.99λ̂
1
3

∑3
j β

jvj − g for βj = [0, 0.9, 0.999]
1
3

∑3
j β

jsj − g2 for βj = [0, 0.99, 0.999]
1
3

∑3
j β

jλj − g3 for βj = [0, 0.999, 0.9999]

(b) The proposed set of scalar unary operations.

SCALAR UNARY OPERATIONS

x −x

ln(|x|+ ϵ)
√

|x|
ex |x|
sigmoid(x) d

dx
sigmoid(x)

softsign(x) d
dx

softsign(x)
softplus(x) erf(x)
tanh(x) arctanh(x)
besseli1e(x) arcsinh(x)
max(x, 0) min(x, 0)
drop(x, 0.5) drop(x, 0.3)
drop(x, 0.1) norm(x)
erfc(x)

Table 2: The proposed sets of operands and scalar unary operations for the optimizer update equation search space.

(a) The proposed set of binary operations.

BINARY OPERATIONS

x1 + x2 x1 ∗ x2

x1 − x2 x1/(x2 + ϵ)

x1/
√

1 + x2
2 max(x1, x2)

min(x1, x2) 0.95x1 + 0.05x2

clip(x1,±|x2|) |x1|x2

(b) The proposed set of state saving unary operations.

STATE SAVING UNARY OPERATIONS

zi+1 = 0.95xi + 0.05zi
zi+1 = xi − zi
zi+1 = max(xi, zi)

Table 3: The proposed sets of scalar binary operations and state saving unary operations for the optimizer update equation search space.

Each computational graph is initialized with four hidden state nodes and one output node. Each
node is initialized by sampling its operation from the set of all binary and unary operations. Each

3

Under review as a conference paper at ICLR 2024

(a) Example Optimizer Update Equation (b) Example Decay Function

Figure 1: (a) Example optimizer graph with two active (blue) hidden state nodes, two inactive hidden
state nodes (grey), and one root node (white). The final weight update equation is given above the
root node. Note that this does not include momentum type. (b) Example decay function applied to the
10−4w operand before being applied in the ln(|x|) operation. The decay graph contains one active
(blue) hidden state node, zero inactive hidden state nodes (grey), and one root node (white). The final
decay function equation is given above the root node.

connection for each hidden state node was sampled from all input connections and hidden state nodes.
The momentum type of the weight update was sampled uniformly from the three choices mentioned
in Section 3.1. Lastly, each connection within the graph had a probability of generating a decay
function. Figure 1a shows an example optimizer’s weight update equation after random initialization.

3.1.2 DECAY FUNCTION

A decay function is a scheduled function with the ability to decay operands or hidden state nodes
within the optimizer graph. Unlike Bello et al. (2017), we do not apply a simple decay function to
operands and outgoing connections, but allow for the creation of decay functions through a separate
search space. This subsequent search space is applied to each argument connection between hidden
state nodes in the weight update graph. Much like our proposed search space for the weight update,
the search space for decay functions is represented as a computational graph with free-floating nodes,
along with the same properties as before. The operands in this search space refer to decay schedules.
The binary operations stay the same; however, we limit the unary operations to operations with an
upper limit of 1 for values between 0 and 1. This was performed to prevent scaling input argument
values to greater than their original value. The updated choices of unary operators for the decay
functions are shown in Appendix B.

Unlike Bello et al. (2017), we do not limit our decay schedules to decay only, but also include their
increase as well. Our proposed schedules are the following: linear decay (ld), linear increase (li),
linear decrease with restart (ldr), linear increase with restart (lir), cosine decay (cd), cosine increase
(ci), cosine decrease with restart (cdr), cosine increase with restart (cir), cyclic cosine decay (ccd),
cyclic cosine increase (cci), exponential decay (ed), exponential increase (ei), demon decay (dd)
(Chen et al., 2022a), and demon increase (di). In total, there are 14 different possible schedules to be
used as operands within the decay search space graph, shown in Appendix B.

Lastly, the decay functions can be used to create unique learning rate schedules. Unless the decay
function is applied inside a non-distributive function, such as tanh(x), the decay function can be
factored out alongside the learning rate. As a result, the proposed complete search space can optimize
not only the weight update equation, but also the learning rate schedule and internal decay functions
for non-distributive functions.

Each computational graph for the decay functions is initialized with one hidden state node and one
output node. This was performed to simplify the decay schedules. Each node in the decay function
graph was initialized similar to the weight update equation graph. Figure 1b shows an example decay
function being applied to a connection from within the example optimizer graph from Figure 1a.

4

Under review as a conference paper at ICLR 2024

3.2 INTEGRITY CHECK

All together, the proposed search for both the weight update equation and decay functions contain an
enormous number of possible combinations, creating an extremely sparse search space for workable
optimizers. To prevent degenerate optimizers from wasting valuable evaluation time, an integrity
check was implemented from the motivation of Liu et al. (2021b) in their evolution of loss functions.
The integrity check needs to be accurate in detecting degeneracy while also being simple to compute.
Our proposed integrity check was based on the shifted sphere optimization problem, where the goal
is to minimize f(x) =

∑n
i (xi − βi)

2 for n variables, where βi is a shift constant for the ith variable.

Each optimizer was tested at minimizing the optimization problem with different learning rates. Each
optimizer was given the same initial point and was run for a set number of iterations. If none of the
final objective function values for each learning rate was below a hand-designed threshold, it was
rejected as it was unable to achieve moderate convergence on a simple problem. The chosen initial
point, associated shift constants, number of variables, number of iterations, and threshold were hand
designed based on the success from current deep learning optimizers.

Upon initialization, if a connection was sampled to contain a decay function, the associated decay
function underwent a simpler integrity check: the decay function was rejected if it scaled the
component to less than 0 or more than 1. The decay function looped initialization until it found a
graph that satisfied this integrity check.

3.3 SURROGATE FUNCTION

With the goal of learning optimizers that perform well on large-scale deep learning models, evaluating
each candidate optimizer on a large-scale model can be extremely computationally expensive. Surro-
gate functions are cheap proxy models used to estimate the performance of deep learning components
at large-scale (Liu et al., 2020; Bingham et al., 2020; Bello et al., 2017). From the success of Bello
et al. (2017), we also choose to utilize a small ConvNet as our surrogate function. The ConvNet
contains three convolution layers, followed by batch normalization (Ioffe & Szegedy, 2015) and
Swish activation (Ramachandran et al., 2017). Except for the first convolution layer, each subsequent
convolution layer maintained a stride of 2, and doubled the previous number of filters/channels. The
starting number of filters/channels for the first convolution layer was referred to as the base.

