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ABSTRACT

Building on the advances of language models, Large Multimodal Models (LMMs)
have contributed significant improvements in video understanding. While the
current video LMMs utilize advanced Large Language Models (LLMs), they rely
on either image or video encoders to process visual inputs, each of which has its
own limitations. Image encoders excel at capturing rich spatial details from frame
sequences but lack explicit temporal context, which can be important in videos with
intricate action sequences. On the other hand, video encoders provide temporal
context but are often limited by computational constraints that lead to processing
only sparse frames at lower resolutions, resulting in reduced contextual and spatial
understanding. To this end, we introduce VideoGPT+, which combines the com-
plementary benefits of the image encoder (for detailed spatial understanding) and
the video encoder (for global temporal context modeling). The model processes
videos by dividing them into smaller segments and applies an adaptive pooling
strategy on features extracted by both image and video encoders. Our architecture
showcases improved performance across multiple video benchmarks, including
VCGBench, MVBench and Zero-shot question-answering. Further, we develop
112K video-instruction set using a novel semi-automatic annotation pipeline which
further improves the model performance. Additionally, to comprehensively eval-
uate video LMMs, we present VCGBench-Diverse, covering 18 broad video
categories such as lifestyle, sports, science, gaming, and surveillance videos. This
benchmark with 4,354 question-answer pairs evaluates the generalization of ex-
isting LMMs on dense video captioning, spatial and temporal understanding, and
complex reasoning, ensuring comprehensive assessment across diverse video types
and dynamics. Our code, dataset, and pre-trained models will be publicly released.

1 INTRODUCTION

Existing methods for video understanding often rely solely on either image encoders or video
encoders (Maaz et al., 2024; Jin et al., 2024; Liu et al., 2024c). Most works focus on image encoders,
which encode multiple frames and either fuse the information or concatenate the embeddings before
passing them to the LLM. When fusing the information, spatial or temporal pooling is typically
used (Maaz et al., 2024). Spatial pooling has shown minimal effectiveness in capturing video
information, whereas temporal pooling retains some spatial information but lacks explicit temporal
context. On the other hand, concatenating embeddings without pooling (Jin et al., 2024; Liu et al.,
2024c; Zhang et al., 2024b) can rapidly increase computational complexity due to the extended
context length required by the LLM, limiting the number of frames that can be processed. While this
approach provides better spatial representation, the overall context is still limited to few frames. The
limited context results in a poor understanding of the video, especially if a uniform sampling strategy
is employed, as it only captures small segments of the video, missing important temporal dynamics.

In order to address these challenges, we propose VideoGPT+ which effectively combines the
merits of both image and video encoders (see Fig. 2). By leveraging an image encoder for rich
spatial details and a video encoder for global temporal context, our model achieves improved video
understanding. To model finegrained temporal dynamics in VideoGPT+ , we use a segment-wise
sampling strategy. Unlike uniform sampling used in existing video LMMs (Maaz et al., 2024), which
may miss important temporal dynamics, our approach divides the video into smaller segments and
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applies segment-wise sampling. This ensures that the model captures representative information from
different segments of the video, enabling a more comprehensive understanding.

Figure 1: Performance comparison of VideoGPT+
with various SoTA models on multiple video bench-
marks. VideoGPT+ permors better compared to vari-
ous models (Li et al., 2023c; Jin et al., 2024; Lin et al.,
2023; Maaz et al., 2024) on video conversation bench-
marks: VCGBench (Maaz et al., 2024), Video-MME (Fu
et al., 2024), MVBench (Li et al., 2023c) and Zero-shot
video QA: MSVD-QA, MSRVTT-QA, ActivityNet-QA.
We also evaluate on VCGBench-Diverse that cov-
ers 18 broad video categories (across dense captioning,
spatial understanding, and reasoning).

To facilitate the integration of image and video
features, VideoGPT+ introduces a visual
adapter module that combines their complimen-
tary benefits. This module performs projection
and pooling operations, mapping both image
and video features to a common space while re-
ducing computational complexity. By aligning
the features in this manner, the model can effec-
tively utilize the combined spatial and temporal
information for improved video understanding.

We demonstrate the effectiveness of
VideoGPT+ across five standard video-
conversation benchmarks, including VCGBench
(Maaz et al., 2024), MVBench (Li et al., 2024),
and Zero-shot question-answering (Maaz
et al., 2024), where it outperforms previous
SoTA approaches (see Fig. 1). Further, we
develop VCG+112K using a novel semi-
automatic annotation pipeline (see Fig. 3),
which provides dense video captions along
with spatial understanding and reasoning-
based question-answer (QA) pairs, further
enhancing the model’s performance. We also
propose VCGBench-Diverse, extending
VCGBench (Maaz et al., 2024) by including
videos from 18 different domains to extensively
evaluate the video-based conversation models
in diverse domains (see Fig. 4).

Our work has three main contributions:
• We present VideoGPT+, the first video-conversation model that benefits from a dual-encoding

scheme based on both image and video features. These complimentary sets of features offer rich
spatiotemporal details for improved video understanding (Sec. 3).

• Addressing the limitations of existing VideoInstruct100K dataset (Maaz et al., 2024), we develop
VCG+112K with a novel semi-automatic annotation pipeline, offering dense video captions along
with spatial understanding and reasoning-based QA pairs, improving model performance (Sec. 4).

• Recognizing the lack of diverse benchmarks for video-conversation task, we propose
VCGBench-Diverse, which provides 4,354 human annotated QA pairs across 18 video cate-
gories to extensively evaluate the performance of a video-conversation model (Sec. 5).

2 RELATED WORKS

Building on advances in language models, LLMs offer a flexible interface for various multimodal
applications. Early efforts in image-based conversation models such as BLIP-2 (Li et al., 2023b),
MiniGPT-4 (Zhu et al., 2024) and LLaVA (Liu et al., 2023c;b) project image features into the language
space through a learnable module and perform instruction tuning for visual conversations capabilities.
Other efforts extend these models to visual grounding tasks (Peng et al., 2023; Rasheed et al., 2024;
You et al., 2023), exploring the potential of LLMs in complex vision tasks.

