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ABSTRACT

Building on the advances of language models, Large Multimodal Models (LMMs)
have contributed significant improvements in video understanding. While the
current video LMMs utilize advanced Large Language Models (LLMs), they rely
on either image or video encoders to process visual inputs, each of which has its
own limitations. Image encoders excel at capturing rich spatial details from frame
sequences but lack explicit temporal context, which can be important in videos with
intricate action sequences. On the other hand, video encoders provide temporal
context but are often limited by computational constraints that lead to processing
only sparse frames at lower resolutions, resulting in reduced contextual and spatial
understanding. To this end, we introduce VideoGP T+, which combines the com-
plementary benefits of the image encoder (for detailed spatial understanding) and
the video encoder (for global temporal context modeling). The model processes
videos by dividing them into smaller segments and applies an adaptive pooling
strategy on features extracted by both image and video encoders. Our architecture
showcases improved performance across multiple video benchmarks, including
VCGBench, MVBench and Zero-shot question-answering. Further, we develop
112K video-instruction set using a novel semi-automatic annotation pipeline which
further improves the model performance. Additionally, to comprehensively eval-
uate video LMMs, we present VCGBench-Diverse, covering 18 broad video
categories such as lifestyle, sports, science, gaming, and surveillance videos. This
benchmark with 4,354 question-answer pairs evaluates the generalization of ex-
isting LMMs on dense video captioning, spatial and temporal understanding, and
complex reasoning, ensuring comprehensive assessment across diverse video types
and dynamics. Our code, dataset, and pre-trained models will be publicly released.

1 INTRODUCTION

Existing methods for video understanding often rely solely on either image encoders or video
encoders (Maaz et al.||2024; Jin et al.l 2024; |Liu et al.,2024c). Most works focus on image encoders,
which encode multiple frames and either fuse the information or concatenate the embeddings before
passing them to the LLM. When fusing the information, spatial or temporal pooling is typically
used (Maaz et al) |2024). Spatial pooling has shown minimal effectiveness in capturing video
information, whereas temporal pooling retains some spatial information but lacks explicit temporal
context. On the other hand, concatenating embeddings without pooling (Jin et al., 2024; [Liu et al.|
2024c; [Zhang et al., [2024b) can rapidly increase computational complexity due to the extended
context length required by the LLM, limiting the number of frames that can be processed. While this
approach provides better spatial representation, the overall context is still limited to few frames. The
limited context results in a poor understanding of the video, especially if a uniform sampling strategy
is employed, as it only captures small segments of the video, missing important temporal dynamics.

In order to address these challenges, we propose VideoGPT+ which effectively combines the
merits of both image and video encoders (see Fig. [2). By leveraging an image encoder for rich
spatial details and a video encoder for global temporal context, our model achieves improved video
understanding. To model finegrained temporal dynamics in VideoGPT+ , we use a segment-wise
sampling strategy. Unlike uniform sampling used in existing video LMMs (Maaz et al., 2024)), which
may miss important temporal dynamics, our approach divides the video into smaller segments and
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applies segment-wise sampling. This ensures that the model captures representative information from
different segments of the video, enabling a more comprehensive understanding.

To facilitate the integration of image and video

features, VideoGPT+ introduces a visual VCGBench
adapter module that combines their complimen- Video-HHE VCGBench
tary benefits. This module performs projection phverse
and pooling operations, mapping both image
and video features to a common space while re- y
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Our work has three main contributions:

* We present VideoGPT+, the first video-conversation model that benefits from a dual-encoding
scheme based on both image and video features. These complimentary sets of features offer rich
spatiotemporal details for improved video understanding (Sec. [3).

* Addressing the limitations of existing VideoInstruct100K dataset (Maaz et al., 2024), we develop
VCG+ 112K with a novel semi-automatic annotation pipeline, offering dense video captions along
with spatial understanding and reasoning-based QA pairs, improving model performance (Sec. [).

* Recognizing the lack of diverse benchmarks for video-conversation task, we propose
VCGBench-Diverse, which provides 4,354 human annotated QA pairs across 18 video cate-
gories to extensively evaluate the performance of a video-conversation model (Sec. [3)).

2 RELATED WORKS

Building on advances in language models, LLMs offer a flexible interface for various multimodal
applications. Early efforts in image-based conversation models such as BLIP-2 (L1 et al.,|2023b),
MiniGPT-4 (Zhu et al.;|2024) and LLaVA (Liu et al., 2023c}b) project image features into the language
space through a learnable module and perform instruction tuning for visual conversations capabilities.
Other efforts extend these models to visual grounding tasks (Peng et al., 2023 |Rasheed et al.| 2024;
You et al.| 2023)), exploring the potential of LLMs in complex vision tasks.

Video Conversation Models: Initial works like Video-ChatGPT (Maaz et al., |2024) and Video-
LLaMA (Zhang et al. 2023) extend image-based models to the video domain by introducing
components to encode temporal features, where frame-level visual features are fed to the LLM.
However, this is computationally expensive and quickly fills its context window. To address this issue,
Video-ChatGPT (Maaz et al.| [2024) employs spatial and temporal pooling. LLaMA-Vid (Li et al.,
2023d)) proposes representing a single image with two tokens, context and content. IG-VLM (Kim
et al.,[2024) treats a video as a grid of images, while LITA (Huang et al., [2024b) employs slow-fast
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token pooling to reduce the number of visual features. Chat-UniVi (Jin et al., 2024) uses clustering
in both spatial and temporal dimensions to merge tokens, and VideoChat (L1 et al., 2023c)) uses
Q-Former (L1 et al.,[2023b) to learn a fixed number of queries by cross-attending to the visual features.
MobileVLM (Chu et al.l |2023; [2024)) utilize a lightweight CNN to reduce the spatial dimensions.
Other notable methods include (Liu et al., 2024b; Lin et al., |2023; Munasinghe et al., [2023; |Song
et al.,[2024; |Huang et al.| [2024a).

Alternatively, methods such as VideoChat2 (Li et al.,[2024) use pretrained video encoders. Although
video encoders provide temporal context, they are limited by computational constraints, operating
with limited frames at lower resolutions, restricting temporal context and spatial understanding.
Our VideoGPT+ model addresses these issues by using segment-wise sampling and effectively
combining image and video encoders to capture rich spatial and temporal details (see Fig. [2).

Video Instruction Tuning Datasets: VideoChat (L1 et al.,[2023c) builds a video-instruction tuning
dataset consisting of 7K instructions using videos from WebVid-10M (Bain et al.| [2021). Video-
ChatGPT (Maaz et al.| |2024])) introduces a semi-automatic annotation pipeline to generate Videoln-
struct100K using videos from ActivityNet (Fabian Caba Heilbron & Niebles, [2015). VideoChat2 (Li
et al.,|2024) combines multiple existing image and video datasets to develop a 1.9M joint image-video
instruction tuning dataset. In our experiments, we use Videolnstruct100K and a subset of the dataset
from VideoChat2. Additionally, addressing the limitations of the VideolInstruct100K dataset (Maaz
et al., |2024)), we develop VCG+ 112K through a novel semi-automatic annotation pipeline, which
provides dense video captions along with 112K QA pairs targeting reasoning, spatial and temporal
understanding, which further improves model’s understanding of video content (see Fig. [3).