3.4 EARLY STOPPING

Even though an integrity check was implemented to prevent degenerate optimizers from wasting
valuable evaluation time, some optimizers may not perform well for deep learning tasks. To prevent
these optimizers from wasting valuable time, two early stopping mechanisms were implemented.
First, each optimizer was trained on the ConvNet with base 48 (totaling to 0.212M parameters) for
800 steps at each of the following learning rates: 10, 1, 0.1, 0.01, 0.001, 0.0001, and 0.00001. In
addition, a one cycle cosine decay learning rate schedule with a linear warmup (Smith, 2017) was
applied to every optimizer. As a result, all optimizers were learning to change the given learning rate
schedule using their decay functions during evolution. If none of the final training accuracies from
each learning rate session yielded an accuracy above a hand-designed threshold of 25%, the optimizer
was rejected. Second, if the optimizer passed the first early stopping mechanism, the optimizer was
trained again on the ConvNet, except for 8,000 steps using the best found learning rate. After 1,000
steps, if the training accuracy ever fell below a hand-designed threshold of 40%, training was stopped
and the best validation accuracy was returned as the fitness value. If the optimizer passed both early
stopping criteria, the best validation accuracy was used as the optimizers final fitness value. For the
validation dataset, 5,000 of the 50,000 training images for CIFAR-10 were set aside as validation.

3.5 PARTICLE-BASED GENETIC ALGORITHM

Real et al. (2019) applied regularized evolution, a mutation-only, population-based genetic algorithm
(GA), to the NASNet search space with great success, but we found it non-optimal for our problem.
In some preliminary runs, regularized evolution converged extremely fast. We believe that this
occurrence was due to our extremely sparse search space, paired with our integrity check, creating an
extremely sharp local minima for each optimizer. As a result, only a few non-degenerate solutions
exist nearby each optimizer, which are quickly exhausted within a few iterations of the algorithm.

5

Under review as a conference paper at ICLR 2024

To address this problem, we propose a problem-specific, particle-based GA with the same components
as regularized evolution, namely: (1) mutation only, (2) aging, and (3) parallelism. In our algorithm, n
independent particles run for t time-steps, where at each time-step k random mutations are performed.
At each timestep, each particle is mutated k times (mutation only) and the best mutated child is
selected as the next position for the particle (aging). Each particle acts independently so that the
available search space around each optimizer can be quickly explored and exhausted. Our proposed
GA allows for embarrassing parallelization (parallelism) at two levels. First, because each particle
is independent from the other, as there is no competition, each particle can be parallelized. Second,
because each particle performs k independent mutations at each timestep, each mutated child can be
parallelized. Therefore, the only bottleneck in our proposed GA is t, the total number of timesteps,
which is relatively small as the available search space around optimizers is quickly exhausted. If
n ∗ k GPUs are available, the running time of the algorithm is O(t ∗ c) where c is the mean cost to
train a neural network. See Appendix C for pseudocode.

Because our search space is extremely sparse, a poor initial point would be likely to generate poor
mutations. As a possible solution, we use an enlarged initial population. For each run, we generate
10n randomly initialized optimizers and evaluate them on a ConvNet with base=32. The best n were
then taken to be the initial points for each run. We ran our particle-based GA three times, each with
different configurations. With the goal of having each run evaluate approximately 1,800 optimizers
over the course of evolution, we ran the following three configurations: (1) n = 50, k = 6, t = 6; (2)
n = 50, k = 5, t = 7; and (3) n = 50, k = 7, t = 5. Although our proposed algorithm allows for
massive parallelization, it was performed sequentially as we only had access to one NVIDIA 4090
GPU during evolution. Each run took approximately six days to complete.

Mutation was performed by selecting an active node randomly, and then performing one of six
possible mutations. First, the operation was mutated by randomly sampling the list of remaining
available operations. Second, the argument connection was mutated by randomly sampling the list of
remaining available arguments and hidden state nodes. Third, a unary operation was changed to a
binary operation, or visa-versa. For unary to binary, the extra connection was sampled randomly from
the list of possible connections (either argument connections or other hidden state nodes); for binary
to unary, one of the connections was randomly dropped. Fourth, which was only available for binary
operations, the argument connections were swapped. Fifth, the momentum type of the weight update
was sampled from the list of remaining types. Lastly, the decay schedule for one of the connections
of an active node was mutated. If a decay schedule was not present for the given connection at time
of mutation, a randomly initialized decay schedule was assigned. If a decay schedule was present,
it was either deleted or mutated. If mutated, the computational graph of the decay schedule was
mutated using the operations one through four.

Each mutation was passed through the integrity check, from Section 3.2, to ensure non-degeneracy.
If the integrity check failed, mutation was looped until a child mutation was found that passed
the integrity check. All mutated child optimizers were then evaluated using the surrogate function
described in 3.3. If the optimizer failed the first early stopping mechanism, mutation was performed
again until a child mutation was found that passed the first early stopping mechanism.

Lastly, after performing our evolutionary experiments, we performed an optimizer elimination
protocol that progressively eliminated optimizers based upon their performance on increasingly larger
models to ensure the final optimizers could correlate to well to larger models. This procedure is
detailed in Appendix D.

3.6 ADAM VARIANTS

We performed two supplementary experiments with the goal of (1) obtaining variants of the Adam
optimizer and (2) variants of learning rate schedules for Adam. For our first experiment, we hand
programmed the Adam optimizer into our search space and ran our proposed GA using Adam as the
initial particle. It ran using k = 16, t = 3, and base 48. We allowed all components to be mutated.
For our second experiment, we used the Adam optimizer again as the initial particle to our proposed
GA, except this time only the decay schedules were allowed to be mutated for each connection, not
the weight update equation. It ran using k = 12, t = 4, and base 48.

6

Under review as a conference paper at ICLR 2024

4 RESULTS

4.1 FINAL OPTIMIZERS

The final 10 optimizers discovered after optimizer elimination are listed in Table 4. There appear to be
three families of optimizers present in the final results, with two outsiders. All optimizers, except the
two outsiders (Opt9 and Opt10), used the quasi-hyperbolic momentum (Ma & Yarats, 2018) update
equation (0.3g + 0.7v̂), showcasing the importance of a linear combination between the gradient
and its exponential moving average. The first family of optimizers (Opt1, Opt2, and Opt3) took the
form (0.3g + 0.7v̂) + softsign(x), where x was dependent upon the optimizer. This family heavily
relied upon a weight decay of 10−5w inside the softsign operation. The second family of optimizers
(Opt4, Opt5, and Opt6), took the form (tti(0.3g + 0.7v̂))/(t2ix) where x was dependent upon the
optimizer. This family heavily relied upon decay functions, with the majority directly affecting the
learning rate schedule. The last family of optimizers (Opt7 and Opt8) are exactly the same, except for
Opt8 trading the outside tanh(x) function of Opt7 for arcsinh(x). Lastly, the two outsiders (Opt9 and
Opt10) seem to be descendants from two non-included families of optimizers; however, they are the
only two final optimizers to incorporate a momentum type. Seven of the final ten optimizers contain
decay functions, with four of them directly effecting the learning rate schedule.