Video Conversation Models: Initial works like Video-ChatGPT (Maaz et al., 2024) and Video-
LLaMA (Zhang et al., 2023) extend image-based models to the video domain by introducing
components to encode temporal features, where frame-level visual features are fed to the LLM.
However, this is computationally expensive and quickly fills its context window. To address this issue,
Video-ChatGPT (Maaz et al., 2024) employs spatial and temporal pooling. LLaMA-Vid (Li et al.,
2023d) proposes representing a single image with two tokens, context and content. IG-VLM (Kim
et al., 2024) treats a video as a grid of images, while LITA (Huang et al., 2024b) employs slow-fast
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token pooling to reduce the number of visual features. Chat-UniVi (Jin et al., 2024) uses clustering
in both spatial and temporal dimensions to merge tokens, and VideoChat (Li et al., 2023c) uses
Q-Former (Li et al., 2023b) to learn a fixed number of queries by cross-attending to the visual features.
MobileVLM (Chu et al., 2023; 2024) utilize a lightweight CNN to reduce the spatial dimensions.
Other notable methods include (Liu et al., 2024b; Lin et al., 2023; Munasinghe et al., 2023; Song
et al., 2024; Huang et al., 2024a).

Alternatively, methods such as VideoChat2 (Li et al., 2024) use pretrained video encoders. Although
video encoders provide temporal context, they are limited by computational constraints, operating
with limited frames at lower resolutions, restricting temporal context and spatial understanding.
Our VideoGPT+ model addresses these issues by using segment-wise sampling and effectively
combining image and video encoders to capture rich spatial and temporal details (see Fig. 2).

Video Instruction Tuning Datasets: VideoChat (Li et al., 2023c) builds a video-instruction tuning
dataset consisting of 7K instructions using videos from WebVid-10M (Bain et al., 2021). Video-
ChatGPT (Maaz et al., 2024) introduces a semi-automatic annotation pipeline to generate VideoIn-
struct100K using videos from ActivityNet (Fabian Caba Heilbron & Niebles, 2015). VideoChat2 (Li
et al., 2024) combines multiple existing image and video datasets to develop a 1.9M joint image-video
instruction tuning dataset. In our experiments, we use VideoInstruct100K and a subset of the dataset
from VideoChat2. Additionally, addressing the limitations of the VideoInstruct100K dataset (Maaz
et al., 2024), we develop VCG+112K through a novel semi-automatic annotation pipeline, which
provides dense video captions along with 112K QA pairs targeting reasoning, spatial and temporal
understanding, which further improves model’s understanding of video content (see Fig. 3).

Video Conversation Benchmarks: Video-ChatGPT (Maaz et al., 2024) introduces VCGBench and
zero-shot QA benchmarks, where VCGBench includes 500 videos with 3000 QA pairs, evaluated
using GPT-3.5 across various metrics. Despite its comprehensive evaluation, it only contains videos
from the ActivityNet dataset. The Zero-shot evaluation covers MSVD-QA (Xu et al., 2017), MSR-
VTT-QA (Xu et al., 2017), TGIF-QA (Jang et al., 2019), and ActivityNet-QA (Fabian Caba Heilbron
& Niebles, 2015). MVBench (Li et al., 2024) consists of 4K QA pairs evaluating 20 temporal
tasks, though it mostly includes short videos averaging 5-40 seconds. Another recent benchmark,
Video-MME (Fu et al., 2024), addresses the issue of diversity by incorporating a wide range of videos.
However, both MVBench and Video-MME are limited to MCQs, which, while straightforward for
evaluation, restrict the range of questions that can be asked and reduce the depth of understanding the
model can demonstrate. By confining to predefined choices, MCQs introduce bias and fail to capture
the model’s true understanding. Considering the limitation of existing benchmarks, which often lack
focus on generalization and diversity, we propose VCGBench-Diverse, featuring 4,354 QA pairs
from 877 videos across 18 domains, evaluated using open-ended questions (see Fig. 4).

3 METHOD

For effective video understanding, combining detailed spatial information with explicit temporal
context is crucial. To achieve this, we propose VideoGPT+, which features a dual encoder design
that leverages the complementary strengths of an image encoder and a video encoder.

Overall Architecture: The overall architecture consists of (i) segment-wise sampling, (ii) dual visual
encoder, (iii) vision-language adapters that project vision features to the language domain and (iv)
a large language model. Frames selected through a segment-wise sampling strategy are encoded
through a dual encoder consisting of an image and a video encoder. Both sets of features are projected
to language space using vision-language (V-L) adapters, and the resulting tokens are pooled through
adaptive token pooling and concatenated before being fed to the LLM (see Fig. 2).

Segment-wise Sampling: To extract fine-grained temporal cues, we use a segment-wise frame
sampling strategy. Given an input video V ∈ RT×H×W×C , we divide it into K segments, where
each segment consists of n = T

K frames. Thus, the video can be represented as V = [Vk]
K
k=1. Each

segment Vk ∈ Rn×H×W×C can be described as a sequence of frames, Xi, where Vk = [Xi,j ]
n
j=1.

The video segments are downsampled to a lower resolution of n× h× w × c for video encoding.

Compared to a uniform sampling, segment-wise sampling better aligns with our dual encoder design.
Video encoders often face computational constraints, limiting them to processing only sparse frames.
Uniform sampling increases the self-attention computation complexity as it requires attending to
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Figure 2: Overview of VideoGPT+. VideoGPT+ is a large multimodal model for video understanding. It
uses a dual-encoder design that combines the complementary strengths of an image encoder and a video encoder.
The image encoder captures detailed spatial features, while the video encoder captures temporal dynamics across
multiple frames. To retain fine-grained temporal details while ensuring efficiency, we use segment-wise frame
sampling instead of random sparse sampling. Both sets of features are then projected into a unified space through
Vision-Language (V-L) projection layers and the resulting tokens are pooled and concatenated before being
processed by a Large Language Model to generate comprehensive responses to video-based questions. Symbols

indicates frozen components, indicates trainable components, and the indicates LoRA-training.

features of all frames. Additionally, video encoders are typically trained with sparse frames, and
providing more frames can hinder their ability to accurately capture temporal information. In contrast,
the segment-wise sampling strategy divides the video into smaller, manageable segments, enabling
the video encoder to efficiently capture rich temporal cues within each segment.

Dual Vision Encoder: Our design leverages the complementary strengths of an image encoder that
captures detailed spatial features and a video encoder that provides explicit temporal context. The
image encoder g, processes T frames, g(X) ∈ RT×Hg×Wg×Dg , producing local features that provide
frame-level context. Meanwhile, the video encoder h, operates on low-resolution video segments Vk,
yielding global features that provide segment-wise context, h(Vk) ∈ Rn×hh×wh×Dh .