Video Conversation Benchmarks: Video-ChatGPT (Maaz et al., [2024)) introduces VCGBench and
zero-shot QA benchmarks, where VCGBench includes 500 videos with 3000 QA pairs, evaluated
using GPT-3.5 across various metrics. Despite its comprehensive evaluation, it only contains videos
from the ActivityNet dataset. The Zero-shot evaluation covers MSVD-QA (Xu et al., 2017), MSR-
VTT-QA (Xu et al.| 2017), TGIF-QA (Jang et al., 2019)), and ActivityNet-QA (Fabian Caba Heilbron
& Niebles| 2015). MVBench (Li et al.l [2024) consists of 4K QA pairs evaluating 20 temporal
tasks, though it mostly includes short videos averaging 5-40 seconds. Another recent benchmark,
Video-MME (Fu et al}[2024), addresses the issue of diversity by incorporating a wide range of videos.
However, both MVBench and Video-MME are limited to MCQs, which, while straightforward for
evaluation, restrict the range of questions that can be asked and reduce the depth of understanding the
model can demonstrate. By confining to predefined choices, MCQs introduce bias and fail to capture
the model’s true understanding. Considering the limitation of existing benchmarks, which often lack
focus on generalization and diversity, we propose VCGBench-Diverse, featuring 4,354 QA pairs
from 877 videos across 18 domains, evaluated using open-ended questions (see Fig. ).

3 METHOD

For effective video understanding, combining detailed spatial information with explicit temporal
context is crucial. To achieve this, we propose VideoGPT+, which features a dual encoder design
that leverages the complementary strengths of an image encoder and a video encoder.

Overall Architecture: The overall architecture consists of (i) segment-wise sampling, (ii) dual visual
encoder, (iii) vision-language adapters that project vision features to the language domain and (iv)
a large language model. Frames selected through a segment-wise sampling strategy are encoded
through a dual encoder consisting of an image and a video encoder. Both sets of features are projected
to language space using vision-language (V-L) adapters, and the resulting tokens are pooled through
adaptive token pooling and concatenated before being fed to the LLM (see Fig. [2).

Segment-wise Sampling: To extract fine-grained temporal cues, we use a segment-wise frame
sampling strategy. Given an il%put video V € RTXHXWXC "ye divide it into K segments, where
each segment consists of n = % frames. Thus, the video can be represented as V = [V ]/ . Each
segment V;, € RMHXWxC cap be described as a sequence of frames, X;, where V, = X, j}}‘zl.
The video segments are downsampled to a lower resolution of n x h x w X ¢ for video encoding.

Compared to a uniform sampling, segment-wise sampling better aligns with our dual encoder design.
Video encoders often face computational constraints, limiting them to processing only sparse frames.
Uniform sampling increases the self-attention computation complexity as it requires attending to
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Figure 2: Overview of VideoGPT+. VideoGPT+ is a large multimodal model for video understanding. It
uses a dual-encoder design that combines the complementary strengths of an image encoder and a video encoder.
The image encoder captures detailed spatial features, while the video encoder captures temporal dynamics across
multiple frames. To retain fine-grained temporal details while ensuring efficiency, we use segment-wise frame
sampling instead of random sparse sampling. Both sets of features are then projected into a unified space through
Vision-Language (V-L) projection layers and the resulting tokens are pooled and concatenated before being
processed by a Large Language Model to generate comprehensive responses to video-based questions. Symbols

% indicates frozen components, & indicates trainable components, and the @ indicates LoRA-training.

features of all frames. Additionally, video encoders are typically trained with sparse frames, and
providing more frames can hinder their ability to accurately capture temporal information. In contrast,
the segment-wise sampling strategy divides the video into smaller, manageable segments, enabling
the video encoder to efficiently capture rich temporal cues within each segment.

Dual Vision Encoder: Our design leverages the complementary strengths of an image encoder that
captures detailed spatial features and a video encoder that provides explicit temporal context. The
image encoder g, processes 71" frames, g(X) € RT>*HsxWax Dy producing local features that provide
frame-level context. Meanwhile, the video encoder h, operates on low-resolution video segments Vi,
yielding global features that provide segment-wise context, h(Vy) € R?>*hnxwnxDn

The primary goal of VideoGPT+ is to leverage the capabilities of a pre-trained LLM alongside
visual modalities from both a pre-trained image encoder and a pre-trained video encoder. Specifically,
we utilize the pre-trained CLIP model, ViT-L/14 (336 x 336) (Radford et al.| [2021) as the image
encoder, and InternVideo-v2 (224 x 224) (Wang et al.} [2024) as the video encoder. These models
are selected for their robust performance and their ability to complement each other in capturing
both spatial and temporal information. Both encoders are pre-trained on large-scale datasets in a
multimodal setting using contrastive loss, facilitating their integration within our architecture.

Visual Adapter: The output embeddings from the second last layer of both image and video encoders
are passed through separate V-L projection layers, W, and W7, respectively. These Multi-Layer
perceptrons (MLPs) project the visual features into the language space. The projection layers are
trainable, while the visual encoders remain frozen, preserving the rich, pre-trained representations.
The projected embeddings are reshaped back into their grid forms and subjected to a 2 x 2 adaptive
token pooling, which operates on the spatial dimensions of the local and global features. This pooling
reduces the token length by a factor of 4, thereby allowing to fit in larger visual context within the same
LLM context window. The pooled embeddings from the local features form E?9 ¢ RT*/gxwgx Dt
while the pooled embeddings from the global features of each segment form Evid ¢ R">*nxwnx Dy

Large Language Model: We obtain the final representation by concatenating the embeddings E‘™9
with K segment-wise embeddings E*?, such that we have detailed spatial representation across
all segments followed by their global temporal context. We then concatenate the text embeddings
Etert ¢ RL*Dt of the user text query with the visual embeddings,

E = [E™9 Ey .. Ey E™). (1)

This integration ensures that the LLM receives a sequence of embeddings that include detailed
spatial features from the image encoder and comprehensive temporal context from the video encoder,
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Frame-level
Captioning

¥

Generate a detailed video description using the given
Ground-truth Video Caption: <ground-truth caption> and Frame-level Captions:
<frame-level captions>. Instructions: . . .

+
Dense Caption Generation @ GPT-40

VCG+ 112K (Ours) The video features a news segment focusing on sunscreen usage. It opens with a
news anchorwoman in a light-colored blouse, presenting the topic while looking directly into the
camera. The scene then transitions to a beach setting where multiple individuals engage in various
activities, including surfing, sunbathing and walking. The focus shifts to a reporter interviewing a
group of women on the beach, gathering information about the everyday use of sunscreen among
beachgoers. Next, the video cuts to a store aisle where a woman examining a sunscreen bottle is
featured. This indicates a consumer’s perspective on choosing the right sunscreen. The video then
presents various graphic elements displaying sunscreen bottles with high SPF ratings and
information on what percentage of UV rays are blocked, emphasizing the effectiveness of different
types of sunscreens, The narrative continues with an interaction where a female reporter wearing a
black sleeveless top interviews a woman in a white lab coat. This interview might explore
professional insights into sunscreen usage. The video includes a graphic segment showing a green t-
shirt with UPF 10 proudly displayed, indicating discussions on clothing designed for sun protection
Following this, the scene shifts to a natural outdoor setting rulunny, an individual, dress ul

appropriately for sun safety with a wide-brimmed hat and sunglasses, suggesting travel or outdoor
activities where sunscreen is also essential. Then, a person is shown demonstrating the appropriate
amount of sunscreen needed on the palm of their hand, providing practical advice on sunscreen
application. Throughout the video, the recurring news ticker poses the question, HOW MUCH DO
YOU REALLY NEED? referring to the amount of sunscreen necessary for effective protection.