Name Momentum Weight Update Equation Decay Functions

Opt1 None (0.3g + 0.7v̂)+
softsign(clip(10−5w,
10−5w − (0.05g2 + 0.95ŝ)))

None

Opt2 None (0.3g + 0.7v̂)+

softsign(10−5w√
1+(10−5w−(0.05g2+0.95ŝ))2

)

None

Opt3 None (0.3g + 0.7v̂)+

softsign(10−5w√
1+(10−5w−(0.01g3+0.99λ̂))2

)

None

Opt4 None t1i (0.3g+0.7v̂)

t2i clip(2,t3i e
v̂)

t1i = erfc(erfc(ci))
t2i = d

dx
tanh(cir)

t3i = arctan(dd)

Opt5 None t1i (0.3g+0.7v̂)

t2i clip(2,ev̂) t1i = erfc(erfc(ci))
t2i = d

dx
tanh(cir)

Opt6 None t1i (0.3g+0.7v̂)

t2i |t
3
i e

10−4w|
t1i = erfc(erfc(ci))
t2i = d

dx
tanh(cir)

t3i = d
dx

tanh(ci)
Opt7 None tanh(t1i arcsinh(0.3g + 0.7v̂)) t1i = max(cci, lir)
Opt8 None arcsinh(t1i arcsinh(0.3g + 0.7v̂)) t1i = max(cci, lir)
Opt9 Nesterov t1i ge

arctan(0.05g2+0.95ŝ) t1i = erfc(ed)
Opt10 Nesterov besseli1e(besseli1e(t1i g)) t1i = dd ∗ li

Table 4: Final 10 optimizers found after evolution. The momentum type, weight update equation, and decay functions used by each optimizer
are listed. We refer to each optimizer in the paper by the associated name.

4.2 SUPPLEMENTARY EXPERIMENTS

The final best five optimizers found from our first supplementary experiment for finding variants of
Adam are shown in Table 5a. As one can see, our algorithm swapped the division operator between
v̂ and ŝ in favor of the clip operator, as well as replacing the square root operator for ŝ with some
other function. From our second supplementary experiment on finding learning rate schedules for
Adam, we took the best schedules found, along with the best learning rate schedules found during our
standard evolution, to report in Table 5b. Note that each learning rate schedule present is multiplied
by lrcd, the cosine learning rate decay schedule with linear warmup mentioned in Section 3.4. See
Appendix F for the plots of the discovered learning rate schedules and internal decay functions.

7

Under review as a conference paper at ICLR 2024

(a) Adam Variants

Adam Variants

A1 clip(v̂,
√
ŝ)

A2 clip(v̂, |ln(ŝ)|)
A3 clip(v̂,

√
|ln(ŝ)|)

A4 clip(v̂, sigmoid(ŝ))
A5 norm(clip(v̂,

√
ŝ))

(b) Learning Rate Schedules

Learning Rate Schedules

LR1 erfc(erfc(ci))
d
dx

tanh(cir)
LR6 arctan(li)erfc(cci)√

d
dx

softsign(cci)

LR2 erfc(erfc(ci))
d
dx

tanh(cir)∗ d
dx

tanh(ci)
LR7 1√

d
dx

softsign(lir)

LR3 arctan(li)
d
dx

tanh(lri)∗
√

d
dx

softsign(di))
LR8 1√

softsign(arctan(ei))

LR4 sigmoid(li)2

sigmoid(2∗softsign(ld)) LR9 tanh(max(cci, lri))
LR5 1√

erf(ed)

Table 5: (a) The best five Adam variants found during our first supplementary experiment. Note that all optimizers listed here did not use a
momentum type. (b) The best nine learning rate schedules found from standard evolution and our supplementary experiment on finding learning
rate schedules for Adam.

5 TRANSFERABILITY EXPERIMENTS

To assess generalization, all found optimizers, Adam variants, and learning rate schedules (trained on
Adam) were transferred to various image classification tasks. Each were trained on CIFAR-10 and
CIFAR-100 from scratch using EffNetV2Small with progressive RandAug regularization strategy.
Each were also trained on TinyImageNet (Tiny) using a custom ResNet9 (6.5M parameters). For
further study on fine-tuning scenarios, each were trained for fine-tuning EffNetV2Small using its
official ImageNet1K weights on Flowers102, Cars196, and Caltech101. For comparison, the results
for Adam, RMSProp, SGD, and Nesterov momentum are recorded as well for each experiment. In
addition, as a baseline comparison to Bello et al. (2017), we have included their best two discovered
optimizers, PowerSign-ld (linear decay) and AddSign-ld (linear decay). Lastly, because many of
our discovered optimizers heavily utilize the quasi-hyperbolic momentum term, we also include
the original QHM (Ma & Yarats, 2018) optimizer for comparison. To assess how much the decay
functions influence the quality of the found optimizers containing them, each were re-run without
them. Opt4 was retrained twice, once without using t1i and t2i (Opt41); and a second time without
using any ti (Opt42). Opt6, Opt7, Opt8, Opt9, and Opt10 were all retrained without using any ti
(Opt61, Opt71, Opt81, Opt91, Opt101). See Appendix G for exact implementation and training details
for each experiment. The results for all image recognition experiments are recorded in Table 6. In
addition to image recognition, a supplementary experiment was performed where the final optimizers
were evaluated on language modeling for the PTB (Marcus et al., 1993) dataset. Those results are
discussed in Appendix H.