The primary goal of VideoGPT+ is to leverage the capabilities of a pre-trained LLM alongside
visual modalities from both a pre-trained image encoder and a pre-trained video encoder. Specifically,
we utilize the pre-trained CLIP model, ViT-L/14 (336 × 336) (Radford et al., 2021) as the image
encoder, and InternVideo-v2 (224× 224) (Wang et al., 2024) as the video encoder. These models
are selected for their robust performance and their ability to complement each other in capturing
both spatial and temporal information. Both encoders are pre-trained on large-scale datasets in a
multimodal setting using contrastive loss, facilitating their integration within our architecture.

Visual Adapter: The output embeddings from the second last layer of both image and video encoders
are passed through separate V-L projection layers, Wg and Wh, respectively. These Multi-Layer
perceptrons (MLPs) project the visual features into the language space. The projection layers are
trainable, while the visual encoders remain frozen, preserving the rich, pre-trained representations.
The projected embeddings are reshaped back into their grid forms and subjected to a 2× 2 adaptive
token pooling, which operates on the spatial dimensions of the local and global features. This pooling
reduces the token length by a factor of 4, thereby allowing to fit in larger visual context within the same
LLM context window. The pooled embeddings from the local features form Eimg ∈ RT×hg×wg×Dt ,
while the pooled embeddings from the global features of each segment form Evid ∈ Rn×hh×wh×Dt .

Large Language Model: We obtain the final representation by concatenating the embeddings Eimg

with K segment-wise embeddings Evid, such that we have detailed spatial representation across
all segments followed by their global temporal context. We then concatenate the text embeddings
Etext ∈ RL×Dt of the user text query with the visual embeddings,

E = [Eimg,Evid
1 , . . . ,Evid

K ,Etext]. (1)

This integration ensures that the LLM receives a sequence of embeddings that include detailed
spatial features from the image encoder and comprehensive temporal context from the video encoder,
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Figure 3: Illustration of the semi-automatic annotation process in VCG+ 112K. The figure shows how we
use ground-truth video captions and frame-level descriptions to generate a detailed video description. GPT-4 is
used to remove irrelevant and conflicting noisy information in the frame-level descriptions to produce a high-
quality video description. The semi-automatic annotation process integrates spatial, temporal and event, and
reasoning details into the brief information we start with. This dense video description is then used to generate
instruction-tuning QA pairs using GPT-3.5. We provide detailed prompts used in both stages in Appendix D (see
Figs. 8 and 9). We also compare the video description in the VideoInstruct100K (Maaz et al., 2024) dataset to
show the improvement in quality achieved by our new annotation pipeline.

allowing for robust video understanding. The LLM is fine-tuned using LoRA (Hu et al., 2021) in an
auto-regressive manner with a next-token prediction loss. Refer to Fig. 2 for detailed illustration.

4 DATASET

Video-ChatGPT (Maaz et al., 2024) introduces the VideoInstruct100K dataset, which employs a
semi-automatic annotation pipeline to generate 75K instruction-tuning QA pairs. To address the
limitations of this annotation process, we present VCG+112K dataset developed through an improved
annotation pipeline. Our approach improves the accuracy and quality of instruction tuning pairs
by improving keyframe extraction, leveraging SoTA large multimodal models (LMMs) for detailed
descriptions, and refining the instruction generation strategy.

Keyframe Extraction: VideoInstruct100K uses a fixed number of video keyframes, regardless of
video length or dynamics, to generate frame-level dense captions. This often results in both insufficient
and redundant information. We address this by first extracting scenes from videos (Castellano, 2022),
and then selecting one keyframe/scene. Consequently, we obtain detailed information for videos with
rich content and reduce redundancy for videos with less content. It provides better visual context by
extracting more stable keyframes, thus offering a more accurate video representation.

Frame-Level Descriptions: After extracting keyframes, we use a SoTA image LMM, LLaVA-
v1.6 (Liu et al., 2024a), to generate dense descriptions for each keyframe. These descriptions
encompass comprehensive visual details, including spatial attributes, scene context, and object
characteristics, which are often absent in concise ground truth captions. While ground truth captions
are precise, they lack the granularity to capture intricate visual and spatial information. To address
this, we augment them captions with detailed but noisy information from the frame-level descriptions,
thus enhancing the quality and accuracy of the subsequent video descriptions.

Detailed Video Descriptions: VideoInstruct100K (Maaz et al., 2024) prompts GPT-3.5 directly
with frame-level descriptions and concise ground truth captions to generate QA pairs, imposing
a significant cognitive load on the model to verify frame-level descriptions with the ground truth.
We improve this process by first creating a coherent and detailed video description. We prompt
GPT-4 to integrate the detailed frame-level descriptions with the ground truth captions by comparing
information and removing any inconsistencies. The resulting detailed descriptions include a timeline
of events, actions, object attributes, and scene settings, providing a thorough representation of the
video content. This structured input simplifies the task for LLM, thereby enhancing the generated
QA pairs quality.
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Figure 4: Illustration of VCGBench-Diverse video conversational benchmark. VCGBench-Diverse
comprehensive benchmark is designed to evaluate video LMMs across 18 broad video categories. With
4,354 QA pairs, VCGBench-Diverse tests generalization on dense video captioning, spatial and temporal
understanding, and complex reasoning. It covers five video-capturing methods, ensuring diversity and robust
generalization and six reasoning complexities, assessing various analytical and comprehension skills.

Improved Instruction Tuning Data: Using the ground truth captions and detailed video descriptions,
we generate two types of high-quality QA pairs using GPT-3.5: descriptive and concise. For
descriptive instruction pairs, we focus on three categories: (i) dense captioning, which provides
descriptions of the video covering the entire sequence of events and visual details; (ii) detailed
temporal information, which addresses the sequence of events and their dependency to learn temporal
relationships; and (iii) generic question answering, which involves in-depth questions about different
actions, their consequences, and other detailed aspects of the video. For concise instruction pairs,
we target (i) spatial reasoning, focusing on understanding and describing spatial details such as
scene settings, number of objects, attire, and locations; (ii) reasoning of events, covering the causal
relationships between events; and (iii) short temporal questions, addressing specific moments or
sequences, such as what happened at the beginning or end.