Several people are shown on a beach and interviewed by a reporter on sunscreen, Bottles are
shown containing sunscreen and people putting it on, The reporter talks to people and pans back

Ground Truth Video Caption: A woman is shown hosting a news segment on sunscreen,
to shirts used for sunscreen and people traveling around the world.
)

Instruction Tuning QA Generation @ GPT-3.5

Q: What significant change in perspective is highlighted when the scene shifts to a store aisle,
and what details are featured during this transition?

A: A significant change in perspective is highlighted when the scene shifts to a store aisle,
showcasing a woman examining a sunscreen bottle closely. This transition provides insights into
consumer choice and the selection process related to sunscreen products.

VCG 100K (Video-ChatGPT) The video starts with a woman hosting a news segment, and as the
camera pans to sunscreen news, we see several people on a beach being interviewed by a
reporter about sunscreen. Then, bottles containing sunscreen and people putting it on are shown,
emphasizing the importance of wearing sunscreen while being out in the sun. The reporter
continues to talk to people and pans back to shirts used for sunscreen and people traveling
around the world, promoting the use of sunscreen when traveling to sunny destinations. Overall,
the video aims to educate the audience about the importance of wearing sunscreen and
protecting their skin from the harmful effects of the sun. Through the use of interviews, footage
of people putting on sunscreen, and shirts designed for sunscreen use, the video emphasizes the
importance of protecting your skin against harmful UV rays, whether you are out on the beach
or traveling around the world.

Figure 3: Illustration of the semi-automatic annotation process in VCG+ 112K. The figure shows how we
use ground-truth video captions and frame-level descriptions to generate a detailed video description. GPT-4 is
used to remove irrelevant and conflicting noisy information in the frame-level descriptions to produce a high-
quality video description. The semi-automatic annotation process integrates spatial, temporal and event, and
reasoning details into the brief information we start with. This dense video description is then used to generate
instruction-tuning QA pairs using GPT-3.5. We provide detailed prompts used in both stages in Appendix [D](see
Figs.[8]and[0). We also compare the video description in the Videolnstruct100K (Maaz et al}[2024) dataset to
show the improvement in quality achieved by our new annotation pipeline.

allowing for robust video understanding. The LLM is fine-tuned using LoRA (Hu et al.||2021) in an
auto-regressive manner with a next-token prediction loss. Refer to Fig. 2] for detailed illustration.

4 DATASET

Video-ChatGPT (Maaz et al., [2024)) introduces the VideolInstructl00K dataset, which employs a
semi-automatic annotation pipeline to generate 75K instruction-tuning QA pairs. To address the
limitations of this annotation process, we present VCG+ 112K dataset developed through an improved
annotation pipeline. Our approach improves the accuracy and quality of instruction tuning pairs
by improving keyframe extraction, leveraging SoTA large multimodal models (LMMs) for detailed
descriptions, and refining the instruction generation strategy.

Keyframe Extraction: Videolnstruct100K uses a fixed number of video keyframes, regardless of
video length or dynamics, to generate frame-level dense captions. This often results in both insufficient
and redundant information. We address this by first extracting scenes from videos 2022),
and then selecting one keyframe/scene. Consequently, we obtain detailed information for videos with
rich content and reduce redundancy for videos with less content. It provides better visual context by
extracting more stable keyframes, thus offering a more accurate video representation.

Frame-Level Descriptions: After extracting keyframes, we use a SoTA image LMM, LLaVA-
vl.6 [20244), to generate dense descriptions for each keyframe. These descriptions
encompass comprehensive visual details, including spatial attributes, scene context, and object
characteristics, which are often absent in concise ground truth captions. While ground truth captions
are precise, they lack the granularity to capture intricate visual and spatial information. To address
this, we augment them captions with detailed but noisy information from the frame-level descriptions,
thus enhancing the quality and accuracy of the subsequent video descriptions.

Detailed Video Descriptions: Videolnstruct100K (Maaz et al.l [2024) prompts GPT-3.5 directly
with frame-level descriptions and concise ground truth captions to generate QA pairs, imposing
a significant cognitive load on the model to verify frame-level descriptions with the ground truth.
We improve this process by first creating a coherent and detailed video description. We prompt
GPT-4 to integrate the detailed frame-level descriptions with the ground truth captions by comparing
information and removing any inconsistencies. The resulting detailed descriptions include a timeline
of events, actions, object attributes, and scene settings, providing a thorough representation of the
video content. This structured input simplifies the task for LLM, thereby enhancing the generated
QA pairs quality.
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Figure 4: Illustration of VCGBench-Diverse video conversational benchmark. VCGBench-Diverse
comprehensive benchmark is designed to evaluate video LMMs across 18 broad video categories. With
4,354 QA pairs, VCGBench-Diverse tests generalization on dense video captioning, spatial and temporal
understanding, and complex reasoning. It covers five video-capturing methods, ensuring diversity and robust
generalization and six reasoning complexities, assessing various analytical and comprehension skills.

Improved Instruction Tuning Data: Using the ground truth captions and detailed video descriptions,
we generate two types of high-quality QA pairs using GPT-3.5: descriptive and concise. For
descriptive instruction pairs, we focus on three categories: (i) dense captioning, which provides
descriptions of the video covering the entire sequence of events and visual details; (ii) detailed
temporal information, which addresses the sequence of events and their dependency to learn temporal
relationships; and (iii) generic question answering, which involves in-depth questions about different
actions, their consequences, and other detailed aspects of the video. For concise instruction pairs,
we target (i) spatial reasoning, focusing on understanding and describing spatial details such as
scene settings, number of objects, attire, and locations; (ii) reasoning of events, covering the causal
relationships between events; and (iii) short temporal questions, addressing specific moments or
sequences, such as what happened at the beginning or end.

5 PROPOSED BENCHMARK

Recognizing the limited diversity in existing video conversation benchmarks, we introduce
VCGBench-Diverse to comprehensively evaluate generalization ability of video LMMs. While
VCG-Bench (Maaz et al.l 2024) provides an extensive evaluation protocol, it is limited to videos from
the ActivityNet200 (Fabian Caba Heilbron & Niebles| |[2015) dataset. Our benchmark comprises a
total of 877 videos, 18 broad video categories and 4,354 QA pairs, ensuring a robust evaluation frame-
work. The detailed breakdown of VCGBench-Diverse is illustrated in Fig. ] showcasing the
distribution of videos across content domains, video capturing methods, and reasoning complexities.

We collect videos from 18 distinct domains, including lifestyle, how-to, science and technology,
news, travel, entertainment, film, sports, comedy, activism, gaming, education, surveillance, pets,
cooking, music, automobile, and traffic These categories encompass a broad spectrum of real-world
scenarios, ensuring that models are evaluated on a diverse set of challenges. In addition to content
diversity, VCGBench-Diverse includes a variety of video capture methods, which ensures a
comprehensive assessment of robustness to different filming techniques, camera movements, quality
levels and lighting. The benchmark covers five video capture methods including static and controlled
settings, dynamic and unpredictable settings, fixed camera perspectives, professional and high-quality
videos, and uncontrolled and variable quality. Further, the benchmark evaluates models across six
reasoning complexities, including sequential understanding, complex action and predictive reasoning,
contextual and world knowledge reasoning, causal reasoning, narrative and emotional reasoning, and
analytical and critical reasoning, which is crucial for understanding diverse video content.