6 RESULTS AND DISCUSSION

From Table 6, one can see that many optimizers, learning rate schedules, and Adam variants were able
to outperform Adam and the other standard deep learning optimizers across the image recognition
datasets. The results can be broken down into two sections: those trained from scratch (CIFAR and
Tiny) and those fine-tuned (Flowers, Cars, and Caltech). When training from scratch on CIFAR
and Tiny, Opt4, Opt5, Opt6, Opt7, Opt8, and Opt10 performed relatively well compared to the
baseline deep learning optimizers. However, Opt6 elevated itself above the rest by always being
in the Top 3. Opt61 is the quasi-hyperbolic momentum update equation (0.3g + 0.7v̂) scaled by
exponential of the weight decay exp(10−4w). For small weight values, the exponential weight decay
approaches one, making Opt6 equivalent to standard quasi-hyperbolic momentum. However, Opt6
simultaneously learned decay functions. These decay functions can be factored out along side the
learning rate, giving rise to LR2. The success of Opt6 is heavily dependent upon the inherently
learned LR2 schedule, as Opt61 always under-performed Opt6 when training from scratch. Opt101

always out-performed Nesterov’s momentum when training from scratch. Appendix F discusses the
effect of the scaling on the gradients for Nesterov. We empirically noticed that Opt101 liked large
learning rates around 10. We believe that the double scaling of the gradients clips larger gradient
values, allowing for larger learning rates to scale gradients near zero to have more of an effect, which
empirically seems beneficial. When fine-tuning using transfer learning, there appears to be a flip
in performance between the optimizers, as Opt1, Opt3, A1, and A5 achieved Top 3 atleast once

8

Under review as a conference paper at ICLR 2024

across Flowers, Cars, and Caltech. Opt1, Opt2, and Opt3 can be seen as extensions of QHM as
they are detailed by QHM+x, where x, was dependent upon the optimizer. Although the results for
Opt1-Opt3 are similar to QHM for fine-tuning, the results from CIFAR reveal that the additional terms
are beneficiary as Opt1-Opt3 all outperformed QHM. Appendix F discusses the effect of each learned
term to the weight update equation. For the Adam variants, the majority of their success occurs when
fine-tuning, as all achieved Top 8 once across the three datasets. Not regarding CIFAR-10, A1 and
A5 outperformed Adam across all other datasets, giving empirical evidence to the swapping of the
division operator with the clip, along with adding a normalization operator for A5.

OPTIMIZER CIFAR-10 CIFAR-100 FLOWERS CARS CALTECH TINY

ADAM 95.69±0.15 77.24±0.33 97.36±0.14 91.30±0.16 91.41±0.11 47.43±0.82
RMSPROP 95.55±0.05 77.62±0.23 97.44±0.21 90.68±0.16 91.53±0.34 46.93±0.38
SGD 95.04±0.19 77.34±0.30 97.48±0.07 91.39±0.21 92.76±0.44 44.60±0.27
NESTEROV 95.21±0.22 77.78±0.24 97.73±0.18 91.29±0.17 91.52±0.28 48.38±0.44

POWERSIGN 95.51±0.25 78.01±0.26 97.61±0.18 90.39±0.24 92.23±0.19 47.84±0.27
ADDSIGN 95.27±0.14 78.15±0.15 97.52±0.17 90.52±0.16 91.87±0.25 48.15±0.18
QHM 95.00±0.10 77.45±0.18 97.66±0.19 91.31±0.16 92.10±0.25 47.49±0.20

OPT1 95.58±0.19 78.55±0.18 97.45±0.09 91.47±0.28 92.22±0.10 47.46±0.41
OPT2 95.48±0.20 78.87±0.31 97.36±0.11 91.54±0.09 92.16±0.29 47.56±0.40
OPT3 95.47±0.27 78.95±0.29 97.76±0.12 91.54±0.20 92.15±0.29 47.83±0.73
OPT4 95.95±0.06 79.31±0.15 97.24±0.12 89.36±0.36 92.23±0.25 47.96±0.81
- OPT41 95.21±0.17 77.45±0.27 97.35±0.09 91.40±0.21 92.06±0.10 45.88±0.56
- OPT42 95.48±0.12 77.42±0.37 97.45±0.09 90.33±0.22 92.10±0.20 45.13±0.92
OPT5 96.02±0.19 79.05±0.37 97.23±0.21 89.08±0.10 92.18±0.23 47.80±1.02
OPT6 96.16±0.16 79.46±0.36 97.27±0.17 89.06±0.23 91.71±0.32 48.51±0.42
- OPT61 94.98±0.15 77.55±0.12 97.51±0.15 88.87±0.17 92.17±0.45 48.20±0.53
OPT7 95.82±0.07 79.44±0.21 97.25±0.12 89.32±0.19 91.65±0.15 47.92±0.54
- OPT71 94.99±0.09 77.45±0.26 97.37±0.11 88.94±0.21 92.18±0.28 48.23±0.50
OPT8 95.74±0.09 79.23±0.29 97.26±0.15 89.46±0.17 91.98±0.25 47.96±0.19
- OPT81 95.02±0.20 77.47±0.41 97.59±0.09 89.07±0.10 92.08±0.22 47.91±0.36
OPT9 95.85±0.19 79.06±0.49 97.54±0.15 90.57±0.21 91.08±0.35 46.64±1.64
- OPT91 95.64±0.18 77.51±0.23 97.51±0.13 90.92±0.07 91.42±0.32 47.44±0.66
OPT10 96.04±0.13 79.80±0.27 97.11±0.16 89.20±0.19 91.97±0.29 47.60±0.41
- OPT101 95.51±0.18 78.12±0.11 97.32±0.13 90.58±0.10 91.99±0.16 48.82±0.48

LR1 95.99±0.15 77.64±0.20 97.31±0.14 90.53±0.10 91.36±0.49 43.23±0.29
LR2 96.13±0.10 78.10±0.17 97.18±0.24 90.25±0.30 91.21±0.43 43.31±0.19
LR3 96.23±0.07 78.48±0.07 97.29±0.23 90.56±0.04 91.20±0.34 41.89±0.27
LR4 95.57±0.06 77.15±0.15 97.53±0.24 90.45±0.26 90.90±0.24 44.80±0.32
LR5 95.97±0.13 78.55±0.45 96.72±0.20 91.47±0.09 88.99±0.19 47.04±0.65
LR6 94.57±0.11 74.42±0.29 97.41±0.16 89.63±0.36 91.76±0.16 39.81±0.76
LR7 95.63±0.12 77.31±0.40 97.23±0.20 91.79±0.21 89.93±0.14 46.84±0.38
LR8 95.28±0.15 76.64±0.23 97.21±0.08 91.74±0.11 89.47±0.35 48.20±0.32
LR9 95.76±0.05 77.69±0.36 97.61±0.20 90.61±0.17 91.39±0.35 43.27±0.45

A1 95.26±0.16 77.50±0.22 97.66±0.13 91.36±0.15 92.20±0.28 47.92±0.45
A2 95.17±0.16 77.60±0.35 97.19±0.18 91.22±0.20 92.21±0.12 48.12±0.40
A3 95.04±0.23 77.04±0.29 97.50±0.09 91.29±0.06 92.20±0.16 47.65±0.22
A4 95.04±0.19 77.29±0.27 97.50±0.18 91.30±0.13 92.21±0.13 48.15±0.43
A5 94.95±0.38 77.55±0.23 97.65±0.21 91.60±0.14 91.92±0.18 48.40±0.50

Table 6: Results for all optimizers and learning rate schedules for CIFAR-10, CIFAR-100, Flowers102 (Flowers), Cars196 (Cars), Caltech101
(Caltech), and TinyImageNet (Tiny). The mean and standard deviation of the test accuracy across 5 independent runs are reported. Red indicates
Top 3 performance, while bold indicates Top 8 performance.