5 PROPOSED BENCHMARK

Recognizing the limited diversity in existing video conversation benchmarks, we introduce
VCGBench-Diverse to comprehensively evaluate generalization ability of video LMMs. While
VCG-Bench (Maaz et al., 2024) provides an extensive evaluation protocol, it is limited to videos from
the ActivityNet200 (Fabian Caba Heilbron & Niebles, 2015) dataset. Our benchmark comprises a
total of 877 videos, 18 broad video categories and 4,354 QA pairs, ensuring a robust evaluation frame-
work. The detailed breakdown of VCGBench-Diverse is illustrated in Fig. 4, showcasing the
distribution of videos across content domains, video capturing methods, and reasoning complexities.

We collect videos from 18 distinct domains, including lifestyle, how-to, science and technology,
news, travel, entertainment, film, sports, comedy, activism, gaming, education, surveillance, pets,
cooking, music, automobile, and traffic These categories encompass a broad spectrum of real-world
scenarios, ensuring that models are evaluated on a diverse set of challenges. In addition to content
diversity, VCGBench-Diverse includes a variety of video capture methods, which ensures a
comprehensive assessment of robustness to different filming techniques, camera movements, quality
levels and lighting. The benchmark covers five video capture methods including static and controlled
settings, dynamic and unpredictable settings, fixed camera perspectives, professional and high-quality
videos, and uncontrolled and variable quality. Further, the benchmark evaluates models across six
reasoning complexities, including sequential understanding, complex action and predictive reasoning,
contextual and world knowledge reasoning, causal reasoning, narrative and emotional reasoning, and
analytical and critical reasoning, which is crucial for understanding diverse video content.

The videos in VCGBench-Diverse are sourced from HDVILA (Xue et al., 2022), MPII (Andriluka
et al., 2014), YouCook2 (Zhou et al., 2018), UCF Crime (Sultani et al., 2018), and STUD Traffic (Xu
et al., 2021). The video durations range from 29 sec to 471 sec, with an average of 217 sec. Human
annotators are tasked with writing detailed descriptions based on their understanding of both audio
and visual elements of the videos. This comprehensive annotation process involves a set of annotators
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who are provided with an initial set of ten videos each. These annotations undergo a meta-review
stage where feedback is provided, and necessary corrections are made to meet the required standards.
Following this, annotators receive additional batches, with random samples being selected for quality
checks by the meta-reviewer. The final human annotations are utilized to generate QA pairs using
GPT-3.5, based on prompts detailed in Fig. 10.

Following VCG-Bench (Maaz et al., 2024), the evaluation is computed over five different aspects:
(i) correctness of information (ii) detail orientation (iii) contextual understanding (iv) temporal
understanding and (v) consistency. Additionally, VCGBench-Diverse provides a breakdown
of performance across three key aspects: (i) dense video captioning, which assesses the ability to
generate detailed and accurate descriptions of the video content, (ii) spatial understanding, which
evaluates the capability to understand and describe the spatial relationships and settings within the
video, and (iii) reasoning, which tests the adeptness in inferring and explaining causal relationships
and actions within the video.

6 EXPERIMENTS

We perform quantitative evaluation of VideoGPT+ on five standard benchmarks: i) VCG-
Bench (Maaz et al., 2024), ii) VCGBench-Diverse, iii) MVBench (Li et al., 2024), iv) Video-
MME (Fu et al., 2024) and v) Zero-shot QA.

Implementation Details: We use CLIP-L/14 (Radford et al., 2021) as our image encoder,
InternVideo-v2 (Wang et al., 2024) stage-2 1B model as our video encoder in conjunction with
Phi-3-Mini-3.8B (Abdin et al., 2024) based LLM with 4K context window in our experiments. The
image encoder operates at 336 × 336, while the video encoder operates at 224 × 224 resolution.
Our training consists of two pretraining stages and one instruction-tuning stage. In the pretraining
stage, we train with only the image encoder and only the video encoder on the CC-595K dataset (Liu
et al., 2023a), with only the visual adapters being learned while the rest of the model is kept frozen.
During the instruction-tuning stage, we use LoRA (Hu et al., 2022) with r = 64 for LLM, while
visual adapters are fully trained and vision encoders are kept frozen. The LR is set to 1e−3 during
pretraining and 2e−4 during instruction tuning.

For experiments on VCGBench, VCGBench-Diverse and Zero-shot QA, we sample 16 frames
from videos, while for MVBench which consists of relatively shorter videos, we sample 8 frames.
We keep the same sampling strategy during inference. For VCGBench and VCGBench-Diverse,
the model is trained on VideoInstruct100K (Maaz et al., 2024), VCG+112K , conversation and
caption data from VideoChat (Li et al., 2023c) and VQA dataset from WebVid (Bain et al., 2021),
that combines to approximately 260K single turn conversations. For MVBench, the model is trained
on Kinetics-710 (Kay et al., 2017), Something-Something-v2 (Goyal et al., 2017), conversations
from VideoChat (Li et al., 2023c), CLEVRER (Yi et al., 2019), VQA dataset from WebVid (Bain
et al., 2021) and NExT-QA (Xiao et al., 2021) datasets, which combines to approximately 330K
single turn conversations. We run all trainings for one epoch. Following previous approaches (Maaz
et al., 2024; Jin et al., 2024; Liu et al., 2024c), we employ GPT-3.5-Turbo-0613 for VCGBench and
Zero-shot QA evaluation. However, for our proposed VCGBench-Diverse, we employ the latest
GPT-3.5-Turbo-0125 for evaluation.

Method CI DO CU TU CO Avg.

Video-ChatGPT 2.40 2.52 2.62 1.98 2.37 2.38
BT-Adapter 2.68 2.69 3.27 2.34 2.46 2.69
VTimeLLM 2.78 3.10 3.40 2.49 2.47 2.85
Chat-UniVi 2.89 2.91 3.46 2.89 2.81 2.99
LLAMA-VID 2.96 3.00 3.53 2.46 2.51 2.89
Video-LLaVA 2.84 2.86 3.44 2.46 2.57 2.81
VideoChat2 3.02 2.88 3.51 2.66 2.81 2.98
IG-VLM 3.11 2.78 3.51 2.44 3.29 3.03
VideoGPT+ 3.27 3.18 3.74 2.83 3.39 3.28

Table 1: Performance of VideoGPT+ on VCGBench (Maaz
et al., 2024). All models use 16 frames except Video-ChatGPT
and Chat-UniVi which use 100 and 64 frames respectively.