The videos in VCGBench-Diverse are sourced from HDVILA (Xue et al.,2022), MPII (Andriluka:
et al., 2014), YouCook2 (Zhou et al.,[2018)), UCF Crime (Sultani et al.,[2018)), and STUD Traffic (Xu
et al.| 2021). The video durations range from 29 sec to 471 sec, with an average of 217 sec. Human
annotators are tasked with writing detailed descriptions based on their understanding of both audio
and visual elements of the videos. This comprehensive annotation process involves a set of annotators
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who are provided with an initial set of ten videos each. These annotations undergo a meta-review
stage where feedback is provided, and necessary corrections are made to meet the required standards.
Following this, annotators receive additional batches, with random samples being selected for quality
checks by the meta-reviewer. The final human annotations are utilized to generate QA pairs using
GPT-3.5, based on prompts detailed in Fig.

Following VCG-Bench (Maaz et al.|[2024), the evaluation is computed over five different aspects:
(i) correctness of information (ii) detail orientation (iii) contextual understanding (iv) temporal
understanding and (v) consistency. Additionally, VCGBench-Diverse provides a breakdown
of performance across three key aspects: (i) dense video captioning, which assesses the ability to
generate detailed and accurate descriptions of the video content, (ii) spatial understanding, which
evaluates the capability to understand and describe the spatial relationships and settings within the
video, and (iii) reasoning, which tests the adeptness in inferring and explaining causal relationships
and actions within the video.

6 EXPERIMENTS

We perform quantitative evaluation of VideoGPT+ on five standard benchmarks: i) VCG-
Bench (Maaz et al.| [2024), ii)) VCGBench-Diverse, iii) MVBench (L1 et al., [2024)), iv) Video-
MME (Fu et al.||2024) and v) Zero-shot QA.

Implementation Details: We use CLIP-L/14 (Radford et al.) 2021) as our image encoder,
InternVideo-v2 (Wang et al., |2024) stage-2 1B model as our video encoder in conjunction with
Phi-3-Mini-3.8B (Abdin et al.|[2024)) based LLM with 4K context window in our experiments. The
image encoder operates at 336 x 336, while the video encoder operates at 224 x 224 resolution.
Our training consists of two pretraining stages and one instruction-tuning stage. In the pretraining
stage, we train with only the image encoder and only the video encoder on the CC-595K dataset (Liu
et al.| 2023a)), with only the visual adapters being learned while the rest of the model is kept frozen.
During the instruction-tuning stage, we use LoRA (Hu et al., [2022) with r = 64 for LLM, while
visual adapters are fully trained and vision encoders are kept frozen. The LR is set to 1e~3 during
pretraining and 2e~* during instruction tuning.

For experiments on VCGBench, VCGBench-Diverse and Zero-shot QA, we sample 16 frames
from videos, while for MVBench which consists of relatively shorter videos, we sample 8 frames.
We keep the same sampling strategy during inference. For VCGBench and VCGBench-Diverse,
the model is trained on Videolnstruct100K (Maaz et al., 2024), VCG+ 112K , conversation and
caption data from VideoChat (Li et al., 2023c) and VQA dataset from WebVid (Bain et al., [2021]),
that combines to approximately 260K single turn conversations. For MVBench, the model is trained
on Kinetics-710 (Kay et al., 2017), Something-Something-v2 (Goyal et al., |2017), conversations
from VideoChat (Li et al., [2023c)), CLEVRER (Yi et al., 2019), VQA dataset from WebVid (Bain
et al.;, 2021) and NExT-QA (Xiao et al., [2021) datasets, which combines to approximately 330K
single turn conversations. We run all trainings for one epoch. Following previous approaches (Maaz
et al.| 2024; Jin et al.| [2024; [Liu et al.|[2024c)), we employ GPT-3.5-Turbo-0613 for VCGBench and
Zero-shot QA evaluation. However, for our proposed VCGBench-Diverse, we employ the latest
GPT-3.5-Turbo-0125 for evaluation.

VCGBench: The benchmark consists

of around 3000 QA pairs generated Method (1 _bo €U TU CO Av
from 500 human-annotated videos. It Video-ChatGPT 240 252 2.62 1.98 2.37 2.38
evaluates responses based on five as- BT—.Adapter 2.68 269 327 234 246 2.69

VTimeLLM 2.78 3.10 340 249 247 285

pects: 1) CI (Correctness of Informa- o . & o 2890 291 346 289 281 299

tion) - accuracy of the response with 1y \MAVID 296 3.00 353 246 251 289
video content, i) DO (Detail Orienta-  video-LLaVA ~ 2.84 286 344 246 257 28I

tion) - depth of the response, iii) CU  VideoChat2 3.02 288 351 266 281 298
(Contextual Understanding) - align- IG-VLM 311 278 351 244 329 3.03
ment with video context, iv) TU (Tem- VideoGPT+ 327 318 374 2.83 339 3.28

poral Understanding) - accuracy in

identifying temporal sequences, and Table 1: Performance of VideoGPT+ on VCGBench (Maaz
v) CO (Consistency) - response con- et al.,2024). All models use 16 frames except Video-ChatGPT
sistency to similar questions. Table and Chat-UniVi which use 100 and 64 frames respectively.
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Method CI DO CU TU CO Avg. Caption Spatial Reasoning
GPT40-mini-2024-07-18 306 3.05 343 267 347 3.14 1.82 3.16 4.19
Gemini-Pro-1.5-Flash-001 3.15 324 340 268 332 3.16 2.30 3.48 3.82
Video-ChatGPT (ACL 2024) (Maaz et al.|[2024) 2.07 242 246 139 2.06 2.08 0.89 2.25 3.60
BT-Adapter (CVPR 2024) (Liu et al.[[2024b) 220 262 259 129 227 219 1.03 2.35 3.62
VTimeLLM (CVPR 2024) (Huang et al.[[2024a) 2.16 241 248 146 235 2.17 1.13 2.29 3.45
Chat-UniVi (CVPR 2024) (Jin et al.|[2024) 229 256 2.66 156 236 2.29 1.33 2.36 3.59
VideoChat2 (CVPR 2024) (L1 et al.||2024) 2.13 242 251 1.66 227 220 1.26 2.43 3.13
VideoGPT+ (ours) 246 273 281 178 259 247 1.38 2.80 3.63

Table 2: Performance of VideoGPT+ on VCGBench-Diverse. All open-source models use 16 frames except
Video-ChatGPT and Chat-UniVi, which use 100 and 64 frames, respectively. The good performance of our
model on VCGBench-Diverse shows its generalization to diverse scenarios.

compares our model with previous SoTA approaches. VideoGPT+ achieves an average score of
3.28 surpassing previous best method by a margin of 0.25 (5%).

VCGBench-Diverse: We provide a quantitative comparison of VideoGP T+ against previous SoTA
approaches on VCGBench-Diverse, which contains 4,354 QA pairs from 877 videos. Following
(Maaz et al., 2024), we evaluate the Correctness of Information (CI), Detail Orientation (DO),
Contextual Understanding (CU), Temporal Understanding (TU), and Consistency (CO). Additionally,
we provide results for dense captioning, spatial understanding, and visual reasoning abilities. The
results are presented in Table VideoGPT+ achieves an average score of 2.47 surpassing all
previous methods. Further, we achieves a score of 1.38, 2.80, and 3.63 on dense captioning, spatial
understanding, and visual reasoning, respectively. Notably, VideoGPT+ achieves improvements in
spatial and temporal understanding, surpassing previous best models by 0.37 (7.4%) and 0.23 (4.6%),
respectively. This is attributed to the dual encoder architecture, where the high-resolution image
encoder enhances spatial understanding and the video encoder improves temporal accuracy.