7 CONCLUSIONS

In this work, we expanded on previous research in NOS by proposing a new search space containing
the most up-to-date research from deep learning optimizers. This new search space allows for the
simultaneous optimization of the weight update equation, internal decay functions, and adaptation of
the learning rate schedule. We searched the space using our proposed particle-based GA that is able
to be massively parallelized. We save computational resources by incorporating an integrity check
to get rid of degenerate optimizers with our initialization and mutation operator in order to make
intelligent mutational choices. In addition, we perform two supplementary experiments to obtain
Adam variants and new learning rate schedules for Adam. After transferring the final optimizers,
we found five new optimizers and two Adam variants, that consistently outperformed standard deep
learning optimizers when training from scratch and fine-tuning on image classification tasks: Opt1,
Opt3, Opt4, Opt6, Opt10, A1, and A5.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with rein-
forcement learning. In International Conference on Machine Learning, pp. 459–468. PMLR,
2017.

Garrett Bingham, William Macke, and Risto Miikkulainen. Evolutionary optimization of deep
learning activation functions. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, GECCO ’20, pp. 289–296, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450371285. doi: 10.1145/3377930.3389841. URL https://doi.org/
10.1145/3377930.3389841.

Pedro Carvalho, Nuno Lourenço, and Penousal Machado. Evolving adaptive neural network op-
timizers for image classification. In Eric Medvet, Gisele Pappa, and Bing Xue (eds.), Genetic
Programming, pp. 3–18, Cham, 2022. Springer International Publishing.

John Chen, Cameron Wolfe, Zhao Li, and Anastasios Kyrillidis. Demon: Improved neural
network training with momentum decay. In ICASSP 2022 - 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3958–3962, 2022a. doi:
10.1109/ICASSP43922.2022.9746839.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Yao Liu, Kaiyuan Wang, Cho-Jui Hsieh,
Yifeng Lu, and Quoc V Le. Evolved optimizer for vision. In First Conference on Automated
Machine Learning (Late-Breaking Workshop), 2022b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

T. Dozat. Incorporating nesterov momentum into adam. ICLR Workshops, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 2011.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision
and Pattern Recognition Workshop, 2004.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, and Jonathan M. Cohen. Stochastic gradient methods with
layer-wise adaptive moments for training of deep networks. CoRR, abs/1905.11286, 2019. URL
http://arxiv.org/abs/1905.11286.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

10

https://www.tensorflow.org/
https://doi.org/10.1145/3377930.3389841
https://doi.org/10.1145/3377930.3389841
http://arxiv.org/abs/1905.11286

Under review as a conference paper at ICLR 2024

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
stochastic gradient descent for least squares regression, 2017. URL https://arxiv.org/
abs/1704.08227.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, Ontario, 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving normalization-activation layers.
Advances in Neural Information Processing Systems, 33:13539–13550, 2020.

Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xiaodan Liang, Yong Jiang, and Zhenguo
Li. Loss function discovery for object detection via convergence-simulation driven search. arXiv
preprint arXiv:2102.04700, 2021a.

Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xiaodan Liang, Yong Jiang, and Zhenguo
Li. Loss function discovery for object detection via convergence-simulation driven search. arXiv
preprint arXiv:2102.04700, 2021b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

James Lucas, Richard S. Zemel, and Roger B. Grosse. Aggregated momentum: Stability through
passive damping. CoRR, abs/1804.00325, 2018. URL http://arxiv.org/abs/1804.
00325.

Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic programming.
Evolutionary Computation, 14(3):309–344, 2006.

Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. CoRR,
abs/1810.06801, 2018. URL http://arxiv.org/abs/1810.06801.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182, 2017.

YU. E. Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). 1983.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Dec
2008.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

11

https://arxiv.org/abs/1704.08227
https://arxiv.org/abs/1704.08227
http://arxiv.org/abs/1804.00325
http://arxiv.org/abs/1804.00325
http://arxiv.org/abs/1810.06801
https://aclanthology.org/J93-2004

Under review as a conference paper at ICLR 2024

Tran Thi Phuong and Le Trieu Phong. On the convergence proof of amsgrad and a new version.
CoRR, abs/1904.03590, 2019. URL http://arxiv.org/abs/1904.03590.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4780–4789, 2019.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
CoRR, abs/1804.04235, 2018. URL http://arxiv.org/abs/1804.04235.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pp. 10096–10106. PMLR, 2021.

Qianqian Tong, Guannan Liang, and Jinbo Bi. Calibrating the learning rate for adaptive gradient
methods to improve generalization performance. CoRR, abs/1908.00700, 2019. URL http:
//arxiv.org/abs/1908.00700.

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.
URL http://arxiv.org/abs/1212.5701.

Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning, 2017. URL
https://arxiv.org/abs/1706.03471.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. Stochastic normalized gradient descent with momentum
for large batch training, 2020. URL https://arxiv.org/abs/2007.13985.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha C. Dvornek, Xenophon Pa-
pademetris, and James S. Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. CoRR, abs/2010.07468, 2020. URL https://arxiv.org/abs/2010.
07468.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

12

http://arxiv.org/abs/1904.03590
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1908.00700
http://arxiv.org/abs/1908.00700
https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
http://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1706.03471
https://arxiv.org/abs/2007.13985
https://arxiv.org/abs/2010.07468
https://arxiv.org/abs/2010.07468

Under review as a conference paper at ICLR 2024

A EXTENDED RELATED WORK

In recent years, there have been many proposed deep learning optimizers (Loshchilov & Hutter, 2019;
Dozat, 2016; Zaheer et al., 2018; Phuong & Phong, 2019; Zhang & Mitliagkas, 2017; Jain et al., 2017;
Zhuang et al., 2020; Zeiler, 2012; Shazeer & Stern, 2018; Tong et al., 2019; Ginsburg et al., 2019;
Ma & Yarats, 2018; Lucas et al., 2018; Zhao et al., 2020; Chen et al., 2022a). In this extended related
work section, we list the most recent deep learning optimizers that have influenced our proposed
search space the most. AdaBelief (Zhuang et al., 2020) extends Adam by changing the update rule
for the exponential moving average of the squared gradients by replacing the squared gradients term
with the squared difference between the gradient and its momentum. AMSGrad (Phuong & Phong,
2019) extends Adam by updating the momentum term to be the maximum between the previous
momentum term and the current time-step calculation. SADAM (Tong et al., 2019) extends Adam
by incorporating a softplus activation around the square root of the exponential moving average of
the squared gradients to calibrate the adaptive learning rate. Demon (Chen et al., 2022a) extends
Adam by utilizing a decaying momentum schedule to β for improved convergence. QHM (Ma &
Yarats, 2018) replaces the gradient term in standard SGD with a linear combination between the
gradient and the momentum term to introduce quasi-hyperbolic momentum. AggMo (Lucas et al.,
2018) extends momentum SGD by taking the average between multiple momentum terms, each
with their coefficient, to break oscillations through passive damping. We leverage these concepts by
incorporating them in the creation of our new dual-joint search space.