VCGBench: The benchmark consists
of around 3000 QA pairs generated
from 500 human-annotated videos. It
evaluates responses based on five as-
pects: i) CI (Correctness of Informa-
tion) - accuracy of the response with
video content, ii) DO (Detail Orienta-
tion) - depth of the response, iii) CU
(Contextual Understanding) - align-
ment with video context, iv) TU (Tem-
poral Understanding) - accuracy in
identifying temporal sequences, and
v) CO (Consistency) - response con-
sistency to similar questions. Table 1
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Method CI DO CU TU CO Avg. Caption Spatial Reasoning
GPT4o-mini-2024-07-18 3.06 3.05 3.43 2.67 3.47 3.14 1.82 3.16 4.19
Gemini-Pro-1.5-Flash-001 3.15 3.24 3.40 2.68 3.32 3.16 2.30 3.48 3.82

Video-ChatGPT (ACL 2024) (Maaz et al., 2024) 2.07 2.42 2.46 1.39 2.06 2.08 0.89 2.25 3.60
BT-Adapter (CVPR 2024) (Liu et al., 2024b) 2.20 2.62 2.59 1.29 2.27 2.19 1.03 2.35 3.62
VTimeLLM (CVPR 2024) (Huang et al., 2024a) 2.16 2.41 2.48 1.46 2.35 2.17 1.13 2.29 3.45
Chat-UniVi (CVPR 2024) (Jin et al., 2024) 2.29 2.56 2.66 1.56 2.36 2.29 1.33 2.36 3.59
VideoChat2 (CVPR 2024) (Li et al., 2024) 2.13 2.42 2.51 1.66 2.27 2.20 1.26 2.43 3.13
VideoGPT+ (ours) 2.46 2.73 2.81 1.78 2.59 2.47 1.38 2.80 3.63

Table 2: Performance of VideoGPT+ on VCGBench-Diverse. All open-source models use 16 frames except
Video-ChatGPT and Chat-UniVi, which use 100 and 64 frames, respectively. The good performance of our
model on VCGBench-Diverse shows its generalization to diverse scenarios.

compares our model with previous SoTA approaches. VideoGPT+ achieves an average score of
3.28 surpassing previous best method by a margin of 0.25 (5%).

VCGBench-Diverse: We provide a quantitative comparison of VideoGPT+ against previous SoTA
approaches on VCGBench-Diverse, which contains 4,354 QA pairs from 877 videos. Following
(Maaz et al., 2024), we evaluate the Correctness of Information (CI), Detail Orientation (DO),
Contextual Understanding (CU), Temporal Understanding (TU), and Consistency (CO). Additionally,
we provide results for dense captioning, spatial understanding, and visual reasoning abilities. The
results are presented in Table 2. VideoGPT+ achieves an average score of 2.47 surpassing all
previous methods. Further, we achieves a score of 1.38, 2.80, and 3.63 on dense captioning, spatial
understanding, and visual reasoning, respectively. Notably, VideoGPT+ achieves improvements in
spatial and temporal understanding, surpassing previous best models by 0.37 (7.4%) and 0.23 (4.6%),
respectively. This is attributed to the dual encoder architecture, where the high-resolution image
encoder enhances spatial understanding and the video encoder improves temporal accuracy.

To further validate the alignment of GPT scores with human preferences, we conduct a study
involving human annotators. Four annotators given the same GPT scoring guidelines, each reviewed
50 questions from a pool of 200 randomly selected questions. They scored responses from three
models: VideoGPT+, VideoChat2, and Chat-UniV. Their respective scores, 2.0, 1.9, and 2.3, closely
matched the GPT averages of 2.3, 2.2, and 2.5 for each model. This comparison confirms that GPT
scores align well with human preferences, supporting the reliability of our evaluation method.

Table 2 also shows the results of closed-source models in gray for reference. Note that the comparison
between open-source and significantly larger, closed-source models is not fair due to the vast
differences in scale, parameters, and training data. We compare VideoGPT+ (3.8B-scale) with
similarly scaled open-source models (7B-scale), where our model demonstrates superior performance.

MVBench: We evaluate VideoGPT+ on MVBench (Li et al., 2024), which provides 4,000 QA
pairs from 11 video datasets covering a broad spectrum of scenes, ranging from first-person to
third-person and from indoor to outdoor environments. The tasks are categorized into 20 fine-grained
temporal understanding tasks. The results presented in Table 3 compare VideoGPT+ with previous
methods, indicating an overall improvement of 7.6% compared to the previous best, VideoChat2.
Specifically, VideoGPT+ achieves SoTA results in 14 out of 20 tasks and comes second in 4 out of

Model AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.
Random 25.0 25.0 33.3 25.0 25.0 33.3 25.0 33.3 25.0 25.0 25.0 33.3 25.0 33.3 33.3 25.0 33.3 25.0 20.0 30.9 27.3
GPT-4V (OpenAI, 2023) 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

Otter-V (Li et al., 2023a) 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5 26.8
mPLUG-Owl-V (Ye et al., 2023) 22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5 29.7
Video-ChatGPT (Maaz et al., 2024) 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
VideoLLaMA (Zhang et al., 2023) 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat (Li et al., 2023c) 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
VideoChat2 (Li et al., 2024) 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5 51.1
VideoGPT+ (ours) 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7

Table 3: Performance of VideoGPT+ on MVBench. Following (Li et al., 2024), we evaluate on 20 tasks
including AS: Action Sequence, AP: Action Prediction, AA: Action Antonym, FA: Fine-grained Action, UA:
Unexpected Action, OE: Object Existence, OI: Object Interaction, OS: Object Shuffle, MD: Moving Direction,
AL: Action Localization, ST: Scene Transition, AC: Action Count, MC: Moving Count, MA: Moving Attribute,
SC: State Change, FP: Fine-grained Pose, CO: Character Order, EN: Egocentric Navigation, ER: Episodic
Reasoning and CI: Counterfactual Inference.
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Model MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM (Yang et al., 2022) 32.2 – 16.8 – 41.0 – 24.7 –
VideoChat (Li et al., 2023c) 56.3 2.8 45.0 2.5 34.4 2.3 26.5 2.2
LLaMA Adapter (Zhang et al., 2024a) 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video-LLaMA (Zhang et al., 2023) 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (Maaz et al., 2024) 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.8
ChatUniVi (Jin et al., 2024) 65.0 3.6 54.6 3.1 60.3 3.4 45.8 3.2
LLaMA-VID (Li et al., 2023d) 70.0 3.7 58.9 3.3 – – 47.5 3.3
Video-LLaVA (Lin et al., 2023) 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
VideChat2 (Li et al., 2024) 70.0 3.9 54.1 3.3 – – 49.1 3.3
VideoGPT+ (ours) 72.4 3.9 60.6 3.6 74.6 4.1 50.6 3.6

Table 4: Performance of VideoGPT+ on Zero-shot QA. All the models are evaluated in zero-shot setting
where none of the videos were included in the training set. VideoGPT+ achieves good results on all datasets.