To further validate the alignment of GPT scores with human preferences, we conduct a study
involving human annotators. Four annotators given the same GPT scoring guidelines, each reviewed
50 questions from a pool of 200 randomly selected questions. They scored responses from three
models: VideoGPT+, VideoChat2, and Chat-UniV. Their respective scores, 2.0, 1.9, and 2.3, closely
matched the GPT averages of 2.3, 2.2, and 2.5 for each model. This comparison confirms that GPT
scores align well with human preferences, supporting the reliability of our evaluation method.

Table2]also shows the results of closed-source models in gray for reference. Note that the comparison
between open-source and significantly larger, closed-source models is not fair due to the vast
differences in scale, parameters, and training data. We compare VideoGPT+ (3.8B-scale) with
similarly scaled open-source models (7B-scale), where our model demonstrates superior performance.

MVBench: We evaluate VideoGPT+ on MVBench (Li et al.,[2024), which provides 4,000 QA
pairs from 11 video datasets covering a broad spectrum of scenes, ranging from first-person to
third-person and from indoor to outdoor environments. The tasks are categorized into 20 fine-grained
temporal understanding tasks. The results presented in Table [5|compare VideoGPT+ with previous
methods, indicating an overall improvement of 7.6% compared to the previous best, VideoChat2.
Specifically, VideoGPT+ achieves SoTA results in 14 out of 20 tasks and comes second in 4 out of

Model AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.
Random 25.0 25.0 33.3 25.0 25.0 33.3 25.0 33.3 25.0 25.0 25.0 33.3 25.0 33.3 33.3 25.0 33.3 25.0 20.0 30.9 27.3
GPT-4V (OpenAl![2023) 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5
Otter-V (Li et al.[2023a) 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5 26.8

mPLUG-OwI-V (Ye et al.||2023)  22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5 29.7
Video-ChatGPT (Maaz et al.|[2024) 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
VideoLLaMA (Zhang et al.[2023) 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1

VideoChat (Li et al.][2023c) 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
VideoChat2 (Li et al.[[2024) 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5 51.1
VideoGPT+ (ours) 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7

Table 3: Performance of VideoGPT+ on MVBench. Following (Li et al.}[2024)), we evaluate on 20 tasks
including AS: Action Sequence, AP: Action Prediction, AA: Action Antonym, FA: Fine-grained Action, UA:
Unexpected Action, OE: Object Existence, OI: Object Interaction, OS: Object Shuffle, MD: Moving Direction,
AL: Action Localization, ST: Scene Transition, AC: Action Count, MC: Moving Count, MA: Moving Attribute,
SC: State Change, FP: Fine-grained Pose, CO: Character Order, EN: Egocentric Navigation, ER: Episodic
Reasoning and CI: Counterfactual Inference.
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Model MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Accuracy  Score  Accuracy Score Accuracy Score  Accuracy  Score

FrozenBiLM (Yang et al.|[2022) 32.2 - 16.8 - 41.0 - 24.7 -

VideoChat (Li et al.[[2023c) 56.3 2.8 45.0 2.5 34.4 2.3 26.5 22
LLaMA Adapter (Zhang et al.|[2024a) 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video-LLaMA (Zhang et al.|[2023) 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (Maaz et al.||2024) 64.9 33 49.3 2.8 51.4 3.0 352 2.8
ChatUniVi (Jin et al.|[2024) 65.0 3.6 54.6 3.1 60.3 34 45.8 32
LLaMA-VID (Li et al.[[2023d) 70.0 3.7 58.9 33 - - 475 33
Video-LLaVA (Lin et al.|[2023) 70.7 39 59.2 35 70.0 4.0 45.3 33
VideChat2 (Li et al.[[2024) 70.0 3.9 54.1 3.3 - - 49.1 33
VideoGPT+ (ours) 724 3.9 60.6 3.6 74.6 4.1 50.6 3.6

Table 4: Performance of VideoGPT+ on Zero-shot QA. All the models are evaluated in zero-shot setting
where none of the videos were included in the training set. VideoGP T+ achieves good results on all datasets.

20 tasks, obtaining an average score of 58.7% across the 20 tasks. Additionally, VideoGPT+ shows
significant improvements in the Action Prediction (+12.5%), Object Existence (OE) (+27.5%),
Moving Direction (MD) (+17%), Moving Count (MC) (+29%) and Moving Attributes (MA) (+32%)
indicating the rich spatial information and temporal context achieved by our model.

Video-MME: We evaluate the performance of our
model on Video-MME, a more comprehensive bench- -

mark that assesses video understanding across six do- g‘szﬁl\“]}i&\éﬁat ig'g gg‘g 22'% i?'?
mains and 30 subfields through 2700 multiple-choice-qa ChatUniVi 457 403 358 406
pairs from 900 videos. It covers a diverse range of video VideoChat2 483 370 332 395
durations, from short, medium, and long videos (11 sec VideoGPT+ 564 472 425 487
to 1 hour). Our results show that our model achieves superior performance compared to prior SOTA ap-
proaches. Specifically, our model performs well across the short, medium, and long video categories,
demonstrating strong temporal understanding and effectively capturing long-range dependencies

Model Short Med Long Avg

Zero-shot Question-Answering: We provide a quantitative comparison of our method on the zero-
shot QA task across four open-ended QA datasets, including MSVD-QA (Xu et al.,[2017), MSRVTT-
QA (Xu et al.;[2017), TGIF-QA (Jang et al.,[2019)), and ActivityNet-QA (Fabian Caba Heilbron &
Niebles| [2015)). Results presented in Table 4] show VideoGPT+ achieves superior performance
compared to previous methods, indicating its ability to adapt effectively to unseen videos and generate
accurate contextually relevant responses in challenging settings.

Vision Encoder Type: We ablate

. . . Vision Temporal Spatial GPT4 as Judge
our dual visual encoder design in Encoder VCG VCG-Div Score Score | VCG  VCG-Div
VideoGPT+ . We ablate three set-  [page-ony 317 236 161 270 | 2 28
tings: using only the image encoder, Video-only ~ 3.20 2.38 1.69 2.64 27 30
only the video encoder, and both en- Dual (ours)  3.28 247 1.78 2.80 51 42

coders. The results shows that our dual encoder design effectively combines both spatial and temporal
information and achieves the highest score on both VCGBench and VCGBench-Diverse.

Note that the image encoder operates at a higher resolution of 336x336, while the video encoder
operates at 224 x224. The image encoder captures better spatial information and fine-grained details,
while the video encoder contributes to understanding motion and action sequences. We further verify
this on MVBench action categories including action sequence (+3.6%), action antonym (+1.5%),
fine-grained action (+1.5%) and unexpected action (+4.0%), where video-only model performs better
than the image-only model.