B EXTENDED DECAY FUNCTION

The proposed set of reduced unary operations for the decay function search space are listed in
Table 7a, while the proposed set of decay schedules are listed in Table 7b.

(a) Reduced set of unary operations.

Reduced Unary Operations

x
sigmoid(x)
d
dx

sigmoid(x)
erf(x)
erfc(x)
tanh(x)
arctan(x)
besseli1e(x)
x2

√
x

softsign(x)
d
dx

softisgn(x)
d
dx

tanh(x)

(b) Proposed Decay Schedule Operands

Decay Schedules

ld 1− t/T
li t/T
ldr 1− mod (2t, T)/T
lir mod (2t, T)/T
cd 0.5(1 + cos(tπ/T))
ci 0.5(1− cos(tπ/T))
cdr 0.5(1 + cos(π mod (2t, T)/T))
cir 0.5(1− cos(π mod (2t, T)/T))
ccd 0.5(1 + cos(2tπ/T))
cci 0.5(1− cos(2tπ/T))

ed 0.01(t/T)

ei 1− 0.01t/T

dd (0.95∗(1−t/T))
(0.05+0.95∗(1−t/T))

di 0.95− 0.95∗(1−t/T)
(0.05+0.95∗(1−t/T))

Table 7: The proposed set of reduced unary operations for the decay functions, and the proposed set
of decay schedule operands for the decay function search space. For the decay schedules, t denotes
the current timestep while T denotes the maximum number of timesteps.

C PARTICLE BASED GENETIC ALGORITHM

Pseudocode for the proposed particle based GA is given in Algorithm 1.

D OPTIMIZER ELIMINATION PROTOCOL

Because we are unsure how well our optimizers trained on a small ConvNet would correlate to larger
models, we devised an optimizer elimination protocol that progressively eliminated optimizers based

13

Under review as a conference paper at ICLR 2024

Algorithm 1 Particle-Based Genetic Algorithm
1: Input: n (Number of Particles), k (Number of mutations), t (Number of timesteps)
2: initialParticles = OptimizerInitialization(100×n)
3: validationAccuracies = ConvNet(initialParticles, base = 32)
4: particles = BestParticles(initialParticles, validationAccuracies, n)
5: for particle in particles do
6: for timestep in t do
7: mutations = []
8: for j in k do
9: repeat

10: child = Mutation(particle)
11: until child.IntegrityCheck()
12: mutations.append(child)
13: end for
14: mutationV alidationAccuracies = ConvNet(mutations, base = 48)
15: particle = BestParticle(mutations, mutationV alidationAccuracies)
16: end for
17: end for

upon their performance on increasingly larger ConvNets. For each run of our particle-based GA,
we took the best 50 optimizers and trained them on a ConvNet with base 64 (0.375M parameters)
for 16,000 steps. The best 24 were then taken and trained on a ConvNet with base 96 (0.839M
parameters) for the same number of steps. The best 12 were then taken and trained with base 128
(1.487M parameters). Unlike the surrogate function used during evolution, the optimizer elimination
protocol ran each optimizer three times for each ConvNet size to get an average of the validation
accuracy on the CIFAR-10 dataset to use for comparison.

Finally, after performing optimizer elimination, the best six from each run were taken and trained on
EfficientNetV2Small (20.3M parameters) using their proposed progressive RandAug regularization
(Cubuk et al., 2020) for 64,000 steps. This was performed to ensure the best optimizers performed
well on large-scale deep learning models. From the final 18 optimizers (best six from each of the
three runs), the best six were hand selected based on their validation accuracy and uniqueness. An
additional evolutionary run was performed for the fine tuning of each of the final six optimizers,
described in Appendix E. The best 24 optimizers from those additional evolutionary runs were also
evaluated on EfficientNetV2Small. The best 10 optimizers overall, from all optimizers evaluated on
EfficientNetV2Small, were then reported as the final optimizers.

E ADDITIONARY EVOLUTIONARY RUNS

To ensure that the search space for each final optimizer had been completely exhausted, we took the
final six optimizers from our proposed optimizer rejection protocol to be used as initial particles in
our proposed GA. Each particle ran for k = 12, t = 3, and with base = 64. In addition, each child
mutation was trained on the ConvNet three times to obtain a mean of the validation accuracy. This
was performed to reduce the noise of training stochastic neural networks. The final best 24 optimizers
from the six runs were evaluated on EfficientNEtV2Small. The best 10 optimizers from all optimizers
evaluated on EfficientNetV2Small were then taken to be the final reported optimizers.

F OBSERVING THE FINAL DECAY FUNCTION AND LEARNING RATE
SCHEDULES

The base learning rate schedule applied to all experiments was one cycle cosine decay with linear
warmup. The learning rate is linearly warmed up to its peak, being held for a number of iterations,
before being decayed using cosine decay back down to zero. All evolved optimizers learn to adapt
this schedule through the use of distributed decay functions. For visualization, Figure 2a, Figure 2b,
and Figure 2c plot the discovered learning rates over time. In each, the one cycle cosine decay with
linear warmup base schedule is plotted in dashed lines for comparison. There appear to be two

14

Under review as a conference paper at ICLR 2024

families of learning rates (2a and 2b), along with two outsider learning rates (2c). Figure 2d plots the
three internal decay functions used by the final optimizers, Opt4, Opt7/8, and Op10.