20 tasks, obtaining an average score of 58.7% across the 20 tasks. Additionally, VideoGPT+ shows
significant improvements in the Action Prediction (+12.5%), Object Existence (OE) (+27.5%),
Moving Direction (MD) (+17%), Moving Count (MC) (+29%) and Moving Attributes (MA) (+32%)
indicating the rich spatial information and temporal context achieved by our model.

Model Short Med Long Avg

Video-LLaVA 45.3 38.0 36.2 39.9
Qwen-VL-Chat 46.9 38.7 37.8 41.1
ChatUniVi 45.7 40.3 35.8 40.6
VideoChat2 48.3 37.0 33.2 39.5
VideoGPT+ 56.4 47.2 42.5 48.7

Video-MME: We evaluate the performance of our
model on Video-MME, a more comprehensive bench-
mark that assesses video understanding across six do-
mains and 30 subfields through 2700 multiple-choice-qa
pairs from 900 videos. It covers a diverse range of video
durations, from short, medium, and long videos (11 sec
to 1 hour). Our results show that our model achieves superior performance compared to prior SoTA ap-
proaches. Specifically, our model performs well across the short, medium, and long video categories,
demonstrating strong temporal understanding and effectively capturing long-range dependencies

Zero-shot Question-Answering: We provide a quantitative comparison of our method on the zero-
shot QA task across four open-ended QA datasets, including MSVD-QA (Xu et al., 2017), MSRVTT-
QA (Xu et al., 2017), TGIF-QA (Jang et al., 2019), and ActivityNet-QA (Fabian Caba Heilbron &
Niebles, 2015). Results presented in Table 4 show VideoGPT+ achieves superior performance
compared to previous methods, indicating its ability to adapt effectively to unseen videos and generate
accurate contextually relevant responses in challenging settings.

Vision Temporal Spatial GPT4 as Judge
Encoder VCG VCG-Div Score Score VCG VCG-Div

Image-only 3.17 2.36 1.61 2.70 22 28
Video-only 3.20 2.38 1.69 2.64 27 30
Dual (ours) 3.28 2.47 1.78 2.80 51 42

Vision Encoder Type: We ablate
our dual visual encoder design in
VideoGPT+ . We ablate three set-
tings: using only the image encoder,
only the video encoder, and both en-
coders. The results shows that our dual encoder design effectively combines both spatial and temporal
information and achieves the highest score on both VCGBench and VCGBench-Diverse.

Note that the image encoder operates at a higher resolution of 336×336, while the video encoder
operates at 224×224. The image encoder captures better spatial information and fine-grained details,
while the video encoder contributes to understanding motion and action sequences. We further verify
this on MVBench action categories including action sequence (+3.6%), action antonym (+1.5%),
fine-grained action (+1.5%) and unexpected action (+4.0%), where video-only model performs better
than the image-only model.

For completeness, we use a best response selection method with GPT4-as-a-judge to evaluate different
model designs. Responses from three model variants: image encoder, video encoder and our dual
encoder design are presented anonymously to GPT4 alongside the ground truth. The model selects
the best response among the three and excludes cases with no clear winner. For VCGBench (VCG),
732 out of 2000 samples were scored, where the dual encoder design was preferred in 51% of cases,
compared to 22% for the image encoder and 27% for the video encoder. For VCGBench-Diverse
(VCG-Div), 792 out of 4354 samples were scored, with the dual encoder preferred in 42% of cases,
compared to 28% for the image encoder and 30% for the video encoder, indicating that our dual
encoding design as a clear winner among other uni-encoder alternatives (see Table 6).

Frame-level and Video-level Feature Fusion: Though our design uses some known com-
ponents, their meticulous combination to develop an efficient pipeline for video understand-
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ing in MLLMs has not been demonstrated before. We ablate our approach with two alterna-
tives: i) Without segment-wise sampling - resulting in less effective temporal information cap-
tured by the video encoder impacting performance; ii) Without adaptive token pooling - which

Setting VCG VCG-Div

w/o Segment-wise Sampling 3.21 2.40
w/o Adaptive Pooling 3.08 2.31
Video-GPT+ (ours) 3.28 2.47

limits the model’s ability to utilize the LLM context
length effectively, restricting the model to fewer frames.
We compare the performance on both VCGBench and
VCGBench-Diverse benchmarks. The results indi-
cate the effectiveness of our proposed fusion strategy.

Image Pooling Video Pooling

CNN 4× 4 2× 2 Time Space

3.25 3.25 3.28 3.23 3.28

Pooling Strategy: We ablate different pooling strategies
for the image and video encoders. The image encoder out-
puts a 24×24 feature map from a 336×336 input. We com-
pare two downsampling methods: a learnable lightweight
CNN (LDPv2 from (Chu et al., 2024)) and a non-learnable
adaptive average pooling with a 2× 2 kernel. Results indicate that adaptive pooling performs better
than CNN. A 4× 4 adaptive pooling was also tested but showed inferior performance.

Similarly, we ablate the pooling choice for the video encoder, which takes an input of size T × 224×
224× C and outputs a feature map of T × 16× 16× d. We compare two pooling strategies: time
pooling across the temporal dimension to reduce the feature map to 1 × 16 × 16 × d, and space
pooling across the spatial dimension with a 2× 2 kernel. Results shows that space pooling effectively
preserves temporal information and yields better results.