For completeness, we use a best response selection method with GPT4-as-a-judge to evaluate different
model designs. Responses from three model variants: image encoder, video encoder and our dual
encoder design are presented anonymously to GPT4 alongside the ground truth. The model selects
the best response among the three and excludes cases with no clear winner. For VCGBench (VCG),
732 out of 2000 samples were scored, where the dual encoder design was preferred in 51% of cases,
compared to 22% for the image encoder and 27% for the video encoder. For VCGBench-Diverse
(VCG-Div), 792 out of 4354 samples were scored, with the dual encoder preferred in 42% of cases,
compared to 28% for the image encoder and 30% for the video encoder, indicating that our dual
encoding design as a clear winner among other uni-encoder alternatives (see Table [6)).

Frame-level and Video-level Feature Fusion: Though our design uses some known com-
ponents, their meticulous combination to develop an efficient pipeline for video understand-
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ing in MLLMs has not been demonstrated before. We ablate our approach with two alterna-
tives: i) Without segment-wise sampling - resulting in less effective temporal information cap-
tured by the video encoder impacting performance; ii) Without adaptive token pooling - which
limits the model’s ability to utilize the LLM context
length effectively, restricting the model to fewer frames. R a0
We compare the performance on both VCGBench.angl wio Adiptive Pooling ping 308 231
VCGBench-Diverse benchmarks. The results indi- Video-GPT+ (ours) 3.28 2.47
cate the effectiveness of our proposed fusion strategy.

Setting VCG VCG-Div

Pooling Strategy: We ablate different pooling strategies
for the image and video encoders. The image encoder out-
puts a 24 x 24 feature map from a 336 x 336 input. We com-
pare two downsampling methods: a learnable lightweight 325 325 328 | 323 328
CNN (LDPv2 from (Chu et al.} [2024)) and a non-learnable

adaptive average pooling with a 2 x 2 kernel. Results indicate that adaptive pooling performs better
than CNN. A 4 x 4 adaptive pooling was also tested but showed inferior performance.

Image Pooling Video Pooling
CNN 4x4 2x2 Time Space

Similarly, we ablate the pooling choice for the video encoder, which takes an input of size T' x 224 x
224 x C and outputs a feature map of 7" x 16 x 16 x d. We compare two pooling strategies: time
pooling across the temporal dimension to reduce the feature map to 1 x 16 x 16 x d, and space
pooling across the spatial dimension with a 2 x 2 kernel. Results shows that space pooling effectively
preserves temporal information and yields better results.

VCG+ 112K: To demonstrate the ef-
fectiveness of VCG+ 112K, we train
VideoGPT+ with and without it and re-
port its impact on the performance across
multiple benchmarks, including VCGBench, MVBench, VCGBench-Diverse and VideoMME. On
VCGBench, our data improves performance, particularly in detail orientation (DO) and temporal
understanding (TU). The performance on MVBench shows minimal gains when incorporating the
VCG+112k data. This is attributed to the distribution differences, as MVBench predominantly
includes short videos averaging 5-40 seconds, whereas the VCG+112k dataset comprises videos from
ActivityNet with an average duration of 3 minutes. However VCGBench-Diverse and VideoMME,
do not include data from ActivityNet, ensuring a fair evaluation. The results shows improvement on
both VCGBench-Diverse and VideoMME. This improvement can be attributed to our novel semi-
automatic annotation pipeline and the enhanced instruction tuning data, which focuses on generating
both detailed and concise instruction pairs. Refer to Fig. 3] for qualitative visualization of the data.

VCG+112K VCG MVBench VCG-Div VideoMME

v 3.17 58.7 2.4 46.2
X 3.28 58.8 2.5 48.7

Generalization across video conversation datasets: To ensure a fair comparison with existing
methods (Li et al., 2024} Liu et al., [2024c), we train our model on different combination of datasets for
evaluation on MVBench and VCGBench. To further clarify the generalization capability of our model,
we provide results on three bepchmarks, YCGB§nch, Training Data_MVBench  VCG _ VCG-Div
MVBench and VCGBench-Diverse, using a single -
model trained on a combined dataset. The results demon- 1ok specific 87 328 247
A : Combined 583 3.27 245
strate that our model maintains performance across all
benchmarks, indicating its ability to generalize effectively across diverse video conversation datasets.

7 CONCLUSION

In this work, we introduce VideoGPT+, a novel video conversation model that leverages the
complementary benefits of image and video encoders to achieve enhanced video understanding.
VideoGPT+ demonstrates better performance across multiple video benchmarks, owing to its dual-
encoder design, lightweight visual adapters that map image/video features to a common space and
a segment-wise sampling strategy that retains fine-grained temporal information. We also develop
VCG+ 112K, a 112K video-instruction set using a resource-efficient semi-automated annotation
pipeline that delivers further gains. Lastly, we propose VCGBench-Diverse, a diverse benchmark
covering 18 video categories, to comprehensively evaluate video LMMs. Despite reported improve-
ments, video LMMs still find challenges in precise action localization, understanding very long
videos, and navigating long paths; areas where major improvements can unlock new applications.

10
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SUPPLEMENTAL MATERIAL

We provide supplementary material for a deeper understanding and more analysis related to the main
paper, arranged as follows:

1. Qualitative results (Appendix [A)

2. Additional Implementation Details (Appendix [B])
3. Additional ablations (Appendix [C)

4. GPT Prompts (Appendix

5. Ethics and societal impact (Appendix [E))
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@ The video shows a woman applying a cream to her face and then rubbing it in. She then applies
a serum to her face and rubs it in. The woman then applies a sunscreen to her face and rubs
it in. The video also shows the woman applying a cream to her arm and rubbing it in.

|

Kinautherity-
autherity

The video starts with a close-up shot of a bottle of sunscreen, followed by a woman applying
it to her skin. The camera then pans out to show the woman sitting on the beach, applying the
sunscreen to her arms. The sunscreen is shown again in a close-up shot, highlighting its
texture and consistency. The video then shows a series of close-up shots of the sunscreen,
with text appearing on the screen to highlight its key ingredients. Overall, the video
showcases the importance of using sunscreen to protect the skin from harmful UV rays, with a
focus on the key ingredients that make up the product.

Generate a creative advertisement feature about this product ™

that can be used to post on the product's instagram page. Ul

T
@" The creative advertisement feature for this product could be a video showcasing the product's
benefits and how it can be used. The video could include a woman demonstrating how to use the

product and the various ways it can be applied.

e
05 Introducing the wultimate sun protection solution for your skin! Our new sunscreen

' moisturizer is the perfect blend of protection and hydration for your skin. With its broad-
spectrum protection, you can enjoy the sun without worrying about harmful UV rays. Plus, our
moisturizing formula keeps your skin looking and feeling healthy and radiant. Say goodbye to
dry, flaky skin and hello to a smooth, supple complexion. Don't forget to apply it
generously and reapply every two hours for maximum protection. Your skin deserves the best,
and our sunscreen moisturizer is the perfect way to give it the care it needs. Try it today

and see the difference for yourself!

What is the SPF value of the sunscreen and what is the name of the sunscreen?

)

) 6

) The sunscreen in the video has an SPF value of 30. The name of the
sunscreen shown in the video is Key Benefits.

@&V  The sunscreen has an SPF value of 30 and the sunscreen is called "Skin
2. Authority Sunscreen Moisturizer"

{

Loz

[}

Tave
User VideoGPT+ % VideoChat2

\
! | )

Figure 5: Qualitative comparison of VideoGPT+ with VideoChat2. Our VideoGPT+ demonstrates
superior temporal understanding by correctly identifying multiple events in the video, effective reasoning in
generating a creative advertisement, and accurate spatial understanding by identifying the SPF value and brand

name of the sunscreen.
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A QUALITATIVE RESULTS

We provide a qualitative comparison of our VideoGPT+ with the previous state-of-the-art approach,
VideoChat?2 (Li et al., [2024)), in Fig. E} The example shows an advertisement video for sunscreen,
where multiple scene changes are present. The video starts with a close-up view of the sunscreen,
followed by a woman applying sunscreen on her hand, then applying sunscreen near a beach. The
woman is then seen applying sunscreen on her arms, and finally, the video shows the key ingredients
of the sunscreen and ends with the cover of the sunscreen.