To assess how the three internal decay functions affect the weight update over time, in conjunction
with the respective learned learning rate, eight time slices were plotted for the output distribution
of the weight update. A one cycle learning rate totalling to 96,000 steps, with the first 6,400 being
used for warm up and then being held for the next 12,800 before being cosine decayed, was used for
obtaining the time slices. The eight time slices were recorded, at iterations 1K, 10K, 25K, 45K, 65K,
75K, 85K, and 93 or 95K. For example, for the internal decay function t3i in Opt4, given an input
of x = ev̂ ranging from 0 to 20, the output of clip(2, t3ix) times the learned learning rate of t1i /t

2
i is

plotted in Figure 3a. As one can see, this conjunction warms up to clipping 2 before being decayed
over time, eventually clipping 2 to zero. Although it may seem that this learned internal decay
function inside the clip operator with conjunction of the learned learning rate decreases the weight
update value, it actually increases the weight update as it is used as the divisor of (0.3g + 0.7v̂),
where smaller values yield larger quotients. Unlike Figure 3a, Figures 3b, 3c, and 3d give the raw
weight update values for optimizers 7, 8, and 10. Figures 3b, 3c, and 3d are extremely similar as they
perform symmetric squashing functions on their respective inputs, greatly limiting the magnitude of
the output. Scaling of the output is achieved by changing the maximum learning rate.

Optimizers Opt1, Opt2 and Opt3 can be seen as extensions of QHM, QHM + softsign(x), where x
is dependent upon the optimizer. In an aid to assess how each softsign(x) effects the weight update
equation for their various variable inputs, Figure 4a, 4b, 4c gives the 3D plot for Opt1, Opt2, and Opt3.
For example, the two primary inputs to softsign(x) for Opt3 are the weights w and the exponential
moving average of the cubed gradients 0.01g3 + 0.99λ̂. With these serving as the x and y axis, the
output of softsign(10−5w√

1+(10−5w−(0.01g3+0.99λ̂))2
)) from Opt3 can be seen in Figure 4c. As one can

see, the term only influences the weight update equation when the exponential moving average of the
cubed gradients is centered around zero, where the sign and magnitude of w directly control the sign
and magnitude of the update.

Because the weight update equations for Opt4/5, Opt6, and Opt7 can be easily represented by two
variable inputs, their 3D weight update equation with respect to their variable inputs is plotted in
Figure 4d, 4e, and 4f.

G EXPERIMENTAL IMPLEMENTATIONS AND DETAILS

Six primary datasets were used in this work, CIFAR-10, CIFAR-100, Stanford-CARS196, Oxford-
Flowers102, Caltech101, and Tiny. The meta-information for each of these datasets are available in
Table 8.

DATASET TRAINING EVALUATION CLASSES SIZE

CIFAR10 50,000 10,000 10 32×32
CIFAR100 50,000 10,000 100 32×32
CARS196 8,144 8,041 196 224×224
FLOWERS102 2,040 6,149 102 224×224
CALTECH101 3,060 6,084 102 224×224
TINYIMAGENET 100,000 10,000 200 64×64

Table 8: The number of training and evaluation images, number of classes, and training image
resolution for the datasets used in this work.

For each experiment, all optimizers and Adam-based learning rate schedules performed a learning
rate test by selecting the best learning rate, from 10, 1, 0.1, 0.01, 0.001, 0.0001, and 0.00001, after
a 1/3 of the training epochs (for Adam-based learning rate schedules, the learning rate test was
performed for 2/3 of the training epochs). For CIFAR-10 and CIFAR-100, all optimizers were trained
for 96,000 steps with a batch size of 64 on EffNetV2Small. Progressive RandAug regularization
was used for image augmentation. For TinyImageNet, all optimizers were trained for 300,000 steps
with a batch size of 256 on ResNet9 (6.5M parameters). For image augmentation, the images were
resized using bicubic interpolation to 72x72, before a random 64x64 crop was applied, followed

15

Under review as a conference paper at ICLR 2024

0 20000 40000 60000 80000 100000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
ea

rn
in

g
R

at
e

One Cycle Cosine
LR1
LR2
LR3

(a) Learning Rate Family 1

0 20000 40000 60000 80000 100000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
ea

rn
in

g
R

at
e

One Cycle Cosine
LR4
LR5
LR7
LR9

(b) Learning Rate Family 2

0 20000 40000 60000 80000 100000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
ea

rn
in

g
R

at
e

One Cycle Cosine
LR6
LR8

(c) Outsider Learning Rates

0 20000 40000 60000 80000 100000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

R
aw

 S
ca

lin
g

Va
lu

e

Opt4: arctan(dd)
Opt7/8: max(cci, lir)
Opt10: dd*li

(d) Evolved Internal Decay Functions

Figure 2: (a)-(c) The final learning rate families found during evolution and from the supplementary
evolution on Adam. Note, the learning rates are normalized between 0 and 1 to allow for comparison,
the actual scaled differ quite drastically. (d) The three internal decay functions used in the evolved
optimizers Opt4, Opt7/8, and Opt10.

16

Under review as a conference paper at ICLR 2024

0.0

0.5

1.0

1.5

2.0
Iter 1K Iter 10K Iter 25K Iter 45K

0 20
0.0

0.5

1.0

1.5

2.0
Iter 65K

0 20

Iter 75K

0 20

Iter 85K

0 20

Iter 95K

O
pt

4
: t

1 i
/(t

2 i
*c

lip
(2
,t

3 i
*x

))

x= ev̂

(a) Opt4 Internal Decay

−1.0

−0.5

0.0

0.5

1.0

Iter 1K Iter 10K Iter 25K Iter 45K

−2.5 0.0 2.5

−1.0

−0.5

0.0

0.5

1.0

Iter 65K

−2.5 0.0 2.5

Iter 75K

−2.5 0.0 2.5

Iter 85K

−2.5 0.0 2.5

Iter 93K

O
pt

7
: a

rc
si

nh
(t

1 i
*x

)

x= arcsinh(0.3g+0.7v̂)

(b) Opt7 Weight Update

−0.5

0.0

0.5

Iter 1K Iter 10K Iter 25K Iter 45K

−2.5 0.0 2.5

−0.5

0.0

0.5

Iter 65K

−2.5 0.0 2.5

Iter 75K

−2.5 0.0 2.5

Iter 85K

−2.5 0.0 2.5

Iter 93K

O
pt

8
: t

an
h(
t1 i
*x

)

x= arcsinh(0.3g+0.7v̂)

(c) Opt8 Weight Update

−0.05

0.00

0.05

Iter 1K Iter 10K Iter 25K Iter 45K

−10 0 10

−0.05

0.00

0.05

Iter 65K

−10 0 10

Iter 75K

−10 0 10

Iter 85K

−10 0 10

Iter 93K

O
pt

10
 :

be
ss

el
i1
e(

be
ss

el
i1
e(
t1 i
*x

))

x= g

(d) Opt10 Weight Update

Figure 3: (a)-(d) Eight time slices (Iterations 1K, 10K, 25K, 45K, 65K, 75K, 85K, and 93 or 95K) of
the effect of the discovered internal decay functions on the weight update for Opt4, Opt7, Opt8, and
Opt10 over the course of a one cycle cosine decay learning rate schedule.