VCG+ 112K VCG MVBench VCG-Div VideoMME

✓ 3.17 58.7 2.4 46.2
× 3.28 58.8 2.5 48.7

VCG+ 112K: To demonstrate the ef-
fectiveness of VCG+112K, we train
VideoGPT+ with and without it and re-
port its impact on the performance across
multiple benchmarks, including VCGBench, MVBench, VCGBench-Diverse and VideoMME. On
VCGBench, our data improves performance, particularly in detail orientation (DO) and temporal
understanding (TU). The performance on MVBench shows minimal gains when incorporating the
VCG+112k data. This is attributed to the distribution differences, as MVBench predominantly
includes short videos averaging 5-40 seconds, whereas the VCG+112k dataset comprises videos from
ActivityNet with an average duration of 3 minutes. However VCGBench-Diverse and VideoMME,
do not include data from ActivityNet, ensuring a fair evaluation. The results shows improvement on
both VCGBench-Diverse and VideoMME. This improvement can be attributed to our novel semi-
automatic annotation pipeline and the enhanced instruction tuning data, which focuses on generating
both detailed and concise instruction pairs. Refer to Fig. 3 for qualitative visualization of the data.

Generalization across video conversation datasets: To ensure a fair comparison with existing
methods (Li et al., 2024; Liu et al., 2024c), we train our model on different combination of datasets for
evaluation on MVBench and VCGBench. To further clarify the generalization capability of our model,

Training Data MVBench VCG VCG-Div

Task-specific 58.7 3.28 2.47
Combined 58.3 3.27 2.45

we provide results on three benchmarks, VCGBench,
MVBench and VCGBench-Diverse, using a single
model trained on a combined dataset. The results demon-
strate that our model maintains performance across all
benchmarks, indicating its ability to generalize effectively across diverse video conversation datasets.

7 CONCLUSION

In this work, we introduce VideoGPT+, a novel video conversation model that leverages the
complementary benefits of image and video encoders to achieve enhanced video understanding.
VideoGPT+ demonstrates better performance across multiple video benchmarks, owing to its dual-
encoder design, lightweight visual adapters that map image/video features to a common space and
a segment-wise sampling strategy that retains fine-grained temporal information. We also develop
VCG+112K, a 112K video-instruction set using a resource-efficient semi-automated annotation
pipeline that delivers further gains. Lastly, we propose VCGBench-Diverse, a diverse benchmark
covering 18 video categories, to comprehensively evaluate video LMMs. Despite reported improve-
ments, video LMMs still find challenges in precise action localization, understanding very long
videos, and navigating long paths; areas where major improvements can unlock new applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Meta AI. Llama 3. https://llama.meta.com/llama3, 2024.

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation:
New benchmark and state of the art analysis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2014.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

Brandon Castellano. Pyscenedetect: Automated video scene detection. https://github.com/
Breakthrough/PySceneDetect, 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. https://lmsys.org/
blog/2023-03-30-vicuna, 2023.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, et al. Mobilevlm: A fast, reproducible and strong vision language
assistant for mobile devices. arXiv preprint arXiv:2312.16886, 2023.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming
Hu, Xinyang Lin, Bo Zhang, et al. Mobilevlm v2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766, 2024.

Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2015.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The”
something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Machine Learning, 2022.

Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower llm to grasp
video moments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024a.

De-An Huang, Shijia Liao, Subhashree Radhakrishnan, Hongxu Yin, Pavlo Molchanov, Zhiding
Yu, and Jan Kautz. Lita: Language instructed temporal-localization assistant. arXiv preprint
arXiv:2403.19046, 2024b.

Yunseok Jang, Yale Song, Chris Dongjoo Kim, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Video
Question Answering with Spatio-Temporal Reasoning. International Journal of Computer Vision,
2019.

11

https://llama.meta.com/llama3
https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peng Jin, Ryuichi Takanobu, Caiwan Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
visual representation empowers large language models with image and video understanding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Wonkyun Kim, Changin Choi, Wonseok Lee, and Wonjong Rhee. An image grid can be worth a
video: Zero-shot video question answering using a vlm. arXiv preprint arXiv:2403.18406, 2024.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In International Conference
on Machine Learning, 2023b.

Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023c.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. arXiv preprint arXiv:2311.17043, 2023d.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv:2310.03744, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances
in Neural Information Processing Systems, 2023c.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

Ruyang Liu, Chen Li, Yixiao Ge, Ying Shan, Thomas H Li, and Ge Li. One for all: Video conversation
is feasible without video instruction tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024b.

Ruyang Liu, Chen Li, Haoran Tang, Yixiao Ge, Ying Shan, and Ge Li. St-llm: Large language
models are effective temporal learners. arXiv preprint arXiv:2404.00308, 2024c.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. In Association for
Computational Linguistics, 2024.

Shehan Munasinghe, Rusiru Thushara, Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan,
Mubarak Shah, and Fahad Khan. Pg-video-llava: Pixel grounding large video-language models.
ArXiv 2311.13435, 2023.

OpenAI. Gpt-4v(ision) system card. https://api.semanticscholar.org/CorpusID:
263218031, 2023.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.
Kosmos-2: Grounding multimodal large language models to the world. ArXiv, abs/2306, 2023.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
Cholakkal, Rao M. Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S. Khan. Glamm: Pixel
grounding large multimodal model. The IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Xun
Guo, Tian Ye, Yan Lu, Jenq-Neng Hwang, et al. Moviechat: From dense token to sparse memory
for long video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance videos.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6479–6488,
2018.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video
understanding. arXiv preprint arXiv:2403.15377, 2024.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9777–9786, 2021.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
Video question answering via gradually refined attention over appearance and motion. In ACM
International Conference on Multimedia, 2017.

Li Xu, He Huang, and Jun Liu. Sutd-trafficqa: A question answering benchmark and an efficient
network for video reasoning over traffic events. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9878–9888, 2021.

Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun, Bei Liu, Huan Yang, Jianlong Fu, and
Baining Guo. Advancing high-resolution video-language representation with large-scale video
transcriptions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Zero-shot video
question answering via frozen bidirectional language models. In Advances in Neural Information
Processing Systems, 2022.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with
multimodality. arXiv preprint arXiv:2304.14178, 2023.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. arXiv preprint
arXiv:1910.01442, 2019.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
arXiv preprint arXiv:2310.07704, 2023.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. In International Conference on Learning Representations, 2024a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In AAAI, 2018.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In International Conference
on Learning Representations, 2024.