As shown in Fig.[5] our VideoGPT+ correctly identifies the events present in the video and provides
a detailed and accurate description. On the other hand, VideoChat2 struggles to accurately capture all
the events. Further, our model generates an advertisement post highlighting one of the unique features
of the sunscreen shown in the video, namely that it functions as both sunscreen and moisturizer.
Lastly, our VideoGPT+ correctly identifies the SPF value and brand name of the sunscreen, while
VideoChat?2 struggles to correctly identify the brand name. We present further comparison in Fig.

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details regarding our training setup and compute
requirements. All of our experiments are conducted using 8xA100 40GB GPUs. The training
for VCGBench experiments takes around 12 hours to complete, while the training for MVBench
experiments finishes in around 10 hours. We use the model trained for the VCGBench task to evaluate
on VCGBench-Diverse and zero-shot question-answering benchmarks. All of our training and
evaluation codes, pretrained models and dataset will be publicly released.

C ADDITIONAL ABLATIONS

Feature concatenation strategy: We con-

duct an ab.lation. stqdy to determine the opti- VCGBench

mal order in which image and video features ~ Feature Avg.
should be input to the LLM. Specifically, ~_Concatenation €I DO CU TU CO

we perform two experiments. In the first ~ Interleaved 325 317 372 278 339 326
experiment, image and video features are ~_Scduential S2U S0 she AU S8 Sk
extracted for each video segment and con-
catenated in an interleaved manner before
sending as input to the LLM. For example,
the video is divided into segments of equal
size, and then the image and video features
from each segment are concatenated and input to the LLM. In the second experiment, we first place
all the image features followed by all the video features. The results shown in Table[5} indicate that
the sequential design, where the image features are placed first followed by the video features, yields
better performance. This can be justified by the fact that we use different visual adapters for image
and video features, so interleaving the features from both modalities can create a larger distribution
shift, hindering the learning process.

Table 5: Ablation on Feature Concatenation Strategy.
Performance comparison between interleaved and sequen-
tial feature concatenation strategies. The sequential feature
concatenation performs better.

Generalization of VideoGPT+ to other

. . VCGBench
LLMs : We train VideoGPT+ with  LLM ene Avg.
different LLMs including Vicuna 7B and ¢t po CU TU co
13B (Chiang et al., [2023) and LLaMA-3 Phi3-Mini-3.8B 327 3.18 3.74 283 339 328
s _ Vicuna-7B 322 314 369 265 346 323
8B (AL 2024). We observe slight improve Vieuna 13B 330 320 375 277 348 330

ments in VCGBench scores when training LLaMA3-8B 320 321 373 286 333 329
using better LLMs, including Vicuna 13B — —
and LLaMA-3 8B models.
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D GPT PROMPTS

In this section, we provide the GPT prompts used for the following tasks: (i) Dense video description
generation for VCG+ 112K, (ii) Question-answer generation for VCG+ 112K and (iii) Question-
answer generation for VCGBench-Diverse.

Dense Video Description Generation for VCG+ 112K: To generate dense video captions, we
provide GPT-4 with a concise ground truth caption of the video and detailed frame-level captions of
the key-frames generated from LLaVA-v1.6 (Liu et al.,|2024al). GPT-4 is then prompted to combine
this information into a detailed caption for the entire video. As illustrated in Fig. |8 the prompt
includes clear instructions to eliminate any conflicting information, ensuring an accurate and detailed
caption.

Question-answer generation for VCG+ 112K: After generating detailed video descriptions using
GPT-4, we use GPT-3.5 to create question-answer pairs for instruction tuning. Fig. [0 shows the
prompt to generate detailed summary question-answer pair using the ground truth caption and the
dense description of the video.

Question-Answer Generation for VCGBench-Diverse: We provide prompts used to generate
comprehensive question-answer pairs for VCGBench-Diverse. As illustrated in Fig. the
questions are generated in three categories: temporal, spatial, and reasoning. Similar prompts are
used to generate consistency and summary questions, offering an extensive evaluation protocol for
VCGBench-Diverse.

E ETHICS AND SOCIETAL IMPACT

We use multiple open-source video datasets including ActivityNet|Fabian Caba Heilbron & Niebles
(2015)), WebWid Bain et al.| (2021)), MSVD-QA [Xu et al.|(2017), MSRVTT-QA Xu et al.|(2017)), TGIF-
QA Jang et al.|(2019), HDVILA Xue et al.|(2022), MPII |Andriluka et al.|(2014)), YouCook2 |Zhou
et al.| (2018), UCF Crime |Sultani et al.|(2018)), and STUD Traffic Xu et al.| (2021) in our work. To
the best of our knowledge, the dataset does not portray any strong biases or discrimination. We
urge for the responsible use of VideoGPT+ and VCG+ 112K, promoting research progress while
safeguarding privacy.
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GT Answer: The car with the dashboard camera shifted out of the road because the white
pick-up truck tried to change lanes, causing the car to avoid a potential collision.

w The car with the dashboard camera shifted out of the road because it was being driven by a
person who was not paying attention.

)

2.\ O

()

The car with the dashboard camera shifted out of the road to avoid a collision with another
vehicle.

The car with the dashboard camera shifted out of the road due to a collision with a white
@ pickup truck.

The car did not move out of its lane. A white pickup truck attempts to move into the lane,
but then brakes to avoid a collision with a large truck in the lane, staying in its lane.

Category: Traffic

5.
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Q: Why does the video highlight these specific bodybuilders' cases? @

GT Answer: The video highlights these specific bodybuilders' cases to underscore the potential dangers and severe
health repercussions associated with the misuse of steroids and hormones within the bodybuilding community,
serving as cautionary tales.

> The video highlights these specific bodybuilders' cases to showcase their achievements and
w success in their respective fields.

& The video highlights these cases to showcase the impact of substance abuse on bodybuilders'
health and careers, emphasizing the consequences of such actions.

The video highlights these specific cases to discuss the extreme measures some individuals
have taken for bodybuilding, which have led to significant health risks, reputational damage,
and unfortunate events.

* ‘The video highlights the cases of bodybuilders who suffered adverse effects from the use of
steroids.

Category: Education

Q: How many men are initially seen walking along the road in the CCTV footage?

GT Answer: Four men are initially seen walking along the road in the CCTV footage.

’(99'" There are two men walking along the road in the CCTV footage.

&¥ Initially, four men are seen walking along the road in the CCTV footage.

)
v

@ In the CCTV footage provided, initially, there are three men seen walking along the road.

* [Ther‘e are five men initially seen walking along the road. }

Category: Surveillance

e ot
@ User 8 videochat2 videoGPT+ (@) GPT-av * Gemini-Pro-V
L ) A

Figure 6: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative
comparison of VideoGPT+ with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three
different categories including traffic, education and surveillance from VCGBench-Diverse.
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Q: Which team is participating in the featured match? -
GT Answer: The teams participating in the featured match are Valencia CF and Real Valladolid.