17

Under review as a conference paper at ICLR 2024

w

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

0.0
5g

2 +
0.9
5
̂s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
pt
1

1e
−5

−2

−1

0

1

2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1e−5

(a) softsign(clip(10−5w, 10−5w− (0.05g2 +0.95ŝ)))

w

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

0.0
5g

2 +
0.9
5
̂s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
pt
2

1e
−5

−2

−1

0

1

2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1e−5

(b) softsign(10−5w√
1+(10−5w−(0.05g2+0.95ŝ))2

))

w

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

0.0
5g

3 +
0.9
5
̂λ

−8

−6

−4

−2

0

2

4

6

8

O
pt
3

1e
−5

−2

−1

0

1

2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1e−5

(c) softsign(10−5w√
1+(10−5w−(0.01g3+0.99λ̂))2

))

e v̂

0

1

2

3

4

0.3
g+

0.7
̂v

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
pt
4

an
d
O
pt
5

−6

−4

−2

0

2

4

6

−4

−2

0

2

4

6

(d) 0.3g+0.7v̂

ev̂

10−5w

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

0.3
g+

0.7
̂v

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
pt
6

−1

0

1

2

3

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

(e) 0.3g+0.7v̂

e10
−4w

g

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

̂v

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
pt
7

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(f) tanh(arcsinh(0.3g + 0.7v̂))

Figure 4: (a-c) detail the output of softsign(x) for the various x of Opt1, Opt2, and Op3. (d-f) detail
the weight update equation output for Opt4/5, Opt6, and Opt7 for their various inputs.

18

Under review as a conference paper at ICLR 2024

by random translation and horizontal flipping. For CIFAR-10, CIFAR-100, and TinyImageNet, the
learning rate was linearly warmed up for 6,400 steps, being held for 12,800 steps at its maximum
value, before being decayed with cosine annealing. For fine-tuning, the published ImageNet1K
weights for EffNetV2Small were used as the initial weights before being fine-tuned for 10,000 steps
on Flowers102, Cars196, and Caltech101 with a batch size of 64. For regularization, dropout of
0.5 was placed before the softmax layer, while RandAug regularization of magnitude 15 was used
for image augmentation. For fine-tuning, all images were resized to 224x224. Due to the limited
number of weight updates, the learning rate test was altered to fine-tune the learning rate. Specifically,
the best found learning rate using the procedure described earlier was tested after being halved and
multiplied by five. For example, a best found learning rate of 0.01 is tested at 0.05 and 0.005, where
the final learning rate is chosen from this final set. All code was implemented in Tensorflow (Abadi
et al., 2015), although the PTB experiments were performed in Pytorch (Paszke et al., 2019), and is
freely available at the Github repository: ANONYMOUS.

H SUPPLEMENTARY PTB EXPERIMENTS

To assess generalization across deep learning domains, the final optimizers and learning rate schedules
were transferred to language modeling on the PTB dataset. A three layer AWD-LSTM (Merity
et al., 2017) with 1150 hidden units (24M parameters), softmax weight tying, variational dropout,
embedding dropout, gradient norm clipping, truncated back propagation, and L2 weight decay, was
trained for 99,600 steps. The best validation perplexity for each optimizer is reported, where lower is
better. The results are recorded in Table 9. From Table 9, three key points can be discussed. First,
the best optimizer is arguably tied between Nesterov’s momentum and Opt101, Opt10 without a
decay function. Opt101 can be seen as an extension of Nesterov’s momentum with weight gradient
scaling. In addition, Opt101 greatly outperformed Opt10, possibly showcasing how the learned decay
function is specifically designed for image recognition as Opt10 outperformed Opt101 on CIFAR.
Second, all the discovered Adam variants outperform Adam for language modeling. Due to the
clipping nature of the Adam variants, the absolute magnitude of the exponential moving average of
the gradients is inherently reduced during the weight update, which prevents a moving average of
exploding gradients from affecting the quality of the model, a common problem with LSTMs (Zhang
et al., 2019). However, LR5, LR6, and LR7 were able to push standard Adam past all the Adam
variants without the need of clipping. Third, despite Opt1, Opt2, and Opt3 being extensions of QHM,
all outperformed QHM, indicating the importance the respective additional terms.

19

Under review as a conference paper at ICLR 2024

OPTIMIZER PTB

ADAM 68.56±0.13
RMSPROP 67.47±0.20
SGD 68.07±0.33
NESTEROV 65.33±0.22

POWERSIGN 71.64±0.20
ADDSIGN 70.72±0.17
QHM 69.22±0.15

OPT1 67.74±0.10
OPT2 67.62±0.18
OPT3 67.62±0.15
OPT4 69.81±0.21
- OPT41 67.45±0.12
- OPT42 68.99±0.10
OPT5 71.56±0.15
OPT6 70.27±0.13
- OPT61 69.25±0.22
OPT7 70.47±0.14
- OPT71 69.29±0.24
OPT8 72.51±0.17
- OPT81 69.11±0.19
OPT9 68.73±0.19
- OPT91 70.69±0.23
OPT10 71.99±0.15
- OPT101 65.34±0.15

LR1 73.19±0.26
LR2 72.14±0.31
LR3 71.82±0.33
LR4 73.31±0.32
LR5 67.87±0.07
LR6 67.84±0.11
LR7 68.01±0.15
LR8 73.20±0.12
LR9 72.57±0.20

A1 68.26±0.20
A2 68.22±0.12
A3 68.28±0.12
A4 68.22±0.14
A5 68.41±0.21

Table 9: Results for all optimizers and learning rate schedules for PTB. The mean and standard deviation of the best validation perplexity is
reported (lower is better) across 5 independent runs are reported. Red indicates Top 3 performance, while bold indicates Top 8 performance.

20

	Introduction
	Related Work
	Methodology
	Search Space
	Optimizer
	Decay Function

	Integrity Check
	Surrogate Function
	Early Stopping
	Particle-Based Genetic Algorithm
	Adam Variants

	Results
	Final Optimizers
	Supplementary Experiments

	Transferability Experiments
	Results and Discussion
	Conclusions
	Extended Related Work
	Extended Decay Function
	Particle Based Genetic Algorithm
	Optimizer Elimination Protocol
	Additionary Evolutionary Runs
	Observing the Final Decay Function and Learning Rate Schedules
	Experimental Implementations and Details
	Supplementary PTB Experiments