14

https://llava-vl.github.io/blog/2024-04-30-llava-next-video/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

SUPPLEMENTAL MATERIAL

We provide supplementary material for a deeper understanding and more analysis related to the main
paper, arranged as follows:

1. Qualitative results (Appendix A)

2. Additional Implementation Details (Appendix B)

3. Additional ablations (Appendix C)

4. GPT Prompts (Appendix D

5. Ethics and societal impact (Appendix E)

Figure 5: Qualitative comparison of VideoGPT+ with VideoChat2. Our VideoGPT+ demonstrates
superior temporal understanding by correctly identifying multiple events in the video, effective reasoning in
generating a creative advertisement, and accurate spatial understanding by identifying the SPF value and brand
name of the sunscreen.
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A QUALITATIVE RESULTS

We provide a qualitative comparison of our VideoGPT+ with the previous state-of-the-art approach,
VideoChat2 (Li et al., 2024), in Fig. 5. The example shows an advertisement video for sunscreen,
where multiple scene changes are present. The video starts with a close-up view of the sunscreen,
followed by a woman applying sunscreen on her hand, then applying sunscreen near a beach. The
woman is then seen applying sunscreen on her arms, and finally, the video shows the key ingredients
of the sunscreen and ends with the cover of the sunscreen.

As shown in Fig. 5, our VideoGPT+ correctly identifies the events present in the video and provides
a detailed and accurate description. On the other hand, VideoChat2 struggles to accurately capture all
the events. Further, our model generates an advertisement post highlighting one of the unique features
of the sunscreen shown in the video, namely that it functions as both sunscreen and moisturizer.
Lastly, our VideoGPT+ correctly identifies the SPF value and brand name of the sunscreen, while
VideoChat2 struggles to correctly identify the brand name. We present further comparison in Fig. 6-7.

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details regarding our training setup and compute
requirements. All of our experiments are conducted using 8xA100 40GB GPUs. The training
for VCGBench experiments takes around 12 hours to complete, while the training for MVBench
experiments finishes in around 10 hours. We use the model trained for the VCGBench task to evaluate
on VCGBench-Diverse and zero-shot question-answering benchmarks. All of our training and
evaluation codes, pretrained models and dataset will be publicly released.

C ADDITIONAL ABLATIONS

Feature VCGBench Avg.
Concatenation CI DO CU TU CO

Interleaved 3.25 3.17 3.72 2.78 3.39 3.26
Sequential 3.27 3.18 3.74 2.83 3.39 3.28

Table 5: Ablation on Feature Concatenation Strategy.
Performance comparison between interleaved and sequen-
tial feature concatenation strategies. The sequential feature
concatenation performs better.

Feature concatenation strategy: We con-
duct an ablation study to determine the opti-
mal order in which image and video features
should be input to the LLM. Specifically,
we perform two experiments. In the first
experiment, image and video features are
extracted for each video segment and con-
catenated in an interleaved manner before
sending as input to the LLM. For example,
the video is divided into segments of equal
size, and then the image and video features
from each segment are concatenated and input to the LLM. In the second experiment, we first place
all the image features followed by all the video features. The results shown in Table 5, indicate that
the sequential design, where the image features are placed first followed by the video features, yields
better performance. This can be justified by the fact that we use different visual adapters for image
and video features, so interleaving the features from both modalities can create a larger distribution
shift, hindering the learning process.

LLM VCGBench Avg.
CI DO CU TU CO

Phi3-Mini-3.8B 3.27 3.18 3.74 2.83 3.39 3.28
Vicuna-7B 3.22 3.14 3.69 2.65 3.46 3.23
Vicuna-13B 3.30 3.20 3.75 2.77 3.48 3.30
LLaMA3-8B 3.29 3.21 3.73 2.86 3.38 3.29

Generalization of VideoGPT+ to other
LLMs : We train VideoGPT+ with
different LLMs including Vicuna 7B and
13B (Chiang et al., 2023) and LLaMA-3
8B (AI, 2024). We observe slight improve-
ments in VCGBench scores when training
using better LLMs, including Vicuna 13B
and LLaMA-3 8B models.
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D GPT PROMPTS

In this section, we provide the GPT prompts used for the following tasks: (i) Dense video description
generation for VCG+112K, (ii) Question-answer generation for VCG+112K and (iii) Question-
answer generation for VCGBench-Diverse.

Dense Video Description Generation for VCG+ 112K: To generate dense video captions, we
provide GPT-4 with a concise ground truth caption of the video and detailed frame-level captions of
the key-frames generated from LLaVA-v1.6 (Liu et al., 2024a). GPT-4 is then prompted to combine
this information into a detailed caption for the entire video. As illustrated in Fig. 8, the prompt
includes clear instructions to eliminate any conflicting information, ensuring an accurate and detailed
caption.

Question-answer generation for VCG+ 112K: After generating detailed video descriptions using
GPT-4, we use GPT-3.5 to create question-answer pairs for instruction tuning. Fig. 9 shows the
prompt to generate detailed summary question-answer pair using the ground truth caption and the
dense description of the video.

Question-Answer Generation for VCGBench-Diverse: We provide prompts used to generate
comprehensive question-answer pairs for VCGBench-Diverse. As illustrated in Fig. 10, the
questions are generated in three categories: temporal, spatial, and reasoning. Similar prompts are
used to generate consistency and summary questions, offering an extensive evaluation protocol for
VCGBench-Diverse.

E ETHICS AND SOCIETAL IMPACT

We use multiple open-source video datasets including ActivityNet Fabian Caba Heilbron & Niebles
(2015), WebWid Bain et al. (2021), MSVD-QA Xu et al. (2017), MSRVTT-QA Xu et al. (2017), TGIF-
QA Jang et al. (2019), HDVILA Xue et al. (2022), MPII Andriluka et al. (2014), YouCook2 Zhou
et al. (2018), UCF Crime Sultani et al. (2018), and STUD Traffic Xu et al. (2021) in our work. To
the best of our knowledge, the dataset does not portray any strong biases or discrimination. We
urge for the responsible use of VideoGPT+ and VCG+112K, promoting research progress while
safeguarding privacy.
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Figure 6: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative
comparison of VideoGPT+ with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three
different categories including traffic, education and surveillance from VCGBench-Diverse.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative
comparison of VideoGPT+ with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three
different categories including sports, news and automobiles videos from VCGBench-Diverse.
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Figure 8: Prompt for Dense Video Captions Generation for VCG+ 112K. We use GPT-4 to generate detailed
video captions using concise ground truth and frame-level detailed captions.

Figure 9: Prompt for Question-answer generation for VCG+ 112K. We use GPT-3.5 to generate question-
answer pairs for instruction tuning using the concise video ground truths and detailed video descriptions.
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Figure 10: Prompt for Question-Answer Generation for VCGBench-Diverse. We use GPT-3.5 to generate
temporal, spatial, and reasoning question-answer pairs.
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