—
D
% The teams participating in the featured match are Real Madrid and Atletico Madrid.
oo

o The video shows that the teams playing are Real Valladolid and Valencia CF.

@ The teams participating in the featured match are Valencia CF and Real Valladolid.

* [The teams participating are Valencia CF and Real Valladolid.

Category: Sports

GT Answer: President Rodrigo Duterte declared martial law in Mindanao in response to the Marawi siege.

J®z» Last year, President Rodrigo Duterte made a significant declaration regarding the
% Philippines' territorial claims in the South China Sea.

o
A year ago, President Rodrigo Duterte declared martial law in Mindanao.
.

A year before, President Rodrigo Duterte declared martial law in Mindanao in
response to the Marawi siege.

A year ago, Philippine President Rodrigo Duterte declared martial law in Mindanao,
in response to the Marawi siege.

Category: News

SO BT

Q: What is the color of the self-parking car? 5 -

GT Answer: The self-parking car is black.

FCA
The self-parking car in the video is white.
6ok
> The self-parking car is black in color.
Y.

The color of the self-parking car is black and is actively
engaging in self-parking maneuvers.

+©

[The color of the self-parking car is black. ’

Category: Automobile

) TP < P .. -
«  User w VideoChat2 - VideoGPT+ @ GPT-4V Gemini-Pro-V
( ) _ "

Figure 7: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative
comparison of VideoGPT+ with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three
different categories including sports, news and automobiles videos from VCGBench-Diverse.
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e N

Generate a detailed and accurate description of a video based on the given ground-truth video
caption and multiple frame-level captions. Use the following details to create a clear and complete
narrative:

Ground-truth Video Caption: [Ground-truth caption here]
Frame-level Captions: [Frame-level caption 1]; [Frame-level caption 2]; [Frame-level caption 3];

Instructions for writing the detailed description:

1. Focus on describing key visual details such as appearance, motion, sequence of actions,
objects involved, and interactions between elements in the video.

2. Check for consistency between the ground-truth caption and frame-level captions, and
prioritize details that match the ground-truth caption. Ignore any conflicting or irrelevant
details from the frame-level captions.

3. Leave out any descriptions about the atmosphere, mood, style, aesthetics, proficiency, or
emotional tone of the video.

4. Make sure the description is no more than 20 sentences.

5. Combine and organize information from all captions into one clear and detailed description,
removing any repeated or conflicting details.

6. Emphasize important points like the order of events, appearance and actions of people or
objects, and any significant changes or movements.

7. Do not mention that the information comes from ground-truth captions or frame-level captions.
8. Give a brief yet thorough description, highlighting the key visual and temporal details while
keeping it clear and easy to understand. Use your intelligence to combine and refine the
captions into a brief yet informative description of the entire video.

& J

Figure 8: Prompt for Dense Video Captions Generation for VCG+ 112K. We use GPT-4 to generate detailed
video captions using concise ground truth and frame-level detailed captions.

@ )

# System Prompt

You are an AI assistant tasked with generating questions and answers about video content to create a
video instruction tuning dataset. Your goal is to extract detailed visual and temporal information
from the video, ensuring the explanations are comprehensive enough for someone to understand the
entire sequence of events in the video.

H#H#TASK:

1. Users provide a video ground truth caption and a detailed description.

2. Generate three questions that effectively prompt a detailed description of the entire video
content and sequence of events.

##INSTRUCTIONS:

- Ensure each question targets the goal of generating a detailed description of the entire video
from start to end.

- Avoid questions that focus on small parts, less relevant details, or abstract concepts such as
logical reasoning, attention to subtle details, overall aesthetic.

- Every answer must include all the details from the ground truth caption and integrate additional
specifics from the detailed description.

- Focus on visual and temporal details.

##SAMPLE QUESTIONS:

- Can you describe the entire video in detail from start to finish?

- What happens throughout the entire video, including all key actions and events?
- Could you provide a detailed walkthrough of the entire video?

# User Prompt:
The video ground truth caption is: [Ground-truth caption here]. The noisy detailed description is:
[Dense description here].

Generate three questions and answers about the entire content and sequence of events in the video.
Each question should aim to elicit a comprehensive description of the full sequence of events in the
video from start to finish. Each answer must include all the details from the ground truth caption
and integrate additional specifics from the detailed description. Format the output as a list of
dictionaries in JSON style, with each dictionary containing a 'Q' key for

the question and an 'A' key for the answer. For example:

[{'Q": 'Your first question here...', 'A': 'Your first answer here...'}, {'Q': 'Your second
question here...', 'A': 'Your second answer here...'}, {'Q': 'Your third question here...', 'A':
'Your third answer here...'}].

Most importantly, every answer must provide a full understanding of the video by incorporating ALL
the details from the ground truth caption and additional specifics from the detailed description.

N

J

Figure 9: Prompt for Question-answer generation for VCG+ 112K. We use GPT-3.5 to generate question-
answer pairs for instruction tuning using the concise video ground truths and detailed video descriptions.
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# System Prompt:

You are an AI assistant tasked with generating questions and detailed answers based on a video
description. Your goal is to extract important information from the video content, focusing on
temporal events, visual details, and reasoning behind actions.

#H#TASK :

You will receive a video description, and based on it, you must generate a set of questions and
answers in three distinct categories:

1. Temporal - These questions should focus on the sequence and timing of events. Use approximate
time references where necessary.

2. Spatial - These questions should address visual aspects such as appearance, objects, colors,
attire, displayed texts, number of objects or people, location, and other significant visual
details.

3. Reasoning - These questions should delve into the actions, motivations, and consequences as
depicted in the video description.

#H#INSTRUCTIONS:

- Each question must directly relate to and be answerable by the provided video description. Avoid
assumptions and fabrication of details not present in the description.

- Provide clear, unambiguous questions that allow for definitive answers based on the description.
- If the video description does not contain enough information to formulate a question in any
category, do not include a question for that category.

##SAMPLE QUESTIONS:

- Temporal: Describe the entire process the person goes through from start to finish or What happens

at the beginning of the video? or What does the person do right after the dog appears?

- Spatial: Can you provide a detailed description of the appearance and activities of all

individuals or What is the color of the main character’s shirt? or What is the name of the drink on

the bottle? How many people are at the table?

- Reasoning: What action does the coach take after the whistle blows? or Why did the player throw
the ball? or Who is John Davis in the video?

# User Prompt:
The video description is: [Dense description here].

Format the output as a dictionary in JSON style, with each key representing a question category and
containing a sub-dictionary with 'Q' for the question and 'A' for the answer. Example output with
all three categories filled:

{'temporal': {'Q': 'Temporal question here...', 'A': 'Answer here...'},
'spatial': {'Q': 'Spatial question here...', 'A': 'Answer here...'},
'reasoning’': {'Q': 'Reasoning question here...', 'A': 'Answer here...'}}.

If a category cannot be filled:

{'temporal': {'Q': 'Describe the sequence of events in the video.', 'A': 'The video starts
with...'}, 'spatial': {'Q': 'What is the main character wearing?', 'A': 'The main character is
dressed in...'}} # reasoning omitted due to lack of information

Importantly, the answers MUST extract information DIRECTLY from the given description. Do not
include categories that cannot be filled based on the video description alone.

)

Figure 10: Prompt for Question-Answer Generation for VCGBench-Diverse. We use GPT-3.5 to generate
temporal, spatial, and reasoning question-answer pairs.
